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Abstract

Efficient use of fertilisers, in particular the use of Nitrogen (N), is one of the
rate-limiting factors in meeting global food production requirements. While N is
a key driver in increasing crop yields, overuse can also lead to negative environ-
mental and health impacts. It has been suggested that Variable-Rate Fertiliser
(VRF) techniques may help to reduce excessive N applications. VRF seeks to
spatially vary fertiliser input based on estimated crop requirements, however a
major challenge in the operational deployment of VRF systems is the automated
processing of large amounts of sensor data in real-time. Machine Learning (ML)
algorithms have shown promise in their ability to process these large, high-velocity
data streams, and to produce accurate predictions. The newly developed Fuzzy
Boxes (FB) algorithm has been designed with VRF applications in mind, however
no publicly available software implementation currently exists. Therefore, devel-
opment of a prototype implementation of FB forms a component of this work.
This thesis will also employ a Hardware-in-the-Loop (HWIL) testing methodology
using a potential target device in order to simulate a real-world VRF deployment
environment. By using this environment simulation, two existing ML algorithms
(Artificial Neural Network (ANN) and Support Vector Machine (SVM)) can be
compared against the prototype implementation of FB for applicability to VRF
applications. It will be shown that all tested algorithms could potentially be suit-
able for high-speed VRF when measured on prediction time and various accuracy
metrics. All algorithms achieved higher than 84.5% accuracy, with FB20 reaching
87.21%. Prediction times were highly varied; the fastest average predictor was an
ANN (16.64 µs), while the slowest was FB20 (502.77 µs). All average prediction
times were fast enough to achieve a spatial resolution of 31 mm when operating at
60 m/s, making all tested algorithms fast enough predictors for VRF applications.
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Chapter 1

Introduction

1.1 Overview

As the global human population grows, increases in food production capacity are
inherently required to follow. Nitrogen fertiliser usage is a key driver in increas-
ing crop efficiency and pasture yields in order to match demand (Erisman, Mark
A. Sutton, Klimont and Winiwarter, 2008). Efficient usage of this diminishing and
costly resource will be a top industry priority into the future, as well as one of the
rate limiting factors in meeting food production requirements (Cavigelli, 2005). In
addition, inefficient fertiliser usage has negative impacts on both the environment
and human health (Townsend et al., 2003). Excess runoff from Nitrogen-based
fertilisers is a major threat to the Great Barrier Reef (Schwartz, 2016), and has
been linked to vast aquatic dead zones in the Gulf of Mexico (Biello, 2008). This
has prompted the Australian government to set an 80% Nitrogen runoff reduction
target as part of a long-term sustainability plan for the reef, which has already
seen a reduction from the 2009 baseline, but requires continued innovation if it is
to meet this target (Australian Government and Queensland Government, 2015).

Volatilisation of Nitrogen-based fertilisers also leads to the production of Ni-
trous Oxide (N2O), a highly potent greenhouse gas (Ravishankara, Daniel and
Portmann, 2009). In addition, excessive Nitrate levels in drinking water increases
the risk of methaemoglobinaemia in infants less than three months old (Depart-
ment of Health, 2011; McCasland, Trautmann and Wagenet, 1985) and at very
high levels, may be associated with a increased risk of cancer (Espejo-Herrera et
al., 2015; Ward et al., 2005). Reducing Nitrate levels in existing drinking water
supplies can be a costly exercise for communities (Harter and Lund, 2012) but
may be necessary to ensure public safety.

Precision Agriculture (PA) promises to address this challenge via the use of
Variable-Rate Fertiliser (VRF) application strategies, along with the development
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of smart sensors to exactly determine crop nutrient requirements. The combination
of Remote Sensing (RS), Geographical Information Systems (GIS), and Machine
Learning (ML) offers the possibility of intelligently applying variable rates of Ni-
trogen (N)-fertilisers “on-the-go”, by using algorithms which can automatically
determine the exact amount of nutrients required for each position in the crop.

A recent innovation in the field is the development of the Dynamic Aerial
Survey (DAS) algorithm (Falzon, Lamb and Schneider, 2012), which was designed
to batch process sensor measurement data from optical biomass sensors such as
the Raptor ACS-225LR (Holland Scientific, 2011) mounted on low-flying aircraft.

DAS demonstrated that it is possible to segment a cropping area into variable-
rate management zones and update biomass and nutrient-requirement estimates
while the aircraft is in-flight and still collecting data. The estimated cost sav-
ings using the DAS approach was approximately AUD8000 compared to a uniform
application method over a 110 ha field of wheat (Falzon et al., 2012). Such cost
and resource savings are quite significant across vast areas of land under crop pro-
duction, such as the estimated 22 348 000 ha dedicated to winter crop production
alone in Australia over the 2016–17 season (Australian Bureau of Agricultural and
Resource Economics, 2016).

Whilst the DAS algorithm was shown to be a useful contribution towards the
realisation of a fully automated VRF system, there is still room for improvement
in the regression component. This component has been designed to allow different
ML classification and regression algorithms to be used depending on the task and
site-specific conditions, however a comparison of algorithms for suitability to this
application has not been performed (Falzon et al., 2012). One of the limitations
in the testing methodology of DAS was the lack of a direct implementation of
the described software model, which makes swapping software components more
difficult, and therefore harder to test and compare. This is not uncommon in
sectors such as agriculture, having a working prototype early is more meaningful
to growers than a system designed for correctness.

A newly developed classification algorithm designed with real-time VRF ap-
plications in mind has been presented by Cohen as the Fuzzy Boxes (FB) al-
gorithm (Cohen, 2016). This algorithm has the potential to be highly amenable to
embedded systems, as it could easily be modified to provide a tuning parameter to
balance prediction speed and prediction accuracy, and was shown in the original
work to be capable of processing thousands of multi-band records per second. One
major drawback to the FB algorithm is the memory complexity, particularly dur-
ing the training phase. Memory space required grows exponentially relative to the
number of input features. This makes FB suitable only for a low number of input
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streams.
Both DAS and FB have been demonstrated to have separate beneficial uses

within PA environments where fast and accurate prediction of crop requirements
is desired. However, both algorithms have practical disadvantages which inhibit
on-farm deployment. The current methodology of DAS requires a scale of compu-
tational resources only available in desktop machines, which is currently unrealistic
for low-powered deployments such as on board light aircraft.

The FB algorithm has no available software implementation, meaning that in
order to test and compare it with established ML algorithms, it needs to first be
developed. This work makes use of techniques and processes taken from Model-
Driven Software Development (MDSD) methodology principles for both the im-
plementation of software and testing of algorithms.

1.2 Aims & Objectives

This thesis explores the suitability of multiple ML classification algorithms to the
task of real-time estimation of crop N requirements from high-velocity input data
streams like those produced by typical agricultural sensors.

Two main research questions will be explored: a Can ML classification al-
gorithms provide accurate prediction of N fertiliser requirements?, andb Can
MDSD techniques be useful for integrating ML into current PA applications? In
order to address these questions and work towards realising a fully practical solu-
tion to automated VRF application, a dedicated and optimised hardware device
is required which can perform accurate ML prediction and classification tasks in
a timely manner using high-velocity data streams.

However, developing such a device requires timing and error metrics in order
to assert the suitability of the core classification algorithm to the task of VRF.

The primary objective of this project is to benchmark and compare a selection
of ML algorithms currently in use in the PA field. These algorithms will be com-
pared on timing and accuracy performance within the scope of VRF applications
which target low-powered computing systems. A recently published ML algorithm
dubbed Fuzzy Boxes was implemented in the Python language for the first time
and compared against two existing algorithms (Artificial Neural Network (ANN)
and Support Vector Machine (SVM)) which have already seen success in PA.

In order to compare all of these algorithms, a secondary aim of implementing
the FB algorithm as a programming library was required. The fuzzyboxes package
was created using the Python language to meet this aim, and was subsequently
modified, exposing the depth parameter in order to balance prediction time and
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accuracy. This implementation was then compared against the existing Fast Arti-
ficial Neural Network (FANN)1 and LIBSVM2 libraries, which provide ANN and
SVM models respectively, and have benefited from significant development effort
over time. One of the primary objectives of this comparison is to show whether
the FB algorithm has the ability to predict crop input requirements from sensor
data streams in a timely manner.

Incorporating modern PA technologies such as RS, ML, and GIS with widely-
used MDSD and Hardware-in-the-Loop (HWIL) techniques in order to develop an
efficient, real-time VRF controller can pave the way for a model-driven approach
to designing more robust and performant embedded PA hardware. The future
development of dedicated VRF hardware controllers has the potential to provide
environmental, health, and financial benefits to a range of stakeholders, and will
be an attractive investment opportunity for the agricultural industry.

1https://web.archive.org/web/20190122061120/http://leenissen.dk/fann/wp/
2https://web.archive.org/web/20190106170055/https://www.csie.ntu.edu.tw/

~cjlin/libsvm/
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Chapter 2

Literature Review

In order to meet the agricultural demands of a growing population, Nitrogen (N)
based fertilisers have been extensively used as a key driver in increasing the yields
and production efficiency of pastoral crops (Erisman et al., 2008).

Efficient use of this diminishing and costly resource will be a top industry
priority into the future, as well as one of the rate-limiting factors in meeting our
global food production requirements (Cavigelli, 2005).

Precision Agriculture (PA) promises to address this challenge via the use of
Variable-Rate Fertiliser (VRF) application strategies, along with the development
of Remote Sensing (RS) technologies to accurately determine the nutrient require-
ments of the crop.

The combination of RS, Geographical Information Systems (GIS), Machine
Learning (ML), and Model-Driven Software Development (MDSD) techniques of-
fers the possibility of intelligently applying variable rates of N fertiliser to different
points in a crop from a real time, “on-the-go” system.

2.1 Variable-Rate Technology

Adjusting the rate at which crop inputs are applied has been a consideration for at
least 20 years (Clark and McGuckin, 1996; Kitchen, Hughes, Sudduth and Birrell,
1995), and patents have existed for variable rate fertiliser application systems since
1992 (Monson and Bauer, 1995).

Variable-Rate Technology (VRT) seeks to change the application rate of crop
inputs “in response to spatially variable factors that affect the optimum application
rate” (Sawyer, 1994), and has been investigated for use in multiple areas of PA.

A study conducted by Gonzalez-Dugo, Goldhamer, Zarco-Tejada and Fereres
(2015) indicated that by adopting a variable-rate irrigation system, “over 15% of
irrigation costs could be saved”, and Kim, Evans and Iversen (2008) showed proof
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of concept of a distributed wireless sensor network in order to continuously monitor
and adjust irrigation levels.

By using a camera sensor to detect weed density and adjust output rate, herb-
icide savings of 30% and above were observed when compared to conventional
uniform spraying of carrots (Dammer, 2016). Fungicide savings of up to 32.6%
were also shown in cereal fields by combining VRT with an appropriate decision
support system (in this case the online proPlant expert system) (Dammer, Karl-
Heinz, Thöle, Volk and Hau, 2009).

VRT is currently being investigated for use in sugarcane fertiliser applications
and has already been identified by Sugar Research Australia as one of the “prom-
ising opportunities” for improving Nitrogen use efficiency (Bell, 2014).

The literature surrounding the precision management of N in wheat crops
has been thoroughly reviewed by Diacono, Rubino and Montemurro (2013), who
found that the “improvements in yields, profitability or environmental quality still
appear questionable”. However, it was also concluded in the same review that
it may be possible to increase profitability and reduce environmental impact by
“integrating the real-time crop N status acquisition methods [. . . ] with the soil
and yield maps”.

2.1.1 Variable-Rate Nitrogen

Nitrogen is a key macro-nutrient required for chlorophyll production in plants;
crop efficiency and yields are directly affected by N status (Muñoz-Huerta et al.,
2013). Growers will generally over-apply N fertiliser as a rational reaction to the
uncertainty of soil nutrients and the potential impact that inadequate N has on
yield and profitability (Thorburn, Park and Biggs, 2003). Excess application of
N can result in runoff into waterways and into the Great Barrier Reef, where it is
believed to be a major cause of crown-of-thorns starfish outbreaks (Fraser, Rohde
and Silburn, 2017).

Variable-rate N has been shown to provide various economic and environ-
mental benefits to growers by increasing use efficiency of the nutrient. Sensor-based
Variable-Rate Application (VRA) outperformed producer-based N management
for corn crops across 55 farms in the USA, where an increased partial profit of
US$42/ha and reduced N use of 16 kg/ha was seen (Scharf et al., 2011).

In a review of precision N management in wheat, real-time sensing and fertiliser
application were shown to increase profits by AU$(5–50) /ha compared to uniform
applications, and an increase in N use efficiency by up to 368% compared to
standard grower practices (Diacono et al., 2013).
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Koch, Khosla, Frasier, Westfall and Inman (2004) also reported savings of
US$(18.21–29.57) /ha and a reduced N fertiliser use of 6 %–46 % on corn by using
VRA and site-specific management zones.

Variable-rate N has not always necessarily resulted in an improvement to crop
quality or yield, as not all fields contain significantly different N management
zones (Sawyer, 1994). Jørgensen and Jørgensen (2007) did not observe signific-
ant differences in protein content or crop yield between uniform and sensor based
variable rate N application in wheat cropping using the Hydro-Precise N-Sensor
System. A study involving 10 sites over 2 years in the Mid North and Yorke Pen-
insula of South Australia only found a mean increase in wheat grain yield of 0.8%
by using variable-rate N (Mayfield and Trengove, 2009). The economic benefits of
VRA in the Australian grain industry were studied and found to be overall positive,
however some paddocks had losses of up to AU$28 /ha/yr, which was largely at-
tributed to fertiliser management practises and within-yield variation (Robertson,
Carberry and Brennan, 2009).

In order to automatically apply a varying rate of N fertiliser to a crop, it is
first required that the current N levels and requirements are estimated.

2.1.2 N Requirement Estimation

Finding the ideal amount of N fertiliser to apply to a particular area of a crop or
pasture is extremely difficult due to the many factors which influence the nutrient’s
efficiency. Some of these factors include: losses from N → NH3 volatilisation due
to the breakdown of widely used urea fertiliser, natural leaching of water-soluble
N → NO3 into soil, inter-annual and seasonal variability, and spatial variability
in soil organic matter (Bragagnolo et al., 2013).

Methods currently used to obtain N requirements are primarily soil sampling
and tissue testing, however these methods are time consuming and costly. Tissue
testing is generally a destructive process, and incomplete combustion of the tissue
sample can result in N loss and therefore incorrect measurements. This was shown
by Unkovich et al. (2008) and was presented alongside other manual sampling
based methods for estimating N fixation.

Queensland currently has mandatory testing of soil N (Queensland Govern-
ment, 1994), with the goal of increasing the number of growers who base their
fertiliser application levels on the results of regular N status testing.

Other N management strategies exist besides the traditional use of averaged
regional levels, some from the Queensland sugar industry include the SIX EASY
STEPS (Schroeder, Wood, Moody and Panitz, 2005; Wood, Schroeder, Hurney,
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Salter and Panitz, 2008) and N replacement (Thorburn, Webster, Biggs et al., 2007;
Thorburn, Webster and Biggs, 2008). Being manual processes, these strategies
naturally require grower time and effort in order to be effective.

Technological alternatives for gathering N requirement data include the use of
active optical reflectance sensors mounted on vehicles or low-level aircraft (Lamb,
Schneider, Trotter, Schaefer and Yule, 2011; Lamb, Schneider and Stanley, 2014;
Trotter, Lamb, Donald and Schneider, 2010), as well as the use of satellite imagery,
aerial multi-spectral, and ground based field spectroscopy (Robson et al., 2016).

There is a strong relationship between chlorophyll and N content levels (Katz,
Dougherty and Boucher, 1966), meaning that chlorophyll can be used as a proxy
measurement for N level estimation. Jones et al. (2007) concluded that “Cor-
relations of NDVI to biomass were approximately the same as the correlation of
NDVI to chlorophyll yield”, showing that remotely sensed Normalised Difference
Vegetation Index (NDVI) data can be used as an indicator of N requirements.

Other indices which have been shown to be indicative of chlorophyll content,
such as Red-Edge Normalised Difference Vegetation Index (RENDVI) and Red-
Edge Position (REP) have also shown promise in estimating foliar N and other bio-
chemical contents (Mutanga and Skidmore, 2007). For wider geographical areas,
multispectral optical spaceborne platforms such as the Sentinel-21 and Landsat-
82 satellites provide freely available data sets which can be used to generate the
various optical indices.

Remote sensing devices targeting soil can also be used as proxy measurements
for N requirements. One such device is the Geonics EM38-MK2 which measures
apparent electrical conductivity (ECa) (Geonics, Ltd., 2013) using conductivity
and magnetic susceptibility components. A statistical analyses conducted by Ei-
genberg, Nienaber, Woodbury and Ferguson (2006) “supports an association of
ECa and Nitrogen Nitrate (NO3−N)”, therefore it is possible to make use of ECa

as an additional data feature in the detection of N requirement.
In order to successfully develop a hardware device such as a dedicated VRF

controller, it would be ideal to use small form factor and low powered computing
hardware due to power consumption and physical space concerns. Such practical
concerns might include issues such as unreliable power supplies in remote geo-
graphical areas, and inconvenient mounting locations (e.g. when mounted on a
spray boom or aircraft undercarriage).

1https://web.archive.org/web/20190111195127/https://sentinel.esa.int/web/
sentinel/missions/sentinel-2

2https://web.archive.org/web/20190326184128/https://www.usgs.gov/land-
resources/nli/landsat/landsat-8
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2.2 Low-powered Computing

This section will provide a review of some of the low-powered hardware technology
which is currently available, including Field-Programmable Gate Array (FPGA)
devices, Single-Board Computers (SBCs), and many-core devices. It will end with
a review on the current state of running real-time systems under the Linux kernel
as well as alternative operating systems.

There is a large range of computing hardware available today which has been
designed with low power consumption and small form-factor in mind. Techno-
logy such as FPGA has eased the time and development effort required to create
truly specialised hardware and embedded circuits, while the widespread availabil-
ity and low cost of micro controllers such as the Atmel AVR3 series has not only
enabled hobbyists and beginners, but has also spawned the creation of low-cost
SBCs and development boards such as the BeagleBone4 and Arduino5 series. The
computational power available on a SBC has advanced even further since a team
from University of Cambridge created the Raspberry Pi6, which was designed as
a low-cost platform to help teach programming to younger students (Ortmeyer,
2014).

2.2.1 FPGA Devices

FPGAs devices are a good choice for development of dedicated hardware and
integrated circuits due to the ability to produce truly hardware-only implementa-
tions. When designing systems where verifiable run-time behaviour and low power
usage are desired, FPGA based development may be beneficial. However, writ-
ing firmware for an FPGA target requires a working understanding of the hard-
ware involved, and familiarity with one of the logic-based Hardware Description
Languages (HDLs) such as VeriLog or VHSIC Hardware Description Language
(VHDL). This difference in approach from the more common procedural languages
such as C can cause development time and cost to be increased when developing
for FPGA targets. This cost may be dramatically increased when the hardware
is required to integrate with various peripherals such as volatile (e.g. RAM) and
non-volatile (e.g. HDD/SD Card) storage, graphics, network and inter-board com-
munications interfaces (e.g. USB, I2C, SPI).

3https://web.archive.org/web/20190122185203/https://www.microchip.com/
design-centers/8-bit/avr-mcus/

4https://web.archive.org/web/20190108044655/http://beagleboard.org/bone
5https://web.archive.org/web/20190110201933/https://www.arduino.cc/en/Main/

Products
6https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md
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2.2.2 Single-Board Computers

One potential solution to speed up development time is to use off-the-shelf devices
which integrate a microprocessor with commonly used peripheral devices onto a
single board.

The idea behind integrating computing hardware onto a single PCB or devel-
opment board has been around for over 40 years. In 1976, E & L Instruments
manufactured the “Dyna-micro”, which was later renamed to “Mini-Micro De-
signer”, as the first true SBC (Romin, 2016; Hobson, 1978). This board was
designed around a 2 MHz Intel C8080A microprocessor and 2 kB Random-Access
Memory (RAM).

In July 2008, the non-profit organisation BeagleBoard.org was formed with
the goal of creating a “low cost, open source community supported development
platform”. The result of which was the BeagleBoard SBC based around a Texas
Instruments ARM Cortex-A8 System-on-Chip (SoC).

SBC development has only progressed since this time, and it is now easy to
obtain a cheap, credit-card sized development board which integrates a SoC clocked
at over 1 GHz, over 1 GB of RAM, and multiple I/O interfaces.

Current SBC development boards include the current BeagleBoard.org boards
such as the BeagleBone Black/Blue/Green, Technologic Systems TS-7xxx series,
and the Raspberry Pi series. Due to its popularity owing to its low cost and open
source design, the Raspberry Pi SBCs have spawned the creation of many unofficial
variants such as OrangePi7 and BananaPi8.

The Raspberry Pi SBC has been used as the base station in Wireless Sensor
Networks (WSNs) for environmental monitoring (Ferdoush and Li, 2014), video
signal processing for traffic monitoring (Kochlán, Hodo, echovi, Kapitulk and
Jureka, 2014), motion-detection enabled video surveillance (Nguyen, Loan, Mao
and Huh, 2015), and face recognition in noisy environments (Fernandes and Bala,
2015).

Barry et al. (2019) also used a Raspberry Pi 3 SBC for their Balloon Launched
Imaging and Monitoring Platform (BLIMP) aerial monitoring system. This was
a battery-powered design launched from a seaborne vessel, and was therefore con-
strained in terms of power requirements. This challenge is especially prominent
with Unmanned Aerial Vehicle (UAV) based systems (Göktoan and Sukkarieh,

7https://web.archive.org/web/20181005001841/http://www.orangepi.org/Docs/
mainpage.html

8https://web.archive.org/web/20190317053813/http://wiki.banana-pi.org/Main_
Page
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2015) due to weight limitations adding an additional constraint. A major chal-
lenge in using low-powered computing hardware is that it is generally very limited
in computational resources such as memory and CPU power when compared with
modern desktop and laptop hardware (Ibrahim, 2006). However, it has been shown
that current low-powered hardware devices are capable of executing the often com-
putationally intensive algorithms found in ML, and can do so at speeds which are
acceptable for PA practices (Stover, Falzon, Jensen and Schroeder, 2017).

2.2.3 Microprocessors and micro-controllers

For applications requiring less computational power, such as dedicated actuator
controllers or input processors, micro-controllers such as the Atmel AVR series have
been a popular choice, and form the core of the Arduino product line (D’Ausilio,
2012).

Over the previous 15 years, the popularity of directly programming and using
micro-controllers such as PIC and AVR has been declining in favour of the Arduino
platform, which has seen a surge in popularity over the last decade due to its
hobbyist-friendly approach (Figure 2.1). This has led to Arduino being a very
common choice for prototyping low-powered systems both within academia and
also the commercial sector.
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Figure 2.1: Google search trends for various development sys-
tems (trends.google.com, 2018)

Other popular low-powered micro controllers include the Texas Instruments
MSP430 range, though these have not seen the widespread success that the Atmel
micro controllers have, most likely due to the ease of development found in the
modern Arduino platform.

DSP processors are specialised micro controllers designed for processing digital
signal streams. They will often be built around a pipelined architecture and integ-
rate components such as a Floating-point unit (FPU) to facilitate mathematical

13



calculations at low latency. A specialised hardware VRF controller which makes
use of ML will most likely perform faster when used on a DSP processor instead
of a general-purpose micro controller due to the many floating-point operations
required.

Being specialised hardware means that software development effort is increased,
as developers will need to learn the hardware architecture and software libraries
for the target processor. This makes DSP processors a good choice for optimised
hardware, but a poor choice for rapid prototyping.

2.2.4 Parallel and Many-core Devices

Parallelisation of algorithms has the potential to increase time performance dra-
matically (US Air Force Research Laboratory, 2015). Multicore CPU’s are now
extremely common consumer hardware, and many modern computing systems
are equipped with dedicated graphics accelerators. Today’s GPU’s are designed
around a Single Instruction Multiple Data (SIMD) architecture with a large num-
ber of individual cores (Nvidia Tesla V100 contains 5120 (NVIDIA Corporation,
2018)).

Since “Multicore processing units have become the dominant elements of mod-
ern computing systems” (Agathos, Papadogiannakis and Dimakopoulos, 2015), the
usefulness of generalised parallel programming libraries has increased. One such
library, OpenMP, was first released in October 1997 and targeted multiprocessing
paradigms using the FORTRAN language. Since then, hardware support for vari-
ous parallel and distributed systems has been added to OpenMP, including support
for SIMD architectures as well as the recently developed Epiphany processors from
Adapteva (Agathos et al., 2015).

The Parallella board is a credit-card sized SBC also developed by Adapteva,
and is powered by two SoC IC’s (Olofsson, Nordström and Ul-Abdin, 2014). The
central SoC is a Xilinx Zynq-7000 AP SoC, which itself is an integration of a
dual-core ARM Cortex-A9 microprocessor, programmable FPGA logic area, and
various I/O peripherals and interfaces such as USB, Ethernet, and I2C. An Epi-
phany III co-processor provides either 16 (Parallella-16) or 64 (Parallella-64) cores
with a 32-bit Reduced instruction set computer (RISC) architecture. This co-
processor enables the Parallella to perform parallel execution on many cores at
low cost. A 1024-core version of the Epiphany architecture (Epiphany V) has also
been developed, although it is not yet commercially available (Olofsson, Trogan,
Raikhman and Adapteva, 2011; Olofsson, 2016).
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2.2.5 Operating System (RTOS vs. Linux)

Low-powered development systems can be configured to operate as either a Real-
Time Operating System (RTOS), or by making use of a general-purpose kernel
such as Linux or one of the BSD kernels. These kernels provide a high level of
support for various subsystems, devices and resources such as storage devices,
network interfaces, and video output.

When the Linux kernel is running specific parts of its internal code, it may
not be preempted (interrupted) by user processes. Due to this limitation, a so-
called soft real-time environment is available for Linux, but not a hard real-time
environment in which timing constraints can be guaranteed (Abeni, Goel, Krasic,
Snow and Walpole, 2002). This makes the current mainline Linux unsuitable for
timing-critical systems, however there is a patch set which aims to make the Linux
kernel fully preemptible (Dietrich and Walker, 2005), and work by Sousa, Pereira
and Tovar (2012) has been done to replace the First-In-First-Out ( SCHED_FIFO )
and Round Robin ( SCHED_RR ) real-time scheduling policies with a more advanced
and performant policy ( SCHED_NPF_F ).

The NetBSD kernel has supported in-kernel preemption since version 5.0 was
released in April 2009, which makes it a promising candidate for developing em-
bedded, real-time systems (NetBSD Foundation, 2009).

An alternative to using a general-purpose operating system (OS) kernel is to
use a RTOS, which generally consists of a minimal set of library functions allow-
ing task scheduling, interrupt handling and process synchronisation, while still
guaranteeing strict timing constraints where required.

FreeRTOS is one popular RTOS implementation and has been verified by Fer-
reira, Gherghina, He, Qin and Chin (2014) for “memory safety and functional
correctness properties” using the HIP/SLEEK verification system.

While a high degree of timing precision is more easily attainable from a RTOS,
a Linux kernel is still more likely to be used in most embedded hardware products
due to the ease of development, deployment, and future upgrades. This is especially
true when dealing with internet-connected and IoT devices.

During the early stages of embedded system development, a kernel such as
Linux has the clear benefit of not requiring much “plumbing code” in order to
achieve a minimal working system, and allows for rapid prototyping of embedded
devices. This allows developers to take advantage of much of the current range of
SBC devices without intimate knowledge of the board’s components.
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2.3 Machine Learning

ML algorithms have been widely discussed and used in PA over the last 20 years (Di-
mitriadis and Goumopoulos, 2008), and a wide variety are currently in use, such as
Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs). This
section will present a review of ML algorithm use both in the context of embedded
systems, and VRF development.

ANNs are a class of ML algorithms which have gained traction among research-
ers, industry professionals, and other stakeholders for use in precision agriculture
since at least 1998 (Drummond, Joshi and Sudduth, 1998). They are inspired
by the perceived “way that the brain performs computations”, and use a series
of interconnected artificial neurons as the basic building blocks of the algorithm,
which are then organised into layers (Hagan, Demuth and Beale, 1996). These
artificial neurons operate in a similar way to biological neurons, whereby weighted
input signals are summed, and the output is activated once the sum exceeds a
threshold. The transfer function of each neuron in an ANN is called the activation
function and can be chosen to suit specific problems. A commonly used activation
function for continuous input data is the sigmoid function (Equation 2.1) “since
the function and its derivative are continuous” (Livingstone, 2008). In order to
create a binary classifier from an ANN, a nonlinear function such as binary step
(Equation 2.2) may be used on the last (output) layer neuron.

Training of an ANN involves varying the weights of each neuron in order to
minimise the error between the ANN output and the labelled training data. Con-
sequently, ANNs perform very well at tasks such as “pattern recognition, percep-
tion, and motor control” (Haykin, 1999), similar to the human brain.

f(x) = 1
1 + e−x

(2.1)

f(x) =


0 if x < 0.5

1 if x ≥ 0.5
(2.2)

Recently, Deep Learning (DL) strategies consisting of multi-layer neural-networks
have also seen operational successes in areas where large data sets are common
such as audio and image classification (LeCun, Bengio and Hinton, 2015).

Although accurate models have been created for speech recognition (Yu and
Deng, 2015; Hinton et al., 2012), and image classification (Simonyan and Zisser-
man, 2014), Deep Learning (DL) techniques require a high level of computational
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resources not found in typical low-powered development platforms. Most DL mod-
els are trained on one or multiple GPU’s (Chilimbi, Trishul M., Suzue, Yutaka,
Apacible, Johnson and Kalyanaraman, Karthik, 2014) in order to reduce the train-
ing time.

ANNs have been shown to be successfully applicable to various PA applications
such as automated irrigation control (Capraro, Patino, Tosetti and Schugurensky,
2008), inspection and grading of agricultural product (Brosnan and Sun, 2002),
and wheat yield prediction (Pantazi, Moshou, Alexandridis, Whetton and Mou-
azen, 2016). Drummond et al. (1998) evaluated accuracy and generalisation abil-
ity of a number of feed-forward networks in 1998, and Yang, Prasher and Mehuys
(1997) developed an ANN model in 1997 to estimate soil temperature which “ex-
ecutes faster than a comparable conceptual simulation model by several orders of
magnitude”.

SVM models have have also been used for multiple PA uses including real-time
classifications. This ML algorithm involves mapping “the input space into a high-
dimensional feature space” and attempting to construct an “Optimal separating
hyperplane” between the input instances of different classes (Vapnik, 2013). This
hyperplane is then used to predict the binary classification of unknown input
values. Since instances can only lie on one of two sides of the hyperplane, SVMs
are binary classifiers by default. A kernel based SVM is one which uses a similarity
function (kernel) to help map the decision boundary. One of the most commonly
used kernels is the Radial Basis Function (RBF).

Estimation of N content in the leaves of rice plants was demonstrated by Du et
al. (2016) using SVM for accurate predictions. Qureshi et al. (2017) implemented
an SVM based prediction model for automated fruit counting of mango; it was
shown that ML models such as SVM could perform accurately and in real-time
when incorporated into agricultural robotics systems.

With the current level of computing power available, it is now viable to per-
form classification of video and image data streams using ML techniques in real
time (Nishihara et al., 2017; Shi et al., 2016). Weed and other pasture objects were
able to be detected successfully and in real-time by using a novel ANN implement-
ation (Sadgrove, Falzon, Miron and Lamb, 2017). More common convolutional
neural networks have also been used for real-time discrimination between weeds
and beets (Milioto, Lottes and Stachniss, 2017).

Studies have since shown that such real time classification can be of great use in
the agricultural sector for field segmentation and zone mapping, as demonstrated
in the Dynamic Aerial Survey (DAS) study which used an SVM model (Falzon
et al., 2012).
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2.3.1 Machine Learning in VRF

Use of ML models for VRF applications require fast performance of the predictor
due to the potential high-speed of applicator vehicles such as aircraft. A VRF pre-
diction model also needs to produce highly accurate predictions since the chemicals
involved are hazardous to human health.

Poor algorithm performance potentially incurs economic and ecological losses,
particularly for airborne delivery methods due to the high speed of aircraft, which is
typically 55–65 m/s for fertiliser application with the widely used Air Tractor AT-
502B (Air Tractor, 2017). Murray and Yule (2007) performed some early analysis
of VRA techniques over six different production scenarios, and found there was a
potential to increase annual cash surplus by AU$487/ha, 26% higher than blanket
fertiliser applications.

Falzon et al. (2012) have presented the DAS algorithm which has been shown
to be suitable for generating variable-rate prescription maps while in flight and in
between collecting batches of data. One of the primary limitations with DAS is this
reliance on batch processing, where an aircraft is required to complete a pass over
the field to collect a batch of data. When aligning for the next data collection pass,
the current data batch is processed using a regression or classification algorithm,
and the fertiliser prescription map is then updated. Reliance on batch processing
limits the applicability of this methodology to situations where the required data
is either collected all at once (such as from a satellite platform), or is collected in
stages broken up by gaps for processing time. This tends to rule out any delivery
mechanisms besides aircraft, and becomes a major disadvantage for smaller scale
applications and ground-based vehicles.

The architecture of DAS provides the ability to choose from a number of al-
gorithms for the estimation, such as SVM and ANN models, as well as the ability
to change the field segmentation algorithm (linear cutting, clustering, etc.) de-
pending on the suitability to the crop type.

2.3.2 Machine Learning in Embedded Systems

Currently, there are a large number of existing software libraries implementing
the different ML algorithms. Although there a a couple of independently created
libraries in the hobbyist area and on GitHub, there are no thoroughly-tested and
production-ready ML libraries for micro-controllers available. There is however, a
range of ML libraries which are suitable for low-powered SBC platforms such as
Raspberry Pi and BeagleBone Black. Some of these libraries, such as CaffePresso,
were designed to run on accelerator-based platforms which utilise GPU, DSP, or
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FPGA acceleration (Hegde, Siddhartha, Ramasamy and Kapre, 2016) which is
generally unavailable on SBCs.

Other libraries such as Fast Artificial Neural Network (FANN) were designed
to be cross-platform and have low training and prediction times (Nissen, 2003).
A larger list of ML algorithm packages suitable for low powered systems is shown
below.

• CaffePresso — An optimised library for deep learning on embedded accelerator-
based platforms (Hegde et al., 2016)

• FANN — Implementation of a fast artificial neural network library (Nissen,
2003)

• LIBSVM — A library for support vector machines (Chang and Lin, 2011)
• tiny-dnn — header only, dependency-free deep learning framework in C++14

(Nomi, 2012)
• PyBrain — the Python Machine Learning Library (Schaul et al., 2010)
• scikit-learn — Machine Learning in Python (Pedregosa et al., 2011)
• Python-ELM — Extreme Learning Machine implementation in Python (Lam-

bert, 2013)
• ELM-C-- — Extreme Learning Machine C++ library (Vladislavs, 2013)
• Fido — A lightweight C++ machine learning library for embedded electron-

ics and robotics (Truell and Gruenstein, 2016)

2.4 Software Methodology

This section will discuss the use and limitations of software methodologies cur-
rently being used in the agricultural field, including robotics and hardware devel-
opment. It will introduce software methodologies which have seen success in other
fields, such as MDSD and Finite-State Machine (FSM) based modelling. Finally,
a methodology for testing hardware systems by simulating environmental inputs
is presented in 2.4.6.

2.4.1 Agricultural Robotics

It has been shown by Pedersen, Fountas, Have and Blackmore (2006) that the use
of robotics and automated systems in agriculture “may reduce labour costs and
restrictions on the number of daily working hours significantly”.

Commercial products are already available which perform specific tasks such
as the RowBot for automated seeding and N application (Rowbot Systems, 2017),
and the ASTERIX project for automated herbicide application, which aims to
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reduce herbicide usage by approximately 95% (The European Commision, 2017).
Small scale robotics have even made it into the home-garden and amateur

farming market, with products such as FarmBot providing an open-source, web-
integrated, automated farming machine which could potentially be built to support
large areas (Aronson, 2013).

Other companies such as SwarmFarm (SWARM FARM, 2018) claim to be
creating smaller robotic devices which are “smarter” than the current large-form
field machines. As is typical for commercial enterprises, research methodology is
not revealed to the public, therefore most of the claims made by these organisations
are unverifiable short of purchasing the product and conducting manual tests. This
makes it extremely difficult to locate technical information about the designs, and
therefore makes analysing, verifying, and validating these products much more
difficult, if not impossible.

Since the source code for these products is generally proprietary and not pub-
licly available, any new entrant into the agricultural robotics industry will also
need to build their own software from the ground up instead of relying on open-
source agricultural robotics libraries. This slows down progress in furthering the
state of the art in PA robotics.

Software development for agricultural robotics often involves a simulation of the
hardware in order to verify designs and to observe automata behaviour. Shamshiri
et al. (2018) has reviewed many of the current simulation packages such as Webots,
V-REP, Gazebo, Actin, and ARGoS, concluding that V-REP is the most fully-
featured while Gazebo contained a smaller set of features but provided a simpler
interface.

2.4.2 Limitations in current development techniques

The traditional view of designing embedded systems was to treat it as a hardware-
software co-design problem (Chiodo et al., 1994; Wolf, 1994), where the hardware
and software are designed together in a process known as “Co-synthesis” (Ernst,
Henkel and Benner, 1993). This was generally performed using FSM designs and
calculating the exact computational costs of all code paths (Chiodo et al., 1994).
This used to be a more viable approach; the limited availability of computational
power in microprocessors meant that the task complexity was lower and the pro-
gramming was primarily done in assembly (Ernst et al., 1993), however as compu-
tational power grew, more code was being written in higher level languages such
as C. This, along with increasing design complexity, functionality demands, and
time-to-market pressures in the embedded space, meant that changes in design and
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development methodologies were required in order to stay economically feasible. In
particular, a drive towards a methodology which will “work at all abstraction levels
. . . with guaranteed correctness”, and “favour reuse” (Sangiovanni-Vincentelli and
Martin, 2001) was desired.

As the uptake of robotics and automata grows in precision agriculture and
an increasing number of developer-hours is spent in writing the corresponding
software, it becomes increasingly desirable for the existence of an open, widely
available, and easy to use software framework. Each unique problem in PA has
so far required specific software solutions and are often designed from the ground
up. Both hardware and software requirements are re-designed for each solution,
and there is very little, if any, code re-use between research teams. To increase the
robustness and design time of PA solutions, it would be ideal to have a common
software framework which PA solutions can be built from.

2.4.3 Model-Driven Software Development

Just as programming languages and paradigms are abstractions of a physical com-
puting environment, models can be created which are instead abstractions of the
software behaviour. MDSD is a software development framework which originated
as a reframing by Maes, Dedene et al. (1996) of the information systems archi-
tecture described by Zachman (1987), and seeks to separate “domain knowledge
specifications from functionality specifications” (Snoeck and Dedene, 1997). This
approach is field-agnostic and therefore works within any problem domain, though
it has seen the most success in the automobile industry in recent years due to the
industry’s focus on safety and critical-failure mitigation.

This is sometimes worded as “abstractions of the solution space, rather than
abstractions of the problem space”, and has led to the development of Computer-
Assisted Software Engineering (CASE) tools. These are applications which aid in
the development of software by providing a visual representation of complex data
structures, behaviour states, and data flow of a system (Schmidt, 2006).

CASE tools are currently being used in the development of robotics software,
such as in the annual RoboCup competition for soccer-playing automata where
rapid changes to agent behaviour may be required e.g. “during half-time because
of some unexpected opponent strategy” (Topalidou-Kyniazopoulou, Spanoudakis
and Lagoudakis, 2013).

By making use of these abstractions and CASE tools as drivers in the de-
velopment process, a MDSD methodology provides the ability to perform formal
verification of program behaviour, as demonstrated by Estivill-Castro, Hexel and
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Rosenblueth (2012), as well as automatic translation from a modelling language
such as UPPAAL to executable code (Stover, 2015).

2.4.4 Finite-State Machines

Booth (1967) describes in the book Sequential Machines and Automata Theory,
a system for modelling sequential automata as state diagrams which has become
useful for designing and representing behaviour models for robotic applications.

There have been various extensions to this model, but since Statecharts were
described by Harel’s seminal work (Harel, 1987), FSMs have “become ubiquitous
models of system behaviour” (Estivill-Castro and Rosenblueth, 2011).

FSM designs are often used when employing a MDSD methodology, as they
provide a high-level of system abstraction (Wood, Akehurst, Uzenkov, Howells and
McDonald-Maier, 2008). It has been suggested that future software for the rapidly
increasing number of Internet-of-Things (IoT) devices is likely to be based on state
machines (Bryce and Kuhn, 2014).

One of the drawbacks to traditional UML state machine designs is that trans-
itions between states are defined as events which may come into the system in a
non-deterministic order, hindering the ability to reason about the behaviour over
the system. The run-to-completion execution model described by Selic (1996) can
be used to somewhat alleviate the issue by forcing the state to finish execution
before transitioning.

2.4.5 Logic-Labelled Finite-State Machines

Software quality is a major concern for embedded systems as a lack of quality can
cause serious failures and security risks in critical hardware (Sametinger, Rozen-
blit, Lysecky and Ott, 2015). This has led to an increase in academic interest in
run-time verification and health management of embedded software (Heffernan,
MacNamee and Fogarty, 2014; Srivastava and Schumann, 2013).

The Logic-Labelled Finite-State Machine (LLSFM) model was developed in
order to minimise the chances of human error when implementing software based
on a FSM model, whilst also introducing a more complete and formal reasoning
about FSM models (Billington, Estivill-Castro, Hexel and Rock, 2010a).

When used in conjunction with an object-oriented shared memory compon-
ent such as gusimplewhiteboard , multiple LLSFMs can communicate with each
other and the external environment in a safe a predictable way (Estivill-Castro and
Hexel, 2014). The operation behind LLSFMs is based on the theory of Plausible
Logic (PL) (Billington, Estivill-Castro, Hexel and Rock, 2010b).
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A LLSFM is a variant of FSM which allows a programmer to produce behaviour
models which are easily compiled, have deterministic execution, and are easy to
understand for existing programmers. The internal sections of states can contain
any valid C or C++ code, however control structures such as for , while , and
if should never be used, as the control flow should be provided by the LLSFM
structure.

The major differences between a LLSFM and Harel’s model is that machines
are not waiting in a state for events, but instead the machines drive the execution
by actively checking the outgoing transition conditions. This is in contrast to the
run-to-completion execution strategy (Estivill-Castro, Hexel and Regalado, 2016).
These conditions are generally standard C/C++ Boolean expressions or “queries
to an expert system” (Estivill-Castro and Hexel, 2014).

Formally, an LLSFM consists of a set S of states, an initial state s0 ∈ S ,
and a transition table T : S x E → S . The set E consists of logic expres-
sions, whereas the UML approach to FSMs would have events in the transition
table (Estivill-Castro and Hexel, 2014). An example taken from a pacemaker
controller is shown in Figure 2.2.

For multi-machine systems, clfsm is used as an execution scheduler and white-
board client. It can run machines saved in the .machine format, and execution
control (start/stop/pause) is done through the whiteboard messaging system.

UPPAAL is a “suite for automatic verification of safety and bounded liveness
properties of real-time systems modelled as networks of timed automata” (Bengts-
son, Larsen, Larsson, Pettersson and Yi, 1996).

Stover (2015) has shown that the individual components of a UPPAAL model
can be directly translated into an executable LLSFM, opening the possibility to
fully automatic translation from verifiable software models to executable code.

By combining a set of LLSFMs with the gusimplewhiteboard library, a de-
veloper can create a fully executable, model-based design where all inter-machine
communications happen through the common gusimplewhiteboard instance.

2.4.6 Hardware-in-the-loop testing

The architecture of LLSFMs encourages breaking down the software into subsys-
tem components, which in turn allows for the creation of simulated input signals
in order to verify the behaviour of each of the models at run-time.

This method of simulating environmental inputs is called Hardware-in-the-
Loop (HWIL) testing and is done by creating “tester” programs to generate the
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Figure 2.2: Pacemaker VVI controller as LLFSM

inputs and verify the output behaviour of the System Under Test (SUT) (Fig-
ure 2.3,2.4). This process is made much easier by making use of LLSFMs and the
gusimplewhiteboard communications library.

Figure 2.3: Typical LLFSM/whiteboard usage

In this scenario, the SUT has no knowledge that it is in a simulated environ-
ment, and will behave as if it was interfaced to the real environment. When these
tests are derived from the software requirements, they can form the groundwork
for a Test-Driven Development (TDD) methodology (Estivill-Castro and Hexel,
2017; Estivill-Castro, Hexel and Stover, 2015a; Estivill-Castro, Hexel and Stover,
2015b). Such testing software can be incorporated into Continuous Integration
(CI) environments, providing immediate feedback to developers about the results
of behaviour tests. It has been demonstrated by Estivill-Castro and Hexel (2016)
that LLSFMs are “very fruitful for model-driven software development as they
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Figure 2.4: Testing LLFSM with simulated inputs

constitute executable models”.

25



26



Chapter 3

Methodology

The work presented in this thesis builds off the work done by Falzon et al. (2012),
which showed that the Dynamic Aerial Survey (DAS) algorithm is suitable for
applying varying levels of crop inputs such as Nitrogen (N) based on remote sensing
data streams.

Adapting an algorithm such as DAS to operate in a real-time, dedicated hard-
ware environment contains some challenges that must be overcome. Resource lim-
itations such as power consumption, computational power, and memory resources
are all common in the embedded hardware space. Practical limitations such as on-
vehicle deployment and access to sensor streams is another challenge that would
need to be overcome in order to fully realise a dedicated hardware Variable-Rate
Fertiliser (VRF) controller.

A number of segmentation algorithms are compared in the original paper, how-
ever to further test the DAS algorithm for its suitability to the task of VRF ap-
plication, a number of different classification models also need to be tested.

Besides prediction accuracy metrics, it is also important to test and compare
the timing behaviour of these models in order to eliminate any models which
require too much time to predict.

Training performance was also measured for this work. Although this metric is
less relevant for application of a model, it is a useful measurement for any future
work which attempts to combine stream-learning techniques with DAS.

3.1 Data Set

For this thesis, a real-world data set was used for model training and testing. This
data was collected by Derek Schneider and the University of New England Precision
Agriculture Research Group team for the initial development and analysis of the
Fuzzy Boxes (FB) algorithm (Cohen, 2016).
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The collected data consists of measurements taken from a quad bike platform
fitted with two commercially available sensors as part of trials to asses wheat
(Triticum aestivum var. Gregory) vigour. The wheat field consisted of 18Ha of
Z30 stage wheat. Applying N fertiliser at this stage has been shown to increase
biomass yield (Bowden et al., 2008).

Red Normalised Difference Vegetation Index (RNDVI) (Equation 3.1) data
measures the difference between red light (780 nm) reflectance and near-infrared
(647 nm) light reflectance (Rouse, Haas, Schell and Deering, 1974), and was col-
lected by a Holland Scientific Crop Circle™ ACS-210 active canopy sensor (Crop
Circle ACS-210 Product Sheet 2004). Apparent soil conductivity (ECa) (Rhoades,
Raats and Prather, 1976) was also measured using a Geonics EM38-MK2 operat-
ing in vertical dipole mode (Geonics, Ltd., 2013). As such, the data is labelled
as RNDVI and EM38 within the data set and on many of the generated output
graphics. All data instances were georeferenced using a Trimble TSCe Ranger data
logger with attached Differential Global Positioning System (DGPS).

RNDVI =
NIR(780) −R(647)

NIR(780) + R(647)
(3.1)

An expert agronomist was on-site during data collection, and reviewed sensor
records to determine the thresholds at which fertiliser should be applied to the
crop. These thresholds were then used to develop a binary classification for each
recorded point in the field. A total of 2399 measurements were recorded and clas-
sified; a statistical summary of the data is provided in Table 3.1. Once the data
had been reviewed, there was found to be an imbalance in the classifications labels.
This was expected as the crop was operating as usual and was not controlled to
produce balanced data. 699 locations were classified as requiring fertiliser (positive
class), and 1700 were classified as not requiring fertiliser (negative class). As can be
seen from Figure 3.1, the classifications are spread fairly evenly along the RNDVI
feature, but were somewhat clustered along the range of EM38 measurements,
where a higher ECa value indicates a lower probability of requiring fertiliser. This
clustering around a single sensor’s threshold shows potential for fast and compu-
tationally cheap prediction of fertiliser requirements by using Machine Learning
(ML) methods.

An up-sampling strategy is often used to balance the number of instances in
the positive and negative classes by reusing instances from the smallest set where
needed (Ganganwar, 2012). Since the positive and negative classes of this data set
were unbalanced (699:1700), up-sampling was employed during ML classification
testing. All values were also min-max normalised to the [-1:1] range in order to
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Figure 3.1: Visualisation of the data set

RNDVI EM38

Minimum 0.1256 36.40
1st Quartile 0.2450 79.90
Median 0.3044 85.50
Mean 0.3138 83.11
3rd Quartile 0.3718 89.40
Maximum 0.7118 103.00

Table 3.1: Statistical summary of the data set

“neutralise the effect of different quantitative features being measured on different
scales” (Flach, 2012).

3.2 Existing Algorithms

Many applications of Precision Agriculture (PA) have made use of ML algorithms
in order to provide accurate predictions from high-bandwidth data streams.

Two existing families of ML algorithms which are currently in use for PA are
Support Vector Machines (SVMs), and Artificial Neural Networks (ANNs). A
newly described algorithm called FB (Cohen, 2016) was implemented in Python,
and then compared against these existing algorithms.

One of the common ML algorithms currently being used is the SVM. A par-
ticular type of SVM called C-Support Vector Classifier (C-SVC) is a Radial Basis
Function (RBF) kernel based classifier which exposes the C and γ kernel paramet-
ers. The model used for this work is a C-SVC implemented in the LIBSVM library.
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The parameters used for this model were found by conducting a 10-fold Cross Val-
idation (10CV) grid search over the hyperparameter (C & γ) space. Parameter
search results for SVM are shown in Table 4.2.

Another widely used class of ML algorithms are ANNs. There are many vari-
eties of ANN depending on the number of hidden layers, number of neurons per
layer, and which neurons are connected. The ANN model used in this thesis is
a fully-connected back-propagation neural network implemented using the Fast
Artificial Neural Network (FANN) library. The parameters for this model can be
seen in 4.3 and were also found via a 10CV grid search. The hidden layer neurons
used a standard sigmoid activation function (Equation 2.1), while the output layer
used a binary step activation function at 0.5 (Equation 2.2).

3.3 Fuzzy Boxes Algorithm

The Fuzzy Boxes (FB) algorithm is a binary classification algorithm described in
2016 by Cohen (Cohen, 2016).

It has been designed to assist in easing the challenges of a low-power and low-
resource computing environment, and the original work specifically addressed VRF
applications. Since there was no publicly available implementation of FB, one was
created in the Python language as part of this thesis (Appendix A).

FB models are trained by reading data from each input stream (feature) and
dividing the value range into bins. Split points for each bin are calculated in one of
two ways: either based on the percentile of instances which fall into each bin, or by
evenly splitting the value range. The split-point calculation algorithm is described
in Algorithm 1. This has been called percentile and even splitting respectively,
and is controlled in the code with the method parameter. The splitting process
is repeated for each number of desired bins from Smax to Smin, where S is the
number of splits along each feature. The total ratio of positive to negative train-
ing instances is saved into the model and can be accessed as the prior_ratio

property if desired.
Once all split points have been found, the model will consist of Smax−Smin + 1

layers each containing n-dimensional boxes, where n is the number of input fea-
tures. Stored within each bin is a rational number to keep track of how many
training instances fell into the box, and what proportion where classified as posit-
ive.

Figure 3.2 shows examples of a 2-dimensional FB model at S = 10 with both
even and percentile splitting methods using the data described in (Section 3.1).
The darker boxes are cells in the feature space where a higher percentage of training
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values were in the positive class, whereas the lighter boxes are cells with a lower
percentage of positive-classed instances. A full FB model consists of one of these
grid layers for each value of S.

Figure 3.2: Fuzzy Boxes model showing even (left) and percentile (right) splitting
methods

Once all of the training data has been placed into a bin and the positive/negative
ratio for each bin has been determined, the model is considered to be trained. In
order to save and load the model, the ratio within each box needs to be recorded.

Since each value of S makes up one “layer”, one possible improvement to this
algorithm would be to “flatten” all the layers down into a single n-dimensional
array. This would provide faster prediction times since the “box position” of each
incoming instance would only need to be found once. Currently, this process needs
to be repeated for every value of S.

3.4 Fuzzy Boxes Implementation

The development of FB was broken down into separate modules for the main
model, input features and instance values. Modules were also created for the
graphical outputs and testing results in order to keep the main implementation
separate from the testing and visualisation code.

The classes which are considered central to the FB algorithm’s operation are
described in Table 3.2. Classes developed for testing the algorithm are listed in
Table 3.3, and any extra modules which are not part of the library, but were used
during developed are listed in Table 3.4.

In the future, an optimised and highly portable software library may be de-
sired for FB. The low-level nature of the C language means that embedding C
libraries into other language code bases is often much easier than attempting the
opposite. At the expense of greater development effort, a C library also provides
greater potential for optimisation of run-time performance. This may allow for
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Algorithm 1 Fuzzy Boxes split-point algorithm
Require: F , List of features
Require: Smin, Minimum number of split points
Require: Smax, Maximum number of split points
Require: M , Method of calculating split points

1: for all f ∈ F do
2: S ← Smin
3: while S ≤ Smax do
4: i← 1
5: while i ≤ S + 1 do
6: if M == even then
7: f.splits[S][i] = f. min +(i + 1)× (f. max−f. min)/(S + 1)
8: else if M == percentile then
9: f.splits[S][i] = numpy.percentile(f.values, (i + 1)/(S + 1) ∗ 100)

10: end if
11: i← i + 1
12: S ← S + 1
13: end while
14: end while
15: end for

ML algorithms such as FB to work on devices which may not have the resources
to run an interpreted language like Python.

Since it was still unknown as to whether FB would produce timing results com-
parable to the existing ANN and SVM algorithms, it was decided that the initial
code for FB would be written in the Python language. This helped to greatly
decrease the development time of both the FB library and the code used to com-
pare to other algorithms, while maintaining portability between most operating
systems.

Loose coupling between modules was desired in order to ease transition from
Python to C in the future, as there are many useful high-level abstractions available
in Python which must be implemented manually in C. This is the primary reason
that FuzzyBoxInstanceValue inherits from float and why custom classes were
created for FuzzyBoxInstance and FuzzyBoxRatio (i.e. these classes will need to
be implemented as struct ’s in C and it will make the re-implementation easier
if they are already loosely-coupled). The coupling which resulted is shown in
Figure 3.3.

The high-level modules were then designed as UML (Figure 3.4) before fi-
nally being implemented in Python. Basic regression tests were also designed at
this stage to help detect errors around loading data from comma-separated values
(CSV) files and manipulating data internally (Figure 3.5). As the algorithm has
no other implementation to test against, a small (10 instance) set of synthetic data
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Fuzzy Boxes core classes
FuzzyBoxModel Main model class. This is responsible for saving/loading

the model and also contains the train/test functions.

FuzzyBoxFeature Object containing the split points for each box N of a
single input feature. Also may contain a list of FuzzyBox-
Instance’s holding the training data.

FuzzyBoxRatio Simple object describing ratio of positive / negative class
ratio for a single box.

FuzzyBoxInstance Simple object containing values for each feature and a
classification (training data only). Operates similar to a
dataframe row in R.

FuzzyBoxInstanceValue Derived from float and so can be treated in code as such.
Also stores a box position array (one entry for each value
of S).

Table 3.2: Description of the core classes making up the fuzzyboxes Python library

Fuzzy Boxes testing classes
Results Error statistics for model classification testing, as well as

custom timer objects for performance testing.

Table 3.3: Description of classes related to fuzzyboxes

was created and the algorithm was worked through by hand up to S = 3 to create
results which were compared to the model values. These regression tests were
primarily used to detect unexpected changes in the output due to programming
errors, and were found to be very useful over the course of this work.

3.5 Algorithm Testing

Each of the ML algorithms were tested and compared on multiple error metrics:
Accuracy (Equation 3.2), Precision (Equation 3.3), F1score (Equation 3.4), and
Gmean (Equation 3.5). Note that the formulae presented here are for analysing
binary classifiers, while the implementation of the Results class was created to
be compatible with multiclass testing. Implementation can be found in the file
results.py (Appendix A). Accuracy and Precision were included since they are
standard error metrics when comparing ML algorithms, while F1score and Gmean

was included in order to consider both precision and recall metrics. Other metrics
recorded by Results include true-positive rate (TPR), true-negative rate (TNR),
false-positive rate (FPR), and false-negative rate (FNR). TPR and TNR meas-
urements were collected for calculation of the Gmean value. FPR and FNR were
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Additional modules
graphics Additional functions for generating scatter plots and heat-

maps from 2D data sets.

Table 3.4: Description of any extra modules related to development but not part
of the fuzzyboxes library

Figure 3.3: Fuzzy Boxes Python modules

not used, but were collected regardless due to ease of implementation. Since this
testing was done with an automated delivery system for potentially hazardous
chemicals in mind, it was important to consider the true negative class (doesn’t
need fertiliser) as important as the true positive class, if not more so. For this
reason, the geometric mean of the recall statistic for every classification was used.
When the classifier under test has binary classes, this is called gmean1.

Accuracy = TP + TN

P + N
(3.2)

Precision = TP

TP + FP
(3.3)

F1 − Score = 2TP

2TP + FP + FN
(3.4)

Gmean =
√

TPR× TNR (3.5)

34



Figure 3.4: Fuzzy Boxes main classes

Figure 3.5: Fuzzy Boxes test classes

Offline timing tests of all algorithms was performed via the use of a custom
timer class in Python. This class can be found in the file interval_timer.py

(Appendix A) and has methods to make usage familiar to users of the tick and
tock functions in MATLAB.

Although FANN and LIBSVM are primarily written in C and C++ respect-
ively, both libraries come packaged with Python bindings, making a test harness
easy to develop. The Python bindings add a computational cost to the algorithm,
primarily when loading and starting the Python interpreter. Since timing measure-
ments are made from within the Python code, the startup time of the interpreter
does not affect the results presented here.

One thing to note with this environment, is that FANN and LIBSVM still
contain a small amount of overhead by running C modules from Python, though
this should not be a significant factor considering the C/C++ modules are pre-
compiled and CPython (the primary Python implementation and also written in
C) supports this convention.

A more accurate way to measure timing performance would be to use logic
probes either directly on the communications bus, or by signalling different stages
via the use of general-purpose input/output (GPIO) pins. For example, one could
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use one pin to signal “read value from sensor”, and another for “prediction re-
turned from algorithm”. In order to automate the process and to avoid setup
complexity, this was not performed. Instead, the stopwatch tick/tock calls were
placed immediately before and after the calls to the ML prediction function. The
same technique was also used to measure training time for each algorithm.

3.6 HWIL Testing

A simple model describing many software and hardware solutions is the Input-
Processing-Output (IPO) model (Figure 3.6) which describes three major com-
ponents. For a real-time automated VRF controller, Remote Sensing (RS) data
would form the primary input, in this case the data consists of RNDVI and ECa

measurements, but it is possible other sensor inputs could be viable for this. The
output stage would consist of at least one actuator, in the case of binary on/off
applicators, or a voltage level which controls the amount of fertiliser being ap-
plied. For a real-world deployment of VRF systems, the output stage would need
to apply smoothing when using binary classification techniques as in this thesis.
Failure to do so could result in damage to the variable-rate application nozzles due
to rapid on/off transitions. The processing stage is the main focus of this thesis,
where ML techniques are tested for suitability to the task of rapidly reading input
data, and affecting the output stage in a timely manner. Both the IPO model
and Hardware-in-the-Loop (HWIL) testing are used extensively in the automotive
computing industry, but have not yet seen widespread adoption within PA (Goel,
2010).

Figure 3.6: Input-Processing-Output model can be used for common PA applica-
tions

In order to verify the applicability of this model and timing constraints of ML
algorithm to VRF tasks, HWIL testing was performed by simulating the input
and output stages (Figure 3.7a).

The HWIL simulation was created using an ATmega328P micro controller on
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the Arduino platform which acted as an imitation sensor, connected to a Raspberry
Pi development board via the I2C 1 protocol. The output stage was simulated by
connecting the Raspberry Pi’s serial port to a desktop PC and communicating
via Universal asynchronous receiver-transmitter (UART). The Raspberry Pi was
the System Under Test (SUT) and executed a Logic-Labelled Finite-State Ma-
chine (LLSFM) model which verified the timing constraints within a real, albeit
simulated, environment. This is shown in Figure 3.7b.

(a) HWIL testing block diagram

(b) HWIL testing with hardware
devices

Figure 3.7: Simulating environmental inputs and checking output against expected
behaviour

The micro controller was programmed with a subset of the original data set,
keeping the same ratio of positive and negative class instances. Due to the ex-
tremely limited memory found on micro controllers, only 180 instances were loaded.
Since the HWIL simulation was only looking at verifying timing constraints, the
limited number of instances did not affect the outcome of the simulation. The
Raspberry Pi board was connected to the PC via a UART serial connection oper-
ating at a baud rate of 115 200 bit/s. The data was read from the Arduino device
using the I2C bus, this was chosen due to the high bandwidth ceiling and ease of
connection. I2C only requires two signal lines and no voltage level shifting when
connecting two devices, even when those devices operate at different voltage levels
(3.3v Raspberry Pi, and 5v Arduino). The imitation sensor code is very simple; it
works by receiving a single command byte from the host and returning either an
NDVI value or an ECa value, both represented as 4-byte floating point numbers.

The SUT needs to send 1-byte to the Arduino in order to receive each of the two
4-byte features, and another byte to advance the sample counter (3 total). When
the I2C bus is operating in fast mode plus, the maximum bandwidth is 1 Mbit/s,
thus the maximum completed predictions per second when using I2C in this mode

1https://web.archive.org/web/20190107182009/https://www.nxp.com/docs/en/
user-guide/UM10204.pdf
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is 11363 (Equation 3.6). This is ≈ 88 µs per prediction.

Predictions/second = 1000000/8
3 + 4 + 4

= 11363.63 (3.6)

The code running on the Raspberry Pi was an LLSFM being executed by the
clfsm scheduler. Although when designing real-world systems using LLSFMs,
care should be taken to eliminate all control structures used within a machine’s
states, in this case we are only verifying timing results and so can go against this
advice. The ML algorithms all have a predict function which contains many
loops, conditionals, and other control structures. This function was not rewritten
as an LLSFM as it would effectively require the algorithms to be completely re-
implemented using this paradigm. This means that one of the benefits of using
an LLSFM (i.e. formally verifiable behaviour) will be lost within that state which
calls predict , but will be retained for other states.

The tester LLSFM is shown in Figure A.1 and includes the python_interface

C module which was written for this work (Appendix A). This modules embeds a
Python interpreter into the C code so that the startup overhead of the interpreter is
only applied once within the SETUP state. The Python file python_interface.py

defines the python_predict function, which was modified once for each algorithm
being tested in order to use a pre-trained model corresponding to that algorithm.
These models were either loaded from disk or trained during the call to python_setup .

The after_us(n) function is part of the gusimplewhiteboard module and
is not publicly available, however this function simply returns true if it was been
longer than n microseconds since the current state was entered.

(a) LLFSM variables (b) LLFSM include paths

Figure 3.8: Environment configuration for PredictionTesterLLFSM
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3.7 Development Environment

The primary development environment was Neovim2 running on both a mid-2015
MacBook Pro, and a desktop PC with an Intel Core i7 4770, both containing 16 GB
Random-Access Memory (RAM). A mixture of operating systems were used over
the course of this work, including Windows, macOS, Debian and Fedora on the
high powered machines, and Raspbian on the Raspberry Pi. The virtualenv

Python package was extremely useful for managing multiple development environ-
ments and compatibility testing for Python 2 and Python 3. The PredictionTester
LLSFM was created using the MiCASE software created by MiPAL3 specifically
for LLSFM development. A Continuous Integration (CI) server was set up running
the Jenkins4 software package. This server was intended to be used as a central
point for the latest copy of the code, as well as to generate build logs and regres-
sion testing reports. However, it was found to not be very useful as the code for
this work was under continuous change and there were no releases or existing code
base to have integration problems with.

2https://web.archive.org/web/20190109035231/https://neovim.io/
3https://web.archive.org/web/20190227044813/http://mipal.net.au/
4https://web.archive.org/web/20181229082713/https://jenkins.io/doc/
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Chapter 4

Results and Discussion

Presented in this section are the results of the analysis and testing of the Machine
Learning (ML) algorithms as previously described. An analysis of the Fuzzy Boxes
(FB) algorithm in terms of both time and memory complexity is first shown in
order to provide context for how FB performs compared to existing algorithms.
Model parameters for the Support Vector Machine (SVM) and Artificial Neural
Network (ANN) algorithm were found via 10-fold Cross Validation (10CV) and are
presented in 4.2. Accuracy and timing results, which form the primary comparison
points between these algorithms, are then presented in 4.3 and 4.4.

4.1 Fuzzy Boxes Analysis

A basic complexity analysis of the training time and memory usage of the FB
algorithm was performed in order to compare the scalability in relation to the
SVM and ANN algorithms. Results are shown in Table 4.1. Complexity of training
time and memory usage domains is already known in the case of the SVM (Tsang,
Kwok and Cheung, 2005) and ANN (Owechko and Shams, 1994).

Memory Usage Training Time

ANN O (n2) O (n2)
C-SVC O (m2) O (m3)
Fuzzy Boxes O (cn) O (cn)

Table 4.1: Worst-case memory usage and training time complexity for ML models
n = features, m = training instances, c = box splits

Equation 4.2 can be used to find the model size (in MiB) given the number
of input features (f). Memory use for the FB model can be calculated from the
total number of boxes in the model, which is directly related to the minimum
and maximum number of split points (Generalised in Equation 4.1). Due to the
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exponential nature of the memory requirements in relation to the input features,
the space required for an FB model quickly grows beyond the scope of embedded
systems. Total memory requirements will be dependent on the datatype used to
store the positive and total counts for each box.

As an example, if we assume the use of 2× 16-bit values per box and a split
range of 0–20, we can see that with 5 features, the model only uses 62.6 MiB
(Equation 4.3), while with 6 features it uses over 1 GiB (Equation 4.4). Attempting
to build a FB model with these parameters over 7 input features results in a
model space requirement of over 21 GiB (Equation 4.5), far outside the feasibility
of current embedded hardware.

SMAX∑
S=SMIN

(S + 1) f (4.1)

20∑
S=0

4 (S + 1) f

10242 (4.2)

20∑
S=0

4 (S + 1) 5

10242 = 62.627 MiB (4.3)

20∑
S=0

4 (S + 1) 6

10243 = 1.126 GiB (4.4)

20∑
S=0

4 (S + 1) 7

10243 = 21.154 GiB (4.5)

Training time however has a complexity of O (cn) , which is comparable to the
established algorithms and provides hope for this algorithm to be optimised and
potentially implemented for stream-learning applications.

It should be noted that the complexity values given are worst-case. In real-
world scenarios, SVM algorithms such as the C-Support Vector Classifier (C-SVC)
can operate with a much lower time complexity since the training time is dependent
on which of the training instances are used for support vectors.

Figure 4.1 shows the effect of the depth parameter on accuracy for both the
even and percentile splitting methods. It was expected that the even split-
ting method would provide worse accuracy results for low depth values because
it does not take instance density into account like percentile splitting does, and
is therefore more sensitive to outlier values affecting the split positions. We can
see that the accuracy value converges at around 5 box splits, since at this depth
the boxes are fine-grained enough to negate any difference in splitting method.
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Figure 4.1: Split count effect on prediction accuracy for FB algorithms
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Figure 4.2: Split count effect on prediction timings for Fuzzy Boxes algorithms

Since the number of boxes does not change between the splitting methods, the
only difference in prediction time comes from the operations required to calculate
the split points (Algorithm 1). Calculation of percentiles is slower than the calcu-
lation of even splits, and this difference becomes more apparent as the number of
boxes grows (Figure 4.2).

One of the current limitations of FB is that it is a binary classifier and has not
been designed with multiclass classification or regression in mind. This makes it
too responsive for direct control over fertiliser equipment, however this could be
alleviated by applying damping or smoothing to the output.
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4.2 Model Parameters

After performing a 10-fold cross-validation hyper-parameter search, model para-
meters were found for the SVM algorithm (Table 4.2) and back-propagation ANN
algorithm (Table 4.3).

Parameter Value

C 2048
Gamma 0.0078125

Table 4.2: Model parameters for the SVM algorithm

Parameter Value

Hidden Layers 7
Learning Rate 0.007
Internal Activation Function Sigmoid
Output Activation Function Binary Step

Table 4.3: Model parameters for the fully-connected BP ANN

In order to find suitable parameters for the FB algorithm, a different approach
was taken due to the fact that the algorithm performance generally improves with
an increasing number of box splits. A 10-fold cross-validation method was again
followed, however the final parameter values were not simply those with the highest
accuracy.

One of the primary claimed benefits of the FB algorithm is the ability to tune
the model not only to accuracy, but also to timing performance. As shown in
Figure 4.2, prediction time increases in a non-linear manner as the number of
splits increases.

This was expected due to the exponential memory complexity of the model,
which requires a corresponding number of operations in order to find the n-
dimensional position of values. Three depth values were chosen for comparison
to the existing algorithms in order to demonstrate the scalable nature of the al-
gorithm. A “shallow” value of 5, a “mid” value of 10, and a “deep” value of 20
were chosen (Table 4.4).

4.3 Model Accuracy

Comparing the even and percentile splitting methods of the FB model shows
not much accuracy difference between the two. The percentile method offers a
more robust model since it can handle outliers more easily than the even method.
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Parameter Value

Max Depth (shallow) 5
Max Depth (mid) 10
Max Depth (deep) 20

Table 4.4: Model parameters for the FB algorithm

More importantly, it can be seen from Figure 4.3 that the the percentile

method produces fewer false-positives and more true-negatives for this data set.
This is extremely important for (potentially automated) systems which may be
delivering harmful chemicals on a mass scale to crops. The ability to correctly
decide when not to apply fertiliser is arguably much more important than the
ability to decide when to apply fertiliser.

FPR FNR TPR TNR Acc. Prec. G1 G2

10
20
30
40
50
60
70
80
90

100

Va
lu

e
(%

)

Even splitting vs. Percentile splitting

Even
Percentile

Figure 4.3: Performance metrics for the different Fuzzy Box splitting methods

The SVM and ANN models also showed high accuracy for this data set, with
all algorithms achieving over 84% in both accuracy and precision metrics. These
results show that all tested models are suitable for making high-accuracy bin-
ary predictions of Nitrogen (N)-requirements, and shows promise for producing
optimised models from larger data sets in the future.

Comparing the FB algorithm to the existing algorithms, it can be seen that
FB produced higher-accuracy models when the depth parameter was sufficiently
increased. The percentile splitting method consistently produced better ac-
curacy and precision metrics, however the even splitting method has a slightly
better F1score. These close results suggest that the difference between these al-
gorithms’ predictive accuracy may be statistically insignificant, though no formal
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significance tests were performed as part of this work. As such, each of the al-
gorithms tested here could potentially be considered for real-time prediction within
Precision Agriculture (PA) contexts.

Algorithm Accuracy Precision F1score Gmean

ANN 85.37 85.37 76.21 84.08
C-SVC 85.77 85.77 76.06 83.38
FB5 (Even) 84.85 84.85 86.36 84.13
FB10 (Even) 84.85 84.85 86.39 84.09
FB20 (Even) 86.91 86.91 87.76 86.64
FB5 (Percentile) 84.88 84.88 85.88 85.88
FB10 (Percentile) 86.47 86.47 86.67 86.46
FB20 (Percentile) 87.21 87.21 87.45 87.18

Table 4.5: Accuracy metrics comparison

These metrics provide an optimistic look at the potential for FB models for
use in Variable-Rate Fertiliser (VRF).

4.4 Timing Results

Raw timing results are presented for the various ML algorithms executed on a
2.2 GHz Core i7 (Table 4.6) and a Raspberry Pi with BCM2837 chipset (Table 4.7).
These results show that the algorithms themselves are more than capable of pre-
dicting at high enough speeds to be used in aircraft fertiliser delivery. Spatial
Resolution for these tests is defined as the distance covered during prediction time
and assumes an aircraft moving at 60 m/s, which is a standard speed for the widely
used AirTractor AT-502B crop spraying aircraft. Even when operating on the low
powered BCM2837 chipset, a spatial resolution of less than 3.1 cm per prediction
can be achieved by all tested algorithms.

Training (ms) Prediction (µs) Spatial Resolution (mm)

ANN 846.46 2.09 0.1
C-SVC 97.88 19.76 1.2
FB5-Even 64.88 15.87 1.0
FB5-Perc 82.76 16 1.0
FB10-Even 130.89 32.27 1.9
FB10-Perc 182.3 30.69 1.8
FB20-Even 251.28 69.61 4.2
FB20-Perc 442.95 64.92 3.9

Table 4.6: Timing and Spatial Resolutions (mm/prediction) for Core i7

46



Training (ms) Prediction (µs) Spatial Resolution (mm)

ANN 12449.45 16.64 1.0
C-SVC 786.56 261.72 15.7
FB5-Even 513.88 112.64 6.8
FB5-Perc 670.95 108.6 6.5
FB10-Even 1038.44 234.16 14.0
FB10-Perc 1606.43 218.64 13.1
FB20-Even 1986.48 502.77 30.1
FB20-Perc 3841.17 469.73 28.2

Table 4.7: Timing and Spatial Resolutions (mm/prediction) for Raspberry Pi

All algorithms performed well during the Hardware-in-the-Loop (HWIL) sim-
ulation tests, and timing constraints used within the Logic-Labelled Finite-State
Machine (LLSFM) tester were all verified as expected. The initial “offline” timing
tests were an important step in validating the software design, meaning the soft-
ware under construction is shown to be a valid solution to the problem of VRF.
The HWIL timing tests, on the other hand, are important for verification of the
solution, meaning the software actually does what is expected.

ANN algorithm was a significantly faster predictor than the other algorithms
tested, but this came at the cost of a longer training time. This is not so much
of an issue for VRF applications since the model can be trained offline and then
transferred to the hardware device, though may become a disadvantage for a future
“online-learning” model.

SVM algorithm performed faster for both training and predictions than FB
with over 10 box splits, but was a slower predictor than FB with 5 box splits.
This was true for both the even splitting method, and percentile splitting method.

By far the slowest predictor was FB with 20 percentile splits, though a possible
future modification to the FB model could alter this dramatically.
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Chapter 5

Conclusion

The work presented in this thesis shows that Machine Learning (ML) algorithms
currently used within Precision Agriculture (PA) are capable of potentially high
accuracy binary classification of fertiliser requirements estimation at a specific
location within a wheat crop.

This accuracy is predicated on the availability of a high quality remotely sensed
data stream which correlated to Nitrogen (N) fertiliser requirements, such as ECa

measurements from the Geonics EM38-MK2. Since these ML tests were performed
using data from only one regional area (Warialda, NSW), and all wheat was of
the same growing stage (Z30), the results presented here can not be generalised to
wider agricultural uses, but provide an optimistic outlook for the future of ML in
PA.

The recently presented Fuzzy Boxes (FB) algorithm was implemented in the
Python language and then compared to these existing algorithms on the metrics of
accuracy, precision, F1score, and Gmean in order to determine their performance in
predicting both the positive class (needs fertiliser), and the negative class (doesn’t
need fertiliser). This new algorithm also provided high-accuracy predictions for
the same task and was shown to be competitive with the existing models. FB has
the ability to “tune” the speed vs. accuracy trade-off, thus making it competitive
in terms of accuracy or prediction speed, depending on the model’s parameter
selection. This makes it a promising candidate for future use within PA in general
and for an automated Variable-Rate Fertiliser (VRF) system specifically.

Through profiling of metrics such as system resource utilisation, computational
complexity, real-time predictive accuracy, and potential for parallelisation, it is
predicted that the FB algorithm can be developed further in order to facilitate
a low-energy, embedded system, capable of real-time control over the output of
fertiliser distribution systems.
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Offline timing tests were conducted on a modern, low powered platform (Rasp-
berry Pi 3B) in order to validate the idea behind executing ML algorithms for use
in a dedicated low powered device. Timing tests were also conducted on a mod-
ern, high powered platform (Mid 2015 MacBook Pro) for comparison, as well as to
quantise the required difference if it was actually found that low powered devices
were unfeasible for this task.

After successful validation of the software model, Hardware-in-the-Loop (HWIL)
testing was used for verification of timing results. All algorithms successfully
passed this verification, showing that a dedicated hardware device designed for a
real-time, airborne VRF controller is indeed a feasible goal.

5.1 Future Work

As this work shows, Model-Driven Software Development (MDSD) techniques can
be useful for verification and validation of software models and ML algorithms.
In the future, it would be beneficial for the PA field to make much more use of
these techniques in order to facilitate the design of more robust and reusable PA
hardware components.

This includes implementing ML algorithms as Finite-State Machine (FSM) or
Logic-Labelled Finite-State Machine (LLSFM) models in order to formally reason
about the performance profile of these algorithms. ML implementations could
also be created targeting micro controllers and platforms such as Arduino, and
new projects such as ArduRTOS should be investigated for suitability to PA.

Artificial Neural Network (ANN) models show promise for this task as the
model itself is small and a consistent size. An improvement to FB could be made
in order to facilitate this and also to reduce prediction time. Currently, in order
to predict the classification of a new instance using FB, it is required to find the
instance’s “box position” once for every value of S. This makes the prediction time
of FB dependant on the values of Smin (usually zero) and Smax. Since the maximum
number of operations required for each value of S is equal to S itself, the worst-
case prediction time complexity is O (n2) . In order to reduce this complexity, it
would be possible to flatten the probability values for each layer of S into a single
n-dimensional array. By doing this, the worst-case number of operations required
to perform a lookup would be constant relative to the maximum value of S, giving
a complexity of O (n) . It would also be beneficial to use a data set with a higher
degree of features in order to test and compare the algorithms’ ability to scale with
model complexity.

Another future goal from this work would be the creation of a framework for
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PA applications which makes use of ML processing. The creation of this framework
could facilitate real-time agricultural robotics development and encourage reuse of
software components across PA.

Parallelisation of new and existing ML algorithms such as FB will also be of
importance in the future for taking advantage of multi- and many-core devices. FB
in particular has the potential for operating well in highly parallel environments
due to the fact that each depth layer of each feature in the model is independent.
This means that the training for each feature could be performed as a separate
process, and that the prediction could take advantage of the generic scatter/gather
parallel processing operations.
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Appendix A

Source Code

Listing 1: Fuzzy Boxes: __init__.py

1 from .feature import FuzzyBoxFeature as fb_feature

2 from .model import Ratio as fb_ratio

3 from .model import FuzzyBoxModel as fb_model

4 from .instance import FuzzyBoxInstance as fb_instance

5 from .instance import FuzzyBoxInstanceValue as fb_value

6

7 FuzzyBoxFeature = fb_feature

8 FuzzyBoxRatio = fb_ratio

9 FuzzyBoxModel = fb_model

10 FuzzyBoxInstance = fb_instance

11 FuzzyBoxInstanceValue = fb_value

Listing 2: Fuzzy Boxes: exceptions.py

1 class FuzzyBoxException(Exception):

2 """Standard Exception for errors raised by the fuzzyboxes module"""

3

4

5 class FuzzyBoxDataError(FuzzyBoxException):

6 """Error in the structure or formatting of FuzzyBox data"""

7

8

9 class FuzzyBoxDataTypeError(FuzzyBoxException):

10 """Incorrect data type"""

11

12

13 class FuzzyBoxFeatureError(FuzzyBoxException):

14 """Something went wrong with a FuzzyBoxFeature instance"""

15 def __init__(self, feature, msg):

16 msg = "Error in feature [%s]: %s" % (feature.name, msg)

17 super(FuzzyBoxFeatureError, self).__init__(msg)

18 self.feature = feature

19

20

21 class FuzzyBoxModelError(FuzzyBoxException):

22 """Something went wrong relating to an instance of FuzzyBoxModel"""
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Listing 3: Fuzzy Boxes: feature.py

1 class FuzzyBoxFeature(object):

2 def __init__(self, name, values=None):

3 """

4 Feature component of a FuzzyBoxes model

5

6 Args:

7 name (str): human-readable name of the feature

8

9 Attributes:

10 split_points: indexed list containing splitpoint arrays for boxes with N=(i+1)

11 values: feature values which were set during initialization

12 """

13 self.name = name

14 self.split_points = []

15 self._values = values

16

17 values = property(lambda s: s._values)

18

19 def __repr__(self):

20 return "<Feature %r: name=%s splits=%r>" % (id(self), self.name, len(self.split_points))

Listing 4: Fuzzy Boxes: functions.py

1 #!/usr/bin/env python

2 # vim:fileencoding=utf-8

3 import math

4 import csv

5 from .instance import FuzzyBoxInstance

6

7

8 def percentile(values, n):

9 """

10 Calculate and return the nth percentile of the array values given

11

12 Args:

13 values (list) input array of values

14 n (float) Percentile to calculate, must be in range 0-100 (inclusive)

15 """

16

17 if not values:

18 return None

19

20 values = sorted(values)

21

22 if n > 100 or n < 0:

23 raise ValueError("Percentile argument (n) must be in range 0-100")

24

25 n /= 100.0

26

27 k = (len(values)-1) * n

28 f = math.floor(k)
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29 c = math.ceil(k)

30 if f == c:

31 return values[int(k)]

32 else:

33 return values[int(f)] * (c-k) + values[int(c)] * (k-f)

34

35

36 def initialise_array(dimensions, value=0, level=0):

37 """

38 Create a multidimensional array (list) and initialise all values

39

40 Args:

41 dimensions (seq) iterable containing the size of the new array

42 value (any) value to initialise each element of the array, may be a callable

43

44 Example:

45

46 initialise_array([2, 2, 2], lambda: object())

47 This will return an array or size 2x2x2. All elements will be initialised as new

objects↪→

48

49 """

50 if level >= len(dimensions):

51 return value() if callable(value) else value

52 else:

53 return [initialise_array(dimensions, value, level + 1) for i in range(dimensions[level])]

54

55

56 def read_csv(filename, fieldnames=None):

57 """

58 Generator wrapper around the standard csv python library.

59 This will read a csv file and yield a list object. Header row is discarded"

60 """

61 with open(filename, 'r') as f:

62 sample = f.read(1024)

63 f.seek(0)

64 dialect = csv.Sniffer().sniff(sample)

65 reader = csv.reader(f, dialect)

66 if csv.Sniffer().has_header(sample):

67 next(reader)

68 for row in reader:

69 if len(row) < 2:

70 raise Exception("Cannot convert from CSV row to FuzzyBoxInstance: %r" % row)

71 row_values = list(map(float, row[1:]))

72 row_class = bool(int(row[0]))

73 yield FuzzyBoxInstance(values=row_values, classification=row_class)

74

75

76 if __name__ == '__main__':

77 import os

78 import tempfile

79 import random

80 import unittest

81 import numpy as np

82

83 class UnitTestPercentile(unittest.TestCase):

84
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85 def setUp(self):

86 pass

87

88 def testErrorConditions(self):

89 data = [random.randint(0, 200) for _ in range(24)]

90 self.assertIsNone(percentile(False, 0.5))

91 self.assertRaises(ValueError, lambda: percentile(data, -1))

92 self.assertRaises(ValueError, lambda: percentile(data, 101))

93

94 def testAgainstNumpy(self):

95 percentiles = [x/100.0 for x in range(10001)]

96 random.seed()

97 data = [random.randint(0, 200) for _ in range(24)]

98 for p in percentiles:

99 self.assertEqual(percentile(data, p), np.percentile(data, p))

100

101 def testBasicMath(self):

102 data = range(10)

103 self.assertEqual(percentile(data, 0), 0)

104 self.assertEqual(percentile(data, 50), 4.5)

105 self.assertEqual(percentile(data, 100), 9)

106 data = range(1, 11)

107 self.assertEqual(percentile(data, 0), 1.0)

108 self.assertEqual(percentile(data, 50), 5.5)

109 self.assertEqual(percentile(data, 100), 10.0)

110

111 class UnitTestEmptyArray(unittest.TestCase):

112 def setUp(self):

113 pass

114

115 def testDimensions(self):

116 value = 77

117 cube3 = initialise_array([3, 3, 3], value)

118 self.assertEqual(len(cube3), 3)

119 self.assertEqual(len(cube3[0]), 3)

120 self.assertEqual(len(cube3[0][0]), 3)

121 self.assertEqual(cube3[0][0][0], value)

122 n = 0

123 for i in cube3:

124 for j in i:

125 for k in j:

126 n += 1

127 self.assertEqual(k, value)

128 self.assertEqual(n, 27)

129 for i, _ in enumerate(cube3):

130 for j, _ in enumerate(cube3[i]):

131 for k, _ in enumerate(cube3[i][j]):

132 self.assertEqual(cube3[i][j][k], value)

133 self.assertRaises(IndexError, lambda: cube3[3])

134 self.assertRaises(IndexError, lambda: cube3[2][3])

135 self.assertRaises(IndexError, lambda: cube3[2][2][3])

136

137 def testSingle(self):

138 value = 129

139 single = initialise_array([10], value)

140 self.assertEqual(len(single), 10)

141 self.assertEqual(single[9], value)
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142 self.assertRaises(IndexError, lambda: single[10])

143

144 def testObject(self):

145 dims = [7, 7, 7]

146 objArray = initialise_array(dims, value=lambda: object())

147 objs = []

148 for i, _ in enumerate(objArray):

149 for j, _ in enumerate(objArray[i]):

150 for k, _ in enumerate(objArray[i][j]):

151 objs.append(id(objArray[i][j][k]))

152 self.assertEqual(len(objs), reduce(lambda a, b: a*b, dims))

153 self.assertEqual(len(set(objs)), reduce(lambda a, b: a*b, dims))

154

155 class UnitTestInput(unittest.TestCase):

156 def setUp(self):

157 self.csvfiles = {}

158 self.csvfiles['plain'] = tempfile.NamedTemporaryFile(delete=False)

159 self.csvfiles['header'] = tempfile.NamedTemporaryFile(delete=False)

160 with open(self.csvfiles['plain'].name, 'w') as f:

161 self._write_csv(f)

162 with open(self.csvfiles['header'].name, 'w') as f:

163 self._write_csv_header(f)

164 self._write_csv(f)

165

166 def tearDown(self):

167 for i, csvfile in self.csvfiles.items():

168 if os.path.isfile(csvfile.name):

169 os.remove(csvfile)

170

171 def _write_csv_header(self, f):

172 f.write(', '.join([chr(c) for c in range(65, 75)]))

173 f.write("\n")

174

175 def _write_csv(self, f):

176 for x in range(1, 5):

177 f.write(','.join(str(n) for n in range(10*x, 10*x+10)))

178 f.write("\n")

179

180 def testTestFiles(self):

181 for label in self.csvfiles:

182 self.assertTrue(os.path.isfile(self.csvfiles[label].name))

183

184 def testInstanceReader(self):

185 for i, csvfile in self.csvfiles.items():

186 for row in read_csv(csvfile.name):

187 self.assertIsInstance(row, FuzzyBoxInstance)

188

189 unittest.main()
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Listing 5: Fuzzy Boxes: graphics.py

1 from .exceptions import FuzzyBoxModelError

2

3

4 def scatter(model, feature_x=None, feature_y=None, labels=None):

5 if not model.isTrained:

6 raise FuzzyBoxModelError("Model has not been trained")

7 import matplotlib.pyplot as pyplot

8

9 if feature_x is None:

10 feature_x = model.training_features[0]

11 if feature_y is None:

12 feature_y = model.training_features[-1]

13

14 fig = pyplot.figure(1, figsize=(18, 9))

15 x_min = min(feature_x.values)

16 x_max = max(feature_x.values)

17 x_buffer = (x_max - x_min) * 0.05

18 x1 = [x for i, x in enumerate(feature_x.values) if model.training_classes[i]]

19 x2 = [x for i, x in enumerate(feature_x.values) if not model.training_classes[i]]

20 y_min = min(feature_y.values)

21 y_max = max(feature_y.values)

22 y_buffer = (y_max - y_min) * 0.05

23 y1 = [y for i, y in enumerate(feature_y.values) if model.training_classes[i]]

24 y2 = [y for i, y in enumerate(feature_y.values) if not model.training_classes[i]]

25

26 for S in range(min(model.Smax, 8)):

27 ax = fig.add_subplot(240 + S + 1, adjustable='box-forced', aspect='auto')

28 ax.set_title("S = %d" % S)

29 scatterPositive = ax.scatter(x1, y1, c='green', alpha=0.5, label='Positive')

30 scatterNegative = ax.scatter(x2, y2, c='red', alpha=0.5, label='Negative')

31 ax.axis([x_min - x_buffer, x_max + x_buffer, y_min - y_buffer, y_max + y_buffer])

32 ax.grid(True)

33 ax.yaxis.set_ticks(feature_y.split_points[S])

34 ax.xaxis.set_ticks(feature_x.split_points[S])

35 pyplot.setp(ax.get_xticklabels(), rotation=30, ha='right')

36 ax.tick_params(axis='both', which='major', labelsize=8)

37 ax.tick_params(axis='both', which='minor', labelsize=8)

38 if labels is not None and len(labels) == 2:

39 fig.figlegend((scatterPositive, scatterNegative), labels, 'lower left', ncol=2)

40 fig.subplots_adjust(0.03, 0.10, 0.97, 0.95, 0.2, 0.2)

41

42 return fig

43

44

45 def heatmap(model, feature_x=None, feature_y=None, S=None):

46 if not model.isTrained:

47 raise FuzzyBoxModelError("Model has not been trained")

48 import matplotlib as mpl

49 import matplotlib.pyplot as pyplot

50 from matplotlib.ticker import AutoMinorLocator

51

52 if feature_x is None:

53 feature_x = model.training_features[0]
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54 if feature_y is None:

55 feature_y = model.training_features[-1]

56 if S is None:

57 S = -1

58

59 fig, ax = pyplot.subplots()

60 data = []

61 for row in model.box_weights[S]:

62 float_row = []

63 for w in reversed(row):

64 float_row.append(w.value)

65 data.append(float_row)

66

67 def _rotateMatrix(M):

68 return zip(*M[::-1])

69

70

71 data = _rotateMatrix(_rotateMatrix(_rotateMatrix(data)))

72 ax.pcolor(data, cmap=pyplot.cm.Blues, alpha=1)

73 ax.axis([0, S + 1, 0, S + 1])

74 ax.set_xticks(range(S + 2))

75 ax.set_xticklabels([])

76 ax.set_yticks(range(S + 2))

77 ax.set_yticklabels([])

78

79 fig.suptitle("Fuzzy Box Model")

80 ax.set_xlabel("RNDVI")

81 ax.set_ylabel("EM38")

82

83 ax.text(0.00, -0.04, '0.125',

84 verticalalignment='bottom', horizontalalignment='left',

85 transform=ax.transAxes, color='black', fontsize=10)

86 ax.text(1.00, -0.04, '0.711',

87 verticalalignment='bottom', horizontalalignment='left',

88 transform=ax.transAxes, color='black', fontsize=10)

89

90 ax.text(0.00, 0.00, '36.4',

91 verticalalignment='bottom', horizontalalignment='right',

92 transform=ax.transAxes, color='black', fontsize=10)

93 ax.text(0.00, 1.00, '103.0',

94 verticalalignment='bottom', horizontalalignment='right',

95 transform=ax.transAxes, color='black', fontsize=10)

96

97 ax.grid(which='both', axis='both')

98

99 return fig

73



Listing 6: Fuzzy Boxes: instance.py

1 class FuzzyBoxInstance(object):

2 def __init__(self, values=[], classification=False):

3 """

4 Instance object for the Fuzzy Boxes model. Similar to a dataframe row,

5 stores a value for each feature, as well as a classification value.

6

7 Args:

8 values: iterable containing a single for each feature

9 classification: value indicating the classification of this instance.

10 """

11 self.values = values

12 self.classification = classification

13

14 def __repr__(self):

15 return "%s: %s" % (str(self.values), str(self.classification))

16

17 def __eq__(self, other):

18 return self.values == other.values

19

20 def __neq__(self, other):

21 return not self.__eq__(other)

22

23 def __len__(self):

24 return len(self.values)

25

26 def get_position(self, S):

27 """Return the position tuple for S based on the position vectors for each value"""

28 if len(self.values) > 0 and all(isinstance(v, FuzzyBoxInstanceValue) for v in

self.values):↪→

29 return tuple([self.values[fi].positions[S] for fi in range(len(self.values))])

30

31

32 class FuzzyBoxInstanceValue(float):

33 def __new__(cls, value=0):

34 i = float.__new__(cls, value)

35 i.positions = []

36 return i
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Listing 7: Fuzzy Boxes: model.py

1 import copy

2 from .instance import FuzzyBoxInstance, FuzzyBoxInstanceValue

3 from .feature import FuzzyBoxFeature

4 from .exceptions import FuzzyBoxException, FuzzyBoxFeatureError

5 from .functions import percentile, initialise_array

6

7

8 class Ratio(object):

9 def __init__(self):

10 """Ratio of positive instance to negative instances.

11 This holds the fuzzy weighting for each multidimensional 'box'

12

13 Attributes:

14 total: (int) number of total instances added

15 positive: (int) number of positive instance added

16 value: (float) floating point representation of the ratio

17 """

18 self.total = 0

19 self.positive = 0

20 self._value_changed = False

21 self._value = -1

22

23 @property

24 def value(self):

25 """Get the floating point representation of the"""

26 if self._value_changed:

27 self._value = self.positive / float(self.total)

28 return -1 if self.total == 0 else self._value

29

30 def add(self, positive):

31 self.total += 1

32 self.positive += 1 if positive else 0

33 self._value_changed = True

34

35 def __repr__(self):

36 value = self.value

37 if value >= 0:

38 return "%3d/%3d (%2.2f)" % (self.positive, self.total, value)

39 else:

40 return "%3d/%3d --- " % (self.positive, self.total)

41

42 def __str__(self):

43 value = self.value

44 if value >= 0:

45 return "%0.2f" % self.value

46 return "None"

47

48 def __eq__(self, other):

49 if isinstance(other, self.__class__):

50 return self.total == other.total and self.positive == other.positive

51 return False

52

53 def __neq__(self, other):
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54 return not self.__eq__(other)

55

56

57 class FuzzyBoxModel(object):

58 def __init__(self, Smax, method, prior_ratio=None):

59 """Fuzzy Boxes statistical learning model.

60

61 Args:

62 Smax (int) Maximum number of split points to consider

63 method (str) Boxing method to use for split point calculation.

64 Can be 'even' or 'percentile'

65 prior (float) Prior ratio used for classifications

66

67 Attributes:

68 box_weights: ()

69 """

70 self.Smax = Smax

71 self.method = method

72 self.prior_ratio = prior_ratio

73 self.box_weights = []

74

75 self.training_features = []

76 self.training_instances = []

77 self.training_classes = []

78

79 self.number_of_features = 0

80

81 isTrained = property(lambda s: bool(len(s.training_instances) > 0))

82

83 def __repr__(self):

84 return "<FuzzyBoxModel:%s Smax=%d, method=%s, prior=%f>" % (id(self), self.Smax,

self.method, self.prior_ratio)↪→

85

86 def train(self, training_features, training_classes, stopwatch):

87 """ Train the model

88

89 Args:

90 features list[FuzzyBoxFeature] Features to train the model on

91 classes list[bool] Class for each instance of feature values

92

93 """

94 # check data sanity

95 for f in training_features:

96

97 if not isinstance(f, FuzzyBoxFeature):

98 raise FuzzyBoxException("Expected only feature objects of type FuzzyBoxFeature")

99

100 if f.values is None:

101 raise FuzzyBoxFeatureError(f, "No training values available")

102

103 if len(f.values) != len(training_classes):

104 raise FuzzyBoxFeatureError(f, "Instance count mismatch with training_classes

data")↪→

105

106 # retrieve a list of FBInstance objects from the values of the training data

107 def _getFBInstances():

108 for i, _ in enumerate(self.training_classes):
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109 inst_values = [FuzzyBoxInstanceValue(f.values[i]) for f in self.training_features]

110 yield FuzzyBoxInstance(inst_values)

111

112 # store training data

113 self.training_features = copy.deepcopy(training_features)

114 self.training_classes = [bool(c) for c in training_classes]

115 self.training_instances = [i for i in _getFBInstances()]

116 self.box_weights = []

117 self.number_of_features = len(training_features)

118

119 self.total_boxes = 0

120 for N in range(1, self.Smax + 2):

121 s_boxes = pow(N - 1, len(self.training_features))

122 self.total_boxes += s_boxes

123 self.box_weights.append(initialise_array([N] * len(self.training_features), lambda:

Ratio()))↪→

124

125 if stopwatch is not None:

126 stopwatch.timer_tick('train-internal')

127

128 # guess prior ratio to be equal to training if not given as a parameter

129 if self.prior_ratio is None:

130 self.prior_ratio = sum(self.training_classes) / float(len(self.training_classes))

131

132 # Training Start

133 for feature_index, feature in enumerate(self.training_features):

134

135 # precalculate feature min/max/range for this feature

136 ft_min = min(feature.values)

137 ft_max = max(feature.values)

138 ft_range = ft_max - ft_min

139

140 # S is number of split points

141 for S in range(self.Smax + 1):

142

143 # calculate split points

144 splits = []

145 if self.method == 'even':

146 for i in range(S):

147 sp = ft_min + (i + 1) * ft_range / float(S + 1)

148 splits.append(sp)

149 elif self.method == 'percentile':

150 for i in range(S):

151 perc = (i + 1) / float(S + 1) * 100

152 sp = percentile(feature.values, perc)

153 splits.append(sp)

154 else:

155 raise Exception("Unknown boxing method: %s" % self.method)

156

157 feature.split_points.append(splits)

158

159 # find box position for each instance for this feature / S

160 for instance in self.training_instances:

161 box = 0

162 for boundary in feature.split_points[S]:

163 if (instance.values[feature_index] <= boundary) or (boundary is None):

164 break
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165 box += 1

166 instance.values[feature_index].positions.append(box)

167

168 # calculate box weights

169 for S in range(self.Smax + 1):

170 for i, instance in enumerate(self.training_instances):

171 positions = instance.get_position(S)

172 box = self.box_weights[S]

173 for p in positions:

174 box = box[p]

175 box.add(self.training_classes[i])

176

177 if stopwatch is not None:

178 stopwatch.timer_tock('train-internal')

179

180 def predict(self, values, stopwatch, max_depth=None):

181 """ Predict the classification of the values from the trained model.

182 The order of the values is assumed to match the order of the training vectors

183

184 values (list[float]) values to predict

185 """

186 if not self.isTrained:

187 raise FuzzyBoxException("Model has not been trained")

188

189 if len(values) != len(self.training_features):

190 raise FuzzyBoxException("Mismatch in feature count")

191

192 if max_depth is None:

193 max_depth = self.Smax

194

195 # convert to fuzzyboxes objects

196 values = [FuzzyBoxInstanceValue(v) for v in values]

197 instance = FuzzyBoxInstance(values, classification=None)

198

199 value_sum = 0.0

200 value_count = 0

201

202 # Range of split points 1-S

203 # s_range = [s for s in range(self.Smax + 1)]

204

205 # Range of feature indices 1-F

206 # fi_range = [fi for fi in range(self.number_of_features)]

207

208 # Generate empty matrix of box positions size = SxF

209 instance_positions = [[None] * self.number_of_features] * (self.Smax + 1)

210

211 # Pull split points out to cut down indirection

212 splits = [f.split_points for f in self.training_features]

213

214 S = 0

215 S_max = max_depth + 1

216 F_max = self.number_of_features

217 box = None

218

219 stopwatch.timer_tick('predict-internal')

220

221 while S < S_max:
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222 F = 0

223 while F < F_max:

224

225 box = 0

226 for boundary in splits[F][S]:

227 if (instance.values[F] <= boundary) or (boundary is None):

228 break

229 box += 1

230 instance_positions[S][F] = box

231 F += 1

232

233 weight = self.box_weights[S]

234 for p in instance_positions[S]:

235 weight = weight[p]

236

237 if weight.value >= 0:

238 value_sum += weight.value

239 value_count += 1

240

241 S += 1

242 predict_class = None if value_count <= 0 else (value_sum / value_count) > self.prior_ratio

243 stopwatch.timer_tock('predict-internal')

244 return predict_class

245

246 def save(self):

247 pass

248

249 def load(self):

250 pass

251

252 def details(self):

253 details = {

254 'max_boxes': self.Smax + 1,

255 'total_boxes': self.total_boxes,

256 'boxing_method': self.method,

257 'trained': self.isTrained,

258 'features': [],

259 'box_weights': self.box_weights,

260 'training': {},

261 }

262 for feature in self.training_features:

263 f = {

264 'name': feature.name,

265 'range': (min(feature.values), max(feature.values)),

266 'split_points': {},

267 }

268

269 for S in range(self.Smax + 1):

270 f['split_points'][S] = feature.split_points[S]

271 details['features'].append(f)

272

273 for instance in self.training_instances:

274 _positions = [str(instance.get_position(S)) for S in range(self.Smax + 1)]

275 details['training'][str(instance)] = _positions

276 return details
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Listing 8: Fuzzy Boxes: results.py

1 # vim:fileencoding=utf-8

2 import math

3 import time

4

5

6 class Results(object):

7 def __init__(self):

8 self.tp = 0.0

9 self.fp = 0.0

10 self.tn = 0.0

11 self.fn = 0.0

12 self.timing = {

13 'training': 0.0,

14 'testing': 0.0,

15 'intervals': 0,

16 }

17 self.time_start = 0

18 self.time_interval = 0

19 self.intervals = 0

20

21 def reset_timer(self):

22 self.time_start = time.clock()

23 self.time_interval = time.clock()

24 self.intervals = 0

25

26 def record_time(self, name):

27 self.timing[name] = time.clock() - self.time_start

28

29 def start_interval(self):

30 self.interval_time = time.clock()

31

32 def add_interval(self, name):

33 self.timing[name] += time.clock() - self.time_interval

34 self.time_interval = time.clock()

35 self.intervals += 1

36

37 def average_interval(self, name):

38 self.timing[name] = self.timing[name] / self.intervals

39

40 def add(self, predicted, actual):

41 if predicted is True and actual is True:

42 self.tp += 1

43 if predicted is False and actual is False:

44 self.tn += 1

45 if predicted is True and actual is False:

46 self.fp += 1

47 if predicted is False and actual is True:

48 self.fn += 1

49

50 def total(self):

51 return self.tp + self.tn + self.fp + self.fn

52

53 def tpr(self):

54 return self.tp / (self.tp + self.fn)

55
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56 def fpr(self):

57 return self.fp / (self.fp + self.tn)

58

59 def tnr(self):

60 return self.tn / (self.tn + self.fp)

61

62 def fnr(self):

63 return self.fn / (self.fn + self.tp)

64

65 def accuracy(self):

66 return (self.tp + self.tn) / (self.total())

67

68 def precision(self):

69 return self.tp / (self.tp + self.fp)

70

71 def gmean1(self):

72 return math.sqrt(self.tpr() * self.precision())

73

74 def gmean2(self):

75 return math.sqrt(self.tpr() * self.tnr())

76

77 def __repr__(self):

78 return str(self.__dict__)

79

80 def __str__(self):

81 out = "Results {\n tp: %d\n tn: %d\n fp: %d\n fn: %d\n}\n" % (self.tp, self.tn,

self.fp, self.fn)↪→

82 out += "TPR: %f\n" % self.tpr()

83 out += "TNR: %f\n" % self.tnr()

84 out += "FPR: %f\n" % self.fpr()

85 out += "FNR: %f\n" % self.fnr()

86 out += "Accuracy: %f\n" % self.accuracy()

87 out += "Precision: %f\n" % self.precision()

88 out += "Gmean1: %f\n" % self.gmean1()

89 out += "Gmean2: %f\n" % self.gmean2()

90 out += "Model Training Time: %f ms\n" % (self.timing['training'] * 1000)

91 out += "Average Prediction Time: %f us\n" % (self.timing['testing'] * 1000 * 1000)

92 return out
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Listing 9: Interval Timer class

1 #!/usr/bin/env python

2 import time

3 import timeit

4 import unittest

5

6

7 class IntervalTimer(object):

8 """ A collection of named timers for performance measurements

9

10 This class supports repeated tick/tock calls on any given timer,

11 allowing for measurement of the mean interval time between

12 successive tick/tock calls.

13

14

15 Attributes:

16 timers Dictionary contining the timers indexed by name as key

17 """

18

19 def __init__(self, default_timers=None):

20 self.timers = {}

21 if default_timers is not None:

22 for tname in default_timers:

23 self.add_timer(tname)

24

25 def add_timer(self, name):

26 """ Create a new named timer """

27 self.timers[name] = {}

28 self.timer_reset(name)

29

30 def timer_tick(self, name):

31 """ Start recording a new interval using the named timer """

32 if not name in self.timers:

33 self.add_timer(name)

34 self.timers[name]['start'] = timeit.default_timer()

35

36 def timer_tock(self, name, reset=False):

37 """ Stop measuring the current interval of (and optionally reset) the named timer """

38 if reset:

39 self.timers[name]['total_time'] = timeit.default_timer() - self.timers[name]['start']

40 self.timers[name]['intervals'] = 1

41 else:

42 self.timers[name]['total_time'] += timeit.default_timer() - self.timers[name]['start']

43 self.timers[name]['intervals'] += 1

44

45 def timer_reset(self, name):

46 """ Reset a named timer to initial zero settings """

47 self.timers[name]['start'] = 0.0

48 self.timers[name]['intervals'] = 0

49 self.timers[name]['total_time'] = 0.0

50

51 def average_interval(self, name):

52 """ Mean interval between all tick/tock calls to a named timer """

53 return self.timers[name]['total_time'] / max(1, self.timers[name]['intervals'])
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54

55 def total_time(self, name):

56 """Total time taken by a named timer. Sum of all interval times"""

57 return self.timers[name]['total_time']

58

59 def __len__(self):

60 return len(self.timers.keys())

61

62

63

64 class TestTickTock(unittest.TestCase):

65 def setUp(self):

66 self.timer = IntervalTimer()

67

68 def testConstructor(self):

69 timer = IntervalTimer()

70 self.assertEqual(len(timer), 0)

71 timer = IntervalTimer(['clock1', 'clock2', 'clock3'])

72 self.assertEqual(len(timer), 3)

73

74 def testAutoAddTimer(self):

75 timer = IntervalTimer()

76 self.assertEqual(len(timer), 0)

77 timer.timer_tick('new_clock')

78 self.assertEqual(len(timer), 1)

79

80 def testBadTimerName(self):

81 timer = IntervalTimer()

82 self.assertRaises(KeyError, timer.timer_tock, 'bad_clock')

83 self.assertRaises(KeyError, timer.timer_reset, 'bad_clock')

84 self.assertRaises(KeyError, timer.average_interval, 'bad_clock')

85 self.assertRaises(KeyError, timer.total_time, 'bad_clock')

86

87 def testTickTock(self):

88 timer = IntervalTimer(['test_clock'])

89 timer.timer_tick('test_clock')

90 time.sleep(2.00)

91 timer.timer_tock('test_clock')

92 self.assertLess(abs(2.0 - timer.total_time('test_clock')), 0.01)

93

94 def testIntervalAverage(self):

95 timer = IntervalTimer(['test_clock'])

96 for _ in range(20):

97 timer.timer_tick('test_clock')

98 time.sleep(0.1)

99 timer.timer_tock('test_clock')

100 self.assertLess(abs(0.1 - timer.average_interval('test_clock')), 0.01)

101

102

103

104 if __name__ == '__main__':

105 unittest.main()

106

107

108 # vim:fileencoding=utf-8
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Listing 10: C-Python interface files

1 # python_interface.py

2 import cffi

3

4 api = None

5

6 FFI = cffi.FFI()

7 FFI.cdef(open('python_interface.h', 'r').read())

8

9 # Hold references to objects to prevent garbage collection.

10 noGCDict = {}

11

12 @FFI.callback("int (float, float)")

13 def python_predict(f1, f2):

14 return 1

15

16

17 def fill_api(ptr):

18 global api

19 api = FFI.cast("struct API*", ptr)

20 api.python_predict = python_predict

1 /* python_interface.h */

2 struct API {

3 int (*python_predict)(float f1, float f2);

4 };

5

6 int python_setup();

7

8 void python_destroy();

9

10 int python_predict(float, float);

1 /* python_interface.c */

2 #include <Python.h>

3 #include <assert.h>

4 #include <stdio.h>

5 #include "python_interface.h"

6

7 struct API api;

8

9 int python_setup(){

10 int rc;

11

12 PyObject *pName, *pModule, *py_results;

13 PyObject *fill_api;

14 #define PYVERIFY(exp) if ((exp) == 0) { fprintf(stderr, "%s[%d]: ", __FILE__, __LINE__);

PyErr_Print(); exit(1); }↪→

15

16 Py_SetProgramName("PredictionLLFSM");

17 Py_Initialize();

18 PyRun_SimpleString("import sys; sys.path.insert(0, '.')");
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19 PYVERIFY(pName = PyString_FromString("python_interface"))

20 PYVERIFY(pModule = PyImport_Import(pName))

21 Py_DECREF(pName);

22 PYVERIFY(fill_api = PyObject_GetAttrString(pModule, "fill_api") )

23 PYVERIFY( py_results = PyObject_CallFunction(fill_api, "k", &api) )

24 assert(py_results == Py_None);

25 if (py_results == Py_None){

26 return 0;

27 } else {

28 return 1;

29 }

30 }

31

32 void python_destroy(){

33 Py_Finalize();

34 }

35

36 int python_predict(float f1, float f2)

37 {

38 printf("predicted: %d\n", api.python_predict(f1, f2));

39 return 0;

40 }
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Listing 11: Arduino imitation sensor code

1 #include <Wire.h>

2

3 #define I2C_ADDRESS 0x42

4 #define DATASET_SIZE 180

5

6 const float EM[] = {

7 91.3, 90.6, 83.5, 79, 83.5, 89.5, 80.2, 68.4, 95.2, 86.2, 84.9, 80.6, 88, 80.6, 81.9, 89.6,

84.2, 73.5, 40.2, 85.2, 90, 90, 67.7, 84.4, 84.9, 90, 92.2, 94.8, 83.7, 76.6, 64.5, 69.9,

87, 83.8, 67.9, 67.8, 82.3, 93.5, 89.8, 76.3, 79.7, 76.8, 93.9, 76.8, 87.3, 74, 91.8, 78,

89.6, 90.5, 88.8, 86.1, 96.8, 82.6, 96.8, 82.2, 85.7, 91.4, 86.1, 98.7, 86.8, 83.4, 82.7,

85.2, 77.7, 69.3, 73, 91.5, 80.1, 47.9, 62.8, 86.3, 82.8, 93.5, 89.8, 89.4, 86, 83.5, 85.5,

85.6, 86.1, 89.3, 88.8, 70.9, 89.4, 72.4, 85.8, 87.7, 89.8, 93.6, 84.6, 85, 76.7, 86.5,

89.9, 89.8, 83.6, 76.6, 93.6, 90.9, 90.2, 86.3, 79.7, 55.9, 74, 92.3, 78.6, 70.9, 85.4,

38.1, 85, 85.6, 65.1, 84.3, 86.8, 83.6, 68, 88.4, 80.9, 75.4, 85.6, 63.1, 67.8, 94.6, 37,

77.2, 89, 86.4, 79, 88.5, 85.6, 88.3, 74.9, 89, 89.5, 95.6, 83.9, 81.2, 95.6, 89.4, 77.2,

86.4, 91.4, 90, 88.9, 81.1, 81.2, 80.4, 75.1, 83.1, 86.6, 86.5, 75.9, 82.6, 86.9, 89.6,

88.6, 89.8, 77.6, 81.3, 81.4, 81.5, 80.6, 73.9, 81.3, 90.5, 90.6, 88, 77.7, 87.7, 89.6, 82,

87.5, 76.3, 73, 80.1, 87.7, 94.3, 84.4, 61.5

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

8 };

9

10 const float NDVI[] = {

11 0.348841172, 0.379982441, 0.14986376, 0.315929793, 0.198514909, 0.348761761, 0.332568972,

0.425734098, 0.332956153, 0.239849693, 0.206847361, 0.325738977, 0.370821256, 0.267190227,

0.418527316, 0.449445865, 0.30980261, 0.482496195, 0.256261682, 0.169379571, 0.442922374,

0.283910465, 0.264765358, 0.200633312, 0.492106522, 0.277810037, 0.250658601, 0.186214173,

0.401496764, 0.485765125, 0.317033708, 0.213696576, 0.430020284, 0.234536733, 0.355577623,

0.462733957, 0.364386144, 0.414926, 0.48255814, 0.221381158, 0.259221535, 0.266633712,

0.320709825, 0.363435148, 0.243536546, 0.27946372, 0.411242126, 0.297200589, 0.408376546,

0.256332518, 0.231502443, 0.400198413, 0.394094994, 0.342700548, 0.257295442, 0.331784387,

0.439843137, 0.381010864, 0.256131403, 0.426165601, 0.339614995, 0.32865872, 0.243830491,

0.378115502, 0.273918446, 0.343309859, 0.273073593, 0.403429676, 0.435183785, 0.34729064,

0.375381303, 0.170445956, 0.290877797, 0.268600842, 0.423726023, 0.396775349, 0.2451412,

0.396761943, 0.24335679, 0.239764991, 0.214401653, 0.271585557, 0.380089006, 0.387606519,

0.311972716, 0.195385188, 0.328304664, 0.190647037, 0.203477495, 0.408380521, 0.239566651,

0.320116938, 0.261230271, 0.367591159, 0.432944019, 0.389872691, 0.396120814, 0.233294708,

0.22377021, 0.246907752, 0.173266345, 0.402952904, 0.432299546, 0.212168855, 0.282768659,

0.238687669, 0.377703534, 0.378359615, 0.521881659, 0.133850337, 0.241281714, 0.378583129,

0.272509004, 0.440285205, 0.238383838, 0.304837801, 0.55639211, 0.526236349, 0.400954198,

0.565887446, 0.602822941, 0.310390361, 0.436360729, 0.362593516, 0.131584258, 0.295362405,

0.369048728, 0.319145033, 0.292020191, 0.305255748, 0.397186872, 0.27005597, 0.229500687,

0.345377439, 0.363451866, 0.215808171, 0.216472848, 0.265038961, 0.281539558, 0.35052161,

0.356010901, 0.290839016, 0.389499389, 0.305620719, 0.194415621, 0.348660105, 0.431729907,

0.202021336, 0.368096941, 0.275391612, 0.239079693, 0.394459103, 0.262923622, 0.2854494,

0.364300272, 0.284158764, 0.402255639, 0.188804976, 0.252648241, 0.236873747, 0.260907889,

0.276612053, 0.166584141, 0.206108501, 0.291743875, 0.360708535, 0.2710013, 0.310858995,

0.307394466, 0.358828316, 0.193246241, 0.326904153, 0.195794354, 0.276736889, 0.229441524,

0.345811412, 0.355354391, 0.311704385, 0.280827869, 0.258089368

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

12 };

13

14 // Keep track of which value we are up to, wrap around once we hit DATASET_SIZE

15 int value = 0;

16

17 // Variable to store the current value between Tx/Rx interrupts
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18 float sensorValue = 0;

19

20 void loop() { /* nothing to do in main loop */ }

21

22 void setup() {

23 Wire.begin(I2C_ADDRESS);

24 Wire.onReceive(rxEvent);

25 Wire.onRequest(reqEvent);

26 }

27

28 /* UART Rx interrupt handler */

29 void rxEvent(int count){

30 while (Wire.available()){

31 int cmd = (int)Wire.read();

32 switch (cmd){

33 case 0:

34 value++;

35 if (value >= DATASET_SIZE){

36 value %= DATASET_SIZE;

37 }

38 break;

39 case 1:

40 sensorValue = EM[value];

41 break;

42 case 2:

43 sensorValue = NDVI[value];

44 break;

45 }

46 }

47 }

48

49 /* UART Tx interrupt handler */

50 void reqEvent(){

51 Wire.write((uint8_t*) &sensorValue, sizeof(sensorValue));

52 }
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Listing 12: Main entry point script to run Fuzzy Boxes model tests

1 #!/usr/bin/env python2

2 from __future__ import print_function

3 import sys

4 import random

5 import argparse

6 import time

7 import errno

8 import cProfile

9 import pstats

10 from datetime import datetime

11

12 from fuzzyboxes import FuzzyBoxModel, FuzzyBoxFeature, FuzzyBoxInstance

13 from fuzzyboxes import graphics

14

15 from util.functions import read_csv

16 from util import Results, IntervalTimer

17

18 try:

19 from util.i2c import I2C

20 I2C_AVAILABLE = True

21 except ImportError:

22 print("WARNING: No support for I2C on this system", file=sys.stderr)

23 I2C_AVAILABLE = False

24

25

26 status_codes = {

27 0: "OK",

28 1: "File not found",

29 }

30

31

32 def eprint(*args, **kwargs):

33 print(*args, file=sys.stderr, **kwargs)

34

35

36 def _exit(code):

37 print("exited with code: %d, %s" % (code, status_codes[code]))

38 exit(code)

39

40

41 def read_instances(filename, value_columns):

42 for row in read_csv(filename, value_columns=value_columns):

43 row_values = list(map(float, row['values']))

44 row_class = bool(int(row['labels'][0]))

45 yield FuzzyBoxInstance(values=row_values, classification=row_class)

46

47

48 DEFAULTS = {

49 'features': 2,

50 'instances': 25,

51 'smax': 20,

52 'method': 'even',

53 'prior': 0.5,
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54 'i2c_address': 0x42,

55 }

56

57

58 def parse_args():

59 parser = argparse.ArgumentParser(description='Run data through the the FuzzyBox algorithm')

60

61 actions = parser.add_mutually_exclusive_group(required=True)

62 actions.add_argument(

63 '--train', dest='train_file', metavar='FILE', help='Train the model using CSV values from

FILE')↪→

64 parser.add_argument(

65 '--test', dest='test_file', metavar='FILE', help='Test the accuracy and timing of the

model using CSV values from FILE')↪→

66 parser.add_argument(

67 '--read-i2c', dest='read_i2c', action='store_true', help='Read incoming values from IIC

interface in a loop until Ctrl-C is pressed')↪→

68 actions.add_argument(

69 '--simulate', action='store_true', help='Simulate training data using random values')

70

71 options = parser.add_argument_group('options')

72 options.add_argument(

73 '--smax', dest='smax', type=int, default=DEFAULTS['smax'], help='Maximum number of split

points')↪→

74 options.add_argument(

75 '--method', dest='method', default=DEFAULTS['method'], choices=['even', 'percentile'],

help='Boxing method to use while training')↪→

76 options.add_argument(

77 '--prior', dest='prior', type=float, help='Prior ratio to use for incoming data samples.

defaults to the class distribution ratio of the training set')↪→

78 options.add_argument(

79 '--scatter', dest='scatter', action='store_true', help='Produce scatter plot for boxes

1-8, using features 1,2')↪→

80 options.add_argument(

81 '--heatmap', dest='heatmap', action='store_true', help='Produce heatmap of the model @

S_max split points')↪→

82 options.add_argument(

83 '--details', dest='details', action='store_true', help='Print details of the model after

training')↪→

84 options.add_argument(

85 '--csv-columns', dest='csv_columns', nargs='+', type=int, default=[], metavar='COL',

help='Filter CSV columns by column number (index 0 is actually second column. first

column is assumed to be label)')

↪→

↪→

86 options.add_argument(

87 '--i2c-address', dest='i2c_address', type=int, default=DEFAULTS['i2c_address'],

metavar='X', help='I2C address of the sensor playback device')↪→

88 options.add_argument(

89 '--profile', dest='profile', action='store_true', help='Produce a profile file for the

current execution settings')↪→

90

91 sim_options = parser.add_argument_group('simulation options')

92 sim_options.add_argument(

93 '--features', dest='features', type=int, default=DEFAULTS['features'], metavar='F',

help='Number of training features to simulate')↪→

94 sim_options.add_argument(

95 '--instances', dest='instances', type=int, default=DEFAULTS['instances'], metavar='I',

help='Number of training features to simulate')↪→
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96

97 return parser.parse_args()

98

99

100 def main(args):

101

102 training_features = []

103 training_classes = []

104

105 stopwatch = IntervalTimer()

106 results = Results()

107

108 fbm = FuzzyBoxModel(args.smax, args.method, prior_ratio=args.prior)

109

110 # train the model with simulated (random) data

111 if args.simulate:

112 print("> Training model using simulated data")

113 for i in range(args.features):

114 values = [random.randint(0, 300) for _ in range(args.instances)]

115 training_features.append(FuzzyBoxFeature('feature_%d' % i, values))

116 training_classes = [random.choice([True, False]) for _ in range(args.instances)]

117

118 # train the model from the given CSV file

119 elif args.train_file is not None:

120 try:

121 feature_instances = [

122 FuzzyBoxInstance(values=list(map(float, row['values'])),

123 classification=bool(int(row['labels'][0])))

124 for row in read_csv(args.train_file)

125 ]

126 feature_instances = [i for i in read_instances(args.train_file, args.csv_columns)]

127 feature_values = []

128

129 # create empty lists for each feature's values

130 for fi in range(len(feature_instances[0])):

131 feature_values.append([])

132

133 # populate values/classifications lists

134 for instance in feature_instances:

135 for fi in range(len(instance)):

136 feature_values[fi].append(instance.values[fi])

137 training_classes.append(instance.classification)

138

139 # convert values to FuzzyBoxFeature

140 for fi in range(len(feature_values)):

141 training_features.append(FuzzyBoxFeature('feature_%d' % fi,

values=feature_values[fi]))↪→

142 print("> Training model using data from %s" % args.train_file)

143 except IOError as e:

144 if e.errno == errno.ENOENT:

145 print("ERROR: Could not find training file: %s" % args.train_file)

146 _exit(1)

147 else:

148 raise

149

150 # do the training and record the time taken

151 stopwatch.timer_tick('train')
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152 fbm.train(training_features, training_classes, stopwatch)

153 stopwatch.timer_tock('train')

154

155 if args.scatter:

156 print("> Generating scatter plot...")

157 filename = 'fuzzybox-scatter-%s-%03d.png' % (args.method, args.smax)

158 graphics.scatter(fbm).savefig(filename)

159 print("Scatter plot saved to %s" % filename)

160

161 if args.heatmap:

162 print("> Generating heatmap(s)...")

163 for s in range(fbm.Smax):

164 filename = 'fuzzybox-heatmap-%s-S%03d.png' % (args.method, s)

165 graphics.heatmap(fbm, S=s).savefig(filename)

166 print('Heatmap saved to %s' % filename)

167

168 if args.details:

169 details = fbm.details()

170 print("Max Boxes: %d" % details['max_boxes'])

171 print("Total Boxes: %d" % details['total_boxes'])

172 print("Boxing Method: %s" % details['boxing_method'])

173 print("Trained: %s" % details['trained'])

174 print("Features:")

175 for feature in details['features']:

176 print("\t%s" % feature['name'])

177 print("\t\tRange: %d - %d" % feature['range'])

178 print("\t\tSplit Points:" % feature['split_points'])

179 for S in range(details['max_boxes']):

180 splits = ', '.join(["%2.2f" % sp for sp in feature['split_points'][S]])

181 print("\t\t\tS = %d\t%s" % (S, splits))

182 print("Box Weights:")

183 for S in range(1, len(details['box_weights'])):

184 print("\tS = %d" % S)

185 for f, _ in enumerate(details['box_weights'][S]):

186 print("\t\t%s" % details['box_weights'][S][f])

187 print("Training Instances:")

188 for instance in details['training']:

189 positions = details['training'][instance]

190 print("\t%s" % (instance,))

191 print("\t\t%s" % ", ".join(positions))

192 print("=" * 79)

193

194 if args.read_i2c:

195 if I2C_AVAILABLE:

196 address = args.i2c_address if args.i2c_address else DEFAULTS['i2c_address']

197 i2c = I2C(address)

198 print("> Reading input from I2C sensor on address 0x%x" % (address,))

199 read_count = 0

200 try:

201 for f1, f2 in i2c.read_values():

202 read_count += 1

203 print("EM=%r, NDVI=%r" % (f1, f2))

204 stopwatch.timer_tick('i2c_predict')

205 predicted = fbm.predict([f2, f1], stopwatch)

206 stopwatch.timer_tock('i2c_predict', reset=True)

207

208 print("Predicted classification: %r (took %.2f ms, %.2f ms avg.)\n" % (
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209 predicted,

210 stopwatch.total_time('i2c_predict'),

211 stopwatch.average_interval('predict-internal')))

212

213 except KeyboardInterrupt:

214 print("")

215 print("I2C read finished. %d values processed" % read_count)

216

217 # test the model

218 if args.test_file is not None:

219 print("> Testing model using data from %s" % args.test_file)

220

221 for instance in read_instances(args.test_file, args.csv_columns):

222

223 # time the performance of the predict function

224 stopwatch.timer_tick('predict')

225 predicted = fbm.predict(instance.values, stopwatch)

226 stopwatch.timer_tock('predict')

227

228 # add the classification result for accuracy measurements

229 results.add(predicted, instance.classification)

230

231 # show the results

232 print("=" * 79)

233 print(results)

234 print("Model Training Time (ms): %f" % (stopwatch.total_time('train') * 1000,))

235 print("Internal Model Training Time (ms): %f" % (stopwatch.total_time('train-internal') *

1000,))↪→

236 print("Average Predict Time (us): %f" % (stopwatch.average_interval('predict') * 1000 *

1000,))↪→

237 print("Average Internal Predict Time (us): %f" %

(stopwatch.average_interval('predict-internal') * 1000 * 1000,))↪→

238

239

240 if __name__ == '__main__':

241

242 args = parse_args()

243

244 if args.profile:

245 statsfile = "profile-%s.stats" % datetime.now().strftime("%Y%m%d.%H%M")

246 cProfile.run("main(args)", statsfile)

247 stats = pstats.Stats(statsfile)

248 stats.strip_dirs().sort_stats('time').print_stats(10)

249 else:

250 main(args)
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Listing 13: Fuzzy Boxes varying-depth timing tests

1 #!/usr/bin/env python

2 """

3 splits_vs_time

4

5 This script compares the accuracy and prediction time between the 'even' and

6 'percentile' Fuzz Box models.

7

8 Prediction time is tested on a range of depths (1-30) in order to quantify

9 the performance penalty for increasing the depth.

10 """

11 from __future__ import print_function

12 import os

13 import sys

14

15 from fuzzyboxes.model import FuzzyBoxModel, FuzzyBoxFeature

16 from fuzzyboxes.results import Results

17 from fuzzyboxes.functions import read_csv

18 from util import IntervalTimer

19

20

21 ERROR_INSTANCE_LENGTH = 'Mismatch in length of training value and classes'

22 ERROR_CSV_LENGTH = 'Not enough values to write CSV data! (expected %d, got %d)'

23 ERROR_FILE_NOT_FOUND = '%s file does not exist (%s)'

24

25

26 def csv_write_line(filepath, csv_values=None, append=True):

27 """ Write a single line (row) to the CSV output file """

28 if not csv_values:

29 csv_values = []

30 fflag = 'a' if append else 'w'

31 with open(filepath, fflag) as csvfile:

32 csvfile.write(','.join(map(str, csv_values))+'\n')

33

34

35 def print_prediction_status(splits, run):

36 """ Print a line to display the current split/run number """

37 print('\b' * 80, end='')

38 print('Testing predict time (depth=%d), run #%d' % (splits, run), end='')

39 sys.stdout.flush()

40

41

42 if __name__ == '__main__':

43

44 # PREPARE FILES

45 ##########################################################################

46

47 SCRIPT_PATH = os.path.dirname(os.path.realpath(sys.argv[0]))

48 TRAIN_FILE = os.path.join(SCRIPT_PATH, 'test', 'train_data.csv')

49 TEST_FILE = os.path.join(SCRIPT_PATH, 'test', 'test_data.csv')

50

51 assert os.path.exists(TRAIN_FILE), ERROR_FILE_NOT_FOUND % ('Training', TRAIN_FILE)

52 assert os.path.exists(TEST_FILE), ERROR_FILE_NOT_FOUND % ('Testing', TEST_FILE)

53
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54 # CREATE DATA

55 ##########################################################################

56

57 # All training instances as FBInstance objects

58 TRAINING_INSTANCES = list(read_csv(TRAIN_FILE))

59 TRAINING_INSTANCES = list(read_csv(TRAIN_FILE))

60

61 # Just classes in a seperate list

62 TRAINING_CLASSES = [i.classification for i in TRAINING_INSTANCES]

63

64 # Create FBFeatures, which contain a list of all instance values

65 TRAINING_FEATURES = [

66 FuzzyBoxFeature('feature_%d' % i, values=values)

67 for i, values in enumerate(zip(*[ti.values for ti in TRAINING_INSTANCES]))

68 ]

69

70 # All testing instances as FBInstance objects

71 TESTING_INSTANCES = list(read_csv(TEST_FILE))

72

73 assert len(TRAINING_INSTANCES) == len(TRAINING_CLASSES), ERROR_INSTANCE_LENGTH

74

75 # TRAIN MODELS

76 ###########################################################################

77 print('========== Training ==========')

78 print(' Instances: %d' % len(TRAINING_INSTANCES))

79 print(' Features: %d' % len(TRAINING_FEATURES))

80

81 S_MAX = 30

82 SPLIT_METHODS = ['even', 'percentile']

83

84 # Create a depth=30 model for both even and percentile splits (prior=0.5)

85 MODELS = {

86 m: FuzzyBoxModel(30, m, prior_ratio=0.5) for m in SPLIT_METHODS

87 }

88

89 # Do the training, adding a timer into the model

90 for method, fbm in MODELS.items():

91 fbm.timer = IntervalTimer(['predict-internal'])

92 fbm.train(TRAINING_FEATURES, TRAINING_CLASSES, fbm.timer)

93 print('> Trained model using %s splits' % method)

94

95 # TEST MODELS

96 ##########################################################################

97

98 CSV_HEADER_FIELDS = [

99 'Model', 'Depth',

100 'TP', 'FP', 'TN', 'FN',

101 'TPR', 'FPR', 'TNR', 'FNR',

102 'Accuracy', 'Precision',

103 'Gmean1', 'Gmean2',

104 'Training Time (ms)', 'Avg. Predict Time (us)',

105 ]

106

107 CSV_FILENAME = 'splits-vs-time.results.csv'

108

109 csv_write_line(CSV_FILENAME, CSV_HEADER_FIELDS, append=False)

110
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111 # Test each model

112 for method, fbm in MODELS.items():

113

114 # Run predictions using smax = [1-30]

115 for depth in range(1, 31):

116

117 # reset results and prediction timer

118 results = Results()

119 fbm.timer.timer_reset('predict-internal')

120

121 # Get accuracy results and an initial prediction time

122 for ti in TESTING_INSTANCES:

123 predicted = fbm.predict(ti.values, fbm.timer, max_depth=depth)

124 results.add(predicted, ti.classification)

125

126 predict_time_min = fbm.timer.average_interval('predict-internal')

127

128 # prediction timing tests, run 100 times and take the minimum

129 for r in range(10):

130 print_prediction_status(depth, r)

131

132 fbm.timer.timer_reset('predict-internal')

133 for ti in TESTING_INSTANCES:

134 _ = fbm.predict(ti.values, fbm.timer, max_depth=depth)

135

136 predict_time_min = min(

137 predict_time_min,

138 fbm.timer.average_interval('predict-internal'))

139

140 # Prepare the CSV row

141 line = [

142 method, depth,

143 results.tp, results.fp, results.tn, results.fn,

144 results.tpr(), results.fpr(), results.tnr(), results.fnr(),

145 results.accuracy(), results.precision(),

146 results.gmean1(), results.gmean2(),

147 fbm.timer.total_time('train-internal') * 1000,

148 fbm.timer.average_interval('predict-internal') * 1000 * 1000

149 ]

150

151 assert len(line) == len(CSV_HEADER_FIELDS), ERROR_CSV_LENGTH % (

152 len(CSV_HEADER_FIELDS), len(line))

153

154 csv_write_line(CSV_FILENAME, line)

155

156 print('%sResults saved to %s' % ('\b'*80, CSV_FILENAME))

157

158 # vim:fileencoding=utf-8
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Listing 14: Fuzzy Boxes varying-depth accuracy tests

1 #!/usr/bin/env python3

2 # vim:fileencoding=utf-8

3 import os

4 import sys

5 import matplotlib.pyplot as pyplot

6

7 from fuzzyboxes.model import FuzzyBoxModel, FuzzyBoxFeature

8 from fuzzyboxes.functions import read_csv

9 from fuzzyboxes.results import Results

10 from util import IntervalTimer

11

12

13 if __name__ == '__main__':

14 script_path = os.path.dirname(os.path.realpath(sys.argv[0]))

15 train_file = os.path.join(script_path, "test", "oversample_train.csv")

16 test_file = os.path.join(script_path, "test", "oversample_test.csv")

17

18 s_max = 30

19

20 timer = IntervalTimer()

21

22 if not os.path.exists(train_file):

23 raise Exception("training file does not exist: %s" % train_file)

24

25 if not os.path.exists(test_file):

26 raise Exception("testing file does not exist: %s" % test_file)

27

28 feature_instances = [i for i in read_csv(train_file)]

29 feature_values = []

30 training_features = []

31 training_classes = []

32

33 # create training data

34 ###############################################################################

35

36 # create empty lists for each feature's values

37 for fi in range(len(feature_instances[0])):

38 feature_values.append([])

39

40 # populate values/class lists

41 for instance in feature_instances:

42 for fi in range(len(instance)):

43 feature_values[fi].append(instance.values[fi])

44 training_classes.append(instance.classification)

45

46 # convert to FuzzyBoxFeature

47 for fi in range(len(feature_values)):

48 training_features.append(FuzzyBoxFeature("feature_%d" % fi, values=feature_values[fi]))

49

50 # train models

51 ###############################################################################

52 methods = ["even", "percentile"]

53 accuracy = {}
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54 models = {method: [FuzzyBoxModel(s, method, prior_ratio=0.5) for s in range(1, s_max + 1)] for

method in methods}↪→

55 for method in models:

56 accuracy[method] = []

57 for fbm in models[method]:

58 fbm.train(training_features, training_classes, timer)

59 r = Results()

60 for instance in read_csv(test_file):

61 r.add(fbm.predict(instance.values, timer), instance.classification)

62 accuracy[method].append(r.accuracy())

63

64 for method in methods:

65 print("%s,%s" % (method, ",".join(map(str,accuracy[method]))))

66

67 # plot results

68 ###############################################################################

69 ax_id = 1

70 x_values = range(1, s_max + 1)

71 fig = pyplot.figure(1)

72 for method in methods:

73 ax = fig.add_subplot(210 + ax_id)

74 ax_id += 1

75 ax.axis([1, s_max, 0, 1])

76 ax.xaxis.set_ticks([x for x in x_values if x % 2 == 0])

77 ax.plot(x_values, accuracy[method])

78 ax.set_title(method)

79 ax.grid(True, which='both')

80 pyplot.show()
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