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Chapter 1. Thesis introduction and rationale 

Interrelationships between mammals, mycorrhizal fungi and plants: the 

ecological importance of mycophagy  

MYCORRHIZAS 

Fungal interactions shape ecosystems. Most plants in natural ecosystems form mycorrhizal 

associations (mycorrhizas) with specialised soil fungi (Brundrett 1991; Smith and Read 

1997). Mycorrhizas are highly-evolved mutualistic symbioses usually benefiting both plant 

and fungus (Brundrett 2004) and contributing to ecosystem function (Read 1991; Amaranthus 

and Perry 1994). Hyphae of mycorrhizal fungi are the primary interface between the soil and 

the roots of mycorrhizal plants, facilitating uptake of water and nutrients by the plant (Harley 

1971; Smith and Read 1997). In return, the fungus acquires photosynthates (carbon) from the 

plant (Harley 1971; Smith and Read 1997). Mycorrhizal fungi play an important role in soil 

carbon fluxes (Treseder and Allen 2000; Hobbie 2006; Talbot et al. 2008; Wilson et al. 2009) 

and mediate interactions and transfer nutrients between individual plants, linking plant 

communities in extensive shared mycorrhizal networks (Simard and Durall 2004; Beiler et al. 

2010). 

The type and ecology of mycorrhizal associations is determined by host plant, fungus, and 

soil and other environmental factors (Brundrett 1991). Mycorrhizal fungal ecology is an 

emerging field; the ecological roles and functions of many mycorrhizal fungi are poorly 

known (Lilleskov and Bruns 2001; Lilleskov and Parrent 2007). Ectomycorrhizas (EM) and 

arbuscular mycorrhizas (AM) are the two most common mycorrhizal types. EM, formed by 

species of Basidiomycota, Ascomycota, and Endogone (Zygomycota), develop extensive 

hyphal systems outside of the host plant root, form sheaths around the root, and do not usually 

penetrate the host plant cells, while AM penetrate host cells and are formed by species in the 
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Glomeromycota (Brundrett 1991). More than 80% of vascular plants form mycorrhizas, but 

only 2% form EM (Brundrett 2009). However, EM plants, such as those in the Pinaceae, 

Fagaceae, Myrtaceae, and Betulaceae families, dominate forest ecosystems in mesic 

temperate and boreal landscapes (Read 1991; Allen et al. 1995). Globally, approximately 

7750 species of EM fungi are known to science but conservative estimates put the potential 

global number of species around three times that amount (Rinaldi et al. 2008); most EM 

ecosystems remain under-sampled (Dickie and Moyersoen 2008). EM fungi, far more diverse 

than EM plants, tend to have widespread distributions and intermediate to broad host ranges 

(Molina et al. 1992; May and Simpson 1997; May 2002; Jumpponen et al. 2004). For 

example, EM fungi that form mycorrhizas with Eucalpytus associate with a variety of species 

within the genus as well as with other woody trees, shrubs and non-woody herbs (Chilvers 

1973; Warcup 1980; Malajczuk et al. 1982).  

TRUFFLE-LIKE FUNGI 

Mycorrhizal macrofungi predominantly form EM associations and produce fleshy fruiting 

bodies (sporocarps), above (epigeous, mushroom-like) or below (hypogeous, sequestrate, 

truffle-like) the ground surface. Truffle-like fungi are particularly poorly known both 

taxonomically and ecologically, owing to their ephemeral, below-ground fruiting habit and 

the need to examine sporocarps for identification, although recent developments in the 

identification of fungi from vegetative material (mycelium or EM root tips) using molecular 

techniques are advancing the study of these and other sporocarpic EM fungi (Buscot et al. 

2000; Horton and Bruns 2001; Anderson and Cairney 2007; Peay et al. 2008). In Australia, a 

centre for truffle-like fungi diversity and endemism (Lebel and Castellano 1999; Bougher and 

Lebel 2001), truffle-like fungi diversity is likely to be higher than epigeous macrofungal 

diversity (Bougher 1995) and is estimated at 1278-2450 species, of which only 12-23% have 

been described (Bougher and Lebel 2001). This thesis looks primarily at the truffle-like EM 
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fungi on account of their importance in plant mycorrhizal networks, the prevalence of 

sporocarps of these fungi in the diet of many ground-dwelling mammals, and their reliance 

upon these mammals for spore dispersal. Truffle-like fungi are part of a complex, co-evolved, 

system of symbioses and interactions with plants, soils, and animals (Read 1997; Bougher and 

Lebel 2001; Brundrett 2002). 

MAMMAL MYCOPHAGISTS: FUNGUS-FEEDERS AND SPORE DISPERSAL AGENTS 

Macrofungal sporocarps are a food resource for many animals, including birds (Simpson 

1998; Medway 2000; Simpson 2000), reptiles (Hailey et al. 1997; Vernes and Cooper in 

press), invertebrates, (Lilleskov and Bruns 2005; Houston and Bougher 2010) and mammals 

(Fogel and Trappe 1978; Claridge and May 1994). Mycophagy (fungus-feeding) is 

widespread among forest-dwelling mammals; sporocarps are recorded in the diet of 

marsupials, rodents, cervids, and primates in temperate, tropical, and boreal landscapes 

around the world (e.g. Fogel and Trappe 1978; Genard et al. 1988; Blaschke and Baeumler 

1989; Cazares and Trappe 1994; Claridge and May 1994; Claridge et al. 1996; Mangan and 

Adler 2000; Porter 2001; Bertolino et al. 2004; Hanya 2004; Vernes 2007; Hilário and Ferrari 

2010).  

Mycophagous animals facilitate the dispersal of macrofungal spores because the spores of 

consumed sporocarps remain viable after gut-passage and are deposited in the faeces some 

distance from the point of consumption (Trappe and Maser 1977; Maser et al. 1978). This 

process is particularly important to truffle-like fungi because their below-ground fruiting habit 

and enclosed spore-bearing tissues limit abiotic dispersal mechanisms such as wind and water 

(Fogel and Trappe 1978; Maser et al. 1978; Claridge and May 1994; Johnson 1996; Trappe 

and Claridge 2005). In some cases, passage of spores through the mammalian gut is necessary 

for, and may even enhance, spore viability (e.g. Lamont et al. 1985; Caldwell et al. 2005). 

Mammal mycophagists are crucial to the maintenance of diverse EM fungi and EM plant 
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communities and to the spread of these organisms in new or regenerating habitats (Maser et 

al. 1978; Cazares and Trappe 1994; Terwilliger and Pastor 1999; Ashkannejhad and Horton 

2005). The relationship between truffle-like fungi, their host plants and mycophagous fauna is 

complex, and integral to biodiversity and ecosystem function (Malajczuk et al. 1987).  

In Australia, most ground-dwelling mammals are mycophagous to some extent (Claridge 

and May 1994). While mycophagy is often considered most prevalent among Australian 

mammals with a body weight of less than 3kg, particularly among the Muridae (rodents) and 

Potoroidae (rat-kangaroos, bettongs and potoroos) families, many other mammals consume 

fungi (Claridge and May 1994; Claridge et al. 1996; Vernes 2010). Levels of mycophagy 

occur along a spectrum from primarily mycophagous mammals (fungal specialists) to 

mammals consuming sporocarps as part of a broader diet (non-specialists) and are seasonally 

variable (Claridge et al. 1996). Some potoroids are fungal specialists, and important 

dispersers of fungal spores (Bennett and Baxter 1989; Claridge and May 1994; Tory et al. 

1997). Rodents, bandicoots, pademelons, wallabies, possums, and small dasyurids also 

consume sporocarps, to varying degrees (Claridge et al. 1991; Claridge and May 1994; 

Reddell et al. 1997; Tory et al. 1997; Claridge and Lindenmayer 1998; McIlwee and Johnson 

1998; Claridge et al. 2001; Vernes and Trappe 2007; Vernes and McGrath 2009; Vernes 

2010; Vernes and Lebel in prep.) although the interactions of these animals with macrofungal 

sporocarp communities have been less well studied. The importance of sporocarps in the diet 

of non-specialist mycophagists, and other potentially overlooked mycophagists, and the 

importance of these mammals as spore dispersal agents, remains relatively poorly known. 

Research themes 

The interrelationships outlined above (and in Figure 1.1) underpin the two research themes 

upon which this thesis is based: 
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1. Is there a relationship between truffle-like sporocarp diversity in the soil and 

diversity in the diet of a mycophagous mammal? 

2. Are non-specialist mycophagous mammals effective spore dispersers for truffle-

like fungi? 

These themes are important from biodiversity conservation, natural resource management, 

and agricultural production perspectives. Macrofungal diversity is poorly known in many 

parts of the world, including Australia, and yet fungi are essential components of natural 

ecosystems and are involved in many aspects of ecosystem functioning. Animals that 

consume macrofungi sporocarps can be important in maintaining diverse fungal communities, 

and have other important roles in ecosystems such as contributing to nutrient cycling and 

water infiltration through digging activity or as prey for predators. Paddock trees and other 

remnant vegetation are valuable in agricultural landscapes because they contribute to both 

production and conservation values. They provide shade and shelter for livestock, mitigate 

erosion, store carbon, and provide habitat and corridors for native vertebrate and invertebrate 

wildlife. Ectomycorrhizal macrofungi are vital symbionts with trees and other woody plants. 

In modified or fragmented landscapes, transfer of ectomycorrhizal macrofungal propagules 

between established communities and new plantings or remnant trees surrounded by non-

ectomycorrhizal communities could be vital to the functioning and resilience of these plants. 

Mycophagous mammals resilient in modified landscapes may play a key role in maintaining 

transfer of ectomycorrhizal macrofungal propagules between mycorrhizal plant communities. 



 

 

 

Figure 1.1 Simplified diagram of the interrelationships between mycophagous mammal, ectomycorrhizal fungi and plant communities (green 
boxes), with linkages to the research themes explored in this thesis (blue boxes). 
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The swamp wallaby: a generalist macropodid browser 

The swamp wallaby Wallabia bicolor (Desmarest: Macropodidae; Figure 2.2) is a 

widespread, medium-sized (6 – 25 kg), macropod abundant in a range of habitats across eastern 

Australia, from Cape York to south-western Victoria (Pople 1989; Merchant 1995). While it is 

common within its range, surprisingly little is known of its ecology. The swamp wallaby was 

chosen as the model species for this study because it has recently been found to consume a 

variety of macrofungal sporocarps (Claridge et al. 2001; Vernes and McGrath 2009; Vernes 

2010) and it remains common in some areas in which other mycophagists are in decline or 

have become extinct, and is therefore of interest as a disperser of macrofungal spores.  

In the little more than 200 years since European occupation, Australian terrestrial mammals 

have suffered dramatic declines in number and range (Burbidge and McKenzie 1989; Johnson 

et al. 1989; Maxwell et al. 1996; Burbidge et al. 2009). More than 30% of species have 

Figure 2.2. Swamp wallaby, Wallabia bicolor (photo James Turner 2009). 
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become either locally or fully extinct (Burbidge et al. 2009). Mycophagous potoroos, bettongs, 

rat-kangaroos, bandicoots, and rodents are among the species experiencing the most severe 

declines (‘critical weight range’; 35 – 5 500 g (Burbidge and McKenzie 1989). The swamp 

wallaby, a non-specialist mycophagist, and one of the larger mycophagous Australian 

mammals, remains common across much of its range: it is estimated to have declined by less 

than 10% since European settlement and has a stable conservation status (Maxwell et al. 1996).  

General objectives 

The research reported in this thesis has two general objectives: 

1. Quantify the diversity of truffle-like fungi (a) available in sporocarp communities, (b) as 

spores in swamp wallaby diet and (c) compare sporocarp communities and diet in terms of both 

swamp wallaby feeding strategy and methods of sampling truffle-like sporocarp communities; 

2. Explore the potential importance of swamp wallabies as dispersers of truffle-like fungi 

spores in a modified landscape through examination of (a) spore gut-passage time and (b) 

home range and movement patterns. 

Specific hypotheses are outlined below, for each chapter. 

Thesis structure 

This thesis has a ‘chapters as journal article manuscripts’ structure and study sites and 

methods are described within relevant chapters rather than in a separate preliminary chapter. 

Thus there is some overlap in introductory and methodological descriptions among chapters. 

In Chapter 2 I quantify the diversity and composition of truffle-like fungi in three different 

eucalypt forest types at two geographically and climatically different locations over two 

seasons (Objective 1a) and assess differences between forest types, locations and seasons. This 

chapter also investigates relationships between truffle-like sporocarp community composition 
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and environmental variables. Truffle-like communities are expected to differ between forests, 

locations, and seasons and soil chemistry, rainfall, temperature, and above-ground plant 

communities will influence the diversity and composition of truffle-like sporocarp 

communities. 

In Chapter 3 I examine the diversity and composition of swamp wallaby macrofungal diet 

(Objective 1b) using microscopic analysis of faecal pellets collected from the same sites used 

in the preceding chapter. I assess differences between forest types, locations and seasons. This 

work supports previous research which found that swamp wallabies consume a great diversity 

of macrofungi, including truffle-like fungi. I also compare the taxon richness of swamp 

wallaby macrofungal diet to published accounts of the diet of other Australian mycophagous 

mammals.  

Chapter 4 compares the diversity and composition of truffle-like sporocarp communities to 

swamp wallaby diet (Objective 1c). As swamp wallabies are considered to have a generalist 

feeding strategy, the diversity and composition of fungi consumed is expected to differ from, 

and reflect a subset of, the available sporocarp communities. 

In Chapter 5 I quantify the time taken for truffle-like fungi spores to pass through the 

swamp wallaby gut (Objective 2), and compare this ‘gut-retention time’ to that of other 

mycophagous mammals, including specialist mycophagists. This is the first study to examine 

whole gut digesta passage in the swamp wallaby and one of the few studies to utilise a natural 

marker (truffle-like fungi spores). It is expected that gut-retention times in the swamp wallaby 

will be most similar to those found for smaller browsing wallabies as they are most similar to 

swamp wallabies in terms of diet. Gut-retention time information is essential as a baseline for 

determining the potential distances to which swamp wallabies could disperse spores of ingested 

sporocarps (Chapter 6).  
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In Chapter 6 I examine the home range and movement patterns of swamp wallabies within, 

and adjacent to, a large forested remnant in a patchily-forested landscape and assess use of 

isolated remnant woodland patches, shelterbelt plantings and paddock trees. I then estimate, 

with reference to Chapter 5, the potential distance from the point of consumption to which 

swamp wallabies could disperse spores and the likelihood of spore dispersal to isolated trees in 

this landscape (Objective 2). 

Chapter 7 provides a synthesis of the main findings of this thesis, summarises themes for 

further research, and makes recommendations for natural resource management. 
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Chapter 7. Synthesis and perspectives 

The aim of this thesis was to quantify the diversity of truffle-like fungi available as 

sporocarps and in swamp wallaby diet, and examine swamp wallaby feeding strategy by 

comparing available sporocarps and diet species richness and composition. Additionally, I 

aimed to explore the role of swamp wallabies as dispersers of truffle-like fungi spores in a 

modified landscape through examination of spore gut-passage time and home range and 

movement patterns. Here I  present summaries of the main findings of my thesis and the 

significance of those findings for the management of the swamp wallaby, and other 

mycophagous mammals, in eucalypt forests. Potential future research directions are suggested. 

Additional research conducted during the course of the work presented in this thesis, and 

considered pertinent to future research directions, is outlined.  

Summary of main findings 

DIVERSITY AND DISTRIBUTION OF TRUFFLE-LIKE FUNGI  

This study, the first systematic sampling of truffle-like fungi in the New England Tableland 

and Nandewar Bioregions, identified 118 species (35 genera) from 1126 sporocarps, with over 

half of these species undescribed at the time of collection. Eight new species in the genus 

Cortinarius have been described as a result of this work (Appendix 2, Danks et al. 2010) and 

taxonomic descriptions are ongoing. Sporocarp production was strongly seasonal: standing crop 

and species richness were greater in winter than in summer, similar to temperate and tropical 

regions of Australia despite different climatic patterns. As expected, variation in sporocarp 

community composition was high across spatial and temporal scales, indeed much variation 

was not explained by the effect of site, forest types, quadrat, or season. Variation in community 

composition among forest types was associated with habitat attributes that differed with site. At 
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Mount Kaputar, canopy cover, litter cover, litter depth, soil phosphorous and temperature were 

most important in differentiating the sporocarp communities of different forest types, while at 

New England, rainfall, aspect, soil texture, log (pH), and soil nitrogen distinguished 

communities.  

MYCOPHAGY BY THE SWAMP WALLABY 

Variation in truffle-like sporocarp production affects food resource availability for 

mycophagous mammals. The results of this work, the largest study of the macrofungal 

component of swamp wallaby diet, support the conclusions of previous research that found that 

swamp wallabies consume a great diversity of macrofungi in multiple seasons. Swamp 

wallabies consumed more truffle-like than epigeous sporocarps and the total number of spore 

types consumed was similar to other mycophagous marsupials in eucalypt-dominated 

landscapes, including specialist and non-specialist mycophagists. On the basis of their 

consistently diverse macrofungal diets, swamp wallabies are likely to be important spore 

dispersers, particularly for truffle-like fungi that rely upon mammalian spore dispersal. 

Variation in the composition of swamp wallaby diet was high at all spatial and temporal scales, 

and further investigation of the relationship between swamp wallaby diet composition and 

sporocarp community composition was warranted.  

RELATIONSHIP BETWEEN SWAMP WALLABY MACROFUNGAL DIET AND SPOROCARP COMMUNITY 

Overall, swamp wallabies did not consume sporocarps in relation to their availability. 

Wallabies showed preferences for a suite of taxa, some of which were frequently detected in 

sporocarp survey and some of which were rare. Only ~60% of the genera detected in sporocarp 

surveys were consumed but one quarter of the genera in their diet were not detected in surveys. 

At a more localised scale (the scale of the sampling quadrat), which is closer to the scale at 

which swamp wallabies would be foraging, swamp wallaby diet was similar in richness to the 
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sporocarp community. Compositional differences between the diet and the community varied 

with forest type and season. Diet composition was highly variable at a fine spatial scale, as was 

the sporocarp community. Although spatial and temporal differences between the swamp 

wallaby diet and sporocarp community data limit inferences, swamp wallabies are clearly 

responding to sporocarp community diversity and composition at a fine-scale. In combination, 

dietary analysis and sporocarp survey might provide a more efficient and more comprehensive 

‘snapshot’ of available sporocarp diversity in a forested landscape than either technique could 

alone. 

GUT-PASSAGE OF TRUFFLE-LIKE FUNGI SPORES  

Spores of a truffle-like fungus were retained in the swamp wallaby gut for a mean time of 

just over one day, and some spores for up to 3 days, before being deposited in faeces. This 

study is the first study of digesta gut-passage rate in the swamp wallaby, one of few studies to 

examine passage of macrofungal spores, and is also unusual in examining gut-passage in semi-

free ranging animals consuming a predominantly natural, freely-chosen, diet. Gut- retention 

times in the swamp wallaby were most similar to gut-retention times in smaller mycophagous 

marsupials, including the specialist potoroids, but much longer than in the small wallabies with 

diets and gut morphologies most similar to the swamp wallaby. It is not clear why the swamp 

wallaby’s spore gut-retention time is longer than would be expected for a medium-sized 

browsing macropodid. Gut-passage rates vary greatly with diet, activity patterns, and among 

individuals, and further studies of swamp wallaby gut morphology and digestive physiology 

will be required to answer this question. Nevertheless, I have provided an estimate of the time 

taken for truffle-like fungi spores to pass through the gut of the swamp wallaby, information 

that can be used to examine the swamp wallaby’s role in spore dispersal. I also review 
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published studies of gut-retention in mycophagous mammals, and both mycophagous and non-

mycophagous macropodid marsupials.  

SWAMP WALLABY MOVEMENT PATTERNS AND SPORE DISPERSAL POTENTIAL 

Gut-passage time, together with movement patterns influence the distance to which a 

mycophagous mammal may carry the spores of ingested sporocarps. While GPS-telemetry 

indicated that most movement was restricted to the interior and edge of the large forest remnant 

in which swamp wallabies were captured, camera trapping revealed occasional use of isolated 

forest patches by swamp wallabies. The mean spore dispersal distance predicted by ‘dispersal 

kernel’ models based on GPS-telemetry movement records and spore gut-retention time 

(Chapter 5) was 187 m, with maximum distances of over one kilometre. Such distances 

represent long-distance spore dispersal for truffle-like fungi, further than an individual or a 

genet may spread via mycelial extension. Rare longer-distance movements, including to 

isolated trees and forest patches, could be extremely important in establishing new or refreshing 

existing EM associations in isolated host plants or communities. The approach used here 

represents a useful way to model spore dispersal that could be readily adapted for other 

mycophagous mammals and other landscapes.  

The natural eucalypt-dominated landscapes of the study region are rich in truffle-like fungi, 

vital symbionts with forest trees and shrubs. The abundant sporocarps of these fungi, while 

highly variable both spatially and temporally, are an important food resource for mycophagous 

mammals, including the non-specialist browsing swamp wallaby. Swamp wallabies regularly 

consume a diversity of sporocarps, responding to fine-scale variation in sporocarp occurrence, 

and are key spore dispersal agents for truffle-like fungi, disseminating spores in their faeces 

across many hundreds of metres. This study emphasises the importance of non-specialist 

mycophagists, such as the swamp wallaby, and other potentially overlooked mammal 
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mycophagists in dispersing the spores of truffle-like fungi in forest ecosystems. A diverse 

community of mammal mycophagists is likely important to the maintenance of these highly 

diverse sporocarp communities and thus to the functioning of these forests.  

Implications and recommendations 

The findings of this thesis have several implications for the management of the swamp 

wallaby. Regular consumption of a diversity of macrofungal sporocarps by this non-specialist 

mycophagist was highlighted. Small amounts of sporocarps are probably nutritionally important 

to the swamp wallaby year-round, supplementing the plant browse component of the diet. The 

requirements of the swamp wallaby for a diversity of macrofungi should be incorporated into 

management plans for landscapes in which this species occurs. 

Australia has a rich ground-dwelling mammal fauna, many of which are mycophagous to 

some degree. Mycophagous mammals have important roles in maintaining diverse macrofungal 

communities through dissemination of spores, whether strongly mycophagous or not. Specialist 

mycophagous potoroids are known to be important consumers and dispersers of truffle-like 

fungi, while knowledge of the diets and spore dispersal roles of other mycophagous mammals 

is limited. This thesis has highlighted the role of the swamp wallaby, a common macropod and 

generalist mycophagist, in consuming and dispersing macrofungi spores. Further studies of 

diets and activity patterns across mycophagous mammal assemblages will improve our 

understanding of competition and niche partitioning, and the role of mammals in spore 

dispersal. Other non-specialist mycophagists are likely to be similarly important consumers in 

EM-forest dominated landscapes, and particularly in areas where specialist mycophagists do not 

occur. Multiple mammal mycophagists may be important in maintaining truffle-like fungi 

diversity in landscapes, such as the New England Tableland bioregion, which have a rich 

truffle-like sporocarp community and, historically, a rich mammal fauna. Conserving a 
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diversity of mycophagists, macrofungi, and plant hosts is important to the functioning of 

remnant forests in these landscapes. In turn, a mosaic of forest types is likely to contribute to 

macrofungi diversity and to the sporocarp resource consumed by a wide range of mammals.  

Mycophagous mammals tend to occupy areas of dense cover and adjacent areas for the food 

resources and protection from predators that they provide. These habitats also favour truffle-

like sporocarp production, due to the presence of both host plants and mammalian spore 

dispersal agents. Many vertebrate species require mosaics of habitats (Law and Dickman 1998), 

and preference for ecotones or habitat mosaics at the scale of the home range that provide some 

dense cover are common among mycophagous mammals. For example, Vernes and Dunn 

(2009) report the bush rat Rattus fuscipes foraging for sporocarps across a eucalypt forest-

rainforest ecotone, the northern bettong Bettongia tropica prefers ecotonal eucalypt woodland 

and Allocasuarina forest in the Australian Wet Tropics (Abell et al. 2006), the long-nosed 

potoroo Potorous tridactylus utilises contrasting microhabitats within its temperate eucalypt 

forest habitat (Bennett 1993), and the swamp wallaby Wallabia bicolor uses eucalypt forest-

pasture interfaces (Edwards and Ealey 1975; Chapter 6) and mosaics of regenerating forest 

(Lunney and O'Connell 1988; Di Stefano et al. 2009).  

Mycophagous mammals dispersing spores both within habitats and across habitat 

boundaries function as ‘mobile link organisms’ (sensu Lundberg and Moberg 2003), vital 

components in ecosystem development and resilience, influencing the development and 

survival of mycorrhizal plant and fungal communities (Lundberg and Moberg 2003). In early 

successional habitats, mycophagous mammals traversing the boundaries of adjacent habitats 

can be crucial to colonisation of ‘new’ habitat by a diversity of truffle-like fungi  (Cazares and 

Trappe 1994; Terwilliger and Pastor 1999; Ashkannejhad and Horton 2005) because deposits of 

spore-containing faeces provide the seeds of EM host that germinate near the faeces with EM 

inoculum, facilitating the spread of EM plant species (Maser et al. 1978). Mammal 
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mycophagists resilient in some human-modified landscapes, including the swamp wallaby, play 

a key role in the dispersal of fungal spores and the maintenance of ectomycorrhizal associations 

in these landscapes. This is particularly the case in fragmented or partially cleared landscapes, 

or areas with naturally sparse tree cover, where barriers to mycelial spread occur and in 

landscapes from which other mycophagous mammals have been extirpated. Establishment and 

maintenance of mycorrhizal symbioses may be crucial to the persistence of native vegetation 

remnants, shelterbelt plantings, and isolated paddock trees, and to the success of revegetation 

programs, in human-modified landscapes. 

Australian EM forests and woodlands have co-evolved with a rich and highly endemic 

truffle-like fungi biota (Bougher and Lebel 2001). The taxonomy and ecology of these fungi, 

critical forest components, remain poorly known. More studies exploring the taxonomy, 

distribution, functional roles, and interactions with host plants and mycophagists are needed to 

elucidate the dynamics of EM fungi. An understanding of the drivers of diversity and sporocarp 

production at multiple spatial scales will inform sustainable forest management.  

A major challenge in the conservation of macrofungi, and therefore in the conservation of 

mycophagous mammals,  is incomplete knowledge of their taxonomy, distribution, and ecology 

(Buchanan and May 2003; Mueller et al. 2007; Molina et al.) and one of the impediments is the 

limited accumulation and sharing of expert knowledge (Molina et al. 2011). To help address 

this need, an online database for collation and communication of ecological and taxonomic 

information on macrofungi and mycophagous mammals is in development (Appendix 11).  

Viability, dormancy, and longevity of truffle-like fungi spores in the soil, whether eaten and 

disseminated by mammals or other mycophagists, or deposited in situ as the sporocarp rots 

away, remain unknown (but see Bruns et al. 2009). Knowledge of potential distances to which 

mammals may disseminate spores, and the effect of digestion on spores, is necessary for 



  Synthesis and perspectives 

164 

investigation of disperser effectiveness. With some fundamental knowledge of macrofungal 

occurrence, habitat configuration, mycophagous mammal diets and movement patterns, spore 

viability, and host plant occurrence, more detailed models of mammal-mediated macrofungal 

spore dispersal in EM-dominated landscapes could be constructed. Such models could be used 

to examine further the functioning of mammal-fungal-plant relationships, and would be 

particularly useful tools for assessing functional diversity in mycophagous mammal 

communities. 

Adaptive management of EM-dominated human-modified and ‘intact’ landscapes will 

require continued study of interactions between EM fungi, plants, and mycophagous mammals 

and their contributions to ecosystem function. The maintenance of genetic diversity, species 

diversity, and functional diversity is integral to ecosystem function, and understanding the 

drivers of soil biodiversity will aid our understanding of terrestrial ecosystems (Wardle 2006). 

Bougher & Tommerup (1996) note that association with a network of ectomycorrhizal fungi 

may have been advantageous for plants faced with climatic fluctuations in the geological past. 

Maintaining a taxonomically and functionally diverse ectomycorrhizal community, and their 

associated plant and animal assemblages, will be essential to the survival and resilience of EM 

forests and other EM ecosystems in a changing climate. 
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Appendices 



 

Appendix 1. Attributes of site x forest type combinations (mean ± SE of three replicate quadrats). Values of categorical attributes are 
presented as ranges. MK = Mt Kaputar site, NE = New England site, GW = grassy woodland, WS = wet forest, DS = dry forest. 

 MK   NE    
Attribute GW  WS DS GW WS DS  
Climate a        

Annual mean temperature (°C)  10.9 ± 0.1 11.6 ± 0.1 13.5 ± 0.1 9.6 ± 0 10.7 ± 0 11.2 ± 0.1  

Mean diurnal temperature range (°C)  12.5 ± 0 12.9 ± 0.1 13.8 ± 0.1 9.8 ± 0 10.6 ± 0 11.2 ± 0.1  

Annual temperature range (°C)  27.4 ± 0 28 ± 0.1 29.2 ± 0.1 21 ± 0 22 ± 0 22.8 ± 0.1  

Mean temperature wettest quarter (°C)  17.7 ± 0.1 18.5 ± 0.1 20.5 ± 0.1 14.2 ± 0 15.3 ± 0 16.4 ± 0.1  

Mean temperature driest quarter (°C)  7.5 ± 0.1 7.3 ± 0.4 8.4 ± 0.1 6.1 ± 0 7.1 ± 0 7.1 ± 0.1  

Mean temperature warmest quarter (°C)  17.8 ± 0.1 18.5 ± 0.1 20.5 ± 0.1 14.6 ± 0 15.7 ± 0 16.4 ± 0.1  

Mean temperature coldest quarter (°C)  4 ± 0.1 4.6 ± 0.1 6.3 ± 0.1 4.4 ± 0 5.3 ± 0 5.8 ± 0.1  

Annual mean precipitation (mm) 1222 ± 5.7 1160.7 ± 10.3 1022.7 ± 10.1 2093 ± 9.3 1651 ± 10.6 1218.3 ± 8  

Mean precipitation wettest quarter (mm)  374 ± 1.5 359 ± 2.6 328 ± 2.3 871 ± 4.6 641.7 ± 5.6 453.3 ± 1.2  

Mean precipitation driest quarter (mm)  260.3 ± 1.2 247.7 ± 2.3 217 ± 2.3 266.3 ± 0.9 226.7 ± 0.9 186 ± 2.3  

Mean precipitation warmest quarter (mm)  372 ± 1.5 357.7 ± 2.3 328 ± 2.3 772 ± 3.6 604.3 ± 3.8 452.7 ± 1.5  

Mean precipitation coldest quarter (mm) 294 ± 1.5 276.7 ± 2.9 237 ± 2.9 365 ± 1.2 308.7 ± 1.5 238.7 ± 4.1  

Annual mean radiation (Mj/m2) 17.1 ± 0 17.3 ± 0 17.6 ± 0 15.9 ± 0 16.4 ± 0 17 ± 0  

Mean radiation wettest quarter (Mj/m2) 21.7 ± 0.1 22 ± 0 22.3 ± 0 17.9 ± 0 18.4 ± 0 20.9 ± 0  

Mean radiation driest quarter (Mj/m2) 16.7 ± 0 15.8 ± 0.5 15.3 ± 0.2 15.1 ± 0 15.4 ± 0 15.1 ± 0  

Mean radiation warmest quarter (Mj/m2) 22.2 ± 0 22.3 ± 0 22.7 ± 0 19.6 ± 0 20.2 ± 0 21.2 ± 0  

Mean radiation coldest quarter (Mj/m2) 11 ± 0 11.1 ± 0 11.3 ± 0 11 ± 0 11.2 ± 0 11.5 ± 0  

Annual mean moisture index (0–1) 0.8 ± 0 0.8 ± 0 0.7 ± 0 1 ± 0 1 ± 0 0.9 ± 0  

Mean moisture index highest moisture 

quarter (0–1) 
1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0  
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 MK   NE    
Attribute GW  WS DS GW WS DS  
Mean moisture index lowest moisture 

quarter (0–1) 
0.6 ± 0 0.6 ± 0 0.5 ± 0 1 ± 0 1 ± 0 0.9 ± 0  

Mean moisture index warmest quarter (0–1) 0.6 ± 0 0.6 ± 0 0.5 ± 0 1 ± 0 1 ± 0 0.9 ± 0  

Mean moisture index coldest quarter (0–1) 1 ± 0 1 ± 0 0.9 ± 0 1 ± 0 1 ± 0 1 ± 0  

Landscape        

Elevation (m asl) 1429.7 ± 10.7 1311 ± 20.4 998.3 ± 23.4 1522 ± 4 1323.7 ± 1.9 1226.7 ± 24.3  

Latitude (degrees S) 30.3 ± 0.0 30.3 ± 0.0 30.3 ± 0.0 30.5 ± 0.0 30.5 ± 0.0 30.5 ± 0.0  

Longitude (degrees E) 150.2 ± 0.0 150.2 ± 0.0 150.1 ± 0.0 152.4 ± 0.0 152.4 ± 0.0 152.3 ± 0.0  

Position in slope (ridge; up-slope; mid-slope; 

low-slope; flat)b 
1-2 2-3 3 1-2 2 1-2  

Aspect (degrees from north)c 89.7 ± 11.3 46 ± 112.1 -46 ± 19.7 64.7 ± 74.9 12.7 ± 24.5 -8.3 ± 60.6  

Slope (degrees from horizontal) 12.3 ± 0.7 18.3 ± 4.3 15.7 ± 1.8 8.7 ± 1.9 17 ± 7.2 6.3 ± 1.5  

Floristic        

Eucalyptus species f 1.5 ± 0.3 3 ± 0 3 ± 0 3.5 ± 0.3 2 ± 0 2.5 ± 0.3  

Acacia species f 1.5 ± 0.3 1 ± 0.6 1 ± 0 1 ± 0 1 ± 0 1 ± 0  

Other woody plant species f 6 ± 0.6 4 ± 0.6 11 ± 0 4 ± 0.6 8.5 ± 1.4 18 ± 1.7  

Total ectomycorrhizal plant species f 13 ± 1.2 16.5 ± 2 24 ± 0.6 22 ± 3.5 26 ± 0 31.5 ± 0.9  

Structure of ‘live’ vegetation        

Total upper canopy cover (%) 93.6 ± 2.6 97 ± 0.3 94.9 ± 1.9 89 ± 3.6 96.4 ± 1.9 92.2 ± 4  

Tree fern cover (%) 0 13.7 ± 13.2 0 0 18 ± 16 0  

Shrub cover (%) 10.3 ± 4.7 38.3 ± 6 70 ± 2.9 20 ± 7.6 63.3 ± 21.9 23.3 ± 8.8  

Total understorey cover (%) 10.3 ± 4.7 52 ± 9.9 70 ± 2.9 20 ± 7.6 81.3 ± 6.4 23.3 ± 8.8  

Ground fern cover (%) 0 13.8 ± 6.9 0 2.5 ± 1.9 19.6 ± 4.2 0  

Graminoid cover (%) 68.3 ± 4 43.7 ± 6.1 10.8 ± 1.2 82.4 ± 13.2 37.6 ± 10.2 37.9 ± 6.7  
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 MK   NE    
Attribute GW  WS DS GW WS DS  
Total live ground cover (%) 68.3 ± 4 57.4 ± 2.2 10.8 ± 1.2 84.9 ± 11.4 57.2 ± 14.2 37.9 ± 6.7  

Structure of ‘dead’ vegetation        

Rock cover (%) 0 13.9 ± 10.1 5.6 ± 4.2 1.7 ± 1.7 0.8 ± 0.8 0.4 ± 0.4  

Coarse woody debris cover (%) 6.8 ± 4.3 5 ± 0 6.7 ± 1.7 7.7 ± 3.7 10 ± 2.9 5.7 ± 2.3  

Litter cover (%)d 31.7 ± 4 27.6 ± 8.4 68.1 ± 1 12.6 ± 10.1 42.4 ± 13.3 59.6 ± 7.1  

Litter depth (cm)d 55.8 ± 8 49.9 ± 0.8 28.8 ± 1.9 50.6 ± 4 60 ± 17 37.1 ± 5.5  

Edaphic        

Total P concentration (ppm)d 0.11 ± 0.04 0.16 ± 0.04 0.17 ± 0.05 0.32 ± 0.04 0.161 ± 0.021 0.005 ± 0.001  

Total C concentration (ppm)d 5.02 ± 0.82 7.56 ± 2.51 3.81 ± 0.36 13.02 ± 1.60 13.314 ± 2.895 1.66 ± 0.43  

Total N concentration (ppm)d 0.29 ± 0.00 0.39 ± 0.14 0.29 ± 0.02 0.83 ± 0.10 0.674 ± 0.135 0.08 ± 0.02  

pH c 5.4 ± 0.3 5.9 ± 0.1 7 ± 0.1 5.4 ± 0.1 5.4 ± 0 5 ± 0.2  

Electrical conductivity (µS)d 50.5 ± 2.6 74.6 ± 7.5 65.4 ± 2.4 67.8 ± 11.2 69.4 ± 14 31.5 ± 2  

Soil texture (sand; loam; clay-loam; clay)de 3 - 4 3 - 4 4 3 2 - 4 2 - 3  

Soil moisture content d 2.6 ± 0.4 3.4 ± 0.9 2.9 ± 0.5 15.3 ± 5.1 12.2 ± 2.6 0.6 ± 0.1  

a Values of climatic parameters estimated for each quadrat using ANUCLIM 5.1. 

b Where 1=ridge, 2=up-slope, 3=mid-slope, 4=low-slope, 5=flat. 

c Distance from 0 (north). Westerly values negative, easterly values positive, maximum value 180 (south). 

d Average measured at central points of four 1m2 sub-plots. 

e Where 1=sand, 2=loam, 3=clay-loam, 4=clay. 

f Species contributing >10% cover 
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Appendix 2.  
Danks, M., T. Lebel and K. Vernes (2010). "'Cort short on a mountaintop' - Eight new 
species of sequestrate Cortinarius from sub-alpine Australia and affiliations to sections 
within the genus." Persoonia 24: 106-126. 
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Appendix 3. Percent occurrence of sporocarps, proportion of total sporocarp abundance 
and proportion of total sporocarp biomass (dry weight) of truffle-like fungi species 
sampled in 18 quadrats at New England NP and Mt Kaputar NP over two seasons 
(summer and winter). EM = ectomycorrhizal, NM = non-mycorrhizal. 

Species Nutritional 

mode 

No. of 

quadrat 

samples 

Percent 

occurrence (%) 

Proportional 

abundance (%) 

Proportional 

biomass (%) 

Amylascus herbertianus EM 1 2.78 0.09 0.38 

Arcangeliella spa EM 1 2.78 0.18 0.04 

Aroramyces sp 1a EM 3 8.33 0.36 0.28 

Austrogautieria ‘7-ridges’a EM 1 2.78 0.98 2.50 

Austrogautieria ‘aff costata’a EM 1 2.78 0.09 0.09 

Austrogautieria clelandii EM 3 8.33 1.24 0.49 

Austrogautieria manjimupana EM 1 2.78 0.44 1.27 

Castoreum radicatum EM 3 8.33 0.44 1.72 

Chamonixia mucosa EM 4 11.11 0.62 0.70 

Chamonixia vittatispora EM 3 8.33 2.66 2.19 

Chondrogaster sp 1a EM 1 2.78 0.09 0.11 

Chondrogaster sp 2a EM 3 8.33 1.07 2.61 

Chondrogaster sp 3 ‘winged’a EM 1 2.78 0.27 0.40 

Cortinarius basorapulus EM 1 2.78 0.44 0.93 

Cortinarius caesibulga EM 2 5.56 0.62 4.01 

Cortinarius cinereoroseolus EM 2 5.56 0.80 0.55 

Cortinarius kaputarensis EM 1 2.78 0.36 0.72 

Cortinarius maculobulga EM 2 5.56 0.98 1.33 

Cortinarius ‘mustard green gleba’a EM 1 2.78 0.09 0.01 

Cortinarius nebulobrunneus EM 1 2.78 0.62 2.28 

Cortinarius sinapivelus EM 1 2.78 0.27 0.51 

Cortinarius sp 1a EM 3 8.33 1.24 1.80 

Cortinarius sp 2a EM 1 2.78 1.15 2.28 

Cortinarius sp 3a EM 1 2.78 0.09 0.30 

Cortinarius sp 5a EM 1 2.78 1.69 0.34 

Cystangium ‘aff sessile’a EM 1 2.78 0.98 0.18 

Cystangium balpineum EM 2 5.56 0.27 0.44 

Cystangium luteobrunneum EM 1 2.78 0.09 0.16 

Cystangium phymatodisporum EM 2 5.56 0.18 0.04 

Cystangium seminudum EM 4 11.11 1.87 0.67 

Cystangium sessile EM 3 8.33 0.53 0.11 

Cystangium sparsum EM 1 2.78 0.27 0.11 

Cystangium trappei EM 2 5.56 0.62 0.54 

Dermocybe globuliformis EM 8 22.22 18.03 7.78 

Dermocybe sp 1a EM 1 2.78 0.18 0.07 

Descomyces albellus EM 4 11.11 1.60 0.26 

Descomyces albus EM 6 16.67 1.95 0.26 
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Species Nutritional 

mode 

No. of 

quadrat 

samples 

Percent 

occurrence (%) 

Proportional 

abundance (%) 

Proportional 

biomass (%) 

Descomyces ‘dougmillsii’ a EM 3 8.33 0.62 0.08 

Descomyces  ‘jumpponenii’ a EM 1 2.78 0.18 0.04 

Descomyces ‘lebelii’ a  EM 9 25.00 2.93 0.93 

Descomyces ‘miresii’ a  EM 1 2.78 0.62 0.18 

Descomyces  ‘parviretifer’ a  EM 1 2.78 0.44 0.03 

Dingleya ‘cf geometrica’a EM 1 2.78 0.18 0.04 

Dingleya verrucosa EM 1 2.78 0.09 0.21 

Endogone spa EM/NM 1 2.78 0.09 0.00 

Gallacea sp 1a EM 1 2.78 0.09 0.19 

Gallacea sp 2a EM 1 2.78 0.09 0.08 

Gymnohydnotrya ellipsospora EM 1 2.78 0.09 0.13 

Gymnomyces ‘aff eburneus’a EM 1 2.78 0.09 0.10 

Gymnomyces ‘aff glarea’a EM 2 5.56 0.44 0.26 

Gymnomyces ‘aff pallidus’a EM 1 2.78 0.09 0.05 

Gymnomyces ‘aff westresii’a EM 1 2.78 0.09 0.07 

Gymnomyces eburneus EM 4 11.11 4.80 3.66 

Gymnomyces eildonensis EM 3 8.33 1.51 2.27 

Gymnomyces glarea EM 2 5.56 0.27 0.09 

Gymnomyces pallidus EM 1 2.78 0.09 0.12 

Gymnomyces ‘rosy pink’a EM 1 2.78 1.42 1.72 

Gymnomyces spa EM 1 2.78 0.09 0.03 

Hydnangium carneum EM 5 13.89 1.87 1.57 

Hydnangium ‘parvisporum’ a EM 4 11.11 1.24 0.64 

Hydnoplicata convoluta EM 6 16.67 1.51 1.80 

Hysterangium ‘aff gardneri’a EM 1 2.78 0.18 0.12 

Hysterangium ‘aff inflatum’a EM 2 5.56 0.80 2.01 

Hysterangium ‘agglutinatum’ a EM 8 22.22 5.95 11.24 

Hysterangium aggregatum EM 1 2.78 0.09 0.39 

Hysterangium ‘bubble weed’a EM 1 2.78 0.09 0.10 

Hysterangium ‘golden inflated’a EM 5 13.89 2.84 6.22 

Hysterangium ‘green inflated’a EM 1 2.78 0.09 0.02 

Hysterangium inflatum EM 1 2.78 0.09 0.12 

Hysterangium ‘multi layer rosy’a EM 2 5.56 0.27 0.11 

Hysterangium ‘non-gel’a EM 1 2.78 0.27 0.74 

Hysterangium ‘olive not rosy’a EM 2 5.56 0.98 0.79 

Hysterangium ‘rosy’a EM 5 13.89 2.31 1.72 

Hysterangium ‘smooth’a EM 1 2.78 0.36 0.28 

Hysterogaster ‘apricot on drying’a EM 1 2.78 0.62 0.09 

Hysterogaster ‘descogasteroides’ a EM 4 11.11 2.04 0.35 

Hysterogaster rodwayii EM 1 2.78 2.58 0.63 

Hysterogaster spa EM 1 2.78 0.36 0.14 

Hysterogaster tasmanicus EM 1 2.78 0.09 0.03 
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Species Nutritional 

mode 

No. of 

quadrat 

samples 

Percent 

occurrence (%) 

Proportional 

abundance (%) 

Proportional 

biomass (%) 

Leucogaster rubescens EM 1 2.78 0.80 0.43 

Malajczukia fusispora EM 1 2.78 0.18 0.44 

Mesophellia angustispora EM 2 5.56 0.27 0.57 

Mesophellia elelandii EM 1 2.78 1.69 6.80 

Nothocastoreum sp 1a EM 1 2.78 0.44 0.47 

Octaviania sp 1a EM 1 2.78 0.09 0.05 

Octaviania sp 2a EM 1 2.78 0.36 0.87 

Pisolithus hypogaeus EM 1 2.78 0.09 0.11 

Protoglossum sp 1a EM 1 2.78 0.27 0.17 

Quadrispora oblongispora EM 2 5.56 0.27 0.20 

Quadrispora sp 1 ‘aff tubercularis’a EM 1 2.78 0.27 0.41 

Russula ‘aff pilosella’a EM 6 16.67 0.71 1.28 

Russula ‘aff pumicoidea’a EM 1 2.78 0.62 0.37 

Russula albobrunnea EM 2 5.56 0.18 0.09 

Russula brunneonigra EM 1 2.78 0.27 1.34 

Russula sinuata EM 1 2.78 0.53 0.87 

Scleroderma densum EM 4 11.11 0.71 1.46 

Scleroderma paradoxum EM 1 2.78 0.27 0.24 

Setchelliogaster sp 1a EM 1 2.78 0.18 0.02 

Setchelliogaster sp 2a EM 1 2.78 0.27 0.09 

Timgrovea reticulata EM 1 2.78 0.18 0.03 

Unknown 1a unknown 2 5.56 0.44 0.54 

Zelleromyces aff ‘mattrappei’a EM 7 19.44 0.89 0.48 

Zelleromyces ‘aff rosy 2’a EM 1 2.78 0.09 0.06 

Zelleromyces ‘aff subamyloideus’a EM 1 2.78 0.27 0.46 

Zelleromyces ‘brown gleba 1’a EM 1 2.78 0.27 0.28 

Zelleromyces ‘brown gleba 2’a EM 1 2.78 0.53 0.55 

Zelleromyces claridgei EM 3 8.33 0.53 0.31 

Zelleromyces daucinus EM 2 5.56 1.24 0.29 

Zelleromyces ‘golden turf’a EM 1 2.78 0.09 0.21 

Zelleromyces ‘lebelii’ a EM 1 2.78 0.27 0.12 

Zelleromyces majus EM 1 2.78 0.09 0.20 

Zelleromyces microsporus EM 2 5.56 0.18 0.13 

Zelleromyces ‘orange & white’a EM 4 11.11 0.98 0.51 

Zelleromyces ‘rosy’a EM 1 2.78 1.07 0.75 

Zelleromyces sp a EM 3 8.33 0.36 0.11 

Zelleromyces ‘spiny spore’a EM 1 2.78 0.09 0.13 

Zelleromyces striatus EM 2 5.56 0.62 0.20 

Zelleromyces ‘vittatus’ a EM 6 16.67 1.07 0.49 

a Undescribed species. 

b Dry weight not recorded for one of these two collections. 
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Appendix 4. Spore morphotype image gallery: guide to identification of macrofungal 
spores in swamp wallaby faecal pellets.
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Appendix 5. Occurrence of macrofungal taxa detected in swamp wallaby faecal pellet 
samples (N = 196) in eucalypt-dominated forest over two seasons (summer and winter). 
Taxa occurring in more than 20% of samples indicated in bold type. 

Taxon No. of 

samples 

Total frequency of 

occurrence (%) 

Epigeous (mushroom-like) taxa 92 54.8 

Agariceae 4 54 32.1 

Agariceae 5 8 4.8 

Agariceae 6 10 6.0 

Agaricus / Panaeolus 5 3.0 

Ascomycete 8 4.8 

Boletellus 1 13 7.7 

Boletellus 2 5 3.0 

Boletellus 3 4 2.4 

Boletoid 1 7 4.2 

Boletoid 2 13 7.7 

Cortinarius 14 1 0.6 

Cortinarius 6 2 1.2 

Descolea 3 1.8 

Entolomataceae 1 0.6 

Tylopilus 11 6.5 

Sequestrate (truffle-like) taxa 164 97.6 

Agariceae 3 6 3.6 

Aroramyces 3 1 0.6 

Austrogautieria 1 1 0.6 

Austrogautieria 3 4 2.4 

Austrogautieria 5 1 0.6 

Austrogautieria 7 7 4.2 

Austrogautieria aff manjimupana 1 0.6 

Austrogautieria clelandii 6 3.6 

Boletoid 3 4 2.4 

Chamonixia 68 40.5 

Cortinarius 1 3 1.8 

Cortinarius 11 23 13.7 

Cortinarius 4 1 0.6 

Descomyces aff lebelii 3 1.8 

Glomus 14 8.3 

Hydnoplicata convoluta 2 1.2 

Hysterangium 1 1 0.6 

Hysterangium 2 2 1.2 

Hysterangium 3 20 11.9 

Labyrinthomyces group 6 3.6 

Mesophelliaceae 6 3.6 
Octaviania 1 3 1.8 

Octaviania 2 / Hydnangium 95 56.5 
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Taxon No. of 

samples 

Total frequency of 

occurrence (%) 

Quadrispora musispora 2 1.2 

Russula aff brunneonigra 22 13.1 

Russuloid 1 37 22.0 

Russuloid 3 14 8.3 

Russuloid 4 1 0.6 

Russuloid 5 6 3.6 

Russuloid 6 57 33.9 

Russuloid 7 24 14.3 

Scleroderma 1 6 3.6 

Scleroderma 3 3 1.8 

Scleroderma aff paradoxum 2 1.2 

Zelleromyces microsporus 2 1.2 

Zelleromyces striatus 3 1.8 

Unclassifiable taxa 104 61.9 

Cortinariaceae 1 6 3.6 

Cortinariaceae 2 7 4.2 

Cortinariaceae 4 40 23.8 

Cortinarius 10 42 25.0 

Cortinarius 13 4 2.4 

Cortinarius 15 33 19.6 

Cortinarius 2 22 13.1 

Cortinarius 7 12 7.1 

Cortinarius 8 5 3.0 

Cortinarius 9 1 0.6 

Scleroderma / Pisolithus 3 1.8 

Unknown 1 2 1.2 
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Appendix 6. Sequestrate macrofungal species and spore types included in genera or 
higher taxonomic groups for comparative analysis of swamp wallaby diet and sporocarp 
community. 

Genus or higher taxon 

group 

Species or spore type Record Source 

Agariceae Agariceae 3 Diet 
Amylascus Amylascus herbertianus Survey 

Arcangeliella Arcangeliella sp Survey 

Aroramyces Aroramyces 3 Diet 

 Aroramyces sp 1 Survey 

 Aroramyces sp 2 Survey 

Austrogautieria Austrogautieria 1 Diet 

 Austrogautieria 2 Diet 

 Austrogautieria 3 Diet 

 Austrogautieria 5 Diet 

 Austrogautieria 6 Survey 

 Austrogautieria 7 Survey 

 Austrogautieria ‘aff costata’ Survey 

 Austrogautieria ‘aff manjimupana’  Diet 

 Austrogautieria clelandii Survey & Diet 

 Austrogautieria costata Survey & Diet 

 Austrogautieria manjimupana Survey 

Boletoid Boletaceae Survey 

 Boletoid 3 Diet 

Castoreum Castoreum radicatum Survey 

Chamonixia Chamonixia  Diet 

 Chamonixia mucosa Survey 

 Chamonixia vittatispora Survey 

Chondrogaster Chondrogaster sp 1 Survey 

 Chondrogaster sp 2 Survey 

 Chondrogaster sp 3 Survey 

Cordyceps Cordyceps rodwayi Survey 

Cortinarius Cortinarius 1 Diet 

 Cortinarius 11 Diet 

 Cortinarius 12 Diet 

 Cortinarius 4 Diet 

 Cortinarius 5 Diet 

 Cortinarius ‘aff walpolensis’ Survey 

 Cortinarius argyrionus Survey 

 Cortinarius basorapulus Survey 

 Cortinarius caesibulga Survey 

 Cortinarius cinereoroseolus Survey 

 Cortinarius kaputarensis Survey 

 Cortinarius maculobulga Survey 

 Cortinarius nebulobrunneus Survey 

 Cortinarius sinapivelus Survey 

 Cortinarius sp 16 Survey 
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Genus or higher taxon 

group 

Species or spore type Record Source 

 Cortinarius sp 18 Survey 

 Cortinarius sp 19 Survey 

 Cortinarius sp 20 Survey 

 Cortinarius sp 21 Survey 

 Cortinarius sp 22 Survey 

 Cortinarius sp 25 Survey 

Dermocybe Dermocybe globuliformis Survey 

 Dermocybe sp 1 Survey 

Descomyces Descomyces (aff lebelii) Diet 

 Descomyces albellus Survey 

 Descomyces albus Survey 

 Descomyces ‘dougmillsii’ Survey 

 Descomyces ‘jumpponenii’ Survey 

 Descomyces ‘latisporus’ Survey 

 Descomyces ‘lebelii’ Survey 

 Descomyces ‘miresii’ Survey 

 Descomyces ‘parviretifer’ Survey 

 Descomyces ‘psilosporus’ Survey 

 Descomyces sp 2 Survey 

 Descomyces sp 3 Survey 

Dingleya Dingleya ‘cf geometrica’ Survey 

 Dingleya verrucosa Survey 

Endogone Endogone sp Survey 

Gallacea Gallacea sp 1 Survey 

 Gallacea sp 2 Survey 

Glomeraceae Glomus sp Diet 

 Glomus ellipsoid Diet 

Gymnohydnotrya Gymnohydnotrya ellipsospora Survey 

Hydnangium Hydnangium carneum Survey 

 Hydnangium ‘parvisporum’ Survey 

 Hydnangium sp 1 Survey 

Hydnoplicata Hydnoplicata convoluta Survey & Diet 

 Hydnoplicata sp 1 Survey 

Hysterangium Hysterangium ‘aff gardneri’ Survey 

 Hysterangium ‘aff inflatum’ Survey 

 Hysterangium ‘agglutinatum’ Survey 

 Hysterangium aggregatum Survey 

 Hysterangium sp 1 Diet 

 Hysterangium sp 10 Survey 

 Hysterangium sp 11 Survey 

 Hysterangium sp 12 Survey 

 Hysterangium sp 2 Diet 

 Hysterangium sp 3 Diet 

 Hysterangium sp 4 Survey 

 Hysterangium sp 5 Survey 
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Genus or higher taxon 

group 

Species or spore type Record Source 

 Hysterangium sp 6 Survey 

 Hysterangium sp 7 Survey 

 Hysterangium sp 8 Survey 

 Hysterangium sp 9 Survey 

Hysterogaster Hysterangium sp 13 Survey 

 Hysterogaster ‘descogasteroides’ Survey 

 Hysterogaster H1307 Survey 

 Hysterogaster pogiesperma Survey 

 Hysterogaster rodwayii Survey 

 Hysterogaster sp Survey 

 Hysterogaster tasmanicus Survey 

Labyrinthomyces Labyrinthomyces sp Diet 

 Labyrinthomyces varius Survey 

Leucogaster Leucogaster Diet 

 Leucogaster rubescens Survey 

Mesophellioid Malajczukia fusispora Survey 

 Mesophellia angustispora Survey 

 Mesophellia elelandii Survey 

 Mesophellia rava Survey 

 Mesophelliaceae Diet 

 Nothocastoreum sp 1 Survey 

Octaviania / Hydnangium Octaviania 1 Survey & Diet 

 Octaviania 2 Survey 

 Octaviania 2 / Hydnangium Diet 

Pisolithus Pisolithus hypogaeus Survey 

Protoglossum Protoglossum sp 1 Survey 

Protubera Protubera ‘aff parvispora’ Survey 

Quadrispora Quadrispora ‘aff tubercularis’ Survey 

 Quadrispora sp 1 (musispora) Diet 

 Quadrispora oblongispora Survey & Diet 

Royoungia Royoungia boletoides Survey 

Russuloid Cystangium ‘aff sessile’ Survey 

 Cystangium ‘aff xanthocarpum’ Survey 

 Cystangium balpineum Survey 

 Cystangium clavatum Survey 

 Cystangium luteobrunneum Survey 

 Cystangium phymatodisporum Survey 

 Cystangium seminudum Survey 

 Cystangium sessile Survey 

 Cystangium sp Survey 

 Cystangium sparsum Survey 

 Cystangium trappei Survey 

 Gymnomyces ‘aff boranupensis’ Survey 

 Gymnomyces ‘aff eburneus’ Survey 

 Gymnomyces ‘aff glarea’ Survey 
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Genus or higher taxon 

group 

Species or spore type Record Source 

 Gymnomyces ‘aff pallidus’ Survey 

 Gymnomyces ‘aff westresii’ Survey 

 Gymnomyces aff wirrabarensis Survey 

 Gymnomyces eburneus Survey 

 Gymnomyces eildonensis Survey 

 Gymnomyces glarea Survey 

 Gymnomyces pallidus Survey 

 Gymnomyces sp 1 Survey 

 Gymnomyces sp 2 Survey 

 Gymnomyces sp 3 Survey 

 Gymnomyces wirrabarensis Survey 

 Russula ‘aff brunneonigra’ Diet 

 Russula ‘aff pilosella’ Survey 

 Russula ‘aff pumicoidea’ Survey 

 Russula albobrunnea Survey 

 Russula brunneonigra Survey 

 Russula sinuata Survey 

 Russuloid 1 Diet 

 Russuloid 2 Diet 

 Russuloid 3 Diet 

 Russuloid 4 Diet 

 Russuloid 5 Diet 

 Russuloid 6 Diet 

 Russuloid 7 Diet 

 Zelleromyces ‘aff maculatus’ Survey 

 Zelleromyces ‘aff mattrappei’ Survey 

 Zelleromyces ‘aff subamyloideus’ Survey 

 Zelleromyces claridgei Survey 

 Zelleromyces daucinus Survey 

 Zelleromyces ‘lebelii’ Survey 

 Zelleromyces majus Survey 

 Zelleromyces microsporus Survey & Diet 

 Zelleromyces sp 1 Survey 

 Zelleromyces sp 2 Survey 

 Zelleromyces sp 3 Survey 

 Zelleromyces sp 4 Survey 

 Zelleromyces sp 5 Survey 

 Zelleromyces sp 6 Survey 

 Zelleromyces sp 7 Survey 

 Zelleromyces sp 8 Survey 

 Zelleromyces sp 9 Survey 

 Zelleromyces striatus Survey & Diet 

 Zelleromyces ‘vittatus’ Survey 

Scleroderma Scleroderma 1 Diet 

 Scleroderma 2 Diet 
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Genus or higher taxon 

group 

Species or spore type Record Source 

 Scleroderma 3 Diet 

 Scleroderma 4 Diet 

 Scleroderma 5 Diet 

 Scleroderma ‘aff paradoxum’ Survey & Diet 

 Scleroderma densum Survey 

 Scleroderma paradoxum Survey 

 Scleroderma sheltonii Survey 

Setchelliogaster Setchelliogaster sp 1 Survey 

 Setchelliogaster sp 2 Survey 

 Setchelliogaster sp 3 Survey 

Timgrovea Timgrovea ferruginea Survey 

 Timgrovea reticulata Survey 

Unknown Unknown 1 Survey 
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Appendix 7. One-way analysis of similarity percentages (SIMPER) based on Bray Curtis 
similarity. Species contributions cumulating up to 90% of similarity are shown. 

Group Survey       
Average similarity: 33.57       
       
Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  
Russuloid     0.80  14.57   1.11    43.40 43.40  
Hysterangium     0.57   7.46   0.60    22.23 65.63  
Descomyces     0.54   5.13   0.61    15.28 80.91  
Cortinarius     0.31   1.45   0.31     4.33 85.24  
Hydnangium     0.23   0.77   0.22     2.29 87.53  
Dermocybe     0.23   0.73   0.22     2.16 89.70  
Hysterogaster     0.20   0.66   0.19     1.96 91.66  
       
Group Diet       
Average similarity: 56.26       
       
Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%  
Russuloid     1.00  22.23   4.48    39.51 39.51  
Octaviania / Hydnangium     0.80  13.55   1.25    24.08 63.59  
Chamonixia     0.71  10.12   0.97    17.98 81.57  
Hysterangium     0.37   2.70   0.38     4.80 86.37  
Cortinarius     0.37   2.41   0.38     4.29 90.66  
       
Groups Survey  &  Diet       
Average dissimilarity = 69.47       
       
 Group Survey Group Diet                                
Species     Av.Abund   Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Octaviania / Hydnangium         0.06       0.80    8.99    1.51    12.94 12.94 
Chamonixia         0.20       0.71    7.34    1.18    10.57 23.51 
Hysterangium         0.57       0.37    6.11    0.94     8.79 32.30 
Descomyces         0.54       0.03    5.42    1.02     7.80 40.10 
Cortinarius         0.31       0.37    4.88    0.86     7.02 47.12 
Glomus         0.00       0.34    3.70    0.68     5.32 52.45 
Scleroderma         0.14       0.26    3.61    0.64     5.20 57.65 
Mesophellioid         0.17       0.17    3.27    0.59     4.70 62.35 
 Group Survey Group Diet                                
Species     Av.Abund   Av.Abund Av.Diss Diss/SD Contrib% Cum.% 
Austrogautieria         0.17       0.23    3.18    0.65     4.58 66.93 
Russuloid         0.80       1.00    2.86    0.47     4.12 71.05 
Hydnangium         0.23       0.00    2.15    0.53     3.10 74.15 
Dermocybe         0.23       0.00    2.10    0.52     3.02 77.17 
Hydnoplicata         0.17       0.06    2.06    0.49     2.96 80.14 
Hysterogaster         0.20       0.00    2.04    0.48     2.93 83.07 
Agariceae         0.00       0.14    1.68    0.39     2.41 85.48 
Chondrogaster         0.14       0.00    1.51    0.38     2.18 87.66 
Labyrinthomyces         0.00       0.11    1.33    0.34     1.92 89.58 
Quadrispora         0.09       0.06    1.20    0.38     1.73 91.31 
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Appendix 8. R code used to calculate swamp wallaby generated dispersal curves of 
macrofungal spores (spore ‘dispersal kernels’) combining observed spore gut-retention 
times and distribution of displacement distances. Programmed by D. Haydon, D. Kerlin, 
and K. Vernes, with modifications by M. Tighe and M. Danks, in R (version 2.10.1, R 
Foundation for Statistical Computing 2009, downloaded from http://www.R-project.org 
on 14 Dec 2009). 

#Plot gut-passage rate 
data <- read.table("etWB.csv", header = TRUE, sep = ",") 
attach(data) 
t1<- c(First[1], X50.[1], X90.[1], X99.[1]) 
t2<- c(First[2], X50.[2], X90.[2], X99.[2]) 
t3 <- c(t1, t2) 
CE1 <-c(.01, .5, .9, .99) 
CE2 <-c(.01, .5, .9, .99) 
CE3 <- c(CE1, CE2) 
plot(t1, CE1, ylab="Proportion excreted", xlab = "time") 
line(t2, CE2) 
#Function to compare observed pattern with prediction from a gamma distribution 
criterion <- function(param){ 
cdf <- pgamma(t3, param[1], param[2]) 
 p <- diff(cdf) 
sum((diff(CE3)-p)^2/p) 
} 
# Optimization to find best gamma parameters                   
v1 <- optim(c(14, 0.5), criterion)    
x <- seq(0, 50, 0.001) 
plot(x, dgamma(x, v1$par[1], v1$par[2]), type = "l", ylab = "Excretion", xlab = "Time", main = " ", frame.plot = 
FALSE)  
### Distance matrix 
x11()  # Creates a new figure window 
### BELOW CODE REPEATED FOR EACH TRACKING PERIOD### 
travel <- read.table("WB4Feb08.csv", header = TRUE, sep = ",") 
attach(travel) 
timename<-time 
noRecords <- dim(travel)[1]     
delta_distance<-0 
delta_time<-0 
zz<-0 
k<-0; 
for (lagahead in 1:100) { #select values randomly and lag ahead between 1 and 300 steps - must be set 
according to number of points, and time between fixes - use as default 100 for 30 min fixes 
for (i in 1:50) #performs each selection of lagged pairs 50 times {   
      z1<-runif(1,1,(noRecords-lagahead));           
      z2<-trunc(z1); 
      k<-k+1; 
delta_distance[k] = sqrt((Easting[z2+lagahead]-Easting[z2])^2 + (Northing[z2+lagahead]-Northing[z2])^2) 
     delta_time[k] =(timename[z2+lagahead]-timename[z2])  
      }               
  } 
plot(delta_time/60, delta_distance) 
### Kernel Distribution 
kernel_dist<-0 
k<-0  #sets k to zero 
for (i in 1:10000){ 
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    k<-k+1; 
    xt<-rgamma(1, v1$par[1], v1$par[2])*60   
    it<-which(abs(delta_time-xt)==min(abs(delta_time-xt))) 
    kernel_dist[k]<-delta_distance[it] 
   } 
### Create a Spore Dispersal Kernel as a Histogram 
hist(kernel_dist) 
### Model Spore Dispersal as a Gamma Probability Distribution 
bestkfit <-fitdistr(kernel_dist, "gamma") 
x <- seq(0, max(kernel_dist), 0.01) 
xlim=c(0,1200) 
ylim=c(0,0.011) 
first<-plot(x, dgamma(x, bestkfit$estimate[1], bestkfit$estimate[2]), type = "l", xlim=xlim, ylim=ylim,ylab = 
"frequency", xlab = "Distance (m)", main = "spore dispersal",col=4) 
### Generate a summary (mean, min, max, etc.) of the Kernel Distribution 
summary(kernel_dist) 
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Appendix 9. Spore gut-retention time, swamp wallaby movement pattern, and spore 
dispersal kernel generated by a swamp wallaby for macrofungal spores. (a) Mean 
proportion of spores deposited in swamp wallaby faeces as a function of time since 
ingestion. (b) Distribution of GPS-tracked swamp wallaby displacement distances (lags 
of 100 fixes from origin, a randomly selected point) as a function of time since origin. 
Example shown is swamp wallaby #1, tracked in February 2008 at Newholme Field 
Station, northern New South Wales, Australia. (c) Dispersal kernel combining the spore 
gut-retention time distribution and the displacement distance distribution. (d) Dispersal 
curve fitted to a gamma distribution. 
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Appendix 10. Summary - Inoculum potential of ectomycorrhizal fungal spores deposited 
in swamp wallaby faecal pellets 

Effective spore dispersal relies upon the viability of spores deposited in faecal pellets. 

How passage through the swamp wallaby gut affects spore viability is unknown, so I 

established experiments to test the hypotheses (1) spores of truffle-like ECM fungi remain 

viable after passage through the swamp wallaby digestive tract and (2) digestion by the 

swamp wallaby enhances the mycorrhizal potential of EM fungal spores. The mycorrhizal 

effectiveness of spores of Hysterangium gardneri in swamp wallaby faecal pellets (captive 

swamp wallabies which had not consumed other EM sporocarps), and from uneaten 

basidiomes, on Eucalyptus nobilis seedlings was examined in a glasshouse experiment. 

Hysterangium species are commonly found in native and planted eucalypt forests (Beaton et 

al. 1985; Johnson 1994; Nouhra et al. 2008), form ectomycorrhizas with eucalypts 

(Malajczuk et al. 1987; Burgess et al. 1993; Lu et al. 1999; Reddell et al. 1999; Nouhra et al. 

2008), and produce truffle-like sporocarps which are found as spores in the diet of swamp 

wallabies (Vernes 2010). The results of the seedling inoculation experiment were 

inconclusive as all treatments (eaten spores, uneaten spores, and control) had similar, low, 

levels of root colonisation by Hysterangium, Coenococcum, and other, unidentified, EM 

fungi. Contamination among treatments in the glasshouse was considered to have obscured 

any treatment effects. Lab experiments to synthesize mycorrhizas of Hysterangium and 

Pisolithus and eucalypt germinants on agar media, and to variously test the metabolic activity 

or viability of eaten and uneaten Hysterangium spores using Tetrazolium and Flouricene-

diacetate stains were also unsuccessful.  

The inoculum potential of EM spores deposited in swamp wallaby faecal pellets therefore 

remains unknown, but some predictions can be made based upon the results of previous 

studies of mycophagous mammals. Studies on potoroids (Lamont et al. 1985; Claridge et al. 
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1992; Reddell et al. 1997), peramelids (Reddell et al. 1997), and rodents (Reddell et al. 1997; 

Colgan and Claridge 2002; Caldwell et al. 2005) have demonstrated that EM spores remain 

viable, and for some EM fungi taxa mycorrhizal effectiveness is enhanced (Lamont et al. 

1985) by passage through the mammalian gut and subsequent deposition in faeces. I therefore 

consider it likely that EM spores remain able to form associations with host plant roots after 

passage through the swamp wallaby gut. Nevertheless, clarification of the effect on EM 

spores of gut-passage in the swamp wallaby, and other mycophagous mammals is needed.  
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Appendix 11. Summary - Online database for truffle-like fungi and mycophagous 
mammal information (TRUFFMO) 

Difficulties with accurate identification of macrofungal spores in mammal diets has 

hampered studies of mammal mycophagy, and limited accumulation and sharing of 

knowledge. This is certainly the case in Australia, where macrofungi and, particularly, truffle-

like fungi, are poorly known. A major impediment is the lack of an accessible, additive, 

central database (data is currently scattered in disparate researcher and organisational datasets, 

collections and student theses) to advance information sharing and collaborative research 

across disciplines. To address this need, an online database, dubbed ‘TruffMO’, is in 

development, in collaboration with ArmidaleIT (Armidale, Australia), Dr Teresa Lebel (Royal 

Botanic Gardens Melbourne, Australia), and Dr Karl Vernes (Ecosystem Management, 

University of New England, Armidale, Australia). New and existing data will form the basis 

of this database to facilitate accurate identification of fungal spores and taxa, standardisation 

of methods, and provision of study site information. Ecological and taxonomic information, 

such as fungal sporocarp and faecal material collection data, images, descriptive information, 

spore types and identifications, and site information will also be included. This will increase 

potential for comparisons between studies and encourage collaboration and information 

sharing. The database is currently in the development and testing phases. In the final stage the 

database will be further developed for the web for worldwide access, including data uploads 

from other research teams. The information database will be a significant tool for 

communication of results, disseminating information, and facilitating collaboration between 

researchers, land managers, and community groups with benefits beyond the life of this 

project. 
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