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ABSTRACT 

Forcefully emplaced plutons in the southern part of the New England

Batholith, northern New South Wales, have produced extensive contact

aureoles in Palaeozoic sediments and volcanics. This thesis describes

the contact effects observed in pelitic, psammitic and impure calcareous

sediments.

Four metamorphic zones are recognised within pelitic sediments

around the Walcha Road Adamellite (with distances from the contact in

brackets):

I) biotite zone ( .4 km - 1500 m);

II) cordierite zone (1500 m - 500 m);

III) cordierite + K-feldspar zone (500 m - 100 m);

IV) cordierite + K-feldspar ± garnet zone (100 m - contact).

The two outer zone boundaries are defined by discontinuous reactions, the

biotite isograd being represented by the general reaction

chlorite + K-feldspar + Fe-oxides -0- biotite + quartz + H20,

and the cordierite isograd by

chlorite + muscovite + quartz 4- cordierite + biotite + H20.

Petrography and phase relations (probe data) demonstrate that, for any

particular host-rock chemistry (specifically Mg/Mg+Fe ratio), these

reactions can be represented as isothermal sections on divariant T-X(Fe-Mg)

loops. The cordierite + K-feldspar isograd is defined by the continuous

reaction

biotite + muscovite + quartz -0 cordierite + K-feldspar + H20,

which shifts both biotite and cordierite Mg/Mg+Fe ratios toward more

Fe-rich values along the divariant T-X(Fe-Mg) loop. The Mg/Mg+Fe ratios

of phases participating in this reaction are fixed at the temperature at

which muscovite is exhausted. They remain fixed unless a further temperature

increase results in intersection of the divariant T-X(Fe-Mg) loop for the

continuous reaction
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biotite + cordierite + quartz -0- garnet + K-feldspar + H20.

If intersected, this reaction causes a reversal in the Mg/Mg+Fe ratios

of the ferromagnesian phases, shifting them to more Mg-rich values as

temperature increases. All reactions in the pelites appear to take place

on divariant reaction loops, and univariant reactions defined by the

intersection of two or more divariant loops are not in evidence, apparently

because reactants are consumed on the divariant curves before such inter-

sections are achieved. At estimated pressures of 1-li kb, temperatures

across the aureole are believed to range from 350-400°C at the outer

limit to 720-745°C near the contact. Such contact temperatures are con-

sistent with the observed presence at the contact of the Walcha Road

Adamellite of migmatites believed to have formed by in situ partial melting
of the pelites.

Mineralogical and textural changes define three metamorphic zones

in greywackes around the Mt Duval Adamellite:

I) blastopsammitic biotite zone (2i km - 500 m);

II) transitional biotite zone (500 m - 150 m);

III) biotite + orthopyroxene zone (150 m - contact).

The biotite isograd is denoted by the discontinuous reaction

chlorite + K-feldspar + sphene + Fe oxide -0- biotite + quartz + H20,

resulting in the loss of chlorite. The outer zone shows very little

textural adjustment of the original sediment, and the onset of obvious

textural modification defines the beginning of the transitional biotite

zone. The orthopyroxene isograd is marked by the continuous reaction

biotite + quartz orthopyroxene + K-feldspar + H20,

which proceeds with an increase in the Mg/Mg+Fe ratio of both biotite

and orthopyroxene. The high-grade zone is totally reconstituted, leaving

little trace of original textures. Biotite compositions in the greywacke

reflect the interrelated effects of paragenesis, host-composition, and

structural and charge balance requirements, yielding a general decrease

in Al, and increases in Ti and Mg with increasing grade. P-T conditions

are not well delineated within the greywackes around the Mt Duval

Adamellite. However, pressures of approximately 1 kb are suggested, and



temperatures appear to vary from 350°-400°C at the outer limit of the

aureole to around 650°C at the contact.

The impure calcareous rocks comprise calcareous litharenites, impure

calcirudites, impure biomicrites and stylolitic limestones with bulk

rock compositions approximated by the K2O-CaO-Mg0-Al203-Si02-0O2-H20

system. Five metamorphic zones are delineated within these rocks around

the Inlet Monzonite and Moonbi Adamellite:

I) biotite zone (.2 km - 1100 m);

II) clinopyroxene zone (1100 m - 950 m);

III) garnet zone (950 m - 650 m);

IV) wollastonite zone (650 m - 350 m);

V) wollastonite + plagioclase zone (350 m - contact).

These zones are based on mineralogical changes in the calcareous lith-

arenites from the northern contact of the Inlet Monzonite (distances shown

in brackets are for this aureole). They are also applicable to the impure

calcirudites and biomicrites, except that no garnet zone occurs in the

latter. The stylolitic limestones have a distinctive mineralogy (e.g.

forsterite marble near the contact) that reflects a bulk-rock composition

lower in SiO
2' 

Al
2
0
3
 and K

2
0 than that of the other calcareous rock types

studied. Petrography and probe data reveal a prograde sequence of meta-

morphic reactions in the calcareous litharenites, which can be represented

by a series of experimentally determined univariant curves on isobaric

T-X	 diagrams for 1 and 2 kb corrected to allow for solid solution within
CO

the phases. Reactants and products of these reactions do not appear to

coexist over significant temperature intervals, implying firstly that the

reactions are discontinuous and secondly, that they do not buffer the

pore-fluid composition. Contact metamorphic conditions in the calcareous

litharenites of the northern aureole of the Inlet Monzonite are believed

to have been approximately: pressure below 2 kb, X co in the fluid phase
2

between 0.06 and 0.22, and temperatures ranging from around 350 °C at the

outer edge of the aureole (= 2 km from the contact) up to 700-750°C at

the contact.

Three types of small-scale reaction band are developed in calci-

rudites located 350m from the northern contact of the Inlet Monzonite;

namely between (1) marble and pelite blocks, (.2) garnet-rich matrix and



pelite blocks, and (3) garnet-rich matrix and marble blocks. They are

believed to have formed during contact metamorphism at temperatures between

610 and 650
o
C and pressures below 2 kb. The characteristic sequence of

layers developed between marble and pelite blocks is

marble
garnet
garnet + clinopyroxene
felsic (K-feldspar + sphene clinopyroxene ± plagioclase)
clinopyroxene + feldspar + sphene
biotite + feldspar + sphene
biotite + feldspar unit
pelite (unmodified material not found)

The original contact between marble and pelite is represented by the

boundary between the garnet + clinopyroxene and felsic layers. This

boundary is characterised texturally by a sharp change in grainsize, and

mineralogically by the lack of K 20- and Ti02-bearing phases on the marble

side. The layer sequence developed between the garnet-rich matrix and

pelite blocks is similar to that in the marble pelite reaction bands.

At contacts between matrix and marble blocks, either a monominerallic

wollastonite layer, or a wollastonite + garnet + clinopyroxene layer is

developed within the original marble. Chemical variations across the

reaction bands, calculated from modal data and microprobe analyses, show

sharp changes in composition at layer boundaries. Notably, CaO shows a

stepwise decrease across the reaction band away from the marble, whereas

Al203 and MgO (+Fe0) decrease away from the pelite, but increase in the

garnet and garnet + clinopyroxene layers respectively.

The reaction bands are believed to have developed by mass transfer

of components between chemically incompatible adjacent rock types. A

model is suggested whereby the components diffuse through a pore solution

in response to chemical potential gradients in the solution (concentration

gradients). These gradients are maintained by removal of material from

solution, as solid phases in equilibrium with the fluid are formed in the

reaction bands. Diffusion proceeds so as to reduce these gradients and,

with time, discontinuities are eliminated and the chemical potentials of

the diffusing components will vary monotonically and continuously across

the reaction band. Local equilibrium is considered to be achieved at

each point across the reaction band. The solid phases in local equilibrium

with the diffusing components of the pore fluid can be expressed on chemical
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potential diagrams. The layers develop across the reaction band as new

phases become stable in response to the continuously changing chemical

potentials of the diffusing components and the presence or absence of

non-diffusing components. The layers represent distinct changes in

mineral assemblage, and the layer boundaries mark sharp discontinuities

in bulk-rock composition. The number of phases in each layer is typically

less than the number of components. The relationship between the number

of phases and components can be expressed by the phase rule in terms of

J- and K- components (Thompson, 1970). Flux (amount of material moved)

appears to be directly related to differences in the concentrations of

components between the two initially chemically incompatible rock types.

The relative distances to which the components have diffused across the

original boundary appear to depend simply on the flux of each component

and the rate at which it is used by the solid phases forming in equilibrium

with the pore fluid.
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