Growth and nutritional responses of *Eucalyptus* and *Corymbia* species during plantation establishment using effluent irrigation and organic compost on mine overburden in the Hunter Valley, NSW

Angela Cummings

A thesis submitted for the Degree of Doctor of Philosophy at the University of New England

June 2007

Ecosystem Management University of New England Armidale, NSW Australia

DECLARATION

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Angela Cummings

ABSTRACT

In an attempt to make the communities which have developed in the Hunter Valley sustainable in the long-term, local government, community groups, regulators and mining operators want to ensure that the long-term legacy of mining in the region is minimised and that potential benefits are maximised. Rehabilitation efforts are focused on activities that will benefit the community after the extraction process has been completed. Regional planning has identified that commercial native forest plantations are considered as an opportunity for mine rehabilitation. While current rates of tree growth are not considered to be commercially viable, practical solutions are available to reduce current limitations and improve the viability of overburden stockpiles for production of forests with enhanced growth rates. In 1999, Muswellbrook Shire Council and the University of New England formed a partnership to research the feasibility of establishing commercial forests on coal mine overburden using effluent irrigation and organic compost, at a site in the Upper Hunter Valley. This thesis examines the effectiveness of using these techniques to enhance the establishment of *Corymbia maculata*, and seven *Eucalyptus* species, on coal mine overburden.

The establishment of *C. maculata* was examined in an irrigation and compost experiment. Response variables, including tree survival, height, diameter, volume, above ground biomass production, stem form and tree health, were sampled at intervals up to 36 months post-planting. Substrate, tree and weed nutrient status was also assessed at 12 and 24 months. Nutrient use efficiencies and nutrient budgets were developed for *C. maculata* in relation to different treatments which included irrigation and compost ($IC_{IRR+COMP}$), irrigation ($I_{IRRIGATION}$), compost ($C_{COMPOST}$) and control ($N_{CONTROL}$).

After 36 months, survival, height and diameter of *C. maculata* was not influenced by treatment. Survival ranged from 39 % ($C_{COMPOST}$) to 68 % ($I_{IRRIGATION}$). Heights and diameters ranged from an average of 2.7 to 3.5 m, and 41 mm to 56 mm, respectively. Above ground biomass production was significantly greater for $I_{IRRIGATION}$ in comparison to other treatments and production was ten times greater than for $N_{CONTROL}$. The IC_{IRR+COMP} treatment resulted in healthier, better formed trees. Based on the results of this experiment IC_{IRR+COMP} and $I_{IRRIGATION}$ were recommended for future use. C_{COMPOST} can also provide a benefit if effluent irrigation is not available but future use of $N_{CONTROL}$ was not recommended.

A positive effect of treatment application on substrate quality and tree growth was expected given the initial poor qualities of the overburden. Nitrogen (total) increases in the substrate material were associated with the addition of compost, with greatest concentrations of nitrate present in $IC_{IRR+COMP}$, highlighting the additional benefits of providing sufficient water with nutrients to enhance availability. Nutrient concentrations in trees did not differ between treatments, and were mostly within normal ranges for young plantation trees of *C. maculata*. Despite intense competition from weeds, significant

differences between treatments for the accumulation of N and K in trees were evident, highlighting the benefits of treatments for enhanced nutrient absorption. At 24 months, nitrogen accumulation in wood tissue was greatest for $I_{IRRIGATION}$ (2.2 kg ha⁻¹), which was more than double that recorded for $IC_{IRR+COMP}$ (0.9 kg ha⁻¹), $C_{COMPOST}$ (0.6 kg ha⁻¹) and $N_{CONTROL}$ (0.5 kg ha⁻¹). Trees growing under $I_{IRRIGATION}$ were commonly the most efficient user of nutrients. Due to lower nutrient application which enabled a high renovation capacity, $I_{IRRIGATION}$ was a lower risk treatment and was therefore recommended for future use. The nutrient budgets developed for each treatment largely reflected differences in nutrient inputs, with little evidence that effluent irrigation and compost allocation were unsustainable.

Given the natural distribution patterns of eucalypts with respect to soil types and climatic conditions, it was anticipated that growth rates of other species could also be enhanced with effluent irrigation and compost application. A species selection experiment was established using the IC_{IRR+COMP} treatment to compare growth and nutrition variables of *C. maculata, Eucalyptus grandis, Eucalyptus nitens, Eucalyptus badgensis, Eucalyptus saligna, Eucalyptus botryoides, Eucalyptus dunnii* and *Eucalyptus punctata*.

After 36 months survival rates for *E. dunnii* (84 %), *E. botryoides* (86 %), *E. punctata* (85 %), *E. grandis* (83 %) and *E. saligna* (74 %) were significantly greater than the remaining species. Mean height was greatest for *E. botryoides* (563.9 cm) but not significantly greater than *E. dunnii* (541.9 cm), *E. badgensis* (540.0 cm), *E. grandis* (500.5 cm) and *E. punctata* (468.7 cm). Above ground biomass production was greatest for *E. grandis* (10,746 kg ha⁻¹), *E. botryoides* (8,856 kg ha⁻¹) and *E. badgensis* (8,141 kg ha⁻¹). *Eucalyptus botryoides* and *E. badgensis* acquired the most volume in this experiment, closely followed by *E. grandis*, *E. dunnii* and *E. punctata*, demonstrating that some of these are species are capable of reaching increments of 16 m³ ha⁻¹ year⁻¹ (considered suitable for commercial forestry). Assessment of stem form and tree health enabled further comparison of species. After consideration of all measurement variables, *E. grandis*, *E. botryoides* and *E. badgensis* were highly recommended for future use displaying comparably good growth rates and reasonable form and health characteristics. Future use of *C. maculata* and *E. nitens* was not recommended for commercial forestry purposes. Midrange species, *E. dunnii*, *E. punctata* and *E. saligna*, listed in order of preference, could also be suitable depending on circumstances or the number of species required.

Nutrient accumulations were directly and positively related to growth and significant differences between species were found for wood and foliage, for all nutrients. Higher accumulation of nutrients for *E. botryoides*, compared to some other species, further supported its high ranking for growth characteristics. For nutrient use efficiency, *E. badgensis* and *E. punctata* were the most efficient users of nutrients, compared to other species. Nutrient budgets provided further insight into species performances and renovation capacity. All species plots renovated the entire amounts of nitrogen and

phosphorus applied but there were differences in the amounts that were renovated by the plant components. Excellent renovation capacity recorded for the plant biomass in *E. botryoides* plots was evident in all nutrient budgets, and therefore this species was recommended as the preferred species for this circumstance, based on the results of this experiment. The ability of *E. botryoides* to rapidly produce biomass and accumulate nutrients reduced the quantities lost to subsoil.

The main limitations to the experiments were the short time frame over which plantation establishment was monitored and the extensive development of weed biomass. Weed growth considerably reduced the performance of all treatments and species, affecting growth and nutritional responses. There was some evidence that organic compost enhanced weed growth. Despite these limitations, it became apparent that establishment of commercially viable plantations on coal mine overburden is possible using, effluent irrigation and organic compost. If commercially viable plantations can be established on overburden using recycled waste products, further incentives for establishing a local forest industry exist. Establishment of a forest industry will add production diversity to the landscape and will enhance resilience of local communities to changes in the economic environment. Further, correctly managed re-use of effluent in terrestrial systems will enhance local water quality conditions.

Further monitoring of these experiments should to be undertaken, and recommendations for future research have been provided. Based on the results of both experiments, the most sustainable and likely commercial management option for establishment of plantations on overburden is to use effluent irrigation with *E. botryoides*. Other treatments and species were also suitable as per the recommendations made. In all circumstances, and particularly if organic compost is used, weed control efforts should be well planned and consistently applied in order to achieve maximum growth.

TABLE OF CONTENTS

DECLARATION	2
ABSTRACT	3
CHAPTER 1 INTRODUCTION	10
1.1 BACKGROUND AND LITERATURE REVIEW	10
1.1.1 Introduction	10
1.1.2 Mine Site Rehabilitation	11
Sustainability Issues	11
Mining Rehabilitation in the Hunter Valley – History and Limitations	13
The Emerging Role of Trees and Commercial Forestry Options	15
1.1.3 Overcoming Limitations to Rehabilitation and Commercial Forestry	19
Effluent Irrigation	19
Application of Organic Compost	23
1.1.4 Conclusion	24
1.2 MUSWELLBROOK SHIRE COUNCIL OBJECTIVES	25
1.3 RESEARCH OBJECTIVES	26
CHAPTER 2 SITE DESCRIPTION, EXPERIMENTAL DESIGN AND METHODOLOG	Y28
2.1 DESCRIPTION OF STUDY SITE	28
2.1.1 Mining and the Hunter Valley	28
2.1.2 Climate	28
2.1.3 Geology and Slope Formation	28
2.1.4 Vegetation Characteristics	29
2.1.5 Groundwater and Hydrology	29
2.1.6 Site Selection	29
Current Rehabilitation Practices	29
Experimental Site	31
2.2 EXPERIMENTAL DESIGN, METHODOLOGY AND MONITORING PROGRAM	1.31
2.2.1 Introduction	31
2.2.2 Trial Establishment	31
2.2.3 Species Selection	32
2.2.4 Rainfall and Evaporation	32
2.2.5 Compost Application	34
2.2.6 Effluent Irrigation	36
Irrigation Scheduling	
2.2.7 Weed Control	40
2.2.8 Introduction to PMPs and DSPs	40
2.2.9 MONITORING PROGRAM	40
CHAPTER 5 IRRIGATION AND COMPOST EXPERIMENT - PART 1 SURVIVAL,	11
3 1 INTRODUCTION	44 44
3.7 EVDEDIMENTAL DESIGN AND METHODS	44 46
3.2 EAPERIMENTAL DESIGN AND METRODS	40
2.2.1 Experimental Design	
3.2.1 Experimental Design	40 16
3.2.1 Experimental Design 3.2.2 Methods	40 46 46
 3.2.1 Experimental Design	46 46 46 48
 3.2.1 Experimental Design 3.2.2 Methods Effluent Irrigation and Compost Application Measurement Techniques Data Management and Statistical Analysis 	40 46 46 48 53
 3.2.1 Experimental Design	40 46 46 48 53
 3.2.1 Experimental Design	40 46 46 48 53 55 55

3.3.2 Tree Growth	56
Height	56
Diameter	56
Stem Volume	60
3.3.3 Above-Ground Biomass Production	60
Weeds	60
Trees (Total Biomass)	61
Trees (Biomass Components and Distribution)	61
3.3.4 Stem Form	64
3.3.5 Tree Health	67
3.3.6 Performance Rankings	68
3.4 DISCUSSION	69
3.4.1 Survival	69
3.4.2 Height and Diameter	70
3.4.3 MAI and Volume	72
3.4.4 Weeds (Above-Ground Biomass)	73
3.4.5 Trees (Above-Ground Biomass)	74
Distribution	79
3.4.6 Stem Form and Tree Health	81
3.4.7 Performance Rankings	81
3.5 CONCLUSION	82
CHAPTER 4 IRRIGATION AND COMPOST EXPERIMENT - PART 2 NUTRITION	84
4.1 INTRODUCTION	84
4.2 EXPERIMENTAL DESIGN AND METHODS	86
4.2.1 Experimental Design	86
4.2.2 Methods	86
Effluent Irrigation and Compost Application	86
Measurement Techniques	86
Data Management and Statistical Analysis	89
4.3 RESULTS	89
4.3.1 Nutrient Concentration	89
Substrate	90
Trees	95
Weeds	95
4.3.2 Nutrient Accumulation	96
Substrate	96
Trees	96
Weeds	97
4.3.3 Nutrient Distribution	99
4.3.4 Nutrient Use Efficiency	. 101
4.3.5 Nutrient Budget	. 101
4.4 DISCUSSION	. 104
4.4.1 Nutrient Concentration	. 104
Substrate	. 104
Trees and Weeds	. 109
4.4.2 Nutrient Accumulation	.111
4.4.3 Nutrient Distribution	.116
4.4.4 Nutrient Use Efficiency	116
4.4.5 Nutrient Budget	. 120
4.5 CONCLUSION	. 122

CHAPTER 5 SPECIES SELECTION EXPERIMENT - PART 1 SURVIVAL, GROWTH,	
BIOMASS, FORM AND HEALTH	123
5.1 INTRODUCTION	123
5.2 EXPERIMENTAL DESIGN AND METHODS	124
5.2.1 Experimental Design	124
5.2.2 Methods	126
Effluent Irrigation and Compost Application	126
Measurement Techniques	126
Data Management and Statistical Analysis	126
5.3 RESULTS	126
5.3.1 Survival	126
5.3.2 Tree Growth	127
Height	127
Top Height	128
Diameter	128
Top Diameter	128
Volume	130
5.3.3 Above-Ground Biomass Production	131
Weeds	131
Trees (Total Biomass)	131
Trees (Biomass Components and Distribution)	132
5.3.4 Stem Form	133
5.3.5 Tree Health	136
5.3.6 Performance Rankings	137
5.4 DISCUSSION	140
5.4.1 Survival	142
5.4.2 Height and Diameter	143
5.4.3 MAI and Volume	144
5.4.4 Weeds (Above-Ground Biomass)	145
5.4.5 Trees (Above-Ground Biomass)	146
5.4.6 Stem Form and Tree Health	148
5.4.7 Performance Rankings	150
5.5 CONCLUSION	152
CHAPTER 6 SPECIES SELECTION EXPERIMENT - PART 2 NUTRITION	153
6.1 INTRODUCTION	153
6.2 EXPERIMENTAL DESIGN AND METHODS	154
6.2.1 Experimental Design	154
6.2.2 Methods	154
6.3 RESULTS	154
6.3.1 Nutrient Concentration	154
Substrate	154
Trees	155
Weeds	156
6.3.2 Nutrient Accumulation	157
Trees	157
Weeds	163
6.3.3 Nutrient Distribution	167
Nitrogen and Phosphorus	167
Cations	167
6.3.4 Nutrient Use Efficiency	168

6.3.5 Nutrient Budget	
6.4 DISCUSSION	
6.4.1 Nutrient Concentration	
Substrate	
Trees	
Weeds	
6.4.2 Nutrient Accumulation	
6.4.3 Nutrient Distribution	
6.4.4 Nutrient Use Efficiency	
6.4.5 Nutrient Budget	
6.5 CONCLUSION	
CHAPTER 7 SYNTHESIS	
REFERENCES	
APPENDICES	
APPENDIX A	
APPENDIX B	
APPENDIX C	
APPENDIX D	
APPENDIX E	
DEDICATION	