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Abstract

In vitro studies and mathematical models are now being widely used to study the underlying
mechanisms driving the expansion of cell colonies. This can improve our understanding of
cancer formation and progression. Although much progress has been made in terms of
developing and analysing mathematical models, far less progress has been made in terms
of understanding how to estimate model parameters using experimental in vitro image-
based data. To address this issue, a new approximate Bayesian computation (ABC) algo-
rithm is proposed to estimate key parameters governing the expansion of melanoma cell
(MM127) colonies, including cell diffusivity, D, cell proliferation rate, A, and cell-to-cell adhe-
sion, g, in two experimental scenarios, namely with and without a chemical treatment to
suppress cell proliferation. Even when little prior biological knowledge about the parameters
is assumed, all parameters are precisely inferred with a small posterior coefficient of varia-
tion, approximately 2—12%. The ABC analyses reveal that the posterior distributions of D
and g depend on the experimental elapsed time, whereas the posterior distribution of A
does not. The posterior mean values of D and g are in the ranges 226268 um®h~", 311—
351 um?h~" and 0.23-0.39, 0.32-0.61 for the experimental periods of 0—24 h and 2448 h,
respectively. Furthermore, we found that the posterior distribution of g also depends on the
initial cell density, whereas the posterior distributions of D and A do not. The ABC approach
also enables information from the two experiments to be combined, resulting in greater pre-
cision for all estimates of D and A.

Author Summary

Quantifying the underlying parameters that drive the expansion of melanoma cell colonies
such as the cell diffusivity, cell proliferation rate and cell-to-cell adhesion strength can
improve our understanding of melanoma biology and its response to treatment. We com-
bine a simulation-based model of collective cell spreading with a novel Bayesian computa-
tional algorithm to estimate these parameters from carefully chosen summaries of
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collective cell image data and to quantify their associated uncertainty across different
experimental conditions. Our summarisation of the image data leads to precise estimates
for all parameters. Our analysis reveals that the cell diffusivity and the cell-to-cell adhesion
strength estimates depend on experimental elapsed time. Furthermore, the cell-to-cell
adhesion strength estimate appears to depend on the initial cell density, whereas the cell
proliferation rate estimate is approximately the same over different experimental
conditions.

Introduction

Skin cancer consists of two groups: melanoma and non-melanoma. Melanoma is the least com-
mon, approximately 5% of all skin cancer occurrences, but it is responsible for most skin cancer
deaths [1]. It is estimated that 132,000 new cases of melanoma are reported worldwide each
year, with more than 12,500 of these cases reported in Australia [2]. During the early stage of
the disease, melanoma colonies grow and spread laterally within the epidermis. Thus, quantify-
ing the underlying mechanisms that drive the expansion of melanoma cell colonies such as
motility, proliferation, and cell-to-cell adhesion can improve our understanding of melanoma
biology and its response to treatment.

Although much progress has been made in terms of developing and analysing mathematical
models of expanding cell colonies, far less progress has been made in terms of understanding
how to estimate model parameters including the cell diffusivity, D, the cell proliferation rate, 4,
and the cell-to-cell adhesion, g, from experimental in vitro image-based data. Obtaining precise
estimates of D, g and A is important for developing a systematic approach to assessing the effec-
tiveness of a potential treatment [3]. Several studies have investigated the in vitro expansion of
cell colonies using partial differential equations [4-7]. These approaches are limited in that
they provide point estimates, and the uncertainty in the estimate is not quantified. An alterna-
tive modelling approach uses discrete, individual-based models [8-10], which can incorporate
several important biological factors such as cell heterogeneity [11]. Discrete models can also
produce discrete image-based and video-based information which is ideally suited to collabora-
tive investigations involving applied mathematicians and experimental cell biologists. How-
ever, the likelihood functions for these discrete models are generally intractable, so standard
statistical inferential methods for these models are not applicable.

To overcome these issues, an approximate Bayesian computation (ABC) approach is devel-
oped to jointly infer the values of D, g and A from a discrete stochastic model describing the
expansion of cell colonies. ABC is a well established method that has been successfully applied
in a wide range of areas such as population genetics [12], infectious diseases [13, 14], astronom-
ical model analysis [15] and cell biology [16]. Generally, ABC approximates the likelihood
function by model simulations, the outcomes of which are compared with the observed data
[16, 17]. In this paper, we propose a new ABC algorithm that is shown to be more efficient
than state-of-the-art algorithms available in the literature [17-20] by developing a new sequen-
tial Monte Carlo approach. ABC requires the specification of a set of summary statistics to
compare the observed and simulated data. Each of our experimental datasets is initially sum-
marised using a high dimensional vector of summary statistics (hereafter referred to as the
pilot summary statistics). Unfortunately, ABC is not able to handle high dimensional summary
statistics in an efficient manner [21], so we adopt a semi-automatic approach [22] to reduce
the dimension of the pilot summary statistics. Using a synthetically generated dataset, we
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demonstrate that combining our new ABC algorithm and the derived set of summary statistics
can precisely recover all parameters.

We apply this procedure to the experimental data of human malignant melanoma cells
(MM127) in a barrier assay [23] in two different experimental scenarios: (1) Mitomycin-C is
applied as a treatment to suppress cell proliferation, and (2) no treatment is applied. We aim to
obtain a joint approximate posterior distribution for D, g and A for different combinations of
initial cell densities, C(0), and experimental times, T, in each scenario. Through the ABC analy-
ses, the associated uncertainty in the parameter values is quantified and interpreted in terms of
the coefficient of variation (CV) and probability intervals of the posterior distribution. Thus,
our work adds significant extra information about model parameters relative to the previous
analysis [23], which obtained point estimates of D, g and A separately. In the previous analysis
[23], D and g were estimated only from the experiments with cell proliferation suppressed.

Previous approaches often assume that these parameter values are the same over different
experimental conditions [3, 23, 24]. The findings from this study show that the posterior esti-
mate of D appears to depend on experimental time and weakly depend on the initial cell den-
sity, which is consistent with the results reported in Vo et al. [16] for 3T?3 fibroblast cells. A
similar trend of dependency is also found for g; but in contrast the posterior estimates of 4
remain similar over time. These results suggest that a more complicated model might be war-
ranted. However, this finding could not have been achieved without first exploring the suitabil-
ity of the standard model under consideration here.

The experimental data analysed in Vo et al. [16] also consists of two separate scenarios, with
and without Mitomycin-C pre-treatment. Vo et al. [16] demonstrate that A cannot be identified
by leading edge data solely, unless prior information about D (obtained from the experiment
with the treatment applied) is incorporated via a sequential Bayesian learning approach. In this
paper, we show that all parameters (including 4) can be estimated precisely through the inclu-
sion of additional summary statistics (cell densities and percentages of isolated cells) even
when only vague prior information is specified for parameter values. Nonetheless, we show
that the Bayesian sequential learning approach [16] is still useful here as we are able to obtain
greater precision of the parameter values.

Materials and Methods
Experimental data and image analysis

The details of the experimental method were described previously [23]. Briefly, monolayers of
human malignant melanoma cells (MM127, [25, 26]) were cultured in 24-well tissue culture
plates, where each well had a diameter of 15.6 mm. Experiments were conducted in two differ-
ent experimental scenarios: (1) with Mitomycin-C pre-treatment to suppress cell proliferation,
and (2) without Mitomycin-C pre-treatment. Mitomycin-C, an alkylating antibiotic, is used to
block DNA and RNA replication and protein synthesis. Thus, given an appropriate concentra-
tion, Mitomycin-C inhibits mitosis and proliferation of several cell types [27]. For the mela-
noma experiments here, 10 pg ml~' Mitomycin-C was added to the cells one hour prior to
transfer to the wells [23].

To initiate each experiment, either 20,000 or 30,000 cells were approximately evenly distrib-
uted within a circular barrier, of diameter 6.0 mm, located at the centre of the well. After allow-
ing the cells to attach for 1 h, the barriers were lifted and population-scale images were
recorded at either 24 h or 48 h, independently. To extract detailed information about the loca-
tion of individual cells in the population, high magnification images of a transect across the
centre of the cell population were also acquired, where the nuclei were stained with Propidium
Iodide (PI). Furthermore, each experimental scenario, for each initial cell density and each
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termination time, was repeated three times. Thus, a 2 x 2 x 2 balanced experimental design
was conducted with three replicates, producing a total of 24 independent experimental images
of expanding cell colonies and the corresponding transect images.

From preliminary analysis, we note that cell colonies maintain an approximately circular
shape during the experiments. Thus, for each population-scale image, which shows the spatial
expansion of the entire melanoma cell colony, we detect the position of the leading edge, then
estimate the radius of the colony by converting the area enclosed by the leading edge to the
equivalent circular radius, R, using a segmentation algorithm written with the Matlab Image
Processing Toolbox [16, 28] (Table S1 in S1 Text). We use the exact same edge detection algo-
rithm for both our experimental data and the images produced by the discrete simulation
model described in the next section. Images in Fig 1A-1C show the entire expanding cell colo-
nies for the 30,000 initial cell experiments at time 0 h and 48 h where cells were pre-treated
with Mitomycin-C, and 48 h without the treatment, respectively, together with the estimated
leading edge superimposed.

To extract cell densities and measure cell clustering, we mapped the position of the cells to a
square lattice with spacing A = 18 um (Fig 1H and 1I), which corresponds to an average diame-
ter of the cell nucleus [23]. For each experiment, we analyse six sub-regions along a transect
image (Fig 1G). Each sub-region has size 700 x 500 um or 39 x 28 lattice sites. We then count
the number of cells in each sub-region, {¢,}’_,, together with the proportion of isolated cells,

{p.},_,. A cell is identified as isolated if all of its nearest neighbours (north, south, east and
west) are unoccupied. For each experiment at each initial cell density and termination time, at
each sub-region, we average c; and p; over three replicates (Tables S2 and S3 in SI Text).

Summaries of {¢,},_, and {p,}_, (average over the three replicates) for experiments initia-
lised with 20,000 cells are given in Fig 2. We observe that, for experiments where cells were not
pre-treated with Mitomycin-C (Fig 2B), {c,}; , increases significantly over time, whereas the
differences in {c,}; , for the corresponding experiments (Fig 2A), where cell proliferation was
suppressed, are minimal. Furthermore, {p,}; , (Fig 2C and 2D) appear to decrease over time
which suggests that melanoma cells possibly form more clusters as the experiments proceed.
These trends are consistent with previous research [23], which shows that cell-to-cell adhesion
plays an important role in the melanoma expanding colonies.

Discrete stochastic model

To describe the expansion of a single layer of melanoma cell colonies, we employ a discrete lat-
tice based model that incorporates cell migration (unbiased random walk), cell proliferation
and cell-to-cell adhesion. The discrete model here is similar to the model used in [9, 16, 23].
We incorporate a volume exclusion process and realistic crowding effects [8, 9, 29], so each lat-
tice site can be occupied by at most one agent.

To simulate the experiments, we use a two-dimensional square lattice of size 867 x 867,
with lattice spacing A = 18 pm, so that the width of the lattice corresponds to the diameter of
the well, 15.6 mm (15600 um/18 um = 867). Let C(t) be the number of agents in the discrete
model at time ¢, P,,, € [0, 1] be the probability that an isolated agent will attempt to step a dis-
tance A within a time step of duration 7, and P, € [0, 1] represent the probability that an agent
will attempt to proliferate and deposit a daughter within a time step of duration 7. The strength
of cell-to-cell adhesion is represented by g € [0, 1].

Initially, C(0) agents (20,000 or 30,000 agents) are placed randomly inside a circle which has
a radius of 177 lattice sites, corresponding to the mean radius of the experimental observations
at time ¢ = 0 h. We use an approximate random sequential update (RSU) algorithm [30, 31] to
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Experimental

Discrete model

Fig 1. Experimental data, discrete model simulations and image analysis. Subfigures A-C correspond to experimental images of entire melanoma cell
colonies for 30,000 cell experiments at time 0 h, 48 h in Scenario 1 (with Mitomycin-C pre-treatment) and 48 h in Scenario 2, respectively, with the detected
leading edges superimposed (red curve). The scale bar in A represents 2 mm. Subfigures D—F are the snapshots of the discrete models with the same
experimental condition as A—C. Subfigure G shows the positions of six sub-regions (red rectangles) in a simulated experiment, each red rectangle contains
39 x 28 lattice sites. An experimental snapshot which shows positions of individual cells, is presented in subfigure H. This image is from a 30,000 cell

experiment, terminated at 48 h, in Scenario 1. The scale bar in H corresponds to 50 um. The cell positions are then mapped to a square lattice in subfigure |
with blue dots identifying the isolated cells.

doi:10.1371/journal.pchi.1004635.g001

perform the simulations. To step from time ¢ to time ¢ + 7, C(t) agents are sampled, with
replacement, and given the opportunity to move with probability P,, x (1 — q)", where 0 <

n < 4 is the number of occupied nearest neighbour sites. If an agent is at position (x, ¥) and has
an opportunity to move, it will attempt to step to either (x + A, y) or (x, y £ A), with each target

site chosen with equal probability. The higher the value of ¢, the more difficult it is for an agent
to move away from its neighbours.
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Fig 2. Cell counts and percentages of isolated cells. Results correspond to experiments initiated with 20,000 cells. Subfigures A—B, C-D show the cell
counts and the percentages of isolated cells for the six sub-regions after averaging over the three replicates, for the experiments with and without Mitomycin-

C pre-treatment, respectively. The dashed line (circle markers), the solid line (triangle markers) and the dashed dotted line (square markers) correspond to
the experiment at initial time, 0 h, terminated at 24 h and 48 h, respectively.

doi:10.1371/journal.pcbi.1004635.9002

A similar mechanism is employed for proliferation events. A proliferative agent at position
(x, y) will attempt to deposit a daughter agent at (x + A, y) or (x, y £ A), with each target site
chosen with equal probability. Since the model is an exclusion process, any attempted motility
or proliferation event that would place an agent on an occupied site is aborted (S1 Text, Algo-
rithm S1). We do not consider any death mechanism in this model since there was no evidence
of any cell death in the experiment [23]. Given the termination time, T (24 h or 48 h), the
model requires T/7 time steps.

The cell expanding colonies are governed by three parameters (P, g, P,,). These parameters
are related to the cell diffusivity, D, and the proliferation rate, 1, by D = P,,, A*/4tand A = P/,
respectively [29], with A and 7 set fixed. In this work, we apply our new ABC algorithm to
obtain joint posterior distributions for (P,,,, g, P,), then use these relationships and the values
of A and 1, to rescale posterior distributions of P,, and P, into posterior distributions of D and
A, respectively.

We note that the RSU algorithm is an approximation of the exact, continuous time Gillespie
algorithm [32]. The value of the time duration 7 is a trade-off between the accuracy of the
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approximation and the computational time to simulate the experiments. To choose a suitable
value for 7, we perform 100 model simulations using the same diffusion coefficient D = 220
um>h ", obtained with different pairs of parameters (7 = 0.1 h, P,, = 0.2716), (r=0.08 h, P,,, =
0.2173), (= 0.06 h, P,, = 0.1630), (7 = 0.04h, P,, = 0.1086) and (r = 0.02 h, P, = 0.0543). We
then compare the plots of the probability density of the resulting radii, percentages of isolated
cells and total number of cells in six sub-regions. We found that there is a negligible difference
between results from simulations with 7= 0.04 h and 7 = 0.02 h. This means that 7=0.04 h is
small enough to produce reasonably accurate simulations. Therefore, for all model simulations
hereafter, we use 7 = 0.04 h. Snapshots of the discrete stochastic models initialised with 30,000
agents and termination time at 0 h, 48 h in Scenario 1, and 48 h in Scenario 2 are shown in Fig
1D-1F, respectively.

In this paper, we do not have any measurement for the uncertainty in C(0). Thus, all of the
simulations from the discrete models use the same initial values of C(0), i.e. 20,000 cells or
30,000 cells. However, if we have this measurement, we can easily incorporate it in the ABC
algorithms by drawing the value of C(0) from its distribution before proceeding to simulate a
realisation of the model.

Approximate Bayesian computation

The discrete models described above can incorporate realistic cell behaviour. However, their
likelihood functions are not available in an analytical form and are not computationally tracta-
ble, so standard statistical inferential methods for these models are not applicable. Combining
ABC and the discrete stochastic model is a promising approach since ABC bypasses the evalua-
tion of the likelihood by a simulation-based procedure [12, 17]. The aim of the ABC approach
is to find the joint approximate posterior distributions, which are the distributions of the
unknown parameters given the observed summarisation of the data and the prior information.
All inferences about the parameters including point estimates and probability intervals are
made from the posterior distributions.

Let yops and g, represent the observed and the simulated data, 6 = (P,,,, g, P,,) represent the
vector of unknown parameters and 71(6) be the prior distribution for 6. We define a distance
metric p which is a function of ¥4 and Y, p = p(Vobs> Vsim)- ABC approaches consist of four
major steps: sampling a proposed parameter 6", simulating data as per the observed data struc-
ture from the model with 6%, comparing y.;,,, with y,, by computing p = p(¥,ps Vsim) and
accepting the proposed 0° if p(Jops> Vsim) < €, where € > 0 is a tolerance value. The accepted
sample of parameter values forms the approximation of the posterior distribution of the model
parameters. The choice of € is a trade-off between accuracy and computational effort. In prac-
tice, different ABC algorithms have different approaches to sample the values of 6.

ABC rejection is the simplest ABC algorithm, which generally samples 68" from the prior dis-
tribution. This algorithm is easy to implement and is embarrassingly parallel. However, for
complex models where the prior distribution is substantially different from the posterior, this
approach results in low acceptance rates and is computationally inefficient. Vo et al. [16]
employed the ABC rejection algorithm to estimate D and A, using the leading edge data of 3T3
fibroblast cell populations. This study samples a large number of proposed parameters from
the prior, each with a corresponding artificial dataset and a value of discrepancy p. These
parameters are then sorted by their discrepancies and only a small proportion of parameters
with the lowest discrepancy are retained. In the study of Vo et al. [16], a uniform prior was
used, suggesting that for a reasonably low ¢, the proportion of parameters being kept is very
small, approximately 0.1%. Thus, this study suggests that it is necessary to generate 10° model
simulations to obtain an ABC posterior sample of size 1,000.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004635 December 7, 2015 7/22
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Several studies [33-35] proposed a Markov chain Monte Carlo approach to ABC
(MCMC-ABC). MCMC-ABC algorithms make local proposals in high (ABC) posterior sup-
port regions, thus they can improve the acceptance rates. However, the posterior samples are
highly correlated and the algorithms can easily be trapped in regions of low posterior density
[35]. Another class of ABC is SMC-ABC which was pioneered by [36] to overcome the prob-
lems associated with ABC rejection and MCMC-ABC. SMC-ABC algorithms involve sampling
from a sequence of ABC posterior distributions with a non-increasing sequence of tolerances,
{e,},",. Thus, this last class of ABC only draws proposed parameters in sequentially higher
posterior support regions, rather than the entire parameter space. A review of ABC algorithms
can be found in [37].

In this paper, we only focus on SMC-ABC algorithms. Instead of drawing a proposed value
0" one at a time, the SMC algorithms work with a large set of parameter values simultaneously

and treat each parameter vector as a particle. The particles are moved and filtered at each stage

of the algorithm. Initially, a set of N particles, {0,}" , is often sampled from the prior distribu-

tion 7(0) and each sampled particle has an equal weight of 1/N. To propagate a particle from
iteration k — 1 to iteration k, SMC-ABC algorithms involve three steps: (i) re-sampling: a sam-

pled particle candidate 6" is chosen randomly from the set of particles at k — 1 with probability

proportional to their weights, 0* ~ {0, W11 : (ii) perturbing: the particle candidate 6* is

perturbed by a transition kernel to propose a new particle 8, 8** ~ K*(:|8*), and (iii) simulat-
ing ysim from the model, yg;,, ~ f(:|6"). To maintain N particles throughout the algorithm, the
steps (i-iii) are repeated until a parameter value is found such that the condition p(yops Vsim) <
€ is satisfied. Different SMC algorithms can be distinguished by the transition kernel, the
schedule of the tolerances and how sampling weights are assigned to the particles.

In the literature, there are several versions of SMC-ABC algorithms. For example,
SMC-ABC algorithms of [18, 19, 38] use a Gaussian Markov kernel with a covariance matrix as
twice the empirical covariance matrix of the current set of particles. These algorithms also
assign to each particle 6" a weight given by:

W o n(0) (1)
N kink—1y\ °
S WEIKR(0%]0,)

These algorithms have the advantage that they require fewer model simulations, although the
sequence of tolerances in these algorithms is determined manually. Drovandi et al. [17] and
Del Moral et al. [39] proposed an adaptive SMC algorithm that can determine a decreasing set
of tolerances dynamically. This can be achieved by sorting the particles by their discrepancies
and then dropping a proportion of the particles with the highest discrepancy. However, these
algorithms use an MCMC kernel which has a drawback of replications of particles. To reduce
this problem, Drovandi et al. [17] suggest to repeat the MCMC step (steps (ii) and (iii) above) a
number of times, which also can lead to a large number of unused model simulations.

We take the advantage of fewer model simulations from SMC-ABC algorithms [18, 19, 36]
and the advantage of automatically determining tolerance values from [17] (also named the
SMC replenishment (RSMC) algorithm) and incorporate these in one algorithm, hereafter
referred to as ASMC (S1 Text, Algorithm S2). Our ASMC algorithm is similar to that proposed
in [20] (also named adaptive population Monte Carlo (APMC) algorithm) who also determine
the sequence of tolerances adaptively and use the re-weighting scheme above. However, in
each iteration, the APMC algorithm [20] only performs steps (i-iii) above once and keeps all
the N particles, so the particle’s discrepancy value is not enforced to be below a particular
tolerance.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004635 December 7, 2015 8/22



©PLOS

COMPUTATIONAL

BIOLOGY

Interpret Melanoma Assays Using ABC

In the APMC algorithm, the sequence of tolerances fluctuate, whereas the sequence of toler-
ances in the RSMC and ASMC algorithms is always non-increasing. Therefore, we cannot use
a single indicator to compare the performance of the three algorithms. We suggest comparing
the RSMC and ASMC using the final tolerance, and comparing the ASMC and APMC using
the same computational effort. Using synthetically generated data, we show that our algorithm
requires fewer model simulations than the RSMC algorithm [17], given the same target toler-
ance €. In addition, given the same number of simulations, our algorithm is shown to pro-
duce a lower tolerance value (thus higher accuracy) relative to the APMC algorithm [20].

Summary statistics. In the ABC framework, direct comparison between the observed and
the simulated datasets is often inefficient, especially when the data is high dimensional [21]. Thus,
several authors have considered comparing a summary statistic of the data, S(y), which has
smaller dimension than the full data. The choice of summary statistics is a crucial step in the ABC
approach since it involves a trade-off between information loss and dimension reduction [40].

For the application, it is impossible to use the information of the entire assay. Thus for each
assay, we only estimate the leading edge and analyse six sub-regions along the transect. Our
pilot summary statistic of the data L = {R,), Ry, R 3), {3 {p.}o,}, where Ryy < Rea)
< Rgz) are the ordered radii of the expanding cell colonies for three experimental replicates, is
too high dimensional. This leads to a computational challenge in matching the observed and
simulated summary statistics. This problem is also referred to as the curse dimensionality [21],
and so the dimension of the summary statistics should be kept as small as possible to improve
computational efficiency. Therefore, we employ the dimension reduction procedure [22] to
generate one summary statistic (estimate of the posterior mean) per parameter. The posterior
means of the parameters are estimated via regression.

The procedure is as follows: (i) perform a pilot run of ABC, using the pilot summary statis-
tics, to find the regions of non-negligible posterior density, (i) draw M samples of {0,}"", from
the parameter space resulting from the pilot run, each with a corresponding artificial dataset
{y,})!, and a summary statistic {L,}}, and (iii) fit a multiple linear regression model (Eq (2))
to each component of 6 in turn:

T . .
Hi.j = aj+ﬁj<gj(Li) +éi.j7 1= 17"'>M7] = 1a"'a]7 (2)

where ] is the number of parameters. In the regression model, the error terms, &; ;, have mean
zero and gj(-) is a vector-valued function, so that g(L) is a vector of transformations of the pilot
summary statistics. For the application in our model, we choose g;(L) = (L, L?) and M = 5,000.
However, for other applications, other choices of g;(-) could be considered to obtain a better

fit in the regression. Here, o; is the intercept parameter and f3; is the vector of regression
coefficients. The expected value of 6, given the simulated summary statistic L;, E[6;|L/], is then
estimated by o; + ﬁj "g/(L,). To find the best regression model, we employ a stepwise (bidirec-
tional) regression method and the Bayesian information criterion (BIC) for model selection.
The derived summary statistic for each parameter is then defined by S;(y) = i g(L),j=1,...,

J, where 8 ; is the estimated coefficients from the best regression model. Thus, there is only one

summary statistic per parameter.
Discrepancy function. In an attempt to accommodate summary statistics with different
scales and correlations between summary statistics, we consider the Mahalanobis distance to

compare Sops and S, Where S, = {S,(y,,) J]-:1 and S, = {S;(Vyn) ](:1. This discrepancy

function is given by

p(yabs7ysim) = (Sabs - Ssim)T X W71 X (Sabs - Ssim)’ (3)
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where W is an estimate of the covariance matrix of the summary statistics {Sj}j.:l. To estimate

W, we simulate 100 simulated datasets {yl|{éj }]].:1}100

_,» using the estimated posterior mean

éj = on + ﬁj ng(L), j=1,...,], obtained from the regression step above. For each simulated
dataset y;, we compute the pilot summary statistics, then obtain the derived summary statistics

{Si_j ;:1, i=1,...,100. Wis subsequently estimated by cov{S;;},i=1,...,100and j=1,...,].

Results
Validation and comparing algorithms’ performance

To examine the utility of our new ABC algorithm and to investigate whether the derived set of
summary statistics is informative for parameter inferences, we simulated a dataset with biologi-
cally relevant parameter values (P,, = 0.1, g = 0.2, P, = 0.0012), which corresponds to
(D=202.5 pmzhfl, q=02,A= 0.03h7 ). The synthetic dataset has C(0) = 20,000 cells, T=24h
and is replicated three times. This dataset represents experiments in Scenario 2.

We first summarise the synthetic dataset in terms of the pilot summary statistics, including
three radii of the expanding cell colonies for three replicates (order statistics), the numbers of
cells and the percentages of isolated cells in six sub-regions along a transect after averaging
over three replicates. The ABC posterior distributions resulting from the pilot run with the
pilot summary statistics have significant spread. So, a multiple linear regression procedure is
performed to generate one summary statistic for each parameter. We then apply the new ABC
algorithm with the derived set of summary statistics and uniform priors for all parameters,

P, ~ U(0,1), g ~ U(0,1) and P, ~ U(0,1). The resulting posterior distributions for (P,,, g, P,)
are presented in Fig 3. These results show well-defined posterior distributions with narrow
spread and posterior means close to the true values. The posterior correlation coefficients of
(P> @), (g Pp) and (P,,,, P,,) are between —0.2 to 0.3. Thus, it is evident that our new ABC algo-
rithm combined with our method for determining summary statistics allows us to recover all
parameters rather precisely.

Using the synthetically generated data, we also compare the performance of the three algo-
rithms: RSMC, APMC and ASMC. For all algorithms, we set N = 1000 particles and run each
algorithm 10 times to compare the resulting posterior distributions, the total number of model
simulations and the generalized variance (GV, or the determinant of the posterior variance-

A B 8000 | ©

-
o
o

posterior density

0 0 0
0.08 0.1 0.1 02 03 1 1.2 14

P q Po x 10"~

3

Fig 3. Results for synthetic data. Subfigures A—C correspond to the ABC posterior distributions of P,,, g and P,, respectively. Uniform priors are placed on
all parameters, P, ~ U(0,1),g ~ U(0,1) and P, ~ U(0,1). The posterior means are plotted as black vertical dashed lines and the true parameter values are
shown as red squares.

doi:10.1371/journal.pcbi.1004635.9003
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Fig 4. Comparing the performance of the three SMC-ABC algorithms. Subfigures A, B and C correspond
to the ABC posterior distributions of P,,, g and P, respectively. In all subfigures, the (dashed) black, the
(solid, with markers) blue and the (solid) red curves correspond to the RSMC, the APMC and the ASMC
algorithms, respectively.

doi:10.1371/journal.pchi.1004635.9004

covariance matrix). A comparison of ABC posterior distributions from the three algorithms is
shown in Fig 4. For RSMC and ASMC, we set €5,,q; = 0.1. For all cases, the posterior distribu-
tions from RSMC (the dashed black curves) and ASMC (the solid red curves) are almost indis-
tinguishable, however, the RSMC requires approximately 2.5 times more model simulations
than the ASMC algorithm (Fig 5A).

For the APMC algorithm, we use 62 iterations (giving the total number of model simula-
tions similar to the number of model simulations for ASMC, 62,000). Results in Fig 4 suggest
that the posterior distributions from the ASMC algorithm has smaller variance than the results
from the APMC algorithm (the blue curves with markers) due to the ability of ASMC in getting
to a smaller value of € with a similar computational effort. We then compute the GV of the
resulting ABC joint posterior distributions from the ASMC and APMC algorithms from the 10
runs (Fig 5B). We observed that the GVs for the resulting posterior distributions from APMC
are approximately three times larger than the corresponding GV from the ASMC algorithm.
Thus, for this application, our algorithm performs better than the RSMC and the APMC

x10° x10'°
+
w6l A s
@ 1,
S _
14 3 |
2 |
(o]
E 1
1 1
% 0.8
0.6 = . 0 % .
ASM C RSM C ASM C APMC

Fig 5. Comparing the number of model simulations and GV. (A) Boxplot of the number of model
simulations for RSMC and ASMC, given the same ¢,,. (B) Boxplot of the GV for the resulting ABC posterior
distributions from ASMC and APMC based on a similar number of model simulations.

doi:10.1371/journal.pcbi.1004635.9005
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algorithms. We now apply the ASMC algorithm to the experimental data in the two scenarios
and interpret the results in terms of the biologically relevant parameters D, g and A.

Scenario 1: Experiments with Mitomycin-C pre-treatment

This section presents the results for D and q for all experimental conditions in Scenario 1,
where cells were pre-treated with Mitomycin-C to suppress cell proliferation. Uniform priors
are placed on all parameters, P,, ~ U(0,1) and g ~ U(0,1). From the regression procedure to
generate one summary statistic S for each parameter, for all cases, we observe that all pilot sum-
mary statistics (R1), Ry Rz {€;}1, and {p,},_,) are informative about D. However, to obtain
estimates for g, only Ry, {¢,}. , and {p,}’ , were significant in the regression.

The ABC estimate of the posterior expected value of D and ¢, E[D] and E[q], 90% credible
intervals, CI, the coefficient of variation, CV, and the correlation coefficient, , from all experi-
mental conditions, are given in Table 1. To assess the accuracy of our resulting estimates from
the true ABC posteriors, we computed the Monte Carlo standard error, MCSE, for E[D] and E
[q] in all experimental conditions, MCSE = o/+/ESS [41]. Here, 0 is the posterior standard
deviation and ESS is the effective sample size. We use Kish’s approximation method [42] to
compute the ESS, ESS = 1/ 3°Y | W2, where W; is the normalised weight for the i parameter
value. For all cases, the ABC posterior consists of 1,000 parameter values, which leads to an
ESS usually in the range 700-850. Our posterior sample size leads to a small MCSE for both E
[D] and E[q], less than 0.2% and 0.4% of the estimate of their expected values, respectively.

From Table 1, we observe that the CV for D and q are also quite small, approximately 6%
and 10%, respectively, which means that we can obtain reasonably precise estimates for D and
q using the derived summary statistics. The correlation coefficient between D and q for all com-
binations is between 0.2 to 0.6. This suggests that multiple combinations of values of D and g
can generate similar expanding cell colonies in terms of our pilot summary statistics.

For both initial cell densities (20,000 and 30,000 cells), we observe that the values of E[D]
for the experiments terminated after 48 h are higher than those values for experiments termi-
nated after 24 h. This finding suggests that estimates of D appear to depend on the experimen-
tal time, T, which is consistent with the results reported in [16] for 3T3 fibroblast cells. It is
conjectured that some amount of time could be required for the cells to adjust to their new or
modified environments encountered as part of the experimental protocol. The cell motility,
therefore, could be reduced during this transition phase. A similar trend of dependency is also
found for g. This motivates us to investigate the values of D and g for the period 24-48 h.

Let {D(o-24) G(0-24)}> {D(24-48)> G(24-48)} and {D(g_as), g(0-4s)} represent the cell motility coeffi-
cient and strength of cell-to-cell adhesion for the period 0-24 h, 24-48 h and 0-48 h, respec-
tively. Estimates of posterior distributions for {Dg_24), §0-24)} and {D(o_ss), G(0_4s)} have

Table 1. ABC posterior summary for D and q for all experiments in Scenario 1. Results shown include
the posterior mean (and the 90% Cl in the parentheses), the coefficient of variation, CV, and the correlation
coefficient, r.

c(0) T(h) E[D] (90%Cl) um?h™  CV(D)(%)  E[q] (90%Cl) CV(@Q)%) r
20 000 0—24 225.9 (212.1, 240.3) 4.0 0.23 (0.19, 0.27) 9.9 0.4
0—48 288.3 (273.7, 304.9) 3.3 0.29 (0.25, 0.32) 6.7 0.4
24—48  335.9 (309.9, 366.9) 5.6 0.32 (0.28, 0.35) 6.3 0.2
30 000 0—24 251.8 (235.9, 269.6) 4.1 0.36 (0.33, 0.39) 5.4 0.5
0—48 297.0 (279.1, 316.4) 4.1 0.47 (0.45, 0.50) 3.0 0.6
24—48  317.7 (293.8, 344.9) 4.9 0.50 (0.47, 0.52) 3.2 0.4

doi:10.1371/journal.pcbi.1004635.t001
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already been obtained from experimental data at 24 h and 48 h, respectively. To obtain esti-
mates for {D4_48), G(24-48)}> two stages of simulations are required, from 0-24 h and from 24—
48 h. In the first stage, model simulations use parameter sets that are drawn from the distribu-
tions of {D(o_24) g(0-24)}; Whereas, in the second stage, the model simulations update the cell
colonies with parameter sets that are drawn from the distributions of {D(24_4s), §(24_48)}. We
consider two approaches to infer the values of {D4_4s), §24-4s)}-

o Approach 1: We jointly infer the values of {Dg_24), §(0-24)} and {D(24_4s), g (24-4s)} by simulta-
neously comparing experimental data that are terminated at 24 h and 48 h with the simulated
data at the corresponding terminated times. In this approach, we place a uniform prior on
both parameter sets {Dy_24), g(0_24)} and {D24_48)> (24_48)}- We observe that the ABC poste-
rior distributions of {D(g_24), q0-24)} in this approach are indistinguishable with the estimates
previously obtained by using the experiments terminated at 24 h.

Approach 2: We make use of the ABC posterior of {D(g_4), g(0-24)} previously obtained from
the experiments terminated at 24 h, and only infer the values of {D(24_4s), g(24-4s)} by match-
ing on the summary statistics at 48 h. To achieve this, for each initial cell density, we fit a
bivariate normal distribution to the ABC joint posterior distributions of {D(o_24), g(0-24)}. TO
perform a model simulation, we draw a parameter set from the bivariate normal distribution
for the first stage, and another parameter set from the uniform prior for {D4_4s), §(24-45)}
for the second stage.

We use the same uniform prior for {D4_4s), §(24-48)} in the two approaches. The second
approach has the advantage that the SMC-ABC algorithm only needs to search over the param-
eter space of 24-48 h, {D(24_4s), (24-4s)}- Thus, we expect the second approach to be faster and
more efficient. For each joint posterior distribution of {D(_s4), g(0-24)}> We assess the bivariate
normality assumption using a Q-Q plot of chi-square quantiles against the squared Mahalano-
bis distance [43]. The Q-Q plots suggest that the bivariate normality assumption is reasonable
for both initial cell densities.

We found that the ABC posterior distributions of {D(24_4s), §(24_48)} in the two approaches
are indistinguishable. However, the second approach is more efficient in terms of computa-
tional time. Therefore, for all experimental conditions in the two scenarios, we first obtain esti-
mates for periods 0-24 h and 0-48 h then use the second approach to obtain estimates for 24—
48 h.

A comparison of D and q for different time periods is shown in Fig 6. Results in Fig 6A-6D
correspond to experiments initiated with 20,000 and 30,000 cells, respectively. We observe that
the estimated posterior distributions of D(q_4y and D(,4_45) are non-overlapping, which implies
that estimates of cell diffusivity are significantly different for the two periods of the experiment.

Comparing the posterior estimates of D for different C(0) suggests that values of D for the
30,000 initial cell density experiment is higher than for those in the 20,000 initial cell density
experiment during the period 0-24 h. However, the difference is insignificant for the period
24-48 h and for the entire period 0-48 h. These findings indicate that estimates of cell diffusiv-
ity depend less on the initial cell density for longer experiments.

In contrast, the posterior estimates of cell-to-cell adhesion strength, g, for different C(0) are
substantially different for all three periods. In particular, the estimates of g for the experiments
initiated with 30,000 cells are higher than the corresponding values from the experiments initi-
ated with 20,000 cells. This implies that estimates of cell-to-cell adhesiveness depend on initial
cell densities. The higher the initial density, the stronger the cell-to-cell adhesion strength. In
the literature, several studies have investigated the role of cell-to-cell adhesion in collective cell
spreading [44-46] by matching the cell density profiles between the experimental data and the
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Fig 6. ABC posterior distributions for D and q for experiments in Scenario 1. Subfigures A-B and C-D correspond to the experiments initialised with
20,000 and 30,000 cells, respectively. In all subfigures, the blue curve with markers, the black dashed and the red solid curves correspond to the ABC
posteriors for 0—24 h, 24—-48 h and 0—48 h, respectively.

doi:10.1371/journal.pcbi.1004635.9006

model simulation with several values of g. The previous approach is limited in that it can only
give a point estimate of g and provide no insight into the uncertainty in the estimate or the cor-
relation between D and q. Therefore, this study is the first attempt to provide a systematic
approach to jointly infer the values of D and ¢, and compare the distributions of D and g for
different experimental conditions.

Scenario 2: Experiments without Mitomycin-C pre-treatment

To analyse the second set of experiments, we consider two approaches: (i) assuming that the
values of D and ¢ in the two experimental scenarios are completely unrelated, and thus, infer-
ences of D, g and A are based solely on the experimental data in Scenario 2, and (ii) assuming
that the values of D and q from Scenario 1 are equal to those of D and g in Scenario 2. For the
latter approach, we adopt a Bayesian sequential learning approach and use the posterior distri-
bution of D and g from Scenario 1 as the prior for D and g for the corresponding experiments
in Scenario 2.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004635 December 7, 2015 14/22



@' PLOS | SoMputaTioNAL
NZJ : BIOLOGY Interpret Melanoma Assays Using ABC

Uninformative priors for D, gand A. We aim to obtain an approximate joint posterior
distribution for our model parameters when little prior biological knowledge about them is
assumed. For all cases, we observe that all the pilot summary statistics are informative for D,
however, for q and 4, the largest two radii were not significant in the regression.

A summary of the ABC posterior distributions of D, g and A resulting from the ABC analy-
ses with the derived summary statistics and uniform priors, P,, ~ U(0,1), g ~ U(0,1) and
P, ~ U(0,1), corresponding to D ~ U(0,2025) pmzh_1 and 1 ~ U(0,25)h7", are given in
Table 2 and a comparison of D, g and A for the three time periods (0-24 h, 24-48 h and
0-48 h) are presented in Fig 7. Results in Fig 7A-7F correspond to the experiments initiated
with 20,000 and 30,000 cells, respectively. The MCSE, for all cases, for E[D], E[q] and E[1] are
relatively small, less than 0.3%, 0.5% and 0.2% of the estimate of its expected values,
respectively.

The results in Table 2 indicate that we are able to obtain reasonably precise estimates for all
D, g and A based on the information incorporated initially through our pilot summary statis-
tics. The CV for A is fairly small, less than 5%, for all cases. This proposed method, therefore,
overcomes the limitation in the previous work [16], which demonstrated that A cannot be iden-
tified when precise prior information about the parameters is unavailable. The reason is that,
here, for each experiment, we include information about the percentages of isolated cells and
the cell counts for six sub-regions, whereas the previous analyses [16] solely used the leading
edge. This also provides another strategy to obtain precise estimates of A besides the technique
proposed in [16] by incorporating information from experiments with and without Mitomycin
C pre-treatment. The latter approach assumes that the common parameters are the same for
different experimental scenarios, which may not be appropriate for all types of cells. The CV
for D and g for all experimental conditions are also small, between 5—10% and 8—16%,
respectively.

We observe a similar trend of time-dependence for D and q as in Fig 6 for Scenario 1. In
summary, in both experimental scenarios, we observe a consistent time-dependence in our esti-
mate of D and g suggesting that cell motility is slower in the first day duration relative to the
second day. Interestingly, the values of 4 remain similar over time, for both initial cell densities.
The estimates of E[1] are in the range 3.83 — 4.04 x 10> h™". This gives an expected doubling
time for melanoma cells of 17-18 h. It is also noted that our estimates of A for the 20,000 initial
cell experiments are slightly higher than the previously reported estimates [23], although the
estimates of A for the experiments initiated with 30,000 cells are similar.

We also found a similar trend of density-dependence for estimates of D and q as observed in
Scenario 1. Comparing the posterior estimates of A for different values of initial cells suggests
that the estimates of A for the 30,000 initial cell experiments are slightly higher than the 20,000
initial cell experiments. However, the differences are quite small.

Table 2. ABC posterior summary for D, q and A for all experiments in Scenario 2, using uninformative priors for D, g and A. Results shown include
the posterior mean (and the 90% Cl in the parentheses) and the coefficient of variation, CV.

c(0) T(h) E[D] (90% Cl) (um?h™") CV(D)(%) Elq] CV(q)(%) E[A] (90% CI) x1072 (h™") CV(A)(%)
20,000 0—24 234.0 (215.4, 253.9) 4.9 0.25 (0.21, 0.29) 10.7 3.83 (3.58, 4.08) 4.0
0—48 292.9 (267.8, 321.2) 55 0.34 (0.25, 0.42) 15.3 3.89 (3.69, 4.09) 3.2
24—48 336.9 (299.7, 377.1) 7.2 0.38 (0.29, 0.44) 11.8 3.90 (3.66, 4.18) 3.9
30,000 0—24 267.8 (245.1, 291.2) 5.2 0.39 (0.34, 0.44) 7.9 3.97 (3.72, 4.20) 3.6
0—48 332.0 (293.1, 373.8) 7.9 0.51 (0.47, 0.63) 12.4 4.04 (3.80, 4.30) 3.8
24—48 351.2 (296.8, 395.1) 8.1 0.61 (0.52, 0.69) 8.8 4.06 (3.77, 4.38) 4.2

doi:10.1371/journal.pcbi.1004635.t002
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Fig 7. ABC posterior distributions for D, g and A for experiments in Scenario 2, using uninformative priors for all parameters. Subfigures A-C and
D-F correspond to the ABC posterior estimates for the experiments initiated with 20,000 and 30,000 cells, respectively. In all subfigures, the blue curve with
markers, the black dashed and the red solid curves represent the ABC posterior distribution for 0-24 h, 0-48 h and 24—48 h, respectively.

doi:10.1371/journal.pcbi.1004635.9007

Informative priors for D, q and an uninformative prior for 1. Although we are able to
obtain reasonably precise estimates of D, g and A using uninformative priors on all parameters,
we wish to investigate whether additional information about model parameters is obtained
when we combine information from the two experimental scenarios. The Bayesian sequential
learning approach allows us to incorporate information from previous experiments in a princi-
pled way. This is similar to the approach used in [16]. Assuming that the values of D and g are
the same in the two experimental scenarios, we use the posterior distributions of D and ¢ in the
first experimental scenario as informative priors for D and ¢ in the second experimental sce-
nario. To achieve this, we fit a bivariate normal distribution to each joint posterior distribution
of D and q reported in Scenario 1, and use this bivariate normal distribution as an informative
prior for D and q for the corresponding experiment in Scenario 2. For each joint posterior dis-
tribution of D and g, we assess the bivariate normality assumption using a Q-Q plot of chi-
square quantiles against the squared Mahalanobis distance [43]. The Q-Q plots indicate that
the bivariate normality assumption is reasonable for all cases (results not shown).

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004635 December 7, 2015 16/22
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Table 3. ABC posterior summary for D, g and A for all experiments in Scenario 2, using informative priors for D, g and an uninformative prior for A.

Results shown include the posterior mean (and the 90% Cl in the parentheses) and the coefficient of variation, CV.

C(0) T(h) E[D] (90% Cl)um>h~" CV(D)(%) E[q] (90% CI) CV(q)(%) E[A] (90% Cl) x1072h™" CV(A)(%)
20,000 0—24 231.9 (220.6, 243.0) 3.0 0.24 (0.21, 0.27) 7.5 3.83 (3.62, 4.04) 3.2
0—48 286.5 (274.3, 301.1) 2.8 0.29 (0.26, 0.34) 8.0 3.81 (3.71, 3.93) 1.8
24—48 334.9 (311.6, 356.7) 4.1 0.33 (0.29, 0.37) 6.7 3.90 (3.69, 4.10) 3.2
30,000 0—24 260.2 (246.3, 274.9) 3.4 0.37 (0.34, 0.41) 5.2 3.94 (3.75, 4.13) 2.9
0—48 300.9 (284.9, 316.2) 32 0.48 (0.46, 0.51) 37 3.95 (3.81, 4.09) 2.1
24—48 329.2 (307.6, 352.0) 4.3 0.50 (0.47, 0.53) 4.0 3.90 (3.66, 4.10) 35

doi:10.1371/journal.pcbi.1004635.t003

A summary of the ABC posteriors for D, g and A for all experimental combinations is pre-
sented in Table 3. The MCSE, for all cases, for E[D], E[q] and E[A] are relatively small, less than
0.3% of the mean value estimates. Our results show that, for all cases, the CV for D and 4 using
the bivariate normal prior is smaller than the corresponding CV reported using the previous
approach (uninformative priors for all parameters). This implies that we obtain more precision
for all D and A by incorporating information from the two experimental scenarios.

Comparing the posterior distributions of D obtained using the previous approach (uninfor-
mative priors for all parameters) and those results obtained by specifying an uninformative
prior for A and an informative bivariate normal prior for D and g show that we infer D reason-
ably well for both sets of priors. The estimates of E[D] are very similar regardless of these
choices of priors (Table 3); however, the CV for D is smallest when we combine the informa-
tion from the two experiments. A similar trend is also observed for the experiments initiated
with 30,000 cells.

Regarding the cell-to-cell adhesion, we observe additional information about g only for the
period of 0-24 h. For the periods of 24-48 h and 0-48 h, there is an indication that the poste-
rior estimates of q from the two experiments are slightly different. The posteriors of g resulting
from the bivariate normal prior for D and q are shifted toward the posteriors obtained by using
uninformative priors (Fig 8B, 8E and 8H). This could be explained by noting that the densities
of the two experiments are potentially different after 24 h, since the second experiment involves
cell proliferation. Thus, the posterior estimates of cell-to-cell adhesion strength in the second
experiments are suggested to be slightly higher than those in the first experiment.

The ABC posteriors for A (Fig 8C, 8F and 8I) obtained from the two approaches are similar,
except that the posteriors obtained by placing an informative bivariate normal prior on D and
q are narrower. In summary, these results suggest that, for melanoma cells, if we are given
some information about D and g, we can gain more precision in all estimations of D and A.
However, without some prior information about D and g, the proposed ABC approach and the
summarisation of the experimental images used can produce reasonably precise estimates for
D, g and A from a single assay. A similar trend is also observed for the 30,000 cell experiments
(S1 Fig).

Fig 9 shows a comparison of ABC posterior distributions of D, q and A with respect to differ-
ent time periods. We observe a similar trend of time-dependency and density-dependency to
that observed in Figs 6 and 7. For both initial cell densities, D and g appear to depend on the
time period, whereas the values of A remain almost constant over time.

Discussion

Quantifying the underlying mechanisms that drive the expansion of melanoma cell colonies
such as migration, proliferation, and cell-to-cell adhesion is important for developing a
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©PLOS

COMPUTATIONAL

BIOLOGY Interpret Melanoma Assays Using ABC
> 0.06
[ A P B Cc
<3004 —P2 20 400
N2 .
B s\ = = 'bvn prior
°g 0.02 10 \ 200
o J \
o u .
200 300 400 0.1 0.3 05 0.03 _10.04
2 -1 A(h )
D(um™h ) q
>0.06
2 D E F
< B 0.04 20 400
<> '
=
< ©0.02 10 [} 200
N g
o Y
e ¥ *
200 300 400 0.1 0.3 0.5 0.03 -1, 0.04
2 -1 q AhT)
D (um™h )
>0.06
L2 G H
» S 0.04 20 A 400
< > !
=
© §0.02 10 [/ 200
Ko
92
Q
200 300 400 0.1 0.3 05 0.03 0.04
2 -1 A (h_1)
D (um™h ) q

Fig 8. ABC posterior distributions for D, g and A for experiments in Scenario 2. These results correspond to C(0) = 20,000. Subfigures A-C, D—F and
G-I correspond to the ABC posterior estimates for the experiments at 0-24 h, 24-48 h and 0—48 h, respectively. In all subfigures, the blue curves with
markers, P1, correspond to the approach using uninformative priors for all parameters. The red solid curves, P2, correspond to the approach using
informative priors for D, g and an uninformative prior for A. The fitted bivariate normal priors, bvn prior, are shown as black dashed curves.

doi:10.1371/journal.pcbi.1004635.9008

systematic approach to assessing the effectiveness of a potential treatment. Typical approaches
to parameter estimation often use a deterministic framework [4-7, 23] and only produce point
estimates. There is, therefore, a risk that future model projections based on such point esti-
mates could be made with undue confidence.

In this paper, we present a new ABC algorithm to estimate D, g and A which represent the
cell motility, the cell-to-cell adhesion strength and the cell proliferation rate, respectively. To
the best of our knowledge, this is the first time that joint inferences have been obtained for all
three parameters in a discrete stochastic model describing expanding melanoma cell colonies,
using data from a single assay. The new ABC algorithm shows favourable performance relative
to state-of-the-art algorithms and together with our derived summary statistics, we can esti-
mate all model parameters precisely across different scenarios, even when a vague prior is used
(Tables 1 and 2). This emulates a situation in which virtually no biological knowledge about D,
q and A is assumed. Furthermore, the methodology developed here overcomes the limitation in
the previous work [16], which demonstrated that without prior information about D, A cannot
be identified using solely leading edge data.

The methodology proposed here allows us to obtain inferences for D, g and 4 in a fully
Bayesian framework. The resulting posterior distributions enable us to quantify the associated
uncertainty with the parameter estimates which can not be achieved using a deterministic

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004635 December 7, 2015

18/22



@' PLOS | soMpuTaTioNAL
NZJ : BIOLOGY Interpret Melanoma Assays Using ABC

0.06 (-
A 0-24h c s
f —=-0-4h 20 i\
3 004 1t —24-48h 400 1y
o I 1 I
= 1
8  0.02 . 10 200
o 1
N ;M
2 0 : 0 0
15 200 300 400 0.6 0.03 004
2 D (umZh q \(hT
§ 008
e} D E F
a 20 N
2 004 400 1
Q I
(6]
o
S 002 10 200
o
™
0 0 0 %
200 300 400 02 04 06 0.03 0.04
D (um2h Y q A (h7h

Fig 9. ABC posterior distributions for D, g and A for experiments in Scenario 2, using informative priors for D, g and an uninformative prior for A.
Subfigures A—C and D—F correspond to the ABC posterior estimates for the experiments initiated with 20,000 and 30,000 cells, respectively. In all subfigures,
the blue curve with markers, the black dashed and the red solid curves represent the ABC posterior distribution for 0—24 h, 0-48 h and 24—48 h, respectively.

doi:10.1371/journal.pcbi.1004635.9009

approach. Furthermore, comparing the distributions of D, g and A (Figs 6, 7 and 9) provides
insight into the dependency of the parameter posterior estimates on the experimental elapsed
time and on the initial number of cells. Thus, our work adds significant extra information
about the parameters relative to the previous analyses [23]. Another advantage of using an
ABC approach is the possibility of combining information from the two experiments in a prin-
cipled way. This approach is shown to be useful in our previous work [16]. Here, it also enables
us to gain additional information for D and A.

We acknowledge that our discrete individual-based model, which is straightforward to
implement and computationally cheap, makes an assumption that cell diffusivity is constant.
Although the density dependence is less pronounced for experiments terminated at 48 h, it sug-
gests that the underlying assumption of a constant diffusion coefficient D is violated. Thus, it is
suggested that the use of a non-linear diffusion coefficient, where D is a function of cell density,
D(C), may be more appropriate. In particular, using non-linear diffusion coefficients is shown
to provide a better description of the collective behaviour of a cell population in a lattice-free
model [47] and a model with complex contact interactions [48]. We expect that implementa-
tion of the ABC approach for these models will lead to further research.

It should also be noted that [23] obtained point estimates of D, g and A separately; D and g
from the experiments with cell proliferation suppressed, and A from experiments with cell pro-
liferation. Thus, this approach may not be applicable if one does not have access to this kind of
detailed experimental data sets. Furthermore, results from our analyses also indicate that cell-
to-cell adhesion may differ between the two scenarios. In particular, the values of cell-to-cell
adhesion is slightly higher for the experiments with cell proliferation occurring, due to the
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increasing cell population. Thus, we suggest that future studies should consider estimating all
parameters simultaneously.

One particular finding from our analysis is that the posterior distributions of D and g con-
sistently depend on the experimental time period, whereas the posterior distribution of 4 is
approximately time constant. This finding is in agreement with the results of [16] for 3T3
fibroblast cells, however, this feature has not been investigated elsewhere. As demonstrated ear-
lier, this effect is significant and should be included when modelling mechanisms governing
the expansion of cell colonies in future research. To achieve this, we suggest that experimental
data should be collected at several time points and to optimally do this we leave for future
research.

In addition, our ABC algorithm together with the derived summary statistics could also be
implemented in a model selection algorithm to distinguish between discrete lattice-based and
lattice-free models describing the expansion of cell colonies. In lattice-free models, agents are
allowed to migrate and proliferate in a continuous domain, and the direction of movement is a
continuous variable [10]. Thus this model is considered to be more realistic than the lattice-
based model.
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