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Abstract: This study integrates measured soil moisture sensor data, a remotely sensed crop
vegetation index, and weather data to train models, in order to predict future soil moisture.
The study was carried out on a cotton farm, with wireless soil moisture monitoring equipment
deployed across five plots. Lasso, Decision Tree, Random Forest and Support Vector Machine
modeling methods were trialled. Random Forest models gave consistently good results (mean 7-
day prediction error from 8.0 to 16.9 kPA except in one plot with malfunctioning sensors). Linear
regression with two of the most important predictor variables was not as accurate, but allowed
extraction of an interpretable model. The system was implemented in Google Cloud Platform
and a model was trained continuously through the season. An online irrigation dashboard
was created showing previous and forecast soil moisture conditions, along with weather and
normalized difference vegetation index (NDVI). This was used to guide operators in advance
of irrigation water needs. The methodology developed in this study could be used as part of a
closed-loop sensing and irrigation automation system.
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1. INTRODUCTION

Irrigated agriculture is important for the food and fibre
needs of the world, consuming around 20% of global arable
land, but generating 40% of produce, Sauer et al. (2010).
However, there is increasing pressure on the world water
resources, with agriculture accounting for 85% of consump-
tive water use, Foley et al. (2005). This has resulted in
reduced river flows, increasing salinity, fertilizer pollution
and declining water tables. With a growing population,
the world’s irrigated area is increasing. Considering water
scarcity there is a need to improve water productivity,
Harrison (2002).

This motivates the development of techniques and tech-
nologies to optimize crop water use. Deficit irrigation
techniques are used to improve water productivity (crop
production per unit of water consumption) and profit,
Fereres et al. (2003). These techniques trade off water
supply with crop yields to achieve the desired economic
or environmental outcomes. Fereres et al. (2003) showed
that while reducing water may reduce yield, it can result
in increased revenue in horticultural crops. Ballester et al.
(2019) reported a study of the effects of various irrigation
deficits on cotton quality and yield.

Scheduling irrigation is an important aspect of water man-
agement. Continuous soil moisture monitoring can help,
by giving growers an indication of when the soil moisture
is reaching plant-limiting levels, Brinkhoff et al. (2017).

However, such sensors only indicate the current conditions.
As daily evapotranspiration can change dramatically de-
pending on weather, it can be hard to precisely predict
when irrigation will be needed. There are delay and flow
limitations inherent in irrigation water supply systems,
both at the network (Mareels et al. (2005)) and field scales
(North et al. (2010)). There is thus a need to predict soil
moisture levels, based on current levels, crop growth stage
(which affects evapotranspiration) and forecast weather
conditions. This will enable irrigation water requirements
to be forecast, and ensure timely delivery.

Many previous works have reported on soil moisture mon-
itoring, focusing on current conditions. Thompson et al.
(2007) suggested the use of soil matric potential (other-
wise known as soil tension) is more reliable than water
content based sensing for scheduling irrigation. Navarro-
Helln et al. (2016) trained an irrigation decision system
based on current weather and soil moisture conditions,
and agronomist recommendations for watering in the com-
ing week, but didn’t consider forecast weather conditions.
Adeyemi et al. (2018) predicted soil moisture one day
ahead using a dynamic neural network model, trained
on soil moisture and meteorological measurements. Mc-
Carthy et al. (2014) described a model predictive control
strategy to optimize cotton irrigation to achieve a variety
of outcomes. The strategy utilized a crop growth model
(OZCOT) and measured and forecast weather data. This
is a powerful methodology, provided an accurate crop
model, the expertise to train it and implement the system
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are available. Delgoda et al. (2016) fit linear models to
simulated and measured soil moisture deficits as a function
of evapotranspiration, rainfall and irrigation amounts and
showed how it could be used to calculate daily irrigation
amounts given a required moisture deficit. Goldstein et al.
(2018) focused on evaluating a range of machine learning
algorithms to provide recommended irrigation amount in
the coming week based on different combinations of soil
moisture and weather data. Montgomery et al. (2015) de-
veloped an online tool using evapotranspiration data from
weather stations and forecasts together with NDVI from
satellite remote sensing to predict soil moisture deficits,
but it didn’t integrate actual local soil moisture measure-
ments.

We aim to use (i) measured soil moisture data, (ii) mea-
sured weather conditions, (iii) measured crop coefficient
(using remotely sensed NDVI) to predict future soil mois-
ture using weather forecasts. This can then be used to
decide on irrigation water requirements in the coming
seven days, and potentially opens the way to automating
water orders and automating on-farm irrigation controllers
in the future.

2. MATERIALS AND METHODS

The location of the study site was at Whitton in New
South Wales, Australia. An NDVI image of the site from
Sentinel-2 is shown in Fig. 1. The location of the main soil
moisture sensors and weather station are indicated.

2.1 Soil moisture and weather monitoring using the WiField
platform

A WiFi network was installed at the site. This consisted of
a cellular data modem connected by ethernet to a Ubiquiti
Nanostation M2 directional WiFi access point. This was
able to provide internet connectivity to the edges of all
plots, a maximum distance of about 800 metres from the
access point.

Ten WiField agricultural data loggers (Brinkhoff et al.
(2017)) were installed, with a variety of sensors connected.
Each of these used an Electric Imp WiFi microcontroller
to gather sensor data and send it to various online cloud
databases. One of the loggers was configured as a weather
station, with temperature, humidity, wind, rain and solar
radiation sensors connected. This gathered local meteoro-
logical data every 10 minutes.

Each plot had aWiField logger with twoWatermark 200SS
soil tension sensors at 25 cm below the surface and an
Enviropro multisensor capacitance probe. These gathered
data hourly. The temperature from the Enviropro sensor at
25 cm and the resistance from the Watermark sensors was
used to calculate the soil tension in kPA using a standard
formula (Shock et al. (1998)).

These WiField loggers uploaded data to Google Cloud
Platform. The data was ingested and processed in real
time as described in the following section.

2.2 Data processing

The data from the probes (hourly), weather station (10
minutes) and NDVI from Sentinel-2 processed in Google

Fig. 1. Sentinel-2 NDVI image of the site from 2019-01-13,
showing the location of the soil moisture loggers and
weather station (WS). Green indicates NDVI>0.9, red
indicates NDVI<0.7.

Fig. 2. Field and online data sources, processing and
visualization flow.

Earth Engine (≈5 days), was ingested and analyzed in
Google Cloud Platform as shown in Fig. 2. Daily aggregate
data was produced using a Python Cloud Function with
the following steps:

• The last daily value of the soil tension and soil mois-
ture readings was selected (in the hour before mid-
night), as this will be affected by the total daily evap-
otranspiration, which is calculated from midnight to
midnight.

• Irrigation dates were detected by checking the delta
between the previous and current day’s soil tension
and rainfall readings. If the current soil tension is near
0kPA, and the previous day’s is sufficiently low (<-
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20kPA), and there was limited rainfall, then there was
an irrigation applied in the current day.

• Per-plot NDVI was obtained from Sentinel-2 imagery
and processed in Google Earth Engine. Images cor-
rupted by cloud were removed. The NDVI values were
interpolated between image acquisition dates.

• Daily meteorological data from the weather station
was aggregated. Daily reference evapotranspiration
(ETo) was calculated using the Penman-Monteith
equation Walter et al. (2004) and other daily statis-
tics such as rainfall and growth degree days (with
base temperature of 12oC) and solar radiation were
computed.

• Crop evapotranspiration (ETc) was calculated from
ETo using ETc = Kc × ETo = (1.37 × NDV I −
0.086) × ETo, a standard formula used for cotton
(Montgomery et al. (2015)).

• Cumulative data (evapotranspiration, rainfall, tem-
perature etc.) between irrigation dates was calcu-
lated. The cumulative sums were reset to zero at each
irrigation, so it was correlated with the soil tension,
which is reset to near 0kPA after irrigation due to soil
saturation.

• A linear regression model was trained to predict the
observed soil moisture based on meteorological, NDVI
and irrigation history.

• Forecast weather was obtained from an online API
(darksky.net), and the evapotranspiration and other
meteorological daily statistics were computed.

• The forecast weather data and the most current
NDVI was used by the latest model to predict the
soil moisture for the next 7 days.

• The historical and forecast data was stored in a CSV
file in a Cloud Storage Bucket.

A live visualization was created in Google Data Stu-
dio, which accessed the constantly updating database. It
showed previous and forecast weather and soil tension
among other variables. This website was accessible to
collaborators and was used to manage irrigations through
the season.

3. RESULTS

3.1 Irrigation characteristics

Table 1 shows the irrigation dates for the M3 plot. It
indicates some of the possible factors involved in deciding
when to irrigate. Some growers simply schedule irrigation
after a fixed number of days. This does not account for
high stress periods, such as consecutive high temperature
and/or evapotranspiration days. Others use soil moisture
probes. For example, in this region, it was found that
cotton stomatal conductance began to decrease at soil
tension around -60kPA (Ballester et al. (2019)), suggesting
this as a suitable threshold for irrigation. Others irrigate
off evapotranspiration in millimeters, taking into account
the rain. Crop growth stage can also affect irrigation
decisions, as cotton for example can tolerate more stress
later in the season than during the critical flowering
stage. For the case shown, it can be seen that irrigations
were generally applied at soil tension around -60kPA, and
evapotranspiration around 80-100 mm. More days between

irrigations were allowed when there was rainfall, and when
the average daily evapotranspiration was lower.

The soil moisture, rainfall and NDVI data for each of
the plots is shown in Fig. 3. The irrigation events are
observable when the tension resets to near 0kPA. Rainfall
events can also be seen to correlate with jumps in tension.
The variability between soil moisture between the plots
is evident. Some of this variation is related to irrigation
system performance, which will be discussed below. Part
of the variation between sensors may also be due to
factors local to individual sensors. Such factors include soil
cracking and root growth. Multiple sensors are needed to
minimise these sources of variability.

The NDVI plot (Fig. 3) follows the expected cotton crop
growth profile. Consistent differences are observed between
plots, for example W3 and W2 have consistently lower
NDVI. M1 NDVI is higher. This variation is likely due
to it the order that the plots are irrigated in (with
those irrigated later suffering more water stress) and top
soil depth variation from laser levelling. The temporal
fluctuation in NDVI is due to irrigations. When an image
acquisition occurs soon after an irrigation, NDVI is higher
as the crop is greener. Conversely, when an acquisition
occurs many days after an irrigation, the NDVI is lower
due to water stress.

To analyze the performance of the irrigation system, the
WiField loggers were set to record soil moisture at 10
minute intervals (instead of the default 1 hour) during an
irrigation event. The results are shown in Fig. 4. In this
layout, M1 is irrigated first, and once the water reaches
a set height, the water is then allowed to flow to M2,
then to M3. W1 is irrigated at the same time as M3,
and when the water reaches the set level, W2 and finally
W3 are irrigated. There was no logger in the W1 plot.
The figure shows that water may take almost 2 days to
reach W3 from the start of an irrigation event. Also shown
in Fig. 4 is the detailed air temperature readings during
the irrigation event, and daily evapotranspiration. This
irrigation occurred during a very hot period with high
evapotranspiration. W3 experienced two days above 40oC
and high evapotranspiration while it was already water
stressed. A summary of the delay for water to reach each
of the plots is given in Table 2. Also shown are NDVI,
tension summaries and the yield data from hand harvests
around each of the logger locations. The later irrigated
plots had lower NDVI and lower yields.

3.2 Soil moisture forecasting

A portion of the dataset for the M3 plot is shown in
Table 3. The cumulative crop evapotranspiration (with
rainfall subtracted) was reset on each irrigation date.
The input variables included daily variables as well as
variables accumulated from the start of each irrigation
period (reference and crop evapotranspiration, tempera-
tures, rainfall etc.). The input variables were processed
with a second order polynomial, producing all squared and
cross terms, resulting in 77 variables. The dataset was split
by irrigation dates. The algorithm stepped through the
irrigation dates, holding out the data starting from the last
irrigation in each step for testing, and using the data prior
to the irrigation for training. The training data was further
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• Crop evapotranspiration (ETc) was calculated from
ETo using ETc = Kc × ETo = (1.37 × NDV I −
0.086) × ETo, a standard formula used for cotton
(Montgomery et al. (2015)).

• Cumulative data (evapotranspiration, rainfall, tem-
perature etc.) between irrigation dates was calcu-
lated. The cumulative sums were reset to zero at each
irrigation, so it was correlated with the soil tension,
which is reset to near 0kPA after irrigation due to soil
saturation.

• A linear regression model was trained to predict the
observed soil moisture based on meteorological, NDVI
and irrigation history.

• Forecast weather was obtained from an online API
(darksky.net), and the evapotranspiration and other
meteorological daily statistics were computed.

• The forecast weather data and the most current
NDVI was used by the latest model to predict the
soil moisture for the next 7 days.

• The historical and forecast data was stored in a CSV
file in a Cloud Storage Bucket.

A live visualization was created in Google Data Stu-
dio, which accessed the constantly updating database. It
showed previous and forecast weather and soil tension
among other variables. This website was accessible to
collaborators and was used to manage irrigations through
the season.

3. RESULTS

3.1 Irrigation characteristics

Table 1 shows the irrigation dates for the M3 plot. It
indicates some of the possible factors involved in deciding
when to irrigate. Some growers simply schedule irrigation
after a fixed number of days. This does not account for
high stress periods, such as consecutive high temperature
and/or evapotranspiration days. Others use soil moisture
probes. For example, in this region, it was found that
cotton stomatal conductance began to decrease at soil
tension around -60kPA (Ballester et al. (2019)), suggesting
this as a suitable threshold for irrigation. Others irrigate
off evapotranspiration in millimeters, taking into account
the rain. Crop growth stage can also affect irrigation
decisions, as cotton for example can tolerate more stress
later in the season than during the critical flowering
stage. For the case shown, it can be seen that irrigations
were generally applied at soil tension around -60kPA, and
evapotranspiration around 80-100 mm. More days between

irrigations were allowed when there was rainfall, and when
the average daily evapotranspiration was lower.

The soil moisture, rainfall and NDVI data for each of
the plots is shown in Fig. 3. The irrigation events are
observable when the tension resets to near 0kPA. Rainfall
events can also be seen to correlate with jumps in tension.
The variability between soil moisture between the plots
is evident. Some of this variation is related to irrigation
system performance, which will be discussed below. Part
of the variation between sensors may also be due to
factors local to individual sensors. Such factors include soil
cracking and root growth. Multiple sensors are needed to
minimise these sources of variability.

The NDVI plot (Fig. 3) follows the expected cotton crop
growth profile. Consistent differences are observed between
plots, for example W3 and W2 have consistently lower
NDVI. M1 NDVI is higher. This variation is likely due
to it the order that the plots are irrigated in (with
those irrigated later suffering more water stress) and top
soil depth variation from laser levelling. The temporal
fluctuation in NDVI is due to irrigations. When an image
acquisition occurs soon after an irrigation, NDVI is higher
as the crop is greener. Conversely, when an acquisition
occurs many days after an irrigation, the NDVI is lower
due to water stress.

To analyze the performance of the irrigation system, the
WiField loggers were set to record soil moisture at 10
minute intervals (instead of the default 1 hour) during an
irrigation event. The results are shown in Fig. 4. In this
layout, M1 is irrigated first, and once the water reaches
a set height, the water is then allowed to flow to M2,
then to M3. W1 is irrigated at the same time as M3,
and when the water reaches the set level, W2 and finally
W3 are irrigated. There was no logger in the W1 plot.
The figure shows that water may take almost 2 days to
reach W3 from the start of an irrigation event. Also shown
in Fig. 4 is the detailed air temperature readings during
the irrigation event, and daily evapotranspiration. This
irrigation occurred during a very hot period with high
evapotranspiration. W3 experienced two days above 40oC
and high evapotranspiration while it was already water
stressed. A summary of the delay for water to reach each
of the plots is given in Table 2. Also shown are NDVI,
tension summaries and the yield data from hand harvests
around each of the logger locations. The later irrigated
plots had lower NDVI and lower yields.

3.2 Soil moisture forecasting

A portion of the dataset for the M3 plot is shown in
Table 3. The cumulative crop evapotranspiration (with
rainfall subtracted) was reset on each irrigation date.
The input variables included daily variables as well as
variables accumulated from the start of each irrigation
period (reference and crop evapotranspiration, tempera-
tures, rainfall etc.). The input variables were processed
with a second order polynomial, producing all squared and
cross terms, resulting in 77 variables. The dataset was split
by irrigation dates. The algorithm stepped through the
irrigation dates, holding out the data starting from the last
irrigation in each step for testing, and using the data prior
to the irrigation for training. The training data was further
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Table 1. Irrigation dates, soil and environmental conditions immediately prior to irrigation for
the M3 plot.

Date Days Tension (kPA) ETc total (mm) ETc daily (mm) Rain (mm) GDD (oC) Max temp (oC)

2018-12-21 16.0 -42.6 63.3 4.0 23.0 216.1 38.1
2019-01-01 10.0 -78.5 85.9 8.6 8.0 167.4 42.8
2019-01-10 8.0 -64.5 84.9 10.6 0.0 126.0 43.4
2019-01-18 7.0 -84.5 97.6 13.9 1.0 143.2 46.1
2019-01-25 6.0 -55.2 77.7 13.0 0.0 114.9 42.6
2019-02-03 8.0 -57.4 79.8 10.0 4.0 126.2 42.9
2019-02-17 13.0 -56.4 121.7 9.4 26.0 153.7 40.0
2019-02-27 9.0 -62.8 95.1 10.6 13.0 102.6 39.6
2019-03-09 9.0 -59.0 53.6 6.0 9.0 70.0 36.2

Table 2. Per plot data for the 2019-01-17 irrigation, and final yield.

Plot Max NDVI Water delay (hours) Min tension (kPA) Mean tension (kPA) Yield (bales/ha)

M1 0.89 0 -71.05 -16.58 13.43
M2 0.89 8 -148.82 -45.68 10.63
M3 0.88 21 -84.53 -20.36 10.61
W2 0.88 30 -60.65 -14.03 9.17
W3 0.87 37 -116.56 -40.16 7.68

Fig. 3. Soil tension and NDVI for each plot (computed
from Sentinel-2 images) and rainfall over the season.

separated for tuning the most important parameters of
each regression algorithm using cross validation. Using this
methodology, we could assess accuracy of the model in
forecasting future soil moisture as the season progressed
(and progressively more training data was available to the
model).

A number of models were tested, including Lasso (lin-
ear regression with variable selection), Decision Trees,
Random Forests and Support Vector Machines using the

Fig. 4. Soil tension and weather data, focusing on the
2019-01-17 irrigation event, showing additional high
temperatures and evapotranspiration experienced by
the last plots to be irrigated.

Scikit-learn library in Python (Pedregosa et al. (2011)).
The models were assessed by computing the absolute
error between measured and predicted soil moisture 7
days from an irrigation (with training data consisting only
of data before the irrigation). The absolute error rather
than percentage error is used, as when the readings are
near 0kPA, the percentage error can be very large but
of little consequence. The average of these errors through
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Table 3. Portion of the dataset for the M3 field.
The soil tension is the predicted variable. ETc
is crop evapotranspiration, and GDD is growth
degree days. ”Reset” indicates variables that
were reset on irrigation dates. (f) indicates
values computed from weather forecasts, used

to predict future soil tension (x).

Date ETc reset GDD reset Tension
(mm) (oC) (kPA)

2019-01-17 97.6 143.2 -84.5
2019-01-18 0.0 0.0 -2.3
2019-01-19 13.5 17.4 -0.8
2019-01-20 23.0 32.6 -1.9
2019-01-21 34.4 49.0 -11.3
2019-01-22 49.3(f) 72.4(f) x
2019-01-23 63.3(f) 93.6(f) x

Table 4. Mean error of predicted soil tension
(kPA) 7 days from each irrigation event for
each plot, using multiple modeling methods.

Field Lasso Decision Random Support Linear
Tree Forest Vector Mach. Reg.

M1 7.9 9.3 9.6 8.0 8.8
M2 27.5 29.7 30.9 25.9 37.8
M3 12.8 11.4 13.3 14.3 8.2
W2 18.4 14.6 15.4 19.9 18.7
W3 31.2 23.4 16.9 33.4 29.9

the season was taken. The results are shown in Table 4.
The accuracy in the M2 plot is relatively poor. This is
most likely due to sensor issues. The sensors in this plot
gave unexpected results, as the tension after irrigations
did not reset to 0kPA later in the season (see Fig. 3).
In this context, techniques to detect sensor failure or
deterioration would be useful, such as the continuous data
prediction and comparison method that was used for sewer
temperature sensors in Thiyagarajan et al. (2018). There
is some variability in the best performing model per plot,
but the Random Forest models produce close to the best
results across all plots.

The models gave information on the most important
predictor variables. The two most consistently observed
important predictors were the square of cumulative crop
evapotranspiration minus rainfall, and the square of
growth degree days (both these are reset on irrigation
dates as shown in Table 3). It is intuitively reasonable
that the cumulative input variables should be squared, as
the tension typically stays more than -10kPA for several
days after an irrigation, and begins dropping more quickly
relative to evapotranspiration as the soil dries. The results
for a simple linear regression using these two most impor-
tant input variables are comparable with the more complex
methods as shown in Table 4. The advantage of using a
linear regression model is that it is easily interpretable, and
we can compare the model coefficients between plots. The
models can also be easily transferred to another software
platform or implemented in spreadsheets, which may be
useful for agronomists. The regression equation was:

Soil tension = a(
∑

(ETc− rain))2 + b(
∑

GDD)2 (1)

The regression intercept was not statistically significant so
was omitted. The prediction performance for two example
irrigation intervals in the middle of the season are shown

in Fig. 5 for the M3 plot. Both the prediction during the
training interval, and during the forecast interval is shown.
The model attempts to capture the effect of the 25mm of
rain on 2019-02-07 and 2019-02-08 (Fig. 5b). More training
data with more rainfall events would be needed to improve
the prediction of the effect of rain. The coefficients of
equation (1) are also shown, and are relatively stable once
the model converges after the first couple of irrigations.
The figure also shows the prediction error for the training
and forecast data as the season progresses.

To investigate the effect of soil tension prediction errors
on determining the time to irrigate, equation (1) can be
used. For the M3 plot, a ≈ −0.008 and b ≈ -0.0006. The
average daily ETc from December to March was around
9mm, and average GDD was 14oC. If irrigation is triggered
at -60kPA, (1) says this will occur on average after 8.9
days. A 10kPA error will result in irrigation time error of
-19 hours to +17 hours. The errors reduce as the time to
irrigate gets nearer. The far off estimate can be used to
order water, and the exact time to irrigate refined as the
time gets closer.

4. CONCLUSION

This study demonstrated a platform for ingesting soil
moisture, weather and crop vigour (NDVI) data in real
time. Models were trained on the data continuously
through the season, allowing predictions of soil moisture to
be made using weather forecast data. After the season, dif-
ferent modeling methods were trialed on the dataset. The
system demonstrated variability between the plots due
to irrigation system delays. The soil moisture forecasting
methodology could be used in irrigation decision support
tools, and potentially as part of a closed-loop irrigation
automation system.
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Table 3. Portion of the dataset for the M3 field.
The soil tension is the predicted variable. ETc
is crop evapotranspiration, and GDD is growth
degree days. ”Reset” indicates variables that
were reset on irrigation dates. (f) indicates
values computed from weather forecasts, used

to predict future soil tension (x).

Date ETc reset GDD reset Tension
(mm) (oC) (kPA)

2019-01-17 97.6 143.2 -84.5
2019-01-18 0.0 0.0 -2.3
2019-01-19 13.5 17.4 -0.8
2019-01-20 23.0 32.6 -1.9
2019-01-21 34.4 49.0 -11.3
2019-01-22 49.3(f) 72.4(f) x
2019-01-23 63.3(f) 93.6(f) x

Table 4. Mean error of predicted soil tension
(kPA) 7 days from each irrigation event for
each plot, using multiple modeling methods.

Field Lasso Decision Random Support Linear
Tree Forest Vector Mach. Reg.

M1 7.9 9.3 9.6 8.0 8.8
M2 27.5 29.7 30.9 25.9 37.8
M3 12.8 11.4 13.3 14.3 8.2
W2 18.4 14.6 15.4 19.9 18.7
W3 31.2 23.4 16.9 33.4 29.9

the season was taken. The results are shown in Table 4.
The accuracy in the M2 plot is relatively poor. This is
most likely due to sensor issues. The sensors in this plot
gave unexpected results, as the tension after irrigations
did not reset to 0kPA later in the season (see Fig. 3).
In this context, techniques to detect sensor failure or
deterioration would be useful, such as the continuous data
prediction and comparison method that was used for sewer
temperature sensors in Thiyagarajan et al. (2018). There
is some variability in the best performing model per plot,
but the Random Forest models produce close to the best
results across all plots.

The models gave information on the most important
predictor variables. The two most consistently observed
important predictors were the square of cumulative crop
evapotranspiration minus rainfall, and the square of
growth degree days (both these are reset on irrigation
dates as shown in Table 3). It is intuitively reasonable
that the cumulative input variables should be squared, as
the tension typically stays more than -10kPA for several
days after an irrigation, and begins dropping more quickly
relative to evapotranspiration as the soil dries. The results
for a simple linear regression using these two most impor-
tant input variables are comparable with the more complex
methods as shown in Table 4. The advantage of using a
linear regression model is that it is easily interpretable, and
we can compare the model coefficients between plots. The
models can also be easily transferred to another software
platform or implemented in spreadsheets, which may be
useful for agronomists. The regression equation was:

Soil tension = a(
∑

(ETc− rain))2 + b(
∑

GDD)2 (1)

The regression intercept was not statistically significant so
was omitted. The prediction performance for two example
irrigation intervals in the middle of the season are shown

in Fig. 5 for the M3 plot. Both the prediction during the
training interval, and during the forecast interval is shown.
The model attempts to capture the effect of the 25mm of
rain on 2019-02-07 and 2019-02-08 (Fig. 5b). More training
data with more rainfall events would be needed to improve
the prediction of the effect of rain. The coefficients of
equation (1) are also shown, and are relatively stable once
the model converges after the first couple of irrigations.
The figure also shows the prediction error for the training
and forecast data as the season progresses.

To investigate the effect of soil tension prediction errors
on determining the time to irrigate, equation (1) can be
used. For the M3 plot, a ≈ −0.008 and b ≈ -0.0006. The
average daily ETc from December to March was around
9mm, and average GDD was 14oC. If irrigation is triggered
at -60kPA, (1) says this will occur on average after 8.9
days. A 10kPA error will result in irrigation time error of
-19 hours to +17 hours. The errors reduce as the time to
irrigate gets nearer. The far off estimate can be used to
order water, and the exact time to irrigate refined as the
time gets closer.

4. CONCLUSION

This study demonstrated a platform for ingesting soil
moisture, weather and crop vigour (NDVI) data in real
time. Models were trained on the data continuously
through the season, allowing predictions of soil moisture to
be made using weather forecast data. After the season, dif-
ferent modeling methods were trialed on the dataset. The
system demonstrated variability between the plots due
to irrigation system delays. The soil moisture forecasting
methodology could be used in irrigation decision support
tools, and potentially as part of a closed-loop irrigation
automation system.
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