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Abstract 1 

Livestock grazing is recognised as a major driver of biodiversity decline and land 2 

degradation in rangelands around the globe. Protected areas alone cannot conserve 3 

global biodiversity, and therefore off-reserve conservation is necessary to achieve 4 

biodiversity conservation outside reserves and improve connectivity between reserves. 5 

Grazing management strategies that promote both ecological and production outcomes 6 

have the potential to conserve biodiversity and maintain or improve landscape 7 

function in agricultural landscapes. However, there is a lack of understanding of the 8 

response of biodiversity and landscape function to different grazing management 9 

systems in arid and semi-arid rangelands. This thesis explored the effects of 10 

commercial grazing practices that incorporate frequent periods of rest from grazing on 11 

biodiversity and landscape function, and determined the potential for using these 12 

alternative grazing practices to achieve broad-scale conservation outcomes.  13 

A systematic review and meta-analyses of scientific literature comparing grazing 14 

management incorporating periods of planned rest (strategic-rest grazing, SRG) with 15 

continuously grazed (CG) and ungrazed (UG) systems was undertaken to determine 16 

the effect of SRG on ecological and animal production variables. Where significant 17 

differences occurred, the trend analysis of ecological and animal production responses 18 

to grazing management predominantly favoured SRG over CG, except for animal 19 

weight gain, and favoured SRG over UG systems for plant, mammal and bird richness 20 

and diversity, but not invertebrate richness and diversity, biomass and ground cover. 21 

Most studies that compared plant species composition reported differences in response 22 

to grazing management. While we did not find any differences overall between grazing 23 

contrasts, meta-analyses of plant richness, diversity, animal weight gain and animal 24 
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production per unit area indicated that management incorporating longer periods of 25 

rest compared to periods of grazing have the potential to improve animal weight gain 26 

and production per unit area, but reduce plant richness. The type of SRG system was 27 

also important, with multi-paddock SRG systems having lower plant richness relative 28 

to CG systems, and SRG systems based on seasonal or deferred grazing having greater 29 

diversity than CG systems. Most of the literature comparing SRG with CG or UG did 30 

not consider the response of ecological and animal production response variables 31 

simultaneously. Greater collaboration between ecological and animal production 32 

scientists is recommended to better understand the ecological and socio-economic 33 

trade-offs associated with different grazing management strategies.  34 

Understorey floristic species composition and plant biodiversity measures were 35 

compared between commercial properties managed under alternative grazing 36 

management (incorporating frequent and long periods of rest), traditional (continuous) 37 

grazing management, and adjacent ungrazed areas managed for conservation across a 38 

broad region of the semi-arid rangelands in western NSW. Significant variation in 39 

understorey floristic composition was driven by soil type (clay and sand), season, 40 

preceding rainfall and geographic location. These variables were the major drivers of 41 

floristic composition. The effect of grazing treatment on floristic composition at the 42 

regional scale was comparatively small and not significant. However, infrequent 43 

species were more likely to be recorded in conservation areas. Measures of floristic 44 

biodiversity varied with the scale of observation, season of sampling and soil type. In 45 

comparison to traditional grazing management, alternative grazing management 46 

generally resulted in greater understorey floristic species richness and diversity, 47 

depending on the season and scale of sampling. Few differences were found in plant 48 

species richness, diversity or functional diversity between alternatively grazed 49 
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properties and adjacent areas ungrazed by commercial livestock and managed for 50 

biodiversity conservation. This suggests that alternative grazing management may be 51 

compatible with biodiversity conservation on commercial livestock properties in 52 

western NSW rangelands, but potentially at the expense of rare species. 53 

Ground cover, soil properties and landscape function were also compared between 54 

alternative grazing management, traditional grazing management and conservation 55 

management in semi-arid NSW. Alternative grazing management had greater total 56 

ground cover in comparison to traditional grazing management systems. However, 57 

both alternative and traditional grazing management treatments had significantly less 58 

ground cover than adjacent areas managed for conservation. Alternative grazing 59 

management properties did not differ significantly to areas managed for conservation 60 

in terms of landscape function, but many indices of landscape function (stability, 61 

nutrient cycling, landscape organisation index, patch area and average interpatch 62 

length) were significantly reduced under traditional grazing management compared to 63 

conservation. This suggests that alternative grazing management was more beneficial 64 

for landscape function than traditional grazing management.  65 

Significant differences were observed in floristic biodiversity measures, ground cover, 66 

soil properties and landscape function between clay and sandy soils in the study 67 

region. Clay soils had greater soil organic carbon and organic nitrogen, and lower bulk 68 

density than sandy sites. Soil stability, nutrient cycling and landscape organisation 69 

indices were also greater on clay than sand soils, and average interpatch length was 70 

shorter on clay soils. There was no difference in total ground cover between sand and 71 

clay soils, although clay soils had greater vegetative cover than sand soils, while sandy 72 

soils had greater cryptogam cover. Floristic biodiversity measures (species richness, 73 

evenness, diversity, turnover) were significantly greater on sandy than clay soils at 74 



Abstract 

vi 

 

larger plot and site scales, but there was no difference in species richness at the finest 75 

scale of sampling (1 m2 quadrats). Despite the common perception that clay soils are 76 

more resilient to disturbance than sand communities, we found no difference between 77 

sand and clay soils in floristic biodiversity measures, ground cover, landscape 78 

function, soil organic carbon, soil organic nitrogen, or bulk density in response to 79 

grazing management. This indicates that alternative grazing management may provide 80 

a sustainable option for conservation of biodiversity and landscape function across 81 

both sandy and clay soils in western NSW semi-arid rangelands. 82 

Floristic composition, biodiversity measures and ground cover were also compared at 83 

a local scale between an ungrazed public nature reserve and an adjacent rotationally 84 

grazed commercial property in Acacia aneura woodland in semi-arid NSW. 85 

Significant differences in understorey floristic composition were observed between 86 

the two grazing treatments, including a greater frequency of palatable species in the 87 

nature reserve and more unpalatable species on the rotationally grazed property. There 88 

were no significant differences in understorey floristic species richness, diversity, 89 

functional diversity measures or ground cover between the nature reserve and 90 

rotationally grazed property. However, these measures increased with distance from 91 

water on the rotationally grazed property, highlighting the negative effects of 92 

increasing grazing intensity. These results suggest that at a whole-paddock scale 93 

(beyond the sacrifice zone of high grazing intensity surrounding water points), 94 

rotational grazing management, along with careful management of grazing intensity 95 

and stocking rates, has the potential to sustain biodiversity and ground cover and may 96 

offer an alternative to grazing exclusion to achieve broad-scale conservation 97 

objectives in semi-arid rangelands. However, management would still need to address 98 

the impacts on floristic composition. 99 
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In conclusion, I found improved understorey plant species richness, diversity, ground 100 

cover and landscape function under alternative grazing management compared to 101 

traditional grazing management, and few differences in these measures between 102 

alternatively grazed and ungrazed areas managed for conservation. These results 103 

provide support for utilisation of alternative grazing management practices to improve 104 

biodiversity conservation and landscape function outside of the public reserve system 105 

in semi-arid rangelands. Results also show incorporation of planned periods of rest in 106 

grazing management regimes has the potential to achieve dual ecological and animal 107 

production outcomes in grazing landscapes throughout the world. Further research is 108 

necessary to understand the circumstances in which commercial grazing is compatible 109 

with the conservation of biodiversity, landscape function and animal productivity, and 110 

to identify best grazing management practices for biodiversity conservation purposes. 111 
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Chapter 1. Introduction 1 

1.1 Background 2 

Approximately 38% of the Earth’s land surface is utilised for agricultural production, 3 

with livestock grazing accounting for the greatest proportion of agricultural land use 4 

(~66%; FAOSTAT 2016). Pressure on agricultural land is expected to increase as the 5 

world population grows from 7.5 billion to reach nine billion by the year 2050, with a 6 

corresponding 70% increase in global demand for agricultural production (FAO 7 

2011). Poorly managed livestock grazing is recognised as a significant contributor to 8 

global biodiversity loss and land degradation (see Appendix, Table A1.1 for glossary 9 

of key terms; MA 2005; Steinfeld et al. 2006). Improving the environmental 10 

sustainability of agricultural production whilst maintaining economic viability and 11 

increasing productivity to meet increasing demand for agricultural produce 12 

(sustainable intensification) is a major challenge for agricultural land management 13 

(Stafford Smith et al. 2000; MacLeod and McIvor 2006; Bell et al. 2014; Rockstrom 14 

et al. 2017).  15 

Biodiversity refers to the diversity of life at all levels of organisation (e.g. genetic, 16 

population, species and ecosystem) and scales (e.g. local to global), and the associated 17 

ecological processes and interactions (MA 2005; Cresswell and Murphy 2017). 18 

Biodiversity is valued for intrinsic reasons and for the provision of ecosystem services, 19 

including supporting, regulatory, cultural and provisioning roles (MA 2005; Cresswell 20 

and Murphy 2017). As a result of human disturbance, global extinction rates of species 21 

are significantly greater than historical rates, and are projected to increase (MA 2005). 22 

In addition, approximately 25% of land throughout the world is classified as highly 23 

degraded and degrading as a result of unsustainable land management practices (FAO 24 
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2011). In this thesis, a distinction is made between plant biodiversity and plant 25 

diversity. Plant biodiversity refers to the plant component of biodiversity, as reflected 26 

by multiple different measures, including the richness, Shannon–Wiener diversity, 27 

evenness, turnover and abundance of plant species, for example. Plant diversity refers 28 

to the specific measures of the Shannon–Wiener or Simpson diversity indices in 29 

relation to plant communities (the distinction being made clear in the methods of each 30 

chapter).  31 

Rangelands are areas of natural vegetation used primarily for livestock grazing, and 32 

include grasslands, shrublands, woodlands, tundra, deserts and forests, covering 25% 33 

of the global land surface (FAO 2011). The effects of livestock grazing in rangeland 34 

ecosystems vary with climate, the type and evolutionary history of the plants and 35 

animals in the grazing system, the duration, frequency and intensity of grazing, the 36 

type of livestock and soil type (Milchunas et al. 1988; Milchunas and Lauenroth 1993; 37 

Landsberg et al. 1997b; Olff and Ritchie 1998; Hickman et al. 2004; Tóth et al. 2016). 38 

Manipulation of grazing management, including the timing, intensity and distribution 39 

of grazing, and the type of livestock that graze pasture, can be used as a tool to achieve 40 

desired plant, animal, soil and economic outcomes (Vallentine 2000). While stocking 41 

rate is considered to be the most important means of manipulating grazing 42 

management, in recent decades, there has been growing interest in the adoption of 43 

grazing management systems that incorporate long periods of rest from grazing, or 44 

rotational grazing systems, to improve the productivity and sustainability of livestock 45 

enterprises (Walker 1995). However, the benefits of rotational grazing over systems 46 

in which grazing is more or less continuous, without frequent long periods of rest, are 47 

much debated (Briske et al. 2008, 2011; Teague et al. 2013).  48 
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Understanding and improving grazing management is important to achieve both 49 

ecological and economic sustainability of livestock production, and provision of 50 

reliable information for graziers is necessary to inform management and allow the 51 

integration of both ecological and socio-economic outcomes (Neilly et al. 2016). 52 

However, there is a lack of understanding of the response of biodiversity and 53 

landscape function in rangelands to different grazing management systems. 54 

Accordingly, this chapter (1) reviews literature concerning biodiversity conservation 55 

and grazing management in arid and semi-arid rangelands, and the conceptual 56 

paradigms describing ecological change in arid and semi-arid ecosystems in response 57 

to livestock grazing; (2) highlights research gaps; (3) outlines the aims and objectives 58 

of the research conducted in the remainder of the thesis to address these knowledge 59 

gaps, and (4) describes the structure of the thesis and how the structure allows the aims 60 

and objectives to be addressed in subsequent chapters.   61 

 62 

1.2 Biodiversity conservation  63 

Biodiversity is important for the provision of ecosystem services (MA 2005). These 64 

include provisioning services (e.g. food, fresh water, fuel); regulating services (e.g. 65 

climate regulation, water purification, flood regulation); supporting services (e.g. 66 

nutrient cycling, soil formation, primary production), and cultural services (e.g. 67 

aesthetic, spiritual, educational, recreational). Through the provision of these services, 68 

biodiversity can enhance ecosystem function and resilience to natural or human 69 

disturbances, and is crucial to supporting agricultural production (Fischer et al. 2006). 70 

Biodiversity loss and land degradation are associated with a loss in agricultural 71 

productivity (Fischer et al. 2006; Reynolds et al. 2007; Tilman et al. 2012) and human 72 
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well-being (MA 2005). Therefore, effective management and conservation of 73 

biodiversity is essential.  74 

1.3 Reserve network 75 

Approximately 14.7% of the world’s terrestrial land surface is currently held in public 76 

reserves (UNEP-WCMC and IUCN 2016) for reasons including biodiversity 77 

conservation and the protection of areas of natural, recreational and scenic value 78 

(Margules and Pressey 2000). The global target is for 17% of terrestrial land and inland 79 

waters to be conserved and managed through protected areas or through other effective 80 

conservation measures (UNEP-WCMC and IUCN 2016). In 2014, 17.9% of 81 

Australia’s land area was covered by the national reserve system. This was expected 82 

to increase to 19.2% by 2016 (Cresswell and Murphy 2017). Reserves play an 83 

important role in biodiversity conservation (Margules and Pressey 2000), but on their 84 

own, are inadequate in representing and conserving all biodiversity (James et al. 1995; 85 

Margules and Pressey 2000; Rodrigues et al. 2004; Fischer et al. 2006; Lindenmayer 86 

et al. 2010). Reserves are often concentrated in remote or unproductive areas of low 87 

economic value, and they rarely include representative examples of natural 88 

ecosystems in agriculturally productive environments (Margules and Pressey 2000). 89 

Globally, it is estimated that up to 68% of ecoregions, 78% of important biodiversity 90 

sites and 57% of species are inadequately conserved or not represented at all in 91 

protected areas (Butchart et al. 2015). In addition, climate change poses a significant 92 

threat to biodiversity (Heller and Zavaleta 2009) and the location of existing reserves, 93 

as species requirements and ranges change but reserves remain fixed in space 94 

(Bengtsson et al. 2003; Araujo et al. 2004; Heller and Zavaleta 2009). Selection of 95 

reserves has not taken this into account. As species ranges and community dynamics 96 
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change in response to climate change, reserves will become increasingly inadequate 97 

in protecting the biodiversity currently present (Heller and Zavaleta 2009).  98 

 99 

1.3.1 Off-reserve conservation 100 

As a result of these shortfalls in public conservation reserves and protected areas, 101 

alternative approaches to biodiversity conservation and conservation planning are 102 

required, including private conservation and off-reserve conservation (Morton et al. 103 

1995; Fischer et al. 2006; Heller and Zavaleta 2009; Lindenmayer et al. 2010; Salmon 104 

and Gerritsen 2013; Butchart et al. 2015). Off-reserve conservation has an important 105 

role in conserving biodiversity and complementing the public reserve system by 106 

facilitating connectivity between reserves, accommodating changes in species 107 

distributions and extending conservation over a much broader area. There is evidence 108 

to suggest that appropriately managed livestock grazing is compatible with 109 

maintaining conservation objectives and can play an important role in enhancing the 110 

biodiversity value of agricultural landscapes (Curry and Hacker 1990; Fensham 1998; 111 

Dorrough et al. 2004; Lunt et al. 2007a; Waters and Hacker 2008; Papanastasis 2009; 112 

Fensham et al. 2011, 2014; Savory 2013; Silcock and Fensham 2013).  113 

 114 

1.4 Rangeland ecosystem dynamics  115 

Rangelands are also highly organised in terms of ecosystem function, consisting of 116 

patches (run-on zones) and interpatches (run-off zones) that differ in relation to 117 

infiltration and accumulation of resources (Tongway and Ludwig 1990). The ‘trigger–118 

transfer–reserve–pulse’ framework (Ludwig and Tongway 1997) describes the 119 
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redistribution of resources between patches and interpatches and resulting 120 

consequences for ecological processes (Figure 1.1). In this framework, the trigger 121 

refers to inputs to the system, such as rainfall, which are then transferred via runoff or 122 

wind and captured in patches that store resources, and this then results in a pulse of 123 

production. This redistribution of resources allows for resource concentration in 124 

patches, resulting in greater production pulses than would be possible if rainfall was 125 

evenly distributed, thus maintaining the patch structure (Tongway and Ludwig 2005). 126 

Landscape function refers to the ability of landscapes to capture, retain and utilise 127 

resources such as water and nutrients (Tongway and Ludwig 1997b). Functional 128 

landscapes are able to capture and store resources, whereas dysfunctional landscapes 129 

lose excessive amounts of resources.  130 

 131 

 132 

Figure 1.1. Trigger-transfer-pulse-reserve framework. Adapted from Ludwig and Tongway (1997). 133 
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1.5 Effects of grazing on biodiversity and landscape function 135 

Livestock can have a direct effect on biodiversity and landscape function via herbivory 136 

and trampling, or indirectly via habitat modification and selective grazing, which can 137 

affect plant community composition. Livestock trampling can reduce plant, litter and 138 

cryptogam cover, and alter soil structure and function through breaking the soil surface 139 

crust, increasing bulk density (soil compaction) and reducing water infiltration (Yates 140 

et al. 2000). Soils impacted by grazing may be more vulnerable to soil erosion 141 

(Tongway et al. 2003). Livestock can also modify biodiversity and landscape function 142 

by facilitating seed dispersal, breaking the soil surface crust and enhancing seedling 143 

establishment, concentrating nutrients where dung is deposited, and altering 144 

competitive interactions between plant species (e.g. competition for light, moisture or 145 

nutrients; Olff and Ritchie 1998; Facelli and Springbett 2009). 146 

Multiple methods exist to determine the effects of livestock grazing on biodiversity 147 

and landscape function, each highlighting different aspects. For example, while 148 

species richness and evenness indicate the number and relative contribution of species 149 

in an ecosystem, respectively, and can be combined to form a measure of diversity 150 

(e.g. the Shannon–Wiener diversity index), they provide little or no indication of other 151 

responses such as the abundance of rare or threatened species, or functional 152 

composition. Biodiversity is a complex concept comprised of multiple attributes (e.g. 153 

compositional, structural and functional diversity) at different scales of biological 154 

organisation (e.g. genetic, species, ecosystem), with many different response variables 155 

to inform the multiplicity of aspects (Duelli and Obrist 2003). While many indicators 156 

provide important information about biodiversity, it is often not economically or 157 

logistically possible to measure all. The choice of measurements and indicators is often 158 

guided by the goals of the management systems and research questions at hand. In this 159 
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thesis, multiple measures of biodiversity (including plant species richness, evenness, 160 

diversity, turnover, composition, functional composition and functional diversity) and 161 

landscape function (including ground cover, bulk density, soil stability, infiltration, 162 

nutrient cycling, and patch–interpatch relationships) are discussed and reported on in 163 

order to provide broad insight into the possible effects of different grazing 164 

management systems. They are commonly used indicators in the ecological literature 165 

and are therefore comparable with many other studies. 166 

 167 

1.5.1 Theory and conceptual models 168 

A number of models have been developed to explain and predict vegetation response 169 

to livestock grazing. The models are based around two dominant theories: the 170 

equilibrium and non-equilibrium theories. The equilibrium theory suggests 171 

ecosystems exist in a single, stable climax state at equilibrium with climatic conditions 172 

(Ellis and Swift 1988). According to this theory, degradation of ecosystems is a result 173 

of overstocking and overgrazing (Ellis and Swift 1988).  Models based on equilibrium 174 

theory include the Clementsian and range succession models, which predict that after 175 

a disturbance (e.g. grazing), vegetation returns to a predictable stable state dictated by 176 

the climatic conditions at the site (Dyksterhuis 1949; Milton et al. 1994). Under these 177 

models the objective is to match stocking rate with succession. Drought is recognised 178 

as a similar disturbance to grazing, and therefore stocking rate should be reduced in 179 

drought to keep the system in balance (Westoby et al. 1989). However, the equilibrium 180 

theory fails to account for the dominance of climatic variation, often making 181 

equilibrial conditions unattainable (Ellis and Swift 1988). In addition, vegetation 182 
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change often occurs discontinuously, inconsistently and is not necessarily reversible 183 

(Westoby et al. 1989). 184 

The non-equilibrium theory proposes that due to the environmental variability that 185 

drives arid and semi-arid rangeland dynamics, plant production and composition are 186 

predominantly a result of precipitation and extreme rare climatic events (Illius and 187 

O'connor 1999). The intermediate disturbance hypothesis (Grime 1973) predicts that 188 

the greatest plant species richness occurs at intermediate levels of disturbance (such 189 

as grazing intensity). Low disturbance results in competitive exclusion by dominant 190 

species, and high levels of disturbance limits plant species richness through stress, thus 191 

resulting in a bell-shaped response of plant species richness in relation to the level of 192 

disturbance. Huston (1979) proposed that variations in rates of competitive 193 

displacement between communities when recovering from disturbance determine 194 

differences in plant diversity (i.e. richness and evenness). Although communities are 195 

prevented from reaching equilibrium because of regular disturbance, biodiversity may 196 

be stable if species loss due to competitive displacement is balanced by an increase in 197 

species due to low to moderate levels of disturbance. Therefore, communities with low 198 

rates of competitive displacement should have higher plant biodiversity as the 199 

communities are further from reaching competitive equilibrium. This contrasts with 200 

communities with a high rate of competitive displacement that reach equilibrium faster 201 

(Huston 1979).  202 

Some conceptual approaches combine equilibrium and non-equilibrium theory. For 203 

example, the state-and-transition model (Westoby et al. 1989) proposes that 204 

vegetation condition can exist as, and transition between, different ‘states’ on the same 205 

piece of land. Disturbances such as climatic events, fire or management actions such 206 

as overgrazing can trigger a transition between states (Westoby et al. 1989). Under the 207 
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state-and-transition model, managers should aim to minimise hazards and seize 208 

opportunities in order to prevent degradation and to maximise productivity. The 209 

generalised model proposed by Milchunas et al. (1988) combines grazing history by 210 

livestock and environmental moisture or productivity gradients to explain vegetation 211 

response to grazing. Drought creates similar selection pressures to grazing. Milchunas 212 

et al. (1988) proposed that semi-arid grasslands with a short history of livestock 213 

grazing, such as those found in Australia, are dominated by drought-tolerant short and 214 

intermediate-height grasses. In these ecosystems, grazing at low intensity is expected 215 

to increase plant diversity (Shannon–Wiener), and to decrease diversity as grazing 216 

intensity increases. Grazing in semi-arid ecosystems with a long history of livestock 217 

is expected to have a smaller negative response as species have evolved in response to 218 

grazing pressure (Milchunas et al. 1988). Conversely, ecosystems in subhumid regions 219 

with a short history of grazing are expected to exhibit greater changes as species are 220 

not adapted to grazing or low soil moisture (Milchunas et al. 1988). Olff and Ritchie 221 

(1998) proposed a modification to the model of Milchunas et al. (1988), postulating 222 

that communities with large generalist herbivores (non-selective graziers) have higher 223 

plant biodiversity in comparison to those dominated by small herbivores (more 224 

selective graziers). Cingolani et al. (2005) also suggested a modification to the model 225 

of Milchunas et al. (1988), making it more compatible with the state-and-transition 226 

model by allowing for irreversible transitions as a result of varying grazing intensities.  227 

 228 

1.5.2 Effect of rotational compared to continuous grazing 229 

Continuous grazing is a method whereby livestock graze the same unit of land 230 

throughout the entire year or grazing season (Allen et al. 2011). In contrast, rotational 231 
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grazing systems involve recurring periods of grazing and rest across a land unit by 232 

utilising multiple paddocks through which livestock are rotated (Allen et al. 2011). 233 

Rotational grazing management is claimed to be more environmentally sustainable in 234 

comparison to continuous grazing management, whilst increasing the productive 235 

potential of land (Norton 1998a; Teague et al. 2008). It is based on the assumption 236 

that continuous grazing leads to a decline in desirable perennial grasses as they are 237 

selectively grazed, over-utilised and do not have the opportunity to recover from 238 

grazing events (Norton 1998a). This gives a competitive advantage to less desirable 239 

and exotic or weedy species, which often increase at the expense of more desirable 240 

palatable species (Norton 1998a). In large paddocks, and at low grazing intensities, 241 

livestock do not graze the landscape uniformly (Fuls 1992; Barnes et al. 2008). Patch 242 

grazing is a significant problem in continuous grazing systems, even at low grazing 243 

intensities; patches previously grazed are often revisited, expanding these patches and 244 

neglecting areas not previously grazed (Teague et al. 2008). As a result the stocking 245 

rate of the grazed patches is much higher than the overall stocking rate of the paddock 246 

(Lange 1985; Norton 1998a; Teague et al. 2008). Rotational grazing can significantly 247 

reduce the negative effects of selective grazing and patch grazing as livestock graze at 248 

higher densities in smaller paddocks. This achieves a more even distribution of 249 

livestock grazing and utilisation of pasture, thus increasing the grazing pressure on 250 

species that would not normally be subject to defoliation. The vigour of palatable 251 

species is maintained by only grazing them for short periods and allowing species 252 

otherwise sensitive to grazing to recover during long periods of rest (Norton 1998a).  253 

Research comparing rotational grazing management systems with continuous grazing 254 

systems in arid and semi-arid rangelands has produced conflicting results. There is 255 

evidence of greater plant species richness and biodiversity (Chillo et al. 2015), 256 
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increased pasture biomass (Kahn et al. 2010), less bare ground (Kahn et al. 2010), less 257 

run-off (Teague et al. 2011), improved soil physical and chemical parameters (Sanjari 258 

2008; Teague et al. 2011) and improved landscape function (soil stability, infiltration 259 

and nutrient cycling; Read et al. 2016) under grazing management incorporating 260 

planned periods of rest compared to continuous grazing. However, others report no 261 

advantage of rotational over continuous grazing (Roe and Allen 1993; Hacker and 262 

Richmond 1994; Briske et al. 2008; Bailey and Brown 2011; Hall et al. 2014). Reasons 263 

proposed as to why the expected benefits of rotational grazing have not been realised 264 

in many scientific studies include (Norton 1998b; Teague et al. 2013): (1) scientific 265 

grazing experiments fail to address landscape-scale issues, thus underestimating the 266 

impact of selective patch grazing; (2) the long-term consequences of management 267 

strategies are rarely examined in grazing experiments; (3) the impacts of grazing 268 

management systems are confounded by stocking rate; (4) the managers of grazing 269 

experiments fail to adapt to variable weather conditions, unlike ‘real-life’ managers, 270 

and (5) grazing experiments fail to employ adequate recovery periods. 271 

 272 

1.5.3 Effect of grazing exclusion  273 

Exclusion of commercial livestock is the most common approach used to achieve 274 

biodiversity conservation and landscape regeneration. Grazing exclusion for 275 

biodiversity conservation in arid and semi-arid environments is supported by a number 276 

of studies (Lunt et al. 2007b; Spooner and Briggs 2008; Legge et al. 2011; Schultz et 277 

al. 2011), in particular the protection of rare or grazing-sensitive species. However, 278 

others report no significant difference in plant biodiversity between grazed and 279 

ungrazed areas, supporting the integration of production and conservation in arid and 280 
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semi-arid rangelands (Orr and Evenson 1991; Meissner and Facelli 1999; Beukes and 281 

Cowling 2000; Bowman et al. 2009; Souter and Milne 2009; Fensham et al. 2011, 282 

2014; Silcock and Fensham 2013). These differences between studies may be a result 283 

of differences in scale, climate, soil type, livestock type or a combination of these. At 284 

small scales, livestock grazing can increase plant biodiversity by reducing competition 285 

and creating niches for germination; at larger scales, biodiversity declines as grazing-286 

sensitive species are removed from communities, that is, the landscape becomes more 287 

homogeneous (Olff and Ritchie 1998; Landsberg et al. 2002; Kohyani et al. 2008). 288 

Negative effects of grazing on plant biodiversity are predicted to be greater in arid 289 

climate regions (Olff and Ritchie 1998; Proulx and Mazumder 1998; Bakker et al. 290 

2006), although adaptations to frequent drought in arid environments are similar to 291 

those of herbivory and affords some resilience at low grazing intensities (Milchunas 292 

and Lauenroth 1993). Smaller herbivores are generally more selective grazers, which 293 

can also reduce plant biodiversity more in comparison to larger generalist species (Olff 294 

and Ritchie 1998; Rook et al. 2004; Bakker et al. 2006; Tóth et al. 2016). 295 

There is evidence to suggest that carefully managed grazing can achieve similar 296 

conservation outcomes to those under grazing exclusion. For example, Teague et al. 297 

(2011) found no significant differences in soil physical and hydrological properties 298 

and bare ground between rotational grazing and grazing exclusion treatments. 299 

Daryanto and Eldridge (2010) found no difference in soil stability, nutrient cycling 300 

and infiltration between grazed and ungrazed areas, although in this study grazed areas 301 

had longer interpatch lengths and fewer patches. By contrast, Weltz and Wood (1986) 302 

reported increased bare ground, lower plant biomass and increased soil erosion under 303 

rotational grazing management compared to grazing exclusion, but rotational grazing 304 

treatments were only in place for 2–3 years, and were continuously grazed prior to 305 
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implementation of the rotational grazing management. Often it can take decades for 306 

the effects of exclosures to become evident, especially in rangeland ecosystems where 307 

change is slow and often triggered by rare climatic events (Hall et al. 1964; Teague et 308 

al. 2013). In China, Cheng et al. (2012) reported an improvement in plant biodiversity 309 

as a result of rotational grazing in a degraded rangeland system, as opposed to grazing 310 

exclusion. Alemseged et al. (2011) compared rotationally grazed and ungrazed areas 311 

in conjunction with temporary cropping in an Australian semi-arid rangeland 312 

following removal of shrubs, and found low-intensity rotational grazing to have 313 

benefits for biomass and the restoration of perennial ground cover. A review by 314 

Holechek et al. (2006) of studies in the North American rangelands concluded that 315 

provided average utilisation of pasture biomass does not exceed 40%, grazing can have 316 

positive impacts on pasture in arid and semi-arid areas in comparison to exclusion. 317 

Few studies have been undertaken in the Australian rangelands examining the effects 318 

of alternative, well-managed, grazing strategies on biodiversity and landscape 319 

function compared to ungrazed areas, and none have set out to specifically test the 320 

potential of alternative grazing strategies as an alternate method of biodiversity 321 

conservation to grazing exclusion. A mosaic of grazing regimes has been 322 

recommended as the best approach to achieving optimal biodiversity conservation at 323 

regional scales (Leonard and Kirkpatrick 2004; Mavromihalis et al. 2013). 324 

 325 

1.5.4 Effect of grazing intensity  326 

Grazing intensity and stocking rate are often stated to be the predominant drivers of 327 

vegetation response to grazing, as opposed to grazing management strategy (Ash and 328 

Stafford Smith 1996; Stafford Smith et al. 2007; Briske et al. 2008). The challenge is 329 

to control stocking rate to maintain land in good condition through varying climatic 330 
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fluctuations, production needs and land types (Hunt et al. 2014). Studies of the effect 331 

of grazing intensity on plant biodiversity and landscape function in Australian 332 

rangelands have produced variable results. Many have reported a negative correlation 333 

between plant biodiversity and increasing grazing pressure (Orr 1980; Landsberg et 334 

al. 2003). Fensham (1998) found greater plant species richness under light or 335 

intermediate grazing compared to high grazing intensity or ungrazed areas, while 336 

Landsberg et al. (1999) and Fensham et al. (2010) reported no significant difference 337 

in plant species richness with increasing grazing intensity, but a change in species 338 

composition. Similarly, a review of Australian studies by Eldridge et al. (2016) did 339 

not find a significant effect of grazing intensity on plant richness, although biomass, 340 

abundance and cover of plants declined with increased grazing intensity. Fewer studies 341 

have focussed on the response of native fauna to grazing intensity in Australian 342 

rangelands, although James (2003) reported increased abundance of reptiles and birds 343 

under light grazing compared to heavy grazing intensity. Similarly, Read and 344 

Cunningham (2010) found a lower abundance of small mammals and lower richness 345 

of reptiles under heavy grazing compared to light grazing intensity. However, Eldridge 346 

et al. (2016) did not find a significant difference in animal richness or abundance with 347 

increasing grazing intensity when reviewing Australian studies. No studies have 348 

investigated the effect of grazing intensity in rotational grazing systems in Australia, 349 

although studies overseas (Chillo and Ojeda 2014; Chillo et al. 2015, 2017) suggest 350 

fewer species have a negative response to a gradient of increasing grazing intensity 351 

under rotational grazing management, than under continuous grazing management. 352 

Increasing grazing intensity has also been associated with degradation of soil structure 353 

and fertility, landscape function (stability, infiltration, nutrient cycling) and ground 354 

cover (Tongway et al. 2003; Eldridge et al. 2017). These changes are often most 355 
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apparent closer to the soil surface (0–10 cm; Graetz and Tongway 1986; Greenwood 356 

and McKenzie 2001; Tongway et al. 2003). However, a review of Australian studies 357 

by Eldridge et al. (2016) found no significant effect of grazing intensity on soil 358 

functional response (index generated from soil carbon, nitrogen and phosphorus). In 359 

addition, at low stocking rates, infiltration may increase compared to ungrazed areas 360 

as soil crusts are broken by hoof action, but at higher stocking rates greater soil 361 

compaction and bulk density significantly reduce infiltration (du Toit et al. 2009).  362 

 363 

1.5.5 Effect of soil type  364 

Clay soils, such as those supporting Mitchell grasslands, are said to be resilient to 365 

livestock grazing (Orr and Holmes 1984) and other disturbance (Lewis et al. 2009b). 366 

Reasons for this include lower risk of soil erosion, greater fertility and the high-367 

moisture holding capacity of clay soils, the persistence of Mitchell grass tussocks 368 

throughout drought and grazing, the role of Mitchell grass (Astrebla spp.) tussocks in 369 

stabilising soil, and the animal preference for ephemeral species over Mitchell grass, 370 

helping Mitchell grass persistence (Orr and Holmes 1984; Campbell 1989). By 371 

contrast, sandy and red earth communities are predicted to be less resilient to livestock 372 

grazing (Harrington et al. 1984).  373 

The clay soils of Mitchell grassland communities are more fertile than the sandier soils 374 

of the semi-arid woodlands of eastern Australia (Harrington et al. 1984). Plant species 375 

richness and diversity responses to productivity gradients have been described as bell-376 

shaped curves (Proulx and Mazumder 1998), where richness or diversity is limited in 377 

high-productivity environments as a result of litter accumulation and reduced light 378 

penetration, which reduce potential for seedling establishment and competitive 379 
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displacement of existing species (Tilman 1993). In low-fertility environments, species 380 

germination is restricted by limited nutrients. Many studies have found that in nutrient-381 

poor ecosystems, heavy grazing intensity can have a greater negative effect on species 382 

richness and diversity than at low grazing intensities, as limited resources in nutrient-383 

poor ecosystems prevent regrowth after grazing, while this effect is less pronounced 384 

or reversed in nutrient-rich ecosystems (Proulx and Mazumder 1998; Bakker et al. 385 

2006; Eldridge et al. 2016, 2017). Therefore, a greater negative response to grazing 386 

would be expected on sandy soils as opposed to more fertile clay soils.  387 

 388 

1.6 Australian rangelands  389 

Arid and semi-arid rangelands comprise approximately 81% of Australia’s land mass, 390 

and livestock production in Australia’s rangelands is a significant contributor to the 391 

Australian economy (Bastin 2008; Bell et al. 2014). Arid and semi-arid Australia is 392 

characterised by significant spatial and temporal variability in resource drivers, 393 

namely rainfall, soil moisture, nutrients and landscape geomorphology (Stafford 394 

Smith and McAllister 2008; Morgan et al. 2016). Rainfall in arid and semi-arid 395 

Australia is low, highly variable and unpredictable, and is the dominant driver of 396 

ecological processes (Noy-Meir 1973; Harrington et al. 1984; Stafford Smith and 397 

Morton 1990; Morton et al. 2011). Variability in rainfall increases as mean annual 398 

rainfall decreases (Beadle 1948). Temperature is also highly variable, with maxima 399 

above 45°C in summer and minima below 0°C in winter in many regions. In general, 400 

apart from the alluvial cracking clay floodplain communities, soils in arid and semi-401 

arid Australia are predominantly highly weathered, highly sorted and infertile (low in 402 

phosphorus and nitrogen; Harrington et al. 1984; Stafford Smith and Morton 1990).  403 
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Australian rangelands have a relatively short history of ungulate grazing (<200 years), 404 

in contrast to rangelands in Africa, America and Eurasia. Prior to the introduction of 405 

European livestock, grazing pressure by native herbivores in Australian rangelands 406 

was limited by sparse water availability and predation by dingoes (Canis lupus dingo) 407 

and humans (Harrington et al. 1984). 408 

European settlement changed the condition of the Australian rangelands significantly 409 

through the introduction of domestic livestock, development of artificial water 410 

sources, introduction of exotic plant species (e.g. buffel grass, Cenchrus ciliaris), 411 

elimination of dingoes from most sheep grazing areas, introduction of pest animals 412 

(e.g. rabbits and foxes), clearing of native vegetation, and changed fire regimes, in 413 

combination with droughts and floods (Harrington et al. 1984; James et al. 1999; 414 

Woinarski and Fisher 2003; Lunt et al. 2007a; Stafford Smith et al. 2007). Grazing by 415 

livestock and unmanaged feral herbivores has led to widespread land degradation, 416 

including a loss of palatable perennial species and an increase in unpalatable perennial 417 

shrubs, a decline in landscape function, increased soil erosion, degradation of soil 418 

structure and loss of production potential and biodiversity (Harrington et al. 1979, 419 

1984; Morton 1990; James et al. 1995, 1999; Morton et al. 1995; McKeon 2004; Lunt 420 

et al. 2007a). In addition, extinction of rangeland mammals has also been significant 421 

over the past 200 years and is partly attributed to invasion by European herbivores 422 

(Morton 1990; Woinarski and Fisher 2003; McKeon 2004). This threat remains today 423 

(Woinarski et al. 2011; Cresswell and Murphy 2017).  424 

Legacy effects of historical management practices have a significant effect on the 425 

floristic composition and biodiversity of Australia’s rangelands (McIntyre et al. 2003; 426 

Monger et al. 2015). Recovery times from past degradation are considerably longer in 427 

arid and semi-arid regions than in temperate environments (Meissner and Facelli 1999; 428 
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Daryanto and Eldridge 2010; Seymour et al. 2010; Fensham et al. 2011), and recovery 429 

often requires significant rainfall events (Stafford Smith et al. 2007). Recovery of arid 430 

and semi-arid rangelands can take over 20 years (Hall et al. 1964; Fuhlendorf et al. 431 

2001; Valone et al. 2002; Seymour et al. 2010), although some changes are 432 

irreversible such as soil loss and species extinctions. The effects of past grazing 433 

management are dependent upon the extent and intensity of the degradation event, 434 

time elapsed since the event, and the sensitivity of the ecosystem to change (Monger 435 

et al. 2015). It is important to understand legacy effects in order to effectively manage 436 

land into the future (Monger et al. 2015).  437 

Approximately 12% of the Australian rangelands are currently protected in the 438 

national reserve system (Bastin 2011). Rangelands utilised for livestock grazing have 439 

the potential to complement the existing reserve network, due to the relative low-440 

intensity nature of livestock production enterprises and the close relationship of 441 

biodiversity and landscape function with productivity in arid and semi-arid 442 

rangelands, compared to more temperate regions (Dorrough et al. 2004; Neilly et al. 443 

2016). This provides producers with an incentive and opportunity to graze 444 

conservatively, in contrast to higher-productivity environments where biodiversity 445 

contributes little to production and functioning of landscapes (Kemp et al. 2003; 446 

Dorrough et al. 2004).   447 

In recent decades there has been a significant increase in the uptake of cell grazing and 448 

holistic management strategies (McCosker 2000). These alternative grazing strategies 449 

have been promoted by commercial practitioners such as ‘Resource Consulting 450 

Services (RCS)’ and numerous anecdotal case studies have been published in the grey 451 

literature. However, while considerable research into cell grazing or holistic 452 

management practices has been undertaken in temperature Australia (e.g. Earl and 453 
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Jones 1996; Dowling et al. 2005), published peer-reviewed research is lacking for 454 

Australia’s arid and semi-arid rangelands.   455 

 456 

1.6.1 Study region: western NSW semi-arid rangelands 457 

Approximately 40% of New South Wales (NSW) is classified as arid or semi-arid. 458 

Livestock grazing is the dominant land use in this region, with the majority of land 459 

held under perpetual lease from the Crown and property sizes ranging from 5000 to 460 

200 000 ha (DPI 2015). Approximately 4% of western NSW is held in public reserves 461 

(Figure 1.2; OEH 2015). Study sites for Chapters 3–5 of this thesis were concentrated 462 

in the semi-arid rangelands of north-western NSW, in the Mulga Lands and Darling 463 

Riverine Plains bioregions (Figure 1.2). Long-term mean annual rainfall in the study 464 

region ranges from approximately 400 mm at the eastern-most study site near 465 

Brewarrina, to 275 mm at the western-most site, near Wanaaring, and is spread 466 

relatively evenly throughout the year (Bureau of Meteorology 2017a). Soil and 467 

vegetation types across the study region are heterogeneous, consisting predominantly 468 

of heavy clay soils on floodplains along creeks, rivers and clay pans, and massive red 469 

earths and sandy soils with low dune development elsewhere (Harrington et al. 1984).  470 
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 471 

 472 

As with other Australian rangelands, the rangelands of western NSW have undergone 473 

significant degradation since European settlement and are in a degraded but relatively 474 

stable state, largely a legacy of historical management (Green 1989). The most 475 

significant degradation event was the drought of 1896–1902, resulting in the Royal 476 

Commission of 1901 (Anon. 1901). Overstocking and rabbit plagues during this 477 

drought resulted in a loss of palatable perennial grasses, scalding and erosion, and 478 

significantly lowered the carrying capacity of land (McKeon 2004). Similar 479 

degradation events have occurred repeatedly since, due to drought (variability of 480 

rainfall and pasture growth), meat and wool price variability (affecting both build-up 481 

of livestock numbers and destocking), inadequate property sizes and government 482 

policy (McKeon 2004). In western NSW rangelands, approximately 40% of native 483 

mammal species have become extinct since European settlement, and 46% of the 484 

remaining species are threatened (Lunney 2001). 485 

Figure 1.2. Location of protected areas in NSW (in green) and bioregions. SSD = Simpson Strzelecki 

Dunefields; CHC = Channel Country; BHC = Broken Hill Complex; MDD = Murray Darling Depression; 
COP = Cobar Peneplain; RIV = Riverina; DRP = Darling Riverine 
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Additional challenges facing land managers in western NSW include unmanaged feral 486 

goats and native kangaroos and encroachment of invasive native scrub (INS). Feral 487 

goats are a significant threat to the conservation of western NSW rangelands, placing 488 

additional pressure on biodiversity and landscape function (Khairo et al. 2013). Over 489 

2.5 million unmanaged goats are estimated to occur in the Western Division, and the 490 

population is expected to double by 2021 (Ballard et al. 2011). Kangaroo density is 491 

significantly higher than historic levels, and numbers are increasing (depending on 492 

seasonal conditions; Newsome 1975; OEH 2017), placing additional grazing pressure 493 

on understorey floristic species. The increase in kangaroo populations is attributed to 494 

a greater availability of water, modification of vegetation by domesticated ruminants, 495 

and elimination of dingoes (Newsome 1975; Caughley et al. 1987).  496 

Since European settlement, it is widely believed that there has been a significant 497 

increase in scrub, partly as a result of changed fire regimes and overgrazing, which 498 

reduced biomass of perennial grasses that supported fuel for wild fires and competed 499 

with shrubs, in combination with rainfall events, which led to widespread shrub 500 

germination and establishment (Hodgkinson and Harrington 1985). INS creates 501 

competition for resources (water) between INS and understorey herbaceous species, 502 

grazing management difficulties (as it is difficult to travel through and muster stock 503 

from paddocks), and can result in a reduction in the carrying capacity of land as 504 

herbaceous biomass declines in response to competition with shrubs (Hodgkinson and 505 

Harrington 1985). However, a recent review by Eldridge and Soliveres (2014) 506 

highlights the positive effects of shrub encroachment on ecosystem function and 507 

ecosystem service provision, including increased biodiversity. 508 

In western NSW, some progress has been made towards integrating livestock 509 

production and ecological goals. The West 2000 Plus Enterprise Based Conservation 510 
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Program involved landholders being provided a financial incentive to maintain ground 511 

cover at levels greater than 40%, as an alternative to payments for removing livestock 512 

for long periods (10 or more years; Hacker et al. 2010). This scheme provided an 513 

incentive for land managers to practise conservative grazing management at a 514 

landscape scale (Hacker et al. 2010). Other attempts to improve ecological outcomes 515 

on commercial properties in western NSW include providing financial assistance to 516 

develop infrastructure (e.g. subdivisional fencing or fencing to control total grazing 517 

pressure) and initiating landscape rehabilitation through water ponding or water 518 

spreading banks (Western Local Land Services 2016). 519 

 520 

1.7 Research gaps and PhD aims and objectives 521 

Previous research into the effects of grazing management on biodiversity in rangeland 522 

environments has produced inconsistent and inconclusive results. Moreover, little 523 

research in semi-arid Australian rangelands has compared grazed areas where rest 524 

plays an important role in the management regime, with continuously grazed areas, or 525 

areas managed for conservation where commercial livestock grazing has been 526 

excluded.  527 

This thesis aims to explore the effects of alternative grazing practices on biodiversity 528 

and landscape function in rangelands, and determine the potential to utilise alternative 529 

grazing practices to achieve broad-scale conservation outcomes in grazed landscapes. 530 

The specific objectives of the thesis are to: (1) review the literature describing the 531 

ecological and animal production effects of utilising alternative grazing strategies 532 

compared to continuous grazing management and ungrazed areas, and determine the 533 

extent of integration between the production and ecological literature; (2) document 534 
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the effect of alternative grazing practices on ground-layer floristic species composition 535 

and biodiversity measures (species richness, diversity, evenness, turnover and 536 

functional diversity) compared to traditional grazing management and conservation 537 

management strategies on contrasting soil types (clay and sand); (3) measure the effect 538 

of alternative grazing practices on soil, ground cover and landscape function compared 539 

to traditional grazing management and conservation management strategies, on 540 

contrasting soil types; and (4) determine the response of ground cover, floristic 541 

composition, biodiversity and ecosystem structure to alternative grazing management 542 

along a grazing intensity gradient. 543 

 544 

1.8 Outline of thesis 545 

This thesis consists of four research papers (Chapters 2–5) addressing comparisons 546 

between alternative grazing practices with traditional grazing practices and areas 547 

managed for conservation. A concluding chapter (Chapter 6) summarises findings 548 

from the thesis and provides management and recommendations for future research. 549 

Each research paper will be submitted for publication, and has been written as a stand-550 

alone contribution. 551 

Chapter 2 is a systematic review and meta-analysis comparing ecological and 552 

production outcomes under alternative management strategies with continuous 553 

grazing and ungrazed areas. This chapter presents a review of published literature 554 

utilising these contrasts, a meta-analysis comparing effects of alternative strategic-rest 555 

grazing management with continuous grazing and ungrazed systems on plant richness, 556 

diversity, animal weight gain and animal production per unit area, and examines the 557 

extent of integration between the production and ecological literature. This chapter 558 
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highlights research gaps and provides direction for future research on these systems. 559 

It is a shared contribution principally between myself and another doctoral student 560 

with whom I collaborated. 561 

Chapter 3 compares effects of alternative grazing management, traditional grazing 562 

management and conservation management on understorey floristic species 563 

composition and biodiversity (richness, evenness, Shannon–Wiener diversity, 564 

turnover and functional diversity measures) at three scales on contrasting soil types 565 

utilising adjacent-paddock contrasts across a large region of NSW semi-arid 566 

rangelands. 567 

Chapter 4 compares effects of alternative grazing management, traditional grazing 568 

management and conservation management on soil properties (bulk density, pH, 569 

electrical conductivity, soil carbon and nitrogen), ground cover and landscape function 570 

indices (stability, nutrient cycling, infiltration, landscape organisation, patch area) on 571 

contrasting soil types in NSW semi-arid rangelands. 572 

Chapter 5 reports a detailed study of one property that uses rotational grazing 573 

management and compares ground cover, floristic composition, understorey floristic 574 

biodiversity measures (richness, Shannon–Wiener diversity, evenness, turnover, 575 

functional diversity) and woody vegetation density with an adjacent nature reserve. 576 

Changes in response to a gradient of grazing intensity surrounding water points on the 577 

rotationally grazed property are also documented. 578 

Chapter 6 presents a synthesis of Chapters 2–5 and draws conclusions regarding the 579 

potential to utilise alternative grazing management practices as alternative methods of 580 

off-reserve conservation in NSW semi-arid rangelands. Contributions of this research 581 

to current theoretical and practical knowledge are explained, limitations of the 582 
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research are outlined and recommendations and directions for future research are 583 

suggested. 584 
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Chapter 2. Ecological and animal production 1 

outcomes under strategic rest grazing: A 2 

systematic review and meta-analysis  3 

 4 

2.1 Abstract 5 

Livestock grazing is important for food and economic security worldwide but can have 6 

considerable ecological impacts when managed inappropriately. Land sparing is often 7 

considered to be a solution, but with increasing human population growth and a 8 

growing demand for food, removing land from production may not be viable in many 9 

situations. Grazing management practices that incorporate periods of planned rest (i.e. 10 

strategic-rest grazing, SRG) may achieve both ecological and production goals 11 

simultaneously. We conducted a systematic review and meta-analyses to investigate 12 

the extent to which ecological and production attributes differ in response to SRG 13 

compared with continuously grazed (CG) and ungrazed (UG) areas across the world’s 14 

biogeographic regions. Despite finding no overall differences between grazing 15 

treatments, the meta-analyses of plant richness, diversity, animal weight gain and 16 

animal production per unit area indicated that management incorporating longer 17 

periods of rest compared to length of the grazing period has the potential to improve 18 

animal weight gain and production per unit area, although at the expense of species 19 

richness. The type of SRG system was also important, with multi-paddock SRG 20 

having lower plant richness than CG, and SRG based on seasonal or deferred grazing 21 

having greater plant diversity than CG. Trend analyses of most ecological and animal 22 

production responses to grazing management predominantly favoured SRG over CG 23 
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and UG treatments, where significant differences occurred. The majority of studies 24 

that assessed plant species composition reported a difference between SRG and CG or 25 

UG, suggesting that plant richness and diversity do not effectively capture floristic 26 

changes. The relatively low number of negative effects of SRG compared to UG areas 27 

suggests that SRG may provide an alternative means of biodiversity conservation 28 

where grazing exclusion is unviable. Only a small proportion of studies considered the 29 

effect of SRG on both ecological and production outcomes simultaneously. 30 

Addressing this knowledge gap could assist in greater integration of conservation and 31 

production outcomes in agricultural landscapes globally. 32 

 33 

2.2 Keywords 34 

Biodiversity, livestock grazing, continuous grazing, grazing exclusion, grazing 35 

management, rotational grazing, species richness, weight gain  36 

 37 

2.3 Introduction 38 

Livestock grazing occupies ~25% of global land area (around 66% of the world's 39 

agricultural land; FAOSTAT 2016) and is the single most extensive use of land on the 40 

planet (Asner et al. 2004). On a global scale, the livestock industry is worth $1.4 41 

trillion to the economy, employs over 1.3 billion people, and provides about 33% of 42 

human protein intake and 17% of dietary energy (Thornton 2010). However, the 43 

livestock sector is also a key driver of land-use change and degradation of ecosystem 44 

structure, function and composition (Dorrough et al. 2004; Eldridge et al. 2016), 45 

biodiversity loss (MA 2005; Steinfeld et al. 2006) and soil degradation (Yates et al. 46 

2000; Greenwood and McKenzie 2001; MA 2005; Steinfeld et al. 2006). Increasing 47 
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global population and corresponding demands for food production are placing 48 

increased pressure on grazing lands (Tilman et al. 2001; Foley et al. 2005; Steinfeld 49 

et al. 2006; FAO 2011). Excluding livestock from degraded areas is often seen as a 50 

means of achieving biodiversity conservation (Fleischner 1994; Pettit et al. 1995; 51 

Prober and Thiele 1995; Spooner et al. 2002; Eldridge et al. 2016). However, this 52 

inevitably comes with a loss of food and fibre production, and can be expensive and 53 

difficult to achieve across large scales (Neilly et al. 2016). In many parts of the world, 54 

large herbivores co-evolved with vegetation communities, allowing plant species to 55 

adapt to grazing pressure and develop mechanisms to tolerate herbivory (Coughenour 56 

1985; Milchunas et al. 1988). Livestock can increase plant diversity by reducing the 57 

dominance of competitive plants (Grime 1973; Elias and Tischew 2016), providing 58 

opportunities for plant regeneration (Grubb 1977; Belsky 1992), facilitating seed 59 

dispersal throughout the landscape (Olff and Ritchie 1998; Rook and Tallowin 2003; 60 

Albert et al. 2015) and providing a management tool to achieve conservation 61 

objectives (Wallis De Vries et al. 1998). Livestock grazing managed with ecological 62 

as well as production goals provides a land-sharing option that is an alternative to 63 

grazing exclusion, potentially promoting biodiversity while avoiding or preventing 64 

degradation and the negative socio-economic consequences of removing land from 65 

production.  66 

In contemporary grazing systems, a given area of land is commonly grazed 67 

continuously (year-long or throughout the entire grazing season) without periods of 68 

planned rest. This can result in heterogeneous patterns of use of the landscape by 69 

animals (i.e. patch grazing; Adler et al. 2001; Fuhlendorf and Engle 2001). Such 70 

grazing patterns can assist in maintaining diversity across the landscape by altering 71 

the relative dominance of plants through selective grazing, and leaving some areas 72 
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little grazed (Bailey et al. 1996), as well as altering nutrient status across grazing units 73 

(Taylor et al. 1985). However, these heterogeneous grazing patterns can also 74 

exacerbate the negative effects of grazing because palatable and grazing-sensitive 75 

species can be overgrazed and lost from plant communities (Teague and Dowhower 76 

2003; Teague et al. 2004, 2008; Norton et al. 2013). These patterns often increase with 77 

increasing size of management units (Stuth 1991; Bailey et al. 1996), and in extreme 78 

cases overgrazing exacerbates land degradation processes such as soil erosion 79 

(Blackburn 1984). Incorporating periods of planned rest into grazing regimes through 80 

the strategic movement of livestock, hereafter called strategic-rest grazing (SRG), is 81 

an alternative to continuous grazing management and may avoid some of the negative 82 

impacts that occur through the heterogeneous use of the landscape by livestock. While 83 

grazing practices that incorporate planned rest are commonly promoted to avoid 84 

environmental degradation and improve productivity (Norton 1998a; Teague et al. 85 

2008), considerable debate exists around the benefits of these grazing management 86 

systems (Holechek et al. 2000; Briske et al. 2008; Brown 2009; Teague et al. 2013). 87 

If the claimed benefits are realised, strategic rest may provide an alternative approach 88 

to continuous grazing or livestock exclusion in some situations. This could potentially 89 

allow for continued animal production whilst simultaneously achieving improved 90 

ecological outcomes, including biodiversity conservation (Holechek et al. 2006; Lunt 91 

et al. 2007a; Papanastasis 2009; Metera et al. 2010). 92 

Reviews to date comparing SRG with continuous grazing strategies have mainly 93 

focussed on how the former benefits animal production (e.g. Heady 1961; Holechek 94 

et al. 2000; Briske et al. 2008). Generally, these reviews have concluded that there is 95 

little difference in outcomes for animal production or rangeland sustainability (e.g. 96 

maintenance of biomass or ground cover to sustain long-term production) between 97 
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contrasting management systems (Gammon 1978; O'Reagain and Turner 1992; 98 

Holechek et al. 2000; Briske et al. 2008), with little or no attention given to 99 

biodiversity conservation. Instead, biodiversity outcomes are typically considered in 100 

comparisons between grazed and ungrazed areas (Fleischner 1994; Yates et al. 2000; 101 

Spooner et al. 2002; Lunt et al. 2007a) or different grazing intensities (Holechek et al. 102 

2006; Wallis De Vries et al. 2007; Eldridge et al. 2016). To understand the extent to 103 

which dual ecological and production outcomes can be achieved with SRG, it is 104 

necessary to consider both ecological and production outcomes simultaneously in 105 

research studies. Several authors in recent decades have called for greater 106 

communication, collaboration and integration between animal production research 107 

and ecological research to bridge these disciplinary silos (Jackson and Piper 1989; 108 

Fuhlendorf and Engle 2001; Watkinson and Ormerod 2001; Dorrough et al. 2004; 109 

Vavra 2005; Fischer et al. 2006; Metera et al. 2010; Glamann et al. 2015). If we are 110 

to gain an understanding of the potential for dual ecological and production outcomes 111 

under SRG in comparison with more conventional approaches, it is essential to address 112 

this knowledge gap.  113 

This study aimed to examine both the ecological and animal production outcomes of 114 

incorporating strategic or planned rest into livestock grazing regimes. We investigated 115 

how ecological and animal production response variables compared under SRG to 116 

continuously grazed (CG) and ungrazed (UG) systems, and the effect of climate, type 117 

of SRG management and length of the graze and rest periods on these responses. We 118 

also explored the extent to which research has considered both ecological and animal 119 

production effects of SRG management simultaneously.  120 

 121 
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2.4 Methods 122 

2.4.1 Literature review 123 

A systematic literature review was conducted using Scopus, returning articles from 124 

1950 until November 2016. We searched for studies that compared SRG systems 125 

(where land is rested for a planned period) with either CG systems or UG areas. Title, 126 

keywords and abstracts were searched for the following terms: (graz*) AND (*divers* 127 

OR biomass OR “carrying capacity” OR “weight gain” OR conserv* OR richness OR 128 

product*) AND (rotation* OR cell OR tactical OR holistic OR adaptive OR “short 129 

duration” OR planned OR continuous OR “set stocked” OR “set stocking” OR 130 

shepherd* OR “high intensity” OR “low frequency” OR “time controlled” OR “time 131 

control” OR “multi paddock” OR multipaddock OR “restorative” OR “grazing 132 

management” OR rest OR regenerat* OR “grazing system” OR “grazing regime” OR 133 

“grazing strategy” OR nomadic OR herding OR herder OR seasonal OR “active 134 

grazing”). Studies were only included if grazing animals were domesticated ruminants 135 

(e.g. cattle, sheep, goats, deer), the studies were published in English, and they 136 

reported above-ground biotic or animal production variables. Studies based on models 137 

or simulations were not included. In total, 250 articles were retained (see Appendix, 138 

Table A2.1). 139 

 140 

2.4.2 Trend analysis 141 

Two databases were constructed: one included all studies reporting SRG–CG 142 

contrasts, and the other included all studies reporting SRG–UG contrasts. For each 143 

study, we recorded the geographical region in which the study was undertaken 144 

(Europe, Eurasia, Middle East, Africa, North America, South America and 145 



Chapter 2  

33 

 

Australia/New Zealand), climatic zone (tropical, arid, temperate, cold) based on the 146 

Koppen–Geiger Climate Classification (Peel et al. 2007), and all above-ground biotic 147 

and animal production response variables reported for each SRG–CG and SRG–UG 148 

comparison. For each response variable, the effect of SRG relative to CG and UG 149 

treatments was recorded as either significantly greater (P ≤ 0.05) or significantly 150 

lower, or no difference (neutral). Species composition was recorded as a difference or 151 

no difference between the grazing systems. Where the statistical significance of 152 

comparisons was not provided in studies, we determined trends based on the authors’ 153 

interpretation. When opposing trends were present across multiple contrasts it was 154 

denoted as neutral. From this information, we calculated the proportion of studies 155 

conducted in different regions and climate zones, and the proportion of SRG–CG and 156 

SRG–UG comparisons reporting a greater, lesser or neutral response for each variable. 157 

2.4.3 Meta-analysis – data extraction and synthesis 158 

Meta-analyses were performed on subsets of studies reporting on the most frequent 159 

biodiversity and animal production response variables in the trend analysis. These 160 

were plant species richness, plant species diversity, weight gain per animal and animal 161 

production per unit of land area. While we recognise the limitations of total species 162 

richness and diversity measures in representing ecosystem function, their frequent use 163 

in the literature allowed for quantitative comparisons. We compiled a dataset for each 164 

of the four response variables, on which corresponding meta-analyses were conducted. 165 

In each dataset, information was collated for each independent grazing contrast 166 

(comparing an SRG treatment with a CG or UG treatment) about the mean, standard 167 

deviation and sample size of each response variable, along with the explanatory 168 

variables, climate zone, type of SRG system and the rest:graze ratio (see Table 2.1 for 169 
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definitions). Information on geographic region, stock type, method of calculation of 170 

richness and diversity, and the type of diversity index was also recorded (Table 2.1). 171 

Where this information was not provided either in the text or as supplementary 172 

information, the study was not included in meta-analyses. Where the same data was 173 

reported in multiple papers, data from only one paper was included. We undertook all 174 

analyses using the metafor (v.1.9-6) and metagear (v.0.4) packages (Viechtbauer 175 

2010; Lajeunesse 2016) within the R open-source software environment (Version 176 

3.4.0; R core team 2017). 177 
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Table 2.1.  Description and method of calculation of terms included in meta-analyses 178 

Variable Description Method of calculation 

Mean Mean value of response variable presented in study Obtained from text, tables or figures. When data were presented for 

multiple years, an average was taken 

Standard deviation Standard deviation (SD) of the mean response When provided, obtained directly from text, tables or figures. If SD 

was not provided, SD was determined from the SE, P value or LSD. 

Imputation was used when no measure of variance was presented in 

the paper. Where studies were averaged across years, average SD 

was used 

Sample size Number of replicate measurements used to determine mean Number of individual quadrats (for richness and diversity) or 

animals (for weight gain and animal production per unit area). 

Multiplied by number of years of study. When unclear, a best-

decision was made based on available information 

Climate zone Climatic zone that study was undertaken in (four levels): (1) 

tropical; (2) arid, (3) temperate, and (4) cold 

Based on Koppen-Geiger climate classification (Peel et al. 2007) 

Grazing system Type of SRG management system (two levels): (1) multi-paddock – 

stock moved between two of more paddocks, and (2) seasonal: 

grazed during certain seasons or during part of the grazing season 

(not rotated among paddocks) 

Information provided in text 

Rest:graze ratio Length of time an area of land was rested relative to length of time 

an area of land grazed, during grazing season or year 

Information provided in text. Length of rest time ÷ length of graze 

time 
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Variable Description Method of calculation 

Geographical region  Region that study was undertaken in (seven levels): (1) Europe, (2) 

Eurasia, (3) Middle East, (4) Africa, (5) North America, (6) South 

America, (7) Australia/New Zealand 

Information provided in text 

Stock type Type of livestock that grazed in study area (e.g. sheep, cattle, goats, 

deer, mixed) 

Information provided in text 

Calculation method Method of calculation of species richness and diversity (3 levels): 

(1) mean of quadrats, (2) sum of quadrats, (3) point method 

Information provided in text 

Diversity index Index of diversity used in study (2 levels): (1) Shannon–Wiener 

diversity index, and (2) Simpson’s diversity index 

Information provided in text 

Animal production per unit 

area – unit type 

The unit in which animal production per unit area was reported: (1) 

kg per ha-1, and (2) kg per ha-1 per day 

Calculated using information provided in text 

179 
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We calculated the effect sizes of each comparison as the log response ratio (ln 𝑅𝑅) 180 

(Hedges et al. 1999): 181 

    ln(
𝑋𝑇

𝑋𝑅
) ⁡          Equation 2.1 182 

where XT was the mean value of the response variable (in either the UG or CG system) 183 

and XR is the mean value for the SRG system. The ln 𝑅𝑅 quantified the log 184 

proportional change between means of each grazing system. If the ln 𝑅𝑅⁡> 0 (positive), 185 

the response was greater for CG or UG systems, whereas if ln 𝑅𝑅 < 0 (negative), the 186 

response outcome was greater under SRG. The ln 𝑅𝑅 has been widely used in the 187 

ecological literature and in comparable recent meta-analyses on grazing practices (e.g. 188 

Piñeiro et al. 2013; Eldridge et al. 2016). The statistical properties of the ln 𝑅𝑅 allow 189 

complex data structures to be modelled appropriately (Lajeunesse 2011). Although 190 

unweighted analyses are common in the ecological literature, such an approach can 191 

bias overall effects by giving equal weight to studies of differing precision (Koricheva 192 

et al. 2013). We undertook a weighted analysis to account for the heterogeneity in 193 

sample size and associated variance among studies. The sampling variance of 194 

ln 𝑅𝑅⁡was calculated as: 195 

 var(RR) = 
(𝑆𝐷𝑇

2)

𝑁𝑇𝑋𝑇
2 +

(𝑆𝐷𝑇𝐶
2)

𝑁𝐶𝑋𝐶
2      Equation 2.2 196 

This variance helped to limit the influence of studies with low statistical power (i.e. 197 

those with a low sample size or large standard deviations; Hedges and Olkin 1985). 198 

Analyses that included studies with multiple contrasts, common treatments and a 199 

correlated error structure and were weighted with a variance–covariance matrix that 200 

accounted for this dependency (Lajeunesse 2011, 2016).  201 
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Multi-level random-effect (MLRE) models were fitted for each response variable for 202 

SRG–CG and SRG–UG comparisons separately. These model types are appropriate 203 

for ecological meta-analyses as they account for the non-independence among effect 204 

sizes through the inclusion of random effects and variance–covariance matrices 205 

(Viechtbauer 2010; Lajeunesse 2011; Nakagawa and Santos 2012; Koricheva et al. 206 

2013). MLRE models were initially fitted without explanatory variables, to assess if 207 

the overall effect size differed significantly from zero (i.e. a null model). We included 208 

the random term of study, livestock type and geographical region in null models. In 209 

the null models of plant species richness and diversity, we added an additional random 210 

effect, calculation method, to account for differences in how species richness and 211 

diversity were estimated in each study. In null models of the effect size of plant 212 

diversity, a random term for the type of diversity index was also included (Table 2.1). 213 

In the animal production per unit area models, we added a random term for the type 214 

of unit (Table 2.1). 215 

To explain variability in effect size, we fitted MLRE models including the explanatory 216 

variables of type of SRG grazing system, climate zone and rest:graze ratio as fixed 217 

effects. We tested individual factor levels by re-levelling each variable. Effect-size 218 

heterogeneity in each model was assessed using the least squares extension of 219 

Cochran’s Q-test (QE; Hedges and Olkin, 1985; Veichtbauer, 2010). A significant QE-220 

value indicated that effect size differed more than expected due to sampling variability 221 

(Hedges and Olkin 1985). It was not possible to calculate a rest:graze ratio for every 222 

study (see Appendix, Table A2.2). We undertook separate analyses of studies where 223 

we could calculate the rest:graze ratio. We assessed the influence of rest:graze ratio in 224 

conjunction with climate zone. Analysis of variances revealed that rest:graze ratio and 225 

grazing system were correlated in all response variable datasets except plant diversity, 226 
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and therefore represented dependent quantitative and qualitative measures of grazing 227 

practice; they were therefore not analysed together. Rest:graze ratio was not analysed 228 

in SRG–UG comparisons as a large proportion of studies in this dataset failed to report 229 

data relating to the rest:graze ratio (see Appendix, Table A2.2). 230 

MLRE models were fitted using maximum likelihood. We assessed the significance 231 

of the fixed effects using two tests: an omnibus test (QM) and likelihood-ratio tests (χ2) 232 

(Viechtbauer 2010). Model selection was guided by assessment of the fit-statistics 233 

AIC, AICc, BIC and log-likelihood. In selecting models for plant species richness and 234 

diversity, we focussed on AICc, given the small sample sizes. A difference in AIC or 235 

AICc value of >2 was considered better than the null model. Homogeneity of variance 236 

was assessed by visualising model residuals against fitted values. For species richness 237 

with the SRG–UG comparison, homogeneity of variance was not satisfied in testing 238 

the effect of the full model in conjunction with the rest:graze ratio. Therefore, the 239 

effect of the rest:graze ratio for species richness was tested independently. Similarly, 240 

the full model for SRG–UG for plant diversity failed the model assumptions, so 241 

grazing system and climate were assessed individually. Model over-parameterisation 242 

was assessed by visualising likelihood-profile plots. Over-parameterisation was 243 

defined by the presence of ‘flat’ profile plots or gaps in likelihood profile due to lack 244 

of convergence (Viechtbauer 2010). Parameterisation was improved by either 245 

changing optimisation settings and re-checking profile plots or reducing the number 246 

of parameters. 247 

Publication bias was assessed using Egger’s regression test (Egger et al. 1997; Sterne 248 

and Egger 2005), which is appropriate for use with MLRE models (Habeck and 249 

Schultz 2015). We re-ran each null model with the sampling variance as a fixed effect 250 

(see Appendix, Table A2.3). If the intercept differed significantly from zero in these 251 
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tests, asymmetry in the relationship between sampling variance and effect size was 252 

demonstrated (Sterne and Egger 2005). A significance level of P = 0.1 was adopted 253 

following Egger et al. (1997) and Habeck and Schultz (2015). 254 

2.4.4 Studies integrating ecological and animal production outcomes 255 

Studies that reported on both ecological and animal production variables were 256 

classified as ‘integrated’. We considered ground cover, biomass and plant species 257 

composition as relevant response variables to both ecological and animal production 258 

outcomes. Consequently, for each study, a decision was made whether these variables 259 

related to ecological or animal production outcomes.  260 

 261 

2.5 Results 262 

2.5.1 Literature review 263 

We recorded 44 response variables in our total set of 250 articles. The most commonly 264 

reported response variables were biomass (117 studies), plant composition (97), 265 

livestock weight gain (82) and ground cover (58). Most studies were undertaken in 266 

North America (36%), followed by Australia/New Zealand (27%) and Europe (14%). 267 

A little more than half of the research (54% of studies) was conducted in temperate 268 

regions. Most of the remaining research was evenly split between arid (20%) and cold 269 

climates (24%). Very little comparative SRG research had been conducted in the 270 

tropics (2%). 271 

2.5.2 Trend analysis 272 

Most of studies comparing plant, mammal and bird species richness and diversity 273 

between SRG and CG systems reported no difference between grazing treatments 274 
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(Table 2.2). Where differences were observed, more studies reported greater plant 275 

species richness, plant diversity, mammal diversity and invertebrate richness and 276 

diversity under SRG than CG management. Of the studies that compared SRG and 277 

UG systems, the most commonly reported result for plant and invertebrate richness 278 

and diversity and bird richness was no difference. Where differences were reported, 279 

most reported greater plant species richness and mammal and bird richness and 280 

diversity under SRG than UG areas, but lower invertebrate richness and diversity, and 281 

equal numbers of lesser and greater responses for plant diversity. Only 37 studies 282 

(15%) considered faunal (e.g. birds, reptiles, mammals, invertebrates) response 283 

variables as opposed to plant response variables.  284 

Increased animal production per unit area was more frequently reported under SRG 285 

than CG, whereas the most frequent result in SRG–CG comparisons of animal weight 286 

gain was no difference (Table 2.2). However, when differences did occur, animal 287 

weight gain was more often favoured under CG than SRG management (Table 2.2). 288 

Ground cover and biomass were more frequently reported as greater under SRG 289 

compared to CG, than the reverse (Table 2.2). However, a large proportion of studies 290 

also reported no difference in ground cover and biomass between these grazing 291 

management systems. In the SRG–UG comparison, more studies reported neutral or 292 

lower biomass and ground cover under SRG than UG. Of the studies that reported 293 

impacts on plant species composition, most reported differences between SRG and 294 

CG or UG treatments (75% and 73%, respectively). Of the studies that reported both 295 

plant species composition and richness, 88% reported a difference in plant species 296 

composition between SRG and CG, and 86% reported a difference in plant species 297 

composition between SRG and UG areas. 298 
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Table 2.2. Trends in response variables (percent of total papers) in studies that compared strategic-rest 299 
grazing (SRG) with continuous grazing (CG) and in studies that compared strategic-rest grazing to 300 
ungrazed (UG) areas. Response variables are listed with overall number of studies beside it in parentheses 301 
(n). For each individual contrast the number of studies is shown in parentheses beside the parentheses (n). 302 

Variable (n) 

SRG–CG   SRG–UG 

Lesser  

(%) 

Greater 

(%) 

Neutral 

(%) 
  

Lesser  

(%) 

Greater 

(%) 

Neutral 

(%) 

Plant richness (39) 12 (3) 34.5 (9) 54 (14)   17 (4) 39 (9) 44 (10) 

Plant diversity (26) 6 (1) 41 (7) 53 (9)  26.5 (4) 26.5 (4) 47 (7) 

Mammal richness (3) 0 (0) 0 (0) 100 (2)  0 (0) 100 (1) 0 (0) 

Mammal diversity (2) 0 (0) 100 (1) 0 (0)  0 (0) 100 (1) 0 (0) 

Bird richness (6) 20 (1) 20 (1) 60 (3)  0 (0) 0 (0) 100 (4) 

Bird diversity (2) 0 (0) 0 (0) 100 (1)  0 (0) 100 (2) 0 (0) 

Invertebrate richness (10) 0 (0) 86 (6) 14 (1)  29 (2) 14 (1) 57 (4) 

Invertebrate diversity (4) 0 (0) 50 (2) 50 (2)  50 (1) 0 (0) 50 (0) 

Biomass (117) 4 (4) 48 (51) 48 (51)  34 (11) 25 (8) 41 (13) 

Ground cover (52) 6 (3) 48 (22) 46 (21)  40 (10) 4 (1) 56 (14) 

Weight gain (82) 31 (25) 17 (14) 52 (43)  NA NA NA 

Animal production per 

unit area (38) 
16 (6) 47 (18) 37 (14)   NA NA NA 

 303 

 304 

2.5.3 Meta-analyses 305 

Between SRG and CG, meta-analyses revealed no significant difference overall in 306 

either plant species richness (z = 0.74, P = 0.460) or plant diversity (z = –0.81, 307 

P = 0.419; Figure 2.1). Similarly, no significant difference in plant richness (z = 0.71, 308 

P = 0.478) or diversity (z = 0.68, P = 0.499) was observed between SRG and UG areas. 309 

However, there was a significant amount of residual heterogeneity in models (plant 310 

richness in SRG–CG comparisons QE = 655.29, P < 0.001; plant richness, SRG–UG 311 

comparisons: QE = 1145.55, P < 0.001; plant diversity, SRG–CG comparisons: 312 
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QE = 60.59, P < 0.001; plant diversity, SRG–UG comparisons: QE = 139.41, 313 

P < 0.001). 314 

Differences in plant species richness and diversity between CG and SRG were best 315 

explained by SRG type (richness: χ2 = 8.24, P = 0.004; QM = 14.47, P < 0.001; 316 

diversity: χ2 = 6.12, P = 0.013, QM = 17.34, P < 0.001). In multi-paddock SRG 317 

systems, the plant richness effect size was positive (z = –2.47, P = 0.014); in other 318 

words, richness was greater under CG than with multi-paddock SRG. However, the 319 

plant diversity effect size did not differ from zero (z = 0.86, P = 0.392). In seasonal 320 

SRG systems, plant richness effect size was not significant (z = –0.41, P = 0.670), but 321 

the plant diversity effect size was weakly negative (z = –1.65, P = 0.099); in other 322 

words, diversity was marginally greater under seasonal SRG than CG (Figure 2.1). 323 

Further, the rest:graze ratio was weakly positively related to plant richness effect size 324 

(z = 1.74, P = 0.083; Figure 2.2a). However, a significant amount of residual 325 

heterogeneity remained in these meta-analyses despite the inclusion of explanatory 326 

variables (SRG–CG, richness: QE = 613.35, P < 0.001; SRG–CG, diversity: 327 

QE = 47.96, P < 0.001; rest:graze ratio: QE = 583.55, P < 0.001). 328 

Differences in plant richness between SRG and UG were best explained by climate 329 

(χ2 = 10.92, P = 0.004; QM = 189.97, P < 0.001). Studies in arid climates differed 330 

significantly from those in temperate and cold climates (arid versus temperate: 331 

z = – 5.71, P < 0.001; arid versus cold: z = –13.67, P < 0.001; Figure 2.1a). Arid 332 

climate zones showed a weak trend of lower species richness in SRG than UG areas 333 

(z = 1.62, P = 0.104). Temperate and cold climates both exhibited zero trend 334 

(temperate: z = –0.77, P = 0.441; cold: z = –0.30, P = 0.768). Again, the residual 335 

heterogeneity was significant (QE = 702.56, P < 0.001). There were no differences 336 
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associated with explanatory variables in comparisons of plant diversity between SRG 337 

and UG systems. 338 

 339 

 340 

 341 
Figure 2.1. Estimated effects of differing grazing practices on species richness and diversity. (A) Species 342 
richness: SRG–CG (Top): overall effect (null model) and differences between multi-paddock and seasonal 343 
grazing systems; SRG–UG (bottom): overall effect and differences between different climate zones. (B) 344 
Diversity: SRG–CG (top): overall effect (null model) and between multi-paddock and seasonal grazing 345 
systems. SRG–UG (bottom): overall effect. (A and B) represent estimated effects (± C.I) from MLRE models. 346 
SRG = strategic-rest grazing, CG = continuous grazing, UG = ungrazed 347 

 348 

 349 

 350 

 351 

Figure 2.2. Relationships between the effect size and rest:graze ratio for the SRG–CG comparison for: A) 352 
plant richness; B) livestock weight gain; and C) animal production per unit area. Circle size represents the 353 
inverse of sampling variance. Larger circles indicate those contrasts with greater precision and higher 354 
weight in the analysis. Solid line = predicted values, dotted line = 95% confidence interval. SRG = strategic-355 
rest grazing, CG = continuous grazing, UG = ungrazed 356 

 357 
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Effect sizes for livestock weight gain and animal production per unit area did not differ 358 

between SRG and CG (weight gain: z = –0.84, P = 0.400; animal production per unit 359 

area: z = –1.42, P = 0.155). However, there was a significant residual heterogeneity in 360 

the analyses of weight gain and animal production per unit area (weight gain: 361 

QE = 10144.68, P < 0.001; animal production per unit area: QE = 85865.24, P < 0.001). 362 

Relative differences in animal weight gain and production per unit area between CG 363 

and SRG were best explained by the rest:graze ratio (weight gain: χ2 = 72.34, 364 

P < 0.001; QM = 72.40, P < 0.001; animal production per unit area: χ2  = 3969.16, 365 

P < 0.001; QM = 3971.76, P < 0.001). In both analyses, the rest:graze period was 366 

negatively associated with effect size (weight gain: z = –8.51, P < 0.001; animal 367 

production per unit area: z = –63.02, P < 0.001; Figure 2.2b and 2.2c). Therefore, an 368 

increase in rest:graze period was associated with increased weight gain and animal 369 

production per unit area under SRG. However, for animal production per unit area, a 370 

low rest:graze ratio was associated with greater production under CG than SRG. 371 

Judging from the upper bounds of the confidence intervals, these responses were most 372 

pronounced with rest:graze ratios of seven to one in favour of rest for weight gain and 373 

four to one in favour of rest for animal production per unit area. There was still 374 

significant residual heterogeneity in effect sizes for both production variables (weight 375 

gain: QE = 9897.94, P < 0 .001; animal production per unit area: QE = 34241.62, 376 

P < 0.001).  377 

2.5.4 Meta-analyses – model parameters  378 

Multi-paddock SRG systems had a significantly higher rest:graze ratio than seasonal 379 

SRG systems in analyses of livestock weight gain (F1,155 = 112.40, R2 = 0.416, 380 

P < 0.001), animal production per unit area (F1,84 = 144.80, R2 = 0.63, P < 0.001) and 381 

plant richness (SRG–CG: F1,41 = 4.00, R2 = 0.067, P = 0.050; SRG–UG: F1,13 = 8.66, 382 
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R2 = 0.353, P = 0.011; see Appendix, Table A2.4). Rest:graze ratio was not significant 383 

in relation to type of SRG system and plant diversity (SRG–CG: F1,12 = 0.89, R2 = 0, 384 

P = 0.363; SRG–UG:  F1,13 = 2.73, R2 = 0.110, P = 0.122). 385 

Asymmetry between effect size and sampling variance was only observed in one 386 

dataset, the SRG–UG comparison for plant richness (P = 0.067). No other dataset 387 

displayed an indication of publication bias. 388 

2.5.5 Studies reporting ecological and production outcomes 389 

Of the 250 studies, similar proportions reported the effects of grazing on ecological 390 

variables (60%) and animal production variables (56%). Only 16% of studies reported 391 

the effects of grazing on both ecological and animal production response variables 392 

simultaneously. These integrated studies mostly reported ground cover and biomass 393 

responses. Of the studies that compared plant species richness, plant diversity, 394 

livestock weight gain and animal production per unit area between SRG and CG, 12%, 395 

12%, 17% and 13%, respectively, were integrated. Of the studies comparing SRG with 396 

UG, no studies reporting plant richness or diversity results were integrated. Weight 397 

gain and animal production per unit area were not relevant in this analysis due to the 398 

nature of the comparison (no animal production in UG areas). 399 

 400 

2.6 Discussion 401 

2.6.1 Effect of strategic-rest grazing on ecological variables 402 

The most frequent outcome in our trend analysis of 250 studies was that ecological 403 

outcomes did not differ with grazing treatment. Our meta-analyses also found no 404 

significant difference in plant species richness or diversity between grazing 405 
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treatments. While there have been suggestions that SRG may lead to improved 406 

biodiversity (Norton 1998a; Provenza et al. 2003; Teague et al. 2008; Lindsay and 407 

Cunningham 2009), the lack of difference between SRG and CG is consistent with a 408 

large body of work that has concluded that stocking rate and overgrazing are more 409 

influential drivers of floristic diversity than grazing management system per se 410 

(Heitschmidt et al. 1989; O'Reagain and Turner 1992; Ash and Stafford Smith 1996; 411 

Manley et al. 1997; Provenza et al. 2003; Vermeire et al. 2008). However, differences 412 

became apparent when SRG was separated into seasonal and multi-paddock systems 413 

in meta-analyses. Multi-paddock SRG had significantly lower plant richness than CG, 414 

and seasonal SRG had greater plant diversity than CG. Lower richness associated with 415 

multi-paddock SRG may reflect greater heterogeneity under CG as animals heavily 416 

graze some areas of the landscape and under-utilise other areas (patch-grazing), 417 

leading to structural and compositional heterogeneity within large grazing units (Stuth 418 

1991; Bailey et al. 1996; Adler et al. 2001; Fuhlendorf and Engle 2001; Teague et al. 419 

2004). Compared to UG treatments, SRG generally favoured, or did not significantly 420 

alter, plant, mammal and bird species richness and diversity, and meta-analyses 421 

indicated no significant differences in plant richness or diversity between SRG and 422 

UG. Previous reviews have found that grazing has a negative effect on these 423 

biodiversity outcomes in arid rangelands (Holechek et al. 1999; Eldridge et al. 2016), 424 

but we found only invertebrate species richness and diversity to be more frequently 425 

greater under UG than under SRG systems. 426 

Although a large proportion of studies reported no difference in plant species richness 427 

and diversity between SRG and CG or UG areas, the overwhelming majority of these 428 

studies reported a difference in plant community composition due to grazing 429 

treatment. Clearly, plant species richness and diversity do not effectively capture 430 
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floristic changes. However, it is challenging to attribute plant community 431 

compositional change to a positive or negative response, given the dependence of the 432 

interpretation on the local and landscape context of the study and the goals of the 433 

grazing system (e.g. whether for ecological or animal production outcomes) and of the 434 

research. Winfree et al. (2011) and Seefeldt and McCoy (2003) suggested that species 435 

composition is a more informative indicator of community change than traditional 436 

measures of species richness and diversity. We also could not distinguish between 437 

native and exotic or invasive species when analysing plant species richness and 438 

diversity as this information was rarely reported in studies. Therefore, increased plant 439 

richness or diversity in the grazing studies reviewed here may not always reflect 440 

improved biodiversity conservation outcomes if the increase in richness and diversity 441 

were driven by introduced or invasive species.  442 

No studies included in this review recorded measures of plant functional diversity. A 443 

greater emphasis on compositional changes and changes in functional diversity would 444 

be beneficial in future research to ensure that all relevant effects of grazing treatments 445 

are captured. Of the studies that reported ecological outcomes, most reported plant 446 

community impacts whereas impacts on mammals, birds, reptiles or invertebrates 447 

were rarely reported. This is a significant knowledge gap given that animal responses 448 

often differ to those of plants (Kruess and Tscharntke 2002; Zhu et al. 2012; Chillo et 449 

al. 2015; van Klink et al. 2015). Animals respond directly to trampling and vegetation 450 

changes induced by herbivory such as reduced herbage mass or unintentional 451 

consumption, but are also impacted by grazing-induced changes in plant diversity, 452 

microclimate and vegetation structure (van Klink et al. 2015).   453 

While ground cover and biomass do not relate specifically to biodiversity 454 

conservation, they are important variables for maintaining ecological processes such 455 
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as fauna and soil protection and nutrient cycling (Gardiner and Reid 2010). The trend 456 

analysis revealed more favourable responses in both these variables under SRG than 457 

CG, indicating more sustainable ecological outcomes under SRG. However, ground 458 

cover and biomass were reduced more often than not under SRG than in UG areas.  459 

2.6.2 Effect of strategic-rest grazing on animal production variables 460 

Continuous grazing is thought to increase individual animal weight gain compared to 461 

SRG as livestock can selectively graze preferred plants (Ellison 1960; Joseph et al. 462 

2002; Briske et al. 2008). In contrast, under SRG, the smaller paddocks and higher 463 

animal densities necessary to maintain equivalent stocking rates lead to greater 464 

herbage utilisation and greater animal production per unit area (Hart et al. 1989; 465 

Joseph et al. 2002; Norton et al. 2013; Williamson et al. 2016). Although the trend 466 

analysis supported these generalisations, our meta-analyses did not. We found no 467 

significant difference between SRG and CG in either weight gain or animal production 468 

per unit area. However, as the amount of rest relative to grazing time increased, greater 469 

weight gain and animal production per unit area was observed under SRG than CG. 470 

Teague et al. (2015) demonstrated in a simulation study that increasing the number of 471 

paddocks in a rotational grazing system (and therefore the amount of rest between 472 

grazing events) can increase ecological condition and profitability. Many studies have 473 

shown that an adaptive grazing strategy according to seasonal and forage conditions, 474 

incorporating a short grazing period followed by a long period of rest, is optimal in 475 

grazing systems to achieve resource conservation and economic results (Jakoby et al. 476 

2014, 2015; Teague et al. 2013, 2015). Adaptive management is difficult to 477 

incorporate in meta-analyses when defined by stocking rate and rest:graze times. 478 

However, greater exploration of this in future studies would be beneficial. 479 
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2.6.3 Other important influences of meta-analyses  480 

Although we were able to incorporate the rest:graze ratio, climate zone and 481 

geographical region in our analyses, many other factors such as finer differences in 482 

SRG (e.g. high-density short-duration grazing, long rotations, deferred grazing, 483 

seasonal grazing or resting), management cues, sampling methods, and the length of 484 

time that the grazing treatment has been imposed prior to research being undertaken, 485 

should be included in future analyses. The complexity of the differences in grazing 486 

management between studies and the variability in the way data are reported may mask 487 

the effects of particular grazing management practices and confound results (Briske et 488 

al. 2008). For example, a large proportion of studies did not compare grazing regimes 489 

at equivalent stocking rates, or reported stocking rate differences poorly. This was 490 

particularly true of studies that focused on ecological outcomes. 491 

Data quality limited the number of studies that could be included in meta-analyses. 492 

Many studies could not be included as measures of variation or mean response values 493 

were not reported. It was challenging to extract important grazing information from 494 

studies such as the timing of rest periods relative to periods of key pasture growth. The 495 

timing of rest is known to be important (Jones 1933; Lodge and Whalley 1985). The 496 

rest:graze ratio and type of SRG system (i.e. multi-paddock or seasonal) were able to 497 

be included in our meta-analyses. However, the large amount of residual heterogeneity 498 

in the meta-analyses indicated that other unexplained factors were likely influencing 499 

outcomes. This unexplained variation is unsurprising in the context of complex agro-500 

ecological systems influenced by environmental, social and economic factors that are 501 

difficult to replicate or control for in field experiments (Briske et al. 2011; Teague et 502 

al. 2013). While this warrants further investigation, it may be difficult to adequately 503 

account for such complexity (Heady 1961; Briske et al. 2008).  504 
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2.6.4 Integration of ecological and production research 505 

Our review highlighted a lack of integration in studies, with ecological and animal 506 

production variables rarely examined simultaneously in response to different grazing 507 

treatments. Most studies that measured the response of ecological response variables 508 

did not report animal production variables, and vice versa. Of the papers that were 509 

classified as integrated, many were so because they recorded ground cover, biomass 510 

or plant composition rather than animal production and biodiversity outcomes. 511 

Variables that were more relevant to biodiversity outcomes such as species richness 512 

and diversity measures, or a particular species or community of organisms for 513 

biodiversity conservation purposes, were rarely reported simultaneously with animal 514 

production outcomes such as animal weight gain and animal production per unit area. 515 

The small number of studies that explicitly considered both ecological (especially 516 

biodiversity) and production outcomes, exposed the lack of scientific understanding 517 

of the synergies and trade-offs in managing for production and biodiversity 518 

conservation in livestock grazing systems.  519 

2.6.5 Conclusion 520 

This systematic review and meta-analyses revealed predominantly neutral responses 521 

of ecological and animal production outcomes under SRG management compared to 522 

CG and UG areas. However, when differences occurred, they were more often in 523 

favour of SRG than CG or UG areas. In the meta-analyses, ecological and animal 524 

production responses varied with type of grazing system, climate zone and the length 525 

of rest relative to grazing time. CG had greater plant species richness than multi-526 

paddock SRG systems, while plant diversity was greater under seasonal SRG than CG. 527 

However, greater exploration of the species compositional changes is necessary to 528 
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understand whether the increased richness and diversity is ecologically beneficial or 529 

agriculturally beneficial, which in turn will depend on the objectives of management. 530 

The length of rest relative to graze period in SRG systems was positively related to 531 

weight gain and animal production per unit area, and negatively related to plant 532 

richness. Our review highlighted a lack of integration between ecological and animal 533 

production outcomes in the literature comparing SRG with CG and UG areas. 534 

Addressing this knowledge gap is important to further the integration of conservation 535 

and production outcomes in agricultural landscapes. An understanding of the 536 

ecological and production trade-offs associated with different grazing management 537 

strategies is essential to make informed decisions about best-management practices 538 

and for the sustainable management of the world’s grazing lands for joint production 539 

and ecological outcomes. 540 

 541 

2.7 Acknowledgements 542 

We would like to thank Josh Dorrough, for his valuable feedback provided in various 543 

aspects of this paper, and Nick Reid for his suggestions and thorough edits. 544 



  

53 

 

Higher Degree Research Thesis by Publication 

University of New England 

 

 

STATEMENT OF AUTHORS’ CONTRIBUTION 

 

(To appear at the end of each thesis chapter submitted as an article/paper) 

 

 

We, the PhD candidate and the candidate’s Principal Supervisor, certify that all co-

authors have consented to their work being included in the thesis and they have 

accepted the candidate’s contribution as indicated in the Statement of Originality. 

 

 

 Author’s Name (please print 

clearly) 

% of contribution 

Candidate Sarah McDonald 

 

45 

Other Authors  

Rachel Lawrence 

45 

 

Romina Rader 

5 

 

Liam Kendall 

5 

  

 

 

 

 

 

Name of Candidate: Sarah E. McDonald 

 

Name/title of Principal Supervisor: Prof. Nick Reid 

 

 

 

     25 July 2017 

Candidate  

 

    28 July 2017 

_________________       ___________ 

Principal Supervisor       Date 

  



 

54 

 

Higher Degree Research Thesis by Publication 

University of New England 

 

 

STATEMENT OF ORIGINALITY 

 

(To appear at the end of each thesis chapter submitted as an article/paper) 

  

  

We, the PhD candidate and the candidate’s Principal Supervisor, certify that the 

following text, figures and diagrams are the candidate’s original work.  

  

Type of work Page number/s 

Figure 2.1 41 

Figure 2.2 41 

Table 2.1 32 

Table 2.2 39 

  

  

  

 

 

 

Name of Candidate: Sarah E. McDonald 

 

Name/title of Principal Supervisor: Prof. Nick Reid 

 

 

 

   25 July 2017 

Candidate  

 

 

  28 July 2017 

_________________     ___________ 

Principal Supervisor     Date 



  

55 

 

Chapter 3. Grazing management and biodiversity 1 

conservation in semi-arid rangelands 2 

 3 

3.1 Abstract 4 

Grazing management that promotes both biodiversity and production outcomes has 5 

the potential to improve conservation across a broad scale and complement the current 6 

protected area system. This study explored the potential to integrate commercial 7 

livestock grazing and conservation in a semi-arid rangeland system in south-eastern 8 

Australia. Understorey floristic composition and biodiversity measures at different 9 

scales were compared in relation to three grazing management treatments: alternative 10 

grazing management where livestock are frequently rotated and paddocks rested, 11 

traditional grazing management where paddocks are continuously grazed for the 12 

majority of the year, and protected areas managed for conservation where domestic 13 

livestock are excluded. Season of sampling, recent and long-term rainfall, soil 14 

characteristics and the spatial location of sites were the dominant drivers of species 15 

composition. The effect of grazing treatment on composition was relatively minor. 16 

Areas managed for conservation and under alternative grazing management had 17 

greater floristic richness and diversity than traditionally grazed areas, though results 18 

varied with season and soil type, particularly at the smallest scale. Results suggest that 19 

under certain seasons and soil types in semi-arid Australia, alternative grazing 20 

management which incorporates long periods of rest can achieve floristic conservation 21 

outcomes similar to areas where livestock have been removed, exceeding that of 22 

traditionally grazed areas. More research is necessary to determine whether alternative 23 
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grazing management is a viable option for conserving threatened species and 24 

communities in semi-arid rangelands. 25 

 26 

3.2 Key words 27 

Composition, continuous grazing, diversity, functional diversity, rotational grazing, 28 

soil type, spatial scale  29 

 30 

3.3 Introduction  31 

Pastoralism is recognised as an important factor in global rangeland degradation and 32 

domestic livestock grazing is generally considered to be incompatible with 33 

biodiversity conservation (Asner et al. 2004; MA 2005; Lunt et al. 2007a; Eldridge et 34 

al. 2016). While removing livestock and setting aside land for conservation is 35 

important for maintaining local biodiversity (Margules and Pressey 2000), such 36 

reserves are generally inadequate in representing regional biodiversity (Rodrigues et 37 

al. 2004; Watson et al. 2014). Despite the increasing extent of protected areas 38 

throughout the world, biodiversity declines continue (Butchart et al. 2010). Off-39 

reserve conservation can play an important role in conserving biodiversity at a regional 40 

scale and complement the reserve system by facilitating connectivity between reserves 41 

and accommodating changes in species distributions (Fischer et al. 2006; 42 

Lindenmayer et al. 2010). As the need for global food security increases, livestock 43 

grazing management that promotes biodiversity values may offer an alternative 44 
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approach for large-scale conservation while achieving dual production and ecological 45 

outcomes (Dorrough et al. 2004).  46 

Grazing by domestic livestock is thought to have greater negative impacts on 47 

biodiversity in xeric environments with a short history of ungulate grazing, such as the 48 

Australian rangelands, than under more mesic conditions with a longer history of 49 

grazing (Milchunas et al. 1988). This is due to the lower regrowth potential of arid 50 

areas, species evolution in the absence of high or continuous grazing pressures, and 51 

greater susceptibility to soil erosion (Milchunas et al. 1988; Cingolani et al. 2005). As 52 

a result, grazing in more arid regions has been associated with declines in floristic 53 

biodiversity and changes in community structure and composition (Milchunas et al. 54 

1988; Pettit et al. 1995; Bakker et al. 2006; Díaz et al. 2007; Carmona et al. 2012). 55 

These changes occur either directly as a result of herbivory, or indirectly through 56 

habitat modification (including soil disturbance and degradation, altered fire regimes, 57 

nutrient addition and seed dispersal) and the negative feedback effects associated with 58 

both (Hulme 1996; Olff and Ritchie 1998; Eldridge et al. 2016). However, there is 59 

evidence to suggest that certain types of grazing management can maintain or improve 60 

plant biodiversity and species composition, and enhance biodiversity in agricultural 61 

landscapes (Dorrough et al. 2004). Moreover, recent studies have found little impact 62 

of grazing on plant biodiversity measures in arid and semi-arid environments 63 

(Dostálek and Frantík 2008; Lewis et al. 2008; Fensham et al. 2011; Fensham et al. 64 

2014; Oñatibia and Aguiar 2016)  65 

Alternative grazing regimes, where livestock are frequently rotated and paddocks 66 

rested, have the potential to achieve both ecological and socio-economic outcomes 67 

(Teague et al. 2015). However, there is conflicting evidence as to the value of 68 
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rotational grazing regimes over continuous grazing (Briske et al. 2008; Teague et al. 69 

2013). Listed ecological benefits of rotational grazing systems include more even 70 

utilisation of pasture and less selective grazing (thereby avoiding overgrazing of 71 

patches and desirable species), maintenance of plant vigour, increased abundance and 72 

cover of perennial species, achieving desired species composition, increased plant 73 

biodiversity, and greater control over grazing pressure (Norton 1998a; Teague et al. 74 

2008, 2013). However, few studies in arid and semi-arid regions have compared the 75 

effects of alternative grazing strategies on plant biodiversity and species composition 76 

with areas managed for conservation.  77 

While 12% of Australian rangelands are held under formal public conservation tenure 78 

(Bastin 2008), only 3% of the Mulga Lands and Darling Riverine Plains bioregions in 79 

western NSW is currently held in public reserve (OEH 2016). Therefore integration 80 

of conservation and production goals on the commercial grazing lands that comprise 81 

these two bioregions is essential for the conservation of regional biodiversity. The 82 

semi-arid rangelands of western NSW have undergone significant degradation since 83 

domestic livestock were introduced in the mid - 1800s as a result of overstocking and 84 

poor management (Anon 1901; McKeon 2004).  85 

Previous research on the impact of alternative grazing strategies on plant biodiversity 86 

and community composition has often not accounted for differences in soil, 87 

vegetation, season, or scale, and few studies have explored the potential of alternative 88 

grazing strategies for biodiversity conservation in Australian rangelands. This study 89 

aimed to determine whether alternative grazing strategies can improve biodiversity 90 

outcomes compared to traditional methods of commercial grazing and conservation 91 

management. Specifically, we compared understorey floristic species composition and 92 
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biodiversity measures (richness, evenness, diversity, turnover, functional diversity) at 93 

three different scales between sites managed for nature conservation and those under 94 

traditional (continuous) and alternative (rotational) grazing management strategies on 95 

contrasting soil types (clay versus sand).  96 

 97 

3.4 Methods 98 

Thirteen grazing contrasts were sampled in six property clusters (groups of sites 99 

utilising adjacent properties) throughout the Mulga Lands and Darling Riverine Plains 100 

bioregions of western NSW (IBRA7 2012; Figure 3.1) on heavy clay (‘clay’, n = 7) 101 

and sandy-loam (‘sand’, n = 6) soils. Average rainfall declined from east (400 mm) to 102 

west (275 mm) across the study region. Rainfall in the preceding 3, 6 and 12 months 103 

to sampling was variable and showed no clear geographical trend among clusters 104 

(Figure 3.2). 105 

 106 
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 107 

Figure 3.1. Location of property clusters (numbered) in western New South Wales, Australia. 108 

109 

 110 

Figure 3.2. Preceding 3, 6 and 12 month rainfall (cumulative) for the site clusters sampled in (a) spring 2014 111 
and (b) autumn 2015. 112 
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Three grazing treatments were studied: (1) areas currently managed for conservation 113 

(CON) where domestic livestock had been excluded, but feral and native herbivores 114 

remained; (2) alternative grazing management (AGM) on commercially grazed 115 

properties where paddocks are strategically rested for periods of time throughout the 116 

year and paddocks are grazed at an appropriate stocking rate to maintain ground cover, 117 

pasture biomass and biodiversity; and (3) traditional grazing management (TGM) on 118 

commercial properties, where paddocks are continuously grazed for most of the year. 119 

AGM treatments did not comply with strict rest–graze times; rather, stocking rates and 120 

grazing regimes were managed adaptively according to seasonal conditions and 121 

management constraints. As such, they were representative of current AGM 122 

management in Western NSW. Although very variable, average annual stocking rates 123 

were 4.5 DSE/ha and 3.5 DSE/ha for AGM and TGM treatments, respectively. 124 

Properties selected for this study had been undertaking their current grazing 125 

management for a minimum of 5 years prior to sampling. Information on current and 126 

historical management, grazing strategies and stocking rates was obtained for each site 127 

from the land managers (see Appendix, Table A3.1 and Table A3.2).  128 

3.4.1 Sampling design 129 

Each grazing contrast compared at least two different grazing treatments in adjacent 130 

paddocks in the same land system and vegetation community (see Appendix, Table 131 

A3.3). Three 100 × 100-m plots were selected over a distance of approximately 1 km 132 

within each grazing treatment (site), with different grazing treatments located on 133 

adjacent properties under different management. Understorey floristic measurements 134 

were recorded in twenty-five 1 × 1-m quadrats arranged systematically at 25-m 135 

intervals within plots (Figure 3.3). 136 
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 137 

 138 

Figure 3.3. Diagram of typical paired-site plot and quadrat layout (not to scale). 139 

 140 

 141 

3.4.2 Biodiversity measurements 142 

Floristic surveys were undertaken in spring 2014 (20 September – 6 November) and 143 

autumn 2015 (21 April – 30 May). In each quadrat, all understorey plant species (<3 144 

m tall at maturity) were identified to the lowest taxonomic level possible. Dung 145 

(number of pellets of goat and sheep combined, kangaroos and rabbits, and number of 146 

cattle pats) was also counted in each quadrat, to provide a measure of grazing intensity. 147 

Understorey floristic species richness, Pielou’s evenness index (J’), Shannon–Wiener 148 

diversity index (H’) and species turnover (pattern diversity) were calculated at two 149 

scales: site (75 quadrats pooled) and plot (25 quadrats pooled). Species richness was 150 

also calculated for each quadrat.  151 
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Functional trait information for each understorey plant species was obtained from 152 

online sources and literature (Table 3.1). Trait information included life history, 153 

origin, functional group, height, seed length, leaf area index and palatability. Species 154 

richness of each categorical functional trait was calculated for each quadrat, plot and 155 

site. Community weighted mean (CWM) scores were calculated for each trait at plot 156 

and site scale using species frequency data. Functional richness (FRic), functional 157 

evenness (FEve), functional dispersion (FDis), and functional diversity (Rao’s 158 

quadratic entropy, RaoQ) were calculated from life history, origin, height, seed length, 159 

leaf area index and palatability information using species frequency in plots for each 160 

season. An index of species rarity within this study was also determined, calculated as 161 

the proportion of plots a species was absent from. Rarity was also analysed using 162 

CWM’s. 163 

  164 
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Table 3.1. Description of functional trait data measured and reported in results 165 

Variable Description Analysed as 

Life history1 Category: total annual or total perennial Richness and CWM 

frequency2 

Origin1 Category: native or exotic Richness and CWM 

frequency 

Functional group1 Category: annual grass, annual forb, 

perennial grass, perennial forb 

Richness and CWM 

frequency 

Height1 Plant height at maturity CWM frequency 

Seed length1 Length of seed CWM frequency 

Leaf area index1 Leaf width × height CWM frequency 

Palatability4  Palatability to livestock. Category: 

unpalatable – not eaten unless little other 

food available; moderately palatable – eaten, 

but not readily or when mature; palatable – 

palatable and readily eaten4  

Richness and CWM 

frequency 

Functional 

richness5 

Represents the range or variability of traits in 

a community (Villéger et al. 2008) 

CWM frequency 

Functional 

evenness5 

Relates to the evenness of the abundance 

distribution of traits (Villéger et al. 2008) 

CWM frequency 

Functional 

dispersion5 

The distance of a species in functional trait 

space to the centroid of all other species, 

weighted by abundance (Laliberté and 

Legendre 2010) 

CWM frequency 

Functional 

diversity5 

RaoQ, measures the functional trait 

difference between species and weights by 

species abundance (Botta-Dukát 2005) 

CWM frequency 

1 Information from PlantNet (The NSW Plant Information Network System), Royal Botanic Gardens 166 
and Domain Trust, Sydney. http://plantnet.rbgsyd.nsw.gov.au [15 October 2015] 167 
2 Community weighted means (CWM) calculated using the FD package in R (Laliberté et al. 2010) 168 
from species frequency data 169 
3 Forbs refer to all understorey species except grasses 170 
4 Palatability data from Cunningham et al. (2011) 171 
5 Calculated using the FD package in R (Laliberté et al. 2010) from the life history, origin, functional 172 
group, height, seed length, leaf area index, palatability and rarity index traits 173 

 174 

3.4.3 Soil samples 175 

Three soil cores (50 mm deep and 75 mm width) were taken in each plot in autumn 176 

2015. Soil was dried at 40°C, and a subsample dried at 105°C for bulk density 177 

calculation. The three cores from each plot were bulked by equal volume, and sieved 178 

to 2 mm for pH and electrical conductivity (EC) analysis, and ground to 0.2 mm for 179 
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LECO analyses. Soil pH and EC were analysed using methods outlined by Rayment 180 

and Higginson (1992); pH was measured using a pH meter (Model 901-CP), and EC 181 

with an EC meter (Model labCHEM) in a 1:5 soil:water solution. Total organic carbon 182 

(TOC) and total organic nitrogen (TON) were measured using a LECO TruSpec Series 183 

Carbon and Nitrogen Analyser. Soils with pH > 7 were tested for carbonates by adding 184 

hydrochloric acid to a sample of the soil and looking for effervescence. Soils that 185 

contained carbonates were treated with sulphurous acid before LECO analysis.  186 

3.4.4 Statistical analysis 187 

Multivariate analysis was used to determine the variance in species composition 188 

attributable to all sources of measured variation (spatial, environmental and 189 

management) across plots and univariate analyses were used to investigate 190 

relationships between grazing treatments and biodiversity measures. 191 

Detrended Canonical Analysis (DCA) was performed on species frequency data at the 192 

plot scale using CANOCO 5 (Ter Braak and Šmilauer 2012). The length of gradient 193 

produced from this analysis then determined whether a unimodal (gradient <3) or 194 

linear model (>4) was used for direct ordination analyses. Canonical Correspondence 195 

Analysis (CCA) was selected as the appropriate method. Monte-Carlo permutation 196 

tests (1000 permutations) and forward selection was used to determine inclusion of 197 

environmental variables. Environmental variables included average rainfall, preceding 198 

3, 6 and 12 month rainfall, bulk density, pH, EC, TOC, TON, average months rested 199 

per year, average stocking rate when grazed, dung counts, and spatial variables (X, Y, 200 

X2, XY, Y2, X3, X2Y, XY2, Y3) as outlined in Borcard et al. (1992). Factors soil (sand 201 

and clay), season (spring and autumn) and grazing treatment (CON, AGM and TGM) 202 

were also included as environmental variables. Holm’s corrected P–values were used 203 
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to adjust for type-1 error inflation; only variables with Holm’s P ≤ 0.05 were included 204 

in the model. Variance partitioning was performed on the CCA in three categories: (1) 205 

rainfall and soil variables (preceding 3, 6 and 12 month rainfall, annual rainfall, soil 206 

type, soil bulk density, pH, EC, TOC and TON); (2) grazing variables (treatment, 207 

average rest time, average stocking rate and dung counts), and (3) spatial variables. 208 

Linear mixed-effects (LME) models using the lme4 package in R (Bates et al. 2016; 209 

R core team 2017) were used to analyse the effect of soil, season and grazing treatment 210 

on response variables at site, plot and quadrat scales. Differences between soil types 211 

or seasons for total species richness, diversity, evenness and turnover at the site scale 212 

were determined from LME models using soil type (sand/clay) or season 213 

(spring/autumn) as a fixed effect and cluster and site within cluster as nested random 214 

effects. To determine differences between grazing treatments at site scale, LME 215 

models included season of survey, soil type, and grazing treatment (CON/AGM/TGM) 216 

as fixed effects and cluster and site as nested random effects. LME models for plot 217 

and quadrat-scale data followed a similar structure to those at site scale, except that 218 

cluster, site within cluster, and plot within site, were included as nested random effects. 219 

All fixed effects and their interactions were initially included in the models, and non-220 

significant interaction terms were removed one at a time, commencing with the 221 

highest-order interactions, until only significant interaction terms or main effects 222 

remained (P ≤ 0.05; Ripley et al. 2013). Response variables were transformed as 223 

necessary to meet the assumptions of models. Predicted means were calculated and 224 

Tukey’s HSD pairwise comparisons made using the lsmeans function in the lsmeans 225 

package (Lenth and Hervé 2013) to determine significant differences between factors 226 

(P ≤ 0.05). Differences in dung counts between grazing treatments were also analysed 227 
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using LME models at the plot scale. Pearson’s correlations, stratified by soil type and 228 

season, were computed between species richness, evenness, diversity and turnover and 229 

explanatory variables using the Hmisc package in R (Harrell 2016) to help interpret 230 

the impact of explanatory variables on plant biodiversity measures. 231 

 232 

3.5 Results 233 

In total, 260 vascular understorey plant species (including subspecies) in 43 plant 234 

families were detected across all sites (see Appendix, Table A3.3). Of the 260 species 235 

recorded, 50% of species were perennials, 33% annuals, and 17% uncertain (plants 236 

lacking identifying features and seedlings too small to identify to species level, mostly 237 

due to recent rainfall at several sites prior to the autumn survey). Of the identified plant 238 

species, 52% occurred in just three families: Poaceae (19% of species), 239 

Chenopodiaceae (19%) and Asteraceae (14%). The majority of species identified were 240 

perennial forbs (48%), followed by annual forbs (33%), perennial grasses (13%) and 241 

annual grasses (6%). Fourteen species (5%) were exotic. In spring 2014, 209 species 242 

were recorded across all sites compared to only 162 species in autumn 2015, with 111 243 

species present in both seasons. Conservation sites had higher mean counts of 244 

kangaroo dung than grazed treatments whereas grazed sites had higher mean counts 245 

of livestock dung than conservation sites (Table 3.2).  246 

  247 
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Table 3.2. Dung counts (predicted means, m-2) in each grazing treatment. Different letters indicate 248 
significantly different means within rows (P ≤ 0.05). CON = conservation management, AGM = alternative 249 
grazing management, TGM = traditional grazing management 250 

Animal CON AGM TGM P-value 

Kangaroo (pellets/m2)    <0.001† 

               Sand 3.40a  2.03a  2.91a   

               Clay 4.60a  3.30b  1.46c   

Sheep/goat (pellets/m2)‡    0.004† 

               Sand 

               Clay 

5.47b  

3.06b  

11.38a 

5.49ab 

6.61ab 

7.73a  

 

Cow (pats/m2)‡    0.002† 

               Sand 

               Clay 

< 0.001b  

< 0.001b  

0.01ab  

0.08a  

0.03a  

0.07a  

 

† Significant soil:grazing treatment interaction 251 
‡ Square-root transformation used in LME models; data in table have been back-transformed 252 

 253 

3.5.1 Composition 254 

CCA of species frequency within plots revealed a clear distinction in plant community 255 

composition between soil types and site clusters, and to a smaller extent, seasons 256 

(Figure 3.4). Some differences between grazing treatments within clusters were 257 

evident, but these patterns were not consistent among clusters or seasons. Grazing 258 

treatment was not significant; rather, soil type explained the greatest amount of 259 

variation, followed by spatial variables, rainfall variables, soil bulk density, season, 260 

soil pH, soil nitrogen, soil EC, sheep/ goat dung counts, average stocking rate under 261 

grazing, average months rested per year, and kangaroo dung. Combined, this set of 262 

variables accounted for 45% of the total variation. Variance partitioning revealed 263 

rainfall and soil variables accounted for 11.1% of all variation, closely followed by 264 

spatial variables, 9.5% (Figure 3.5). Grazing variables accounted for 1.4% of the 265 

floristic variation. 266 

  267 
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Figure 4 279 
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Figure 3.4. Constrained ordination of species frequency for both spring and autumn. White = 

conservation, grey = alternative grazing, black = traditional grazing. = cluster 1, clay;  = cluster 2, 

clay;  = cluster 3, clay;  = cluster 4, clay;  = cluster 5, clay;  = cluster 3, sand;  = cluster 4, sand; 

 = cluster 5, sand;  = cluster 6, sand.  = factors. 6 month = previous 6 month rainfall; 3 month = 

previous 3 month rainfall; 12 month = previous 12 month rainfall; Average rain = average rainfall; BD = 

bulk density; Nitrogen = soil total organic nitrogen; see Borcard et al. (1992) for information on spatial 

variables. Significant variables explaining less than one percent of explained variation are not shown on 

graph (EC, average stocking rate under grazing, average number of months rested per year, sheep/ goat 
dung, kangaroo dung, Y2) 
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 282 

Figure 3.5. Variance partitioning of grazing, rainfall and soil, and spatial variables on species frequency in 283 
plots 284 

 285 

3.5.2 Site-scale responses to soil type, season and grazing treatment  286 

Total species richness and diversity of the understorey vegetation was significantly 287 

greater in sand sites than clay sites (Table 3.3), and species richness, diversity and 288 

turnover were greater in spring than autumn (Table 3.4). In spring, CON and AGM 289 

sites had greater species richness than TGM sites, and AGM sites had greater diversity 290 

than TGM sites (Table 3.5). In terms of differences in functional composition, AGM 291 

sites had greater richness of total perennial species, perennial forb and native species 292 

in spring, and greater richness of moderately palatable species richness in both 293 

seasons, than TGM sites. CON sites had greater native species richness and a greater 294 

frequency of rare species, than TGM sites. There were no significant differences in 295 

functional traits between grazing treatments when analysed as species frequency 296 

(CWM) or functional diversity (see Appendix, Table A3.4). 297 
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3.5.3 Plot-scale responses to soil type, season and grazing treatment 298 

At the plot scale, species richness, diversity, evenness and turnover were significantly 299 

greater on sand than clay soils (Table 3.3), and richness and diversity were 300 

significantly greater in spring than autumn (Table 3.4). In spring, CON and AGM plots 301 

had significantly greater species richness than TGM plots, and CON plots had 302 

significantly greater diversity than TGM plots (Table 3.6). AGM plots had greater 303 

richness of total perennial species, native, and unpalatable species in spring, and of 304 

moderately palatable species in both seasons, than TGM plots. CON plots had greater 305 

richness of total annual species, annual and perennial forbs, native, unpalatable and 306 

palatable species than TGM plots in spring, as well as a greater frequency of rare 307 

species than TGM plots. There were no significant differences in functional traits 308 

between grazing treatments when analysed as species frequency (CWM) or functional 309 

diversity (see Appendix, Table A3.5). 310 

3.5.4 Quadrat-scale responses to soil type, season and grazing treatment 311 

At the quadrat scale, there was no difference in species richness between sand and clay 312 

soils (Table 3.3). However, there were significantly more species in spring than 313 

autumn (Table 3.4). Species richness was significantly greater under CON and AGM 314 

than TGM on clay soils in spring at quadrat scale (Table 3.7). Richness was also 315 

greater under CON than TGM on sand soils in spring, but this trend was reversed in 316 

autumn. AGM quadrats had greater richness of total annual species and annual forb 317 

species in spring on sand and in autumn on clay soils, and also of annual grass species 318 

in spring, compared to TGM quadrats. Total perennial species richness and perennial 319 

forb species richness were greater under AGM in spring on clay soils, and perennial 320 

forb species richness was also greater in autumn on clay soils under AGM than TGM. 321 
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CON management had greater richness of total annual species and annual forb and 322 

grass species in spring on both soil types than TGM, and greater richness of perennial 323 

forbs in spring on clay soils and of perennial grasses in autumn on clay soils than 324 

TGM. TGM quadrats had greater richness of perennial forbs on sand in autumn and 325 

of perennial grasses on clay soils in spring than CON management, and greater 326 

richness of perennial grass species in autumn than AGM. In terms of differences 327 

between CON and AGM, CON quadrats had greater richness of total annual species 328 

and annual forb species in spring on clay soils, and perennial grass species in autumn 329 

on clay soils, but AGM had a greater richness of total perennial species, and of 330 

perennial forb and grass species in spring on clay soils, and of perennial forb species 331 

in autumn on both soil types. Compared to TGM, native and exotic species richness 332 

was greater under AGM in spring on clay soils and CON quadrats had greater richness 333 

of natives in spring on sand and exotics in spring on clay soils. Compared to TGM, 334 

AGM had a greater richness of unpalatable species in both seasons and on both soil 335 

types, and a greater richness of moderately palatable species in spring and on clay 336 

soils. CON quadrats had a greater richness of unpalatable species in spring and on clay 337 

soils, moderately palatable species on clay soils, and palatable species in spring on 338 

sand soils than TGM quadrats. AGM quadrats also had a greater richness of 339 

moderately palatable species than CON quadrats.   340 
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Table 3.3. Predicted means for understorey floristic species richness, diversity, evenness and turnover at 341 
different scales for sand and clay soils 342 

Variable Scale Sand Clay P-value 

Richness Site 39.12 28.16 0.007 

Richness Plot  25.51 17.68 0.015 

Richness Quadrat 5.41 5.19 0.826 

Diversity1 Site 39.12 2.65 0.022 

Diversity1 Plot 2.80 2.34 0.007 

Evenness2 Site 0.83 0.81 0.183 

Evenness3 Plot 0.87 0.85 0.043 

Turnover Site 0.75 0.68 0.618 

Turnover Plot 0.48 0.35 < 0.001 
1 Square-root transformation used in LME model, data presented have been back-transformed 343 
2 Transformed to the power of 6; data presented back-transformed 344 
3 Transformed to the power of 8; data presented have been back-transformed 345 

 346 

 347 

Table 3.4. Predicted means for understorey floristic species richness, diversity, evenness and turnover at 348 
different scales, in spring 2014 and autumn 2015 349 

Variable Scale Spring Autumn P-value 

Richness Site 38.63 27.82 < 0.001 

Richness Plot  24.50 17.96 < 0.001 

Richness Quadrat 6.23 4.39 < 0.001 

Diversity1 Site 3.00 2.66 < 0.001 

Diversity1 Plot 2.71 2.40 < 0.001 

Evenness2 Site 0.83 0.82 0.224 

Evenness3 Plot 0.86 0.85 0.344 

Turnover Site 1.06 0.37 < 0.001 

Turnover Plot 0.41 0.41 0.654 
1 Square-root transformation used in LME model; data presented have been back-transformed 350 
2 Transformed to the power of 6; data presented back-transformed 351 
3 Transformed to the power of 8; data presented back-transform  352 
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Table 3.5. Predicted means for site scale response variables for grazing treatments. Different superscript 353 
letters indicate significant differences within rows (P ≤ 0.05). AF = annual forb, AG = annual grass, PF = 354 
perennial forb, PG = perennial grass, CON = conservation management, AGM = alternative grazing 355 
management, TGM = traditional grazing management 356 

Response variable CON AGM TGM P-value 

Total richness    <0.001† 

           Spring 42.54a  42.17a  32.51b  

           Autumn 25.76a 29.17a  29.85a  

Evenness‡ 0.34a  0.31a  0.28a  0.207 

Shannon–Wiener Diversity§    0.010† 

           Spring 3.13ab  3.13a 2.76b   

           Autumn 2.65a  2.67a 2.72a   

Turnover 0.637a  0.81a  0.70a  0.318 

Total annual richness    0.027† 

           Spring 17.39a  15.16a  12.20a   

           Autumn 6.17a  7.38a 7.42a   

AF richness    0.026† 

           Spring 13.78a  12.64a 9.11a   

           Autumn 4.78a  6.08a  6.22a   

AG richness 2.47a  1.87a  1.95a  0.185 

Total perennial richness    0.007† 

           Spring 23.75ab  26.31a  20.03b  

           Autumn 17.52a  19.42a  19.58a  

PF richness    0.017† 

           Spring 17.86ab 19.08a  13.59b   

           Autumn 12.98a  14.52a  14.15a   

PG richness 5.21a  6.06 a  5.92a  0.183 

Native richness    0.002† 

           Spring 38.17a  38.71 a  29.70b   

           Autumn 22.06a  24.49 a  24.03a   

Exotic richness 1.71a  1.65a  1.53a  0.857 

Unpalatable richness 9.12a  9.69a  7.74a  0.079 

Moderately palatable richness 6.39ab 7.07a  5.35b  0.027 

Palatable richness 14.36a 14.30a 13.80a 0.883 

Rarity index (CWM) 71.67a 70.38ab 69.13b 0.009 

† Significant season:grazing treatment interaction 357 
‡ Transformed to power of 6; data presented back-transformed 358 
§ Transformed to power of 2; data presented back-transformed 359 
  360 
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Table 3.6. Predicted means at the plot scale for response variables. Different superscript letters indicate 361 
significant differences within rows (P ≤ 0.05). AF = annual forb, AG = annual grass, PF = perennial forb, 362 
PG = perennial grass, CON = conservation management, AGM = alternative grazing management, TGM = 363 
traditional grazing management 364 

Response variable CON AGM TGM P-value  

Total richness    <0.001† 

           Spring 26.98a 26.48a  21.15b   

           Autumn 17.09a 18.52a  19.37a   

Evenness‡ 0.31a     0.30a  0.28a  0.506 

Shannon–Wiener Diversity§    0.006† 

           Spring 2.81a  2.80ab 2.56b  

           Autumn 2.38a  2.41a  2.46a  

Turnover 0.42a  0.42a  0.41a  0.854 

Total annual richness    0.004† 

           Spring 11.22a 9.83ab  8.01b  

           Autumn 4.32a  4.67a  4.81a  

AF richness    0.003† 

           Spring 8.45a  7.71ab  5.74b  

           Autumn 3.19a  3.63a  3.85a  

AG richness 1.75a  1.45a  1.46a  0.100 

Total perennial richness    0.008† 

           Spring 15.27ab  16.43a 13.06b   

           Autumn 11.81a 12.55a 12.71a   

PF richness*    0.008† 

           Spring 10.75a  10.53ab  7.57b  

           Autumn 7.25a  7.77a  8.14a  

PG richness 3.86a  4.29a  4.24a  0.196 

Native richness    0.002† 

           Spring 24.71a 24.38a 19.70b   

           Autumn 14.90a 15.86a 15.55a   

Exotic richness* 0.46a  0.64a  0.54a  0.535 

Unpalatable richness    0.003† 

          Spring 7.40a 7.03a 5.4b  

          Autumn 3.73a 4.07a 4.04a  

Moderately palatable richness 3.93b  4.66a  3.53b  0.001 

Palatable richness    0.005† 

          Spring 12.30a 11.41ab  9.80b   

          Autumn 8.04a  8.30a 9.09a  

Rarity index (CWM) 72.00a  70.45ab 69.61b 0.005 

† Significant season:grazing treatment interaction 365 
‡ Transformed to power of 8; data presented have been back-transformed 366 
§ Transformed to power of 2; data presented back-transformed 367 
* Square-root transformed; data presented back-transformed   368 
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Table 3.7. Predicted means at the quadrat scale for response variables. Different superscript letters in rows 369 
indicate significant differences (P ≤ 0.05). AF = annual forb, AG = annual grass, PF = perennial forb, PG = 370 
perennial grass, CON = conservation management, AGM = alternative grazing management, TGM = 371 
traditional grazing management 372 

Response variable CON AGM TGM P-value 

Total richness    0.003† 

    Spring-Clay 6.53a  6.70a  5.71b  

    Spring-Sand 6.51a  6.18ab 5.60b  

    Autumn-Clay 4.62a  4.59a  4.24a  

    Autumn-Sand 3.78b  4.44ab 4.62a  

Total annual richness‡    0.008† 

    Spring-Clay 1.95a  1.28b  1.01b  

    Spring-Sand 2.26a  2.20a  1.55b  

    Autumn-Clay 0.47ab 0.62a  0.33b   

    Autumn-Sand 0.69a  0.85a  0.80a   

AF richness    <0.001† 

    Spring-Clay 2.14a  1.58b  1.51b   

    Spring-Sand 1.70a  1.77a  1.26b   

    Autumn-Clay 0.86ab 1.13a  0.76b   

    Autumn-Sand 0.52a  0.72a  0.60a   

AG richness‡    <0.001§ 

          Spring 0.35a  0.30a  0.22b   

          Autumn 0.12a  0.14a  0.11a   

Total perennial richness    <0.001† 

    Spring-Clay 4.13b  4.99a  4.07b   

    Spring-Sand 3.49a  3.24a  3.28a   

    Autumn-Clay 3.22a  3.09a  2.85a   

    Autumn-Sand 2.50a  2.85a  2.98a   

PF richness‡    0.003† 

    Spring-Clay 1.43b  1.78a  1.01c   

    Spring-Sand 1.83a  1.55a  1.48a   

    Autumn-Clay 0.91b  1.14a  0.86b   

    Autumn-Sand 1.09b  1.53a  1.50a   

PG richness    <0.001† 

    Spring-Clay 1.91b  2.38a  2.42a   

    Spring-Sand 1.06a  1.01a  1.20a   

    Autumn-Clay 1.72a  1.11c  1.50b   

    Autumn-Sand 0.84a  0.77a  0.88a   

Native richness    <0.001† 

    Spring-Clay 6.00ab 6.24a  5.54b   

    Spring-Sand 6.11a  5.78ab 5.21b   

    Autumn-Clay 3.78a  3.74a  3.26a   

    Autumn-Sand 3.42a  3.95a  4.00a   

Exotic richness‡    0.006† 

    Spring-Clay 0.19a  0.14a  0.04b   

    Spring-Sand 0.002a 0.005a  0.003a  

    Autumn-Clay 0.10a  0.13a  0.07a   

    Autumn-Sand <0.001a 0.004a 0.001a  

Unpalatable richness    <0.001§ 

         Spring 0.92a  0.83a  0.58b   
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Response variable CON AGM TGM P-value 

         Autumn 0.27ab 0.36a  0.23b   

Unpalatable richness    0.006* 

         Clay 0.38a  0.33a  0.19b   

         Sand 0.73ab 0.87a  0.66b   

Moderately palatable richness    <0.001§ 

         Spring 1.01b  1.13a  0.96b   

         Autumn 0.63a  0.56a  0.61a   

Moderately palatable richness    0.006* 

         Clay 0.76a  0.80a  0.68b   

         Sand 0.88a  0.89a  0.90a   

Palatable richness    <0.001† 

    Spring-Clay 3.91a  4.10a  3.86a   

    Spring-Sand 2.76a  2.28ab 2.13b   

    Autumn-Clay 2.84a  2.81a  2.62a   

    Autumn-Sand 1.83a  2.13a  2.26a   

† Significant season:soil type:grazing treatment interaction 373 
‡ Square-root transformed; data presented have been back-transformed 374 
§ Significant season:grazing treatment interaction 375 
*Significant soil type:grazing treatment interaction 376 

 377 

3.5.5 Correlations with rainfall, soil, spatial and grazing variables 378 

There were few significant correlations between plant biodiversity measures and 379 

grazing variables, and none were consistent across seasons and soil types (See 380 

Appendix, Table A3.6; A3.7). There were more significant correlations between 381 

rainfall, spatial and soil variables and the diversity measures, but again these depended 382 

on season and soil type. Previous 3, 6, and 12 month rainfall, soil organic carbon and 383 

soil organic nitrogen, were often positively correlated with richness, evenness and 384 

diversity. The effect (positive or negative) of average rainfall, spatial and soil variables 385 

depended on soil type and season.  386 

 387 

3.6 Discussion 388 

Plant species composition and biodiversity measures differed markedly between sand 389 

and clay sites, and to a lesser extent between spring 2014 and autumn 2015. Rainfall, 390 
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soil type, season and geographical separation (>300 km between the further-most 391 

sites) were the main drivers of plant species composition and biodiversity measures. 392 

Grazing variables explained a lesser proportion of the variance in floristic composition 393 

and biodiversity measures, which is in agreement with other studies in similarly dry 394 

environments (Lunt et al. 2007b; Lewis et al. 2009b; Fensham et al. 2010, 2014, 395 

2015). Sporadic and unpredictable rainfall events are the dominant drivers of the non-396 

equilibrium community dynamics of arid and semi-arid rangeland systems, sometimes 397 

masking or reversing the effects of grazing and other disturbances (Ellis and Swift 398 

1988; Westoby et al. 1989; Lewis et al. 2009a; Silcock and Fensham 2013). Despite 399 

this, differences in floristic biodiversity measures were detected between grazing 400 

treatments. 401 

Areas under conservation and alternative grazing management generally had greater 402 

floristic diversity and richness than adjacent traditionally grazed areas in spring 2014, 403 

although at the quadrat scale differences were sometimes confined to one soil type. 404 

Measures of floristic richness rarely differed between conservation and alternative 405 

grazing management at the site and plot scale. At the quadrat scale, the few differences 406 

favoured alternative grazing management more often than conservation management. 407 

From a biodiversity conservation perspective, alternative grazing management 408 

registered similar levels of understorey floristic diversity and native species richness 409 

across a variety of scales to conservation areas where domestic livestock grazing had 410 

been removed, and was not associated with an increase in the proportion of exotic, 411 

annual or unpalatable species. These results suggest that commercial grazing 412 

management incorporating long periods of rest from grazing may be compatible with 413 

biodiversity conservation of ground-layer vegetation. 414 
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There are likely to be several explanations for the positive effect of conservation and 415 

alternative grazing management on understorey floristic richness and diversity 416 

compared with traditional grazing. Plant species in arid Australia have only been 417 

exposed to ungulate grazing for 150–200 years and have not evolved adaptations to 418 

cope with continuous grazing. They are therefore less resilient to livestock impacts 419 

and grazing-sensitive species are often removed from communities and replaced by 420 

grazing-tolerant species (Milchunas et al. 1988). Only at the smallest (quadrat) scale 421 

did traditional grazing management register greater floristic richness than 422 

conservation management (three instances) or alternative grazing management (one 423 

instance). This was probably a function of the scale of sampling, as at small scales 424 

grazing can increase richness by providing opportunities for species to establish and 425 

reducing competition from established plants. However, as grazing-sensitive species 426 

are lost from the species pool, richness declines at larger scales (Landsberg et al. 2002; 427 

Kohyani et al. 2008). This scale-related effect (increased richness at small scales under 428 

continuous grazing) is similar to that observed by Stohlgren et al. (1999), Adler et al. 429 

(2005), Kohyani et al. (2008), Landsberg et al. (2002) and Li et al. (2015), and 430 

describes homogenisation of landscapes.  431 

Alternatively grazed sites and plots had greater floristic richness and diversity than 432 

traditional management in spring. Rotating livestock and resting pastures for most of 433 

the year allows recovery and persistence of species sensitive to continuous grazing 434 

and reduces overgrazing of patches (Norton 1998a; Teague et al. 2011). Moreover, 435 

some adaptations of desert species, such as rapid growth and short life cycles 436 

(ephemerality), small stature, tough leaves or a high salt content (less palatable 437 

species), can increase their resilience to short periods of grazing (Milchunas et al. 438 
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1988; Cingolani et al. 2005). Our findings are similar to recent studies in arid and 439 

semi-arid environments that found higher plant species richness where livestock 440 

grazing intensity was managed and interspersed with long periods of rest (Waters et 441 

al. 2016), and where greater negative effects of continuous grazing were found on 442 

plant species abundance than rotational grazing (Chillo et al. 2015). 443 

Sustained grazing can favour annual, exotic, unpalatable and short-statured species at 444 

the expense of palatable, tall perennials and rare or grazing sensitive species (Noy-445 

Meir et al. 1989; Belsky 1992; McIntyre and Lavorel 1994; McIntyre et al. 1999; Díaz 446 

et al. 2007), and such species may account for the positive richness and diversity 447 

responses to grazing sometimes observed. While more infrequent (rare) species were 448 

recorded under conservation management than traditional grazing management in this 449 

study, there was little other evidence to support this. At site and plot scales there was 450 

no difference in exotic species richness or species height between grazing treatments, 451 

and no consistent trends in palatability. At the quadrat scale, there was a greater 452 

number of exotic species, unpalatable and moderately palatable species under 453 

conservation and alternative grazing management than traditional management. The 454 

greater number of infrequent species recorded under conservation management 455 

highlights the importance of areas of grazing exclusion for the protection of rare, 456 

grazing sensitive species.  457 

The lack of significant difference in richness, diversity, evenness or turnover between 458 

grazed and ungrazed areas observed at times is consistent with findings of previous 459 

studies (Adler et al. 2005; Lunt et al. 2007b; Lewis et al. 2008; Fensham et al. 2010, 460 

2014). Lack of differences between grazing treatments in autumn were probably a 461 

reflection of the dry seasonal conditions experienced over the study period. Although 462 
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rainfall at some sites in the preceding 3 months was similar to the spring survey, most 463 

recent rain had fallen just prior to the autumn survey, and germinating plants had not 464 

had a chance to establish. Lack of differences may also have been a reflection of the 465 

inherent variability and heterogeneous nature of the landscapes and vegetation 466 

communities in the study region. Grazing can also reduce the impacts of competitive 467 

exclusion by dominant species (Lunt et al. 2007a; Borer et al. 2014) and create 468 

opportunities for germination (Lunt et al. 2007a; Facelli and Springbett 2009) which 469 

can off-set the negative effects of grazing. In addition, grazing can increase the spatial 470 

heterogeneity of vegetation (turnover) via patch grazing, provided the spatial 471 

heterogeneity of the grazing is greater than that of the vegetation (Adler et al. 2001; 472 

De Bello et al. 2007). The findings of this study are consistent with the findings of 473 

Fensham et al. (2017) who reported that subtropical grasslands were tolerant of 474 

various disturbance regimes. While rotational grazing is expected to reduce patch 475 

grazing (Norton 1998a; Teague et al. 2011), the large paddock sizes and distances 476 

from water may still have resulted in a spatially variable grazing pattern, similar to the 477 

natural spatial heterogeneity in the vegetation. Lezama et al. (2014) also reported no 478 

significant effect of grazing on beta-diversity (turnover) in a low-productivity 479 

environment. 480 

Heavy clay soils in western NSW are believed to be more resilient to the negative 481 

effects of grazing and disturbance than sandy soils due to higher fertility, higher water 482 

holding capacity and their occurrence in floodplain and claypan environments with 483 

negligible topographical relief, making them less susceptible to water erosion (Johns 484 

et al. 1984; Orr and Holmes 1984; Lewis et al. 2009b). However, this study found 485 

little evidence to support this; ground layer vegetation on heavy clay and sandy-loam 486 
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soils responded in a similar way to the impact of different grazing treatments at site 487 

and plot scale. Only at the quadrat scale were there differences in relation to soil type, 488 

with more differences among grazing treatments on clay soils than sandy soils.  489 

Despite effort made to control for potential environmental differences between 490 

adjacent sites, the nature of the study meant it was impossible to control for all factors. 491 

While representative of current conservation management in the region, conservation 492 

management was often associated with higher counts of kangaroo dung than adjacent 493 

commercially grazed properties, a consistent finding in arid Australia (Andrew and 494 

Lange 1986a; Landsberg et al. 2003), and there was evidence of unmanaged feral goats 495 

in conservation areas. Greater control of total grazing pressure in conservation 496 

reserves may improve conservation outcomes compared to commercially grazed areas 497 

(Fisher et al. 2005). The uneven pattern in which landscapes are grazed in large 498 

paddocks (Pringle and Landsberg 2004), differences in the grazing management 499 

techniques between landholders, and differences in the type of livestock between 500 

paired sites may have reduced the clarity of treatment effects. It is also acknowledged 501 

that 5 years may not have been enough time to respond to new management practices 502 

(AGM or CON), and legacy effects of past management and the long recovery times 503 

necessary for systems in dry environments (Meissner and Facelli 1999; Seymour et al. 504 

2010; Fensham et al. 2011) may have affected results. Previous management can have 505 

a significant effect on the current composition and condition of communities (Waudby 506 

and Petit 2015) and some grazing-sensitive species may have already been lost from 507 

these communities (Silcock and Fensham 2013), as all conservation and alternatively 508 

grazed areas had been continuously grazed prior to implementation of the current 509 

management regimes. However, a minimum of 5 years under current management was 510 
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chosen to ensure sufficient replicates of grazing treatments after consideration of the 511 

above-average rainfall conditions in the 5 years prior to surveys (Bureau of 512 

Meteorology 2017), which would have assisted in generating management responses. 513 

In addition, a greater focus on the timing and duration of rest periods would be 514 

beneficial to achieve optimum biodiversity outcomes under alternative grazing 515 

management (Müller et al. 2007). Despite these potential limitations, important 516 

differences were detected between grazing treatments. 517 

3.6.1 Conclusion 518 

Under certain environmental conditions, alternative grazing management 519 

incorporating long periods of planned rest from grazing achieved understorey plant 520 

composition and biodiversity measures similar to adjacent areas managed for 521 

conservation, and exceeded those of adjacent areas under traditional grazing 522 

management. The variability in our results with season, soil type and scale of sampling 523 

suggests that caution is required when interpreting data from one-off surveys at a 524 

single scale in semi-arid rangelands, and that the findings of such studies should not 525 

be extrapolated to other scales, sites or environmental conditions. Additional research 526 

is necessary to determine best grazing management practices in semi-arid rangelands, 527 

to understand under what environmental conditions and vegetation communities 528 

alternative grazing management is beneficial or detrimental to achieving conservation 529 

outcomes, and whether alternative grazing management is a viable option for 530 

conserving threatened species and communities in semi-arid rangelands. 531 

 532 

 533 
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Chapter 5. Floristic diversity in rotationally 1 

grazed piospheres and an adjacent nature reserve 2 

in a semi-arid rangeland 3 

 4 

5.1 Abstract  5 

Rotational grazing, where paddocks are frequently rested for longer periods of time 6 

than they are grazed, may benefit soils, biodiversity and animal production in 7 

comparison to more conventional continuous grazing. Little research has investigated 8 

the potential to utilise alternative grazing management practices, such as rotational 9 

grazing, for large-scale biodiversity conservation and sustainable pastoral 10 

management of semi-arid rangelands. This study compared ground cover and floristic 11 

species composition and biodiversity at two scales (400-m2 plots and 1-m2 quadrats) 12 

in rotationally grazed paddocks managed for commercial livestock production with an 13 

adjacent public nature reserve (ungrazed by commercial livestock for 38 years), in 14 

semi-arid mulga (Acacia aneura) woodland in south-eastern Australia. Distance from 15 

water was used as an index of grazing intensity, and changes in ground cover, floristic 16 

composition and floristic biodiversity measures associated with this were also 17 

analysed for the livestock-grazed property. Although significant differences in 18 

understorey floristic species composition were observed between the rotationally 19 

grazed and ungrazed plots, there were no significant differences in understorey 20 

floristic species richness, diversity, functional richness, functional dispersion, 21 

functional diversity and ground cover between the rotationally grazed property and 22 

the nature reserve. However, these measures increased with distance from water on 23 
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the rotationally grazed property. The proportion and frequency of palatable species 24 

were greater in the ungrazed area, while unpalatable species showed the reverse trend. 25 

There were no differences in overstorey species richness or density between grazing 26 

treatments, or with increasing distance from water. These results show that while there 27 

was an impact associated with increasing grazing pressure close to water points under 28 

rotational grazing management, at a whole-paddock scale there were few differences 29 

in plant biodiversity and ground cover between the rotationally grazed and ungrazed 30 

treatment, although differences in floristic composition were apparent. This suggests 31 

the potential for alternative grazing strategies to sustain biodiversity and ground cover 32 

on commercial grazing properties, and may offer an alternative means of achieving 33 

broad-scale biodiversity conservation outcomes in semi-arid regions to protected areas 34 

and the exclosure of commercial livestock grazing.   35 

 36 

5.2 Keywords 37 

Biodiversity conservation, floristic composition, functional diversity, grazing 38 

gradient, grazing management, ground cover 39 

 40 

5.3 Introduction 41 

Incorporating frequent periods of rest from livestock grazing of greater duration than 42 

grazing periods (i.e. rotational grazing) reduces the negative impact of selective 43 

grazing by allowing recovery of preferred patches and plants after grazing, unlike 44 

continuous grazing systems (Earl and Jones 1996; Müller et al. 2007; Teague et al. 45 

2008, 2013; Norton et al. 2013). Livestock grazing is a major driver of biodiversity 46 



Chapter 5 

   117 

 

loss and land degradation throughout the world (Steinfeld et al. 2006). Sustainable 47 

grazing management is required to maintain and improve biodiversity and 48 

productivity, and prevent degradation of landscape function in rangelands managed 49 

for commercial livestock production. Rotational grazing, along with careful 50 

management of grazing pressure, may improve sustainability and reduce the negative 51 

effects associated with livestock production (Chillo and Ojeda 2014; Chillo et al. 52 

2015). However, recent reviews suggest that rotational grazing systems do not 53 

improve vegetation condition or animal production compared to continuous grazing 54 

systems (Briske et al. 2008; Bailey and Brown 2011). Differences in findings between 55 

studies are attributed to differences in spatial scale that rotational grazing treatments 56 

are examined under, the confounding effect of stocking rate, and the relatively short 57 

duration of studies that fail to show long-term effects of grazing management on 58 

variables such as species composition and soil health (Teague et al. 2013). In addition, 59 

many experimental studies of rotational grazing management do not reflect the 60 

flexible and adaptive management that is typically applied to commercial grazing 61 

practices (Teague et al. 2008, 2013).  62 

Livestock are restricted by how far they can travel from water to graze, as they need 63 

to drink regularly (Pringle and Landsberg 2004). Therefore, in large paddocks where 64 

water sources are separated by large distances, grazing pressure near water sources is 65 

greater as livestock spend more time grazing or passing through the area immediately 66 

around the water (James et al. 1999; Todd 2006). These radial gradients in grazing 67 

intensity surrounding water points are termed ‘piospheres’ (Lange 1969). Many 68 

studies have utilised piospheres as grazing intensity gradients to understand grazing 69 

impacts in Australia (Andrew and Lange 1986b; Pickup and Chewings 1994; Friedel 70 
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et al. 2003; Landsberg et al. 2003) and throughout the world (Fernandez-Gimenez and 71 

Allen-Diaz 2001; Todd 2006; Shahriary et al. 2012; Chillo and Ojeda 2014).  72 

Patterns observed with increasing grazing pressure surrounding water points and 73 

elsewhere include an increase in small, prostrate, annual and forb species, and a 74 

decrease in palatable and perennial species (James et al. 1999; Heshmatti et al. 2002; 75 

Friedel et al. 2003; Landsberg et al. 2003; Hendricks et al. 2005), decreased plant 76 

species richness and diversity (Landsberg et al. 2003; Hendricks et al. 2005; Todd 77 

2006), soil compaction (Andrew and Lange 1986b), reduced ground cover and 78 

cryptogam cover, increased soil erosion (Andrew and Lange 1986b; Bastin et al. 1993; 79 

Pickup and Chewings 1994; Tongway et al. 2003; Tabeni et al. 2014), and increased 80 

dung deposition (Andrew and Lange 1986b) and nutrient enrichment (Tolsma et al. 81 

1987; Fernandez-Gimenez and Allen-Diaz 2001; Shahriary et al. 2012). In order to 82 

inform management that is compatible with biodiversity conservation goals, it is 83 

important to understand how piosphere patterns are influenced by alternative grazing 84 

systems, and differences between alternatively grazed areas and areas currently 85 

managed for conservation. We have found no published research undertaken in the 86 

semi-arid rangelands of south-eastern Australia comparing the effects of rotational 87 

grazing management with long-term ungrazed areas or the effects of grazing intensity 88 

under rotational grazing management on floristic biodiversity measures, ground cover 89 

and vegetation structure. Most research into alternative grazing management strategies 90 

in Australia has not examined large-scale paddock effects. 91 

This study aimed to document differences in vegetation and ground cover in shrub-92 

dominated woodland under commercial grazing and conservation systems using 93 

grazing intensity gradients surrounding water points. Patterns in understorey plant 94 

species biodiversity measures (Shannon–Wiener diversity, species richness, evenness, 95 
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and turnover and functional diversity measures), composition, ground cover and 96 

community structure were compared between rotational grazing management and 97 

conservation management, and under different grazing intensities in the rotationally 98 

grazed property. 99 

 100 

5.4 Methods 101 

5.4.1 Study area  102 

This study was undertaken in mulga (Acacia anuera) woodland in the Mulga Lands 103 

bioregion of north-western NSW, Australia (29°51’S, 143°53’E, ~150 m a.s.l.). The 104 

climate is semi-arid, with a mean annual precipitation of 282 mm (Bureau of 105 

Meteorology 2017b). More rainfall is recorded in the summer months on average, but 106 

rainfall is generally unpredictable and sporadic throughout the year. Mean maximum 107 

temperatures are 36.9°C in January and 18.2°C in July, and mean minimum 108 

temperatures are 22.0°C in January and 4.3°C in July (Bureau of Meteorology 2017b). 109 

Soils are deep sandy to sandy loam red earths, with relief to 5 m (Walker 1991). Mulga 110 

is the dominant tree or small shrub throughout the landscape, arranged in distinct 111 

groves and becoming denser along drainage lines. In addition, scattered ironwood 112 

(Acacia excelsa) and bimble box (Eucalyptus populnea), beefwood (Grevillea striata) 113 

and whitewood (Atalaya hemiglauca) are present, and areas of woody shrubs are 114 

common (Eremophila spp., Dodonaea viscosa, Senna spp.). Eragrostis eriopoda is 115 

the dominant understorey perennial grass. Only 186 mm was recorded in the 12 116 

months prior to sampling. 117 

  118 



Chapter 5 

   120 

 

5.4.2 Grazing management 119 

Two adjacent properties were surveyed in April and May 2016: (1) a commercial 120 

grazing property, and (2) a public nature reserve. Both properties had historically been 121 

grazed by sheep and some cattle from the mid-1800s, with minimal fencing and water 122 

point development initially. Grazing intensity was relatively high for a period of time, 123 

before destocking due to drought and rabbits. Since 2004, the grazed property has been 124 

rotationally grazed by sheep and goats (past 10 years only) with stocking rates adjusted 125 

to match pasture availability and to prevent degradation of pasture and soils. Paddocks 126 

are rested for at least 6 months each year, with grazing periods ranging from 3 weeks 127 

to 4 months, depending upon seasonal conditions. Water points are fenced off when 128 

livestock are not in paddocks to reduce grazing pressure from other herbivores. The 129 

nature reserve was established in 1979, and commercial livestock grazing has been 130 

excluded since, but feral and native herbivores have access. Feral animals (goats, pigs, 131 

dogs, cats) are controlled as needed within the nature reserve.   132 

5.4.3 Study design 133 

Distance from water was used as an index of grazing intensity. Four paddocks (2079–134 

3351 ha in size) were sampled on the rotationally grazed property, and a comparable 135 

geographical spread of sites was sampled on the adjacent reserve, which lacked 136 

paddocks and water points on comparable land systems (Table 5.1). All four paddocks 137 

sampled on the grazed property were rotationally grazed as described above. Each 138 

paddock represented an individual replicate of the rotational grazing treatment. 139 

 140 

  141 
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Table 5.1. Grazing information of replicates 142 

Paddock Size (ha) Number of 

plots 

sampled 

Number of 

water 

points 

Livestock 

present? 

Unmanaged 

herbivores 

present? 

G1 2,427 10 2 Yes Yes 

G2 2,079 12 2 Yes Yes 

G3 2,165 9 2 Yes Yes 

G4 3,351 5 2 Yes Yes 

UG 74,728† 15 3*  No Yes 

* Two unfenced water points >7 km from nearest plots remained within the reserve, however they 143 
were in a different land system. One water point is located on an adjacent property without goat-proof 144 
fencing along the boundary, ~2.7 km from the nearest plot on the nature reserve  145 
† Area of entire reserve (no paddocks within reserve) 146 

 147 

Across the five paddocks, 70 points were randomly generated, with a minimum 148 

distance of 400 m between each point to achieve sample independence. Points were 149 

restricted to within 1000 m of fence lines and tracks on the rotationally grazed 150 

property, and within 2000 m of fence lines on the reserve, to allow timely completion 151 

of surveys and more time to survey plots, as it was not possible to drive to points. All 152 

points were ground-truthed, to ensure they were located on similar soil types and in 153 

the same vegetation community, and were at least 50 m from fence lines and tracks. 154 

Of the 70 points, 51 met these criteria and were sampled. At each point, a 20 × 20-m 155 

plot was established and nine 1 × 1-m quadrats were located systematically within 156 

each plot, with a 2-m buffer from the plot edge, and 6.5 m between each quadrat. The 157 

proportion of cover consisting of live plant material, litter (dead herbaceous material), 158 

cryptogam, coarse woody debris (>2 cm diameter), dung, rock and bare ground was 159 

estimated in each quadrat. In addition, the number of pellets of goat/sheep (these could 160 

not be differentiated), cattle, kangaroo and rabbit dung were counted in each quadrat 161 

to provide an additional measure of grazing intensity.  162 

  163 
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5.4.4 Vegetation surveys 164 

All understorey floristic species (<3 m tall at maturity) were identified in each plot 165 

(400 m2). The percent cover of each understorey floristic species was estimated in each 166 

quadrat (1 m2). Understorey species richness in each plot and quadrat was calculated. 167 

Shannon–Wiener diversity and Pielou’s evenness index were calculated for each plot 168 

using understorey species frequency data in plots. Understorey species turnover 169 

(pattern diversity) for each plot was calculated using the log of the slope of the 170 

understorey species accumulation curve generated from the quadrats in each plot. 171 

Overstorey woody plant species (>3 m in height) in each plot were identified and the 172 

numbers of each species ≤0.5 m in height (seedlings) and >0.5 m in height (large) were 173 

counted. Density of seedling and large overstorey woody species and species richness 174 

and Shannon–Wiener diversity of overstorey woody species were calculated for each 175 

plot. 176 

The origin (native/exotic) and rarity (based on frequency of species encountered in 177 

this study) of each species identified at the plot scale was determined. Functional trait 178 

information was collected for each understorey species. Life history 179 

(annual/perennial), life form (graminoid/forb/shrub), functional group (annual 180 

grass/perennial grass/annual forb [all annual species except grasses]/perennial forb [all 181 

perennial species except grasses]) and palatability (unpalatable [not or rarely 182 

eaten]/moderately palatable [eaten but not readily or preferred, or when old]/palatable 183 

[eaten]; Cunningham et al. 2011) were analysed as categorical traits. Species height at 184 

maturity, seed length and leaf area index (leaf length × width) were analysed as 185 

continuous response variables. Richness and the proportion of total richness, cover 186 

and the proportion of total plant cover and frequency in plots were calculated for each 187 

categorical trait. Frequency data for species rarity and both categorical and continuous 188 
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traits were analysed as community-weighted mean (CWM) scores where traits were 189 

weighted by each species’ relative abundance (frequency) (Garnier et al. 2004). This 190 

was calculated as: 191 

CWM =∑ 𝜌𝑖 ⁡× ⁡ 𝑡𝑟𝑎𝑖𝑡𝑖
𝑛

𝑖=1
     Equation 5.1 192 

where 𝜌𝑖 ⁡= the relative abundance of species i, and 𝑡𝑟𝑎𝑖𝑡𝑖 = the trait value of species 193 

i.  194 

Changes in functional trait diversity can be used to understand the effects of grazing 195 

management on ecological processes and ecosystem functioning, which may not be 196 

detected through analysis of floristic composition or traditional measures of 197 

biodiversity (richness, evenness, diversity; Cadotte et al. 2011). Functional diversity 198 

(Rao’s quadratic entropy), functional richness, functional evenness and functional 199 

dispersion (Botta-Dukát 2005; Cadotte et al. 2011) were calculated for each plot using 200 

species frequency data and the above functional traits (excluding functional group as 201 

this was related to the life history and life form that was already included in the 202 

analysis), using the FD package in R (Laliberté et al. 2010).  203 

5.4.5 Statistical analysis 204 

5.4.5.1 Composition 205 

Multivariate ordinations (unconstrained and constrained) were generated in 206 

CANOCO5 software (Ter Braak and Šmilauer 2012) using species frequency, cover 207 

and species incidence in plots. Goat and sheep dung, cattle dung, kangaroo dung, 208 

distance from water, density of woody species ≤0.5 m and >0.5 m in height and 209 

grazing treatment (rotationally grazed/ungrazed) were included as explanatory 210 

variables, without forward selection. Significant (P ≤ 0.05) differences in composition 211 
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between grazing treatments were determined using analysis of similarity (ANOSIM; 212 

vegan package in R; (Oksanen et al. 2007; R core team 2017), while similarity 213 

percentages (SIMPER; vegan) were used to highlight the significant species 214 

contributing to variation in species composition between the grazing treatments. 215 

Pearson’s correlations were calculated to determine significant relationships between 216 

understorey floristic species frequency or cover and distance from water on the grazed 217 

property using the Hmisc package in R (Harrell 2016). 218 

5.4.5.2 Univariate analysis 219 

Linear mixed-effect models were generated in the lme4 package in R (Bates et al. 220 

2016) to analyse dung counts, plant species richness, diversity, evenness, turnover, 221 

functional traits, functional diversity measures and overstorey seedling and large 222 

species density and richness. At plot scale, paddock was included as a random effect. 223 

At quadrat scale, paddock and plot within paddock were included as nested random 224 

effects. The effect of distance from water was analysed for rotationally grazed 225 

paddocks and was treated as a fixed-effect. Grazing treatment was analysed as a fixed 226 

effect in separate models using both rotationally grazed and ungrazed treatment data. 227 

If assumptions of models were not met a Generalized Linear Mixed-Effects Model 228 

with a Poisson error distribution was fitted (Bates et al. 2016).  229 

 230 

5.5 Results 231 

A total of 46 understorey floristic species were recorded in plots, 34 (74%) of which 232 

were also represented in quadrats (see Appendix, Table 5.1). The majority of species 233 

recorded were forbs (41% of species), followed by grasses (37%), and shrub or 234 

subshrub species (22%). Annual species totalled 22%, while 76% were perennial and 235 
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one was unknown. One species recorded in plots, but not quadrats, was exotic. 236 

Fourteen species (30%) were recorded in only one plot. A species list is provided in 237 

the Appendix, Table A5.1.  238 

More goat and sheep dung was recorded in rotationally grazed quadrats (25.8 ± 2.9 239 

pellets m−2, mean ± s.e.) than ungrazed quadrats (1.0 ± 0.4 pellets m–2), and the amount 240 

of goat/sheep dung on the rotationally grazed property was negatively related to 241 

distance from water (P < 0.001; Figure 5.1a). More kangaroo dung was recorded in 242 

ungrazed quadrats (5.9 ± 1.2 pellets m–2) than rotationally grazed quadrats (2.1 ± 0.3) 243 

and was positively related to distance from water on the rotationally grazed property 244 

(P < 0.001; Figure 5.1b).  245 
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 246 

Figure 5.1. Relationship between distance from water and a) goat/sheep dung abundance (R2 = 0.47); b) 247 
kangaroo dung abundance (R2 = 0.35); c) plot species richness (R2 = 0.02); d) quadrat species richness (R2 = 248 
0.01); e) functional diversity (RaoQ index) (R2 = 0.01); and (f) bare ground (R2 = 0.16). 249 

  250 
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5.5.1 Floristic species composition 251 

Multivariate analyses showed a clear distinction in floristic composition between the 252 

rotationally grazed and ungrazed treatments (Figure 5.2). Unconstrained and 253 

constrained ordinations of understorey species frequency, cover and incidence data all 254 

showed similar patterns. For the constrained (RDA) species frequency ordination, the 255 

nominal variable, ‘grazing treatment’, explained the most variation (6.2%), followed 256 

by distance from water (3.9%), large (>0.5 m) overstorey species (3.4%), kangaroo 257 

dung (2.8%), cattle dung (1.7%), seedling (<0.5 m) overstorey species (1.2%) and 258 

goat/sheep dung (0.9%). Grazing treatment, distance from water and density of large 259 

overstorey species were all significant (P ≤ 0.05) in this analysis.  260 

 261 

 262 

Figure 5.2. RDA ordination of species frequency in 1x1 m quadrats nested within 20 x 20 m plots  = 263 
ungrazed plots,  = rotationally grazed plots;  = grazing treatment. Overstorey woody veg <0.5 m  = 264 
density of woody vegetation species <0.5 m in height in plots; overstorey woody veg >0.5 m = density of 265 
woody vegetation species >0.5 m in height in plots; Grazed = nominal variable, grazed treatment; Ungrazed 266 
= nominal variable, ungrazed treatment; goat/sheep dung = abundance of goat/sheep pellets in quadrats; 267 
cattle dung = abundance of cow pats in quadrats; kangaroo dung = abundance of kangaroo pellets in 268 
quadrats; Distance from water = distance from nearest water point. 269 
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 270 

ANOSIM revealed a significant difference in species composition between the two 271 

grazing treatments (R = 0.13, P = 0.027). Sclerolaena convexula (SIMPER, P = 0.018) 272 

and Eragrostis eriopoda (P = 0.087) were more frequent in the rotationally grazed 273 

treatment and Monachather paradoxa (P = 0.022) and Thyridolepis mitchellii (P = 274 

0.097) were more frequent in the ungrazed treatment (Table 5.2). Pearson’s 275 

correlations of Abutilon otocarpum, Aristida contorta, Portulaca oleracea, Sida sp. 276 

(all for both frequency and cover) with distance from water were positive and 277 

significant (P ≤ 0.05), as were Tripogon lolliformis (frequency only) and Sclerolaena 278 

bicornis (cover only; Table 5.3). No species were significantly negatively correlated 279 

with distance from water, though the frequency and cover of Ptilotus sessifolius was 280 

marginally significant (P ≤ 0.1).   281 

  282 
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Table 5.2. Results from SIMPER analysis comparing rotationally grazed (RG) and ungrazed (UG) grazing 283 
treatments. 284 

 Frequency in 

RG 

Frequency in 

UG 

Cumulative 

sum of 

proportion of 

variance 

explained 

P-value 

Eragrostis eriopoda 0.494 0.370 0.147 0.087 

Sclerolaena convexula 0.503 0.289 0.272 0.018 

Tripogon loliiformis 0.352 0.348 0.364 0.410 

Actinobole uliginosum 0.198 0.126 0.443 0.399 

Austrostipa scabra 0.204 0.030 0.520 0.419 

Aristida jerichoensis 0.179 0.022 0.592 0.554 

Aristida contorta 0.191 0.081 0.659 0.622 

Monachather paradoxa 0.034 0.119 0.708 0.022 

Thyridolepis mitchelliana 0.056 0.081 0.750 0.097 

Salsola australis 0.065 0.059 0.790 0.384 

Digitaria sp. 0.068 0.037 0.820 0.502 

Abutilon otocarpum 0.074 0.000 0.847 0.758 

Maireana villosa 0.040 0.037 0.873 0.401 

Chenopodium desertorum 0.025 0.052 0.898 0.163 

Solanum ellipticum 0.040 0.044 0.923 0.221 

Sida sp. 0.034 0.022 0.940 0.448 

Portulaca oleracea 0.028 0.000 0.950 0.785 

Triraphis mollis 0.015 0.000 0.957 0.294 

Sclerolaena bicornis 0.019 0.000 0.962 0.475 

Boerhavia dominii 0.012 0.000 0.967 0.647 

Ptilotus polystachyus 0.003 0.007 0.972 0.294 

Vittadinia sp. 0.012 0.000 0.977 0.694 

Enteropogon acicularis 0.003 0.007 0.981 0.307 

Einadia nutans 0.003 0.007 0.985 0.315 

Eremophila latrobei 0.006 0.000 0.987 0.285 

Evolvulus alsinoides 0.000 0.007 0.990 0.261 

Ptilotus sessilifolius 0.006 0.000 0.992 0.521 

Themeda australis 0.003 0.000 0.994 0.285 

Chamaesyce drummondii 0.003 0.000 0.995 0.269 

Sclerolaena muricata 0.003 0.000 0.996 0.312 

Convolvulus erubescens 0.003 0.000 0.997 0.319 

Goodenia fascicularis 0.003 0.000 0.998 0.282 

Swainsona microphylla 0.003 0.000 0.999 0.282 

Lepidium oxytrichum 0.003 0.000 1.000 0.276 

 285 

  286 
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Table 5.3. Pearson correlations between understorey floristic species frequency and distance from water. 287 
Values in bold (P ≤ 0.0.5) are significant. 288 

 Species 
Frequency Cover 

R  P-value R P-value  

Abutilon otocarpum 0.39 0.020 0.39 0.020 

Actinobole uliginosum 0.10 0.562 -0.03 0.843 

Aristida contorta 0.47 0.004 0.39 0.017 

Aristida jerichoensis -0.22 0.203 -0.25 0.143 

Austrostipa scabra 0.08 0.623 0.08 0.654 

Boerhavia dominii -0.10 0.544 -0.10 0.544 

Chamaesyce drummondii -0.17 0.324 -0.17 0.324 

Chenopodium desertorum -0.09 0.619 -0.09 0.619 

Convolvulus erubescens 0.27 0.106 0.27 0.106 

Digitaria sp. 0.03 0.849 -0.14 0.407 

Einadia nutans 0.32 0.061 0.32 0.061 

Enteropogon acicularis 0.04 0.825 0.04 0.825 

Eragrostis eriopoda -0.21 0.215 -0.26 0.125 

Eremophila latrobei -0.12 0.472 -0.12 0.472 

Goodenia fascicularis 0.32 0.058 0.32 0.058 

Lepidium oxytrichum -0.02 0.899 -0.02 0.899 

Maireana villosa 0.07 0.683 -0.13 0.443 

Monachather paradoxa -0.13 0.443 -0.12 0.496 

Portulaca oleracea 0.48 0.003 0.48 0.003 

Ptilotus polystachyus -0.06 0.748 -0.06 0.748 

Ptilotus sessilifolius -0.33 0.052 -0.33 0.052 

Salsola australis 0.11 0.531 0.09 0.609 

Sclerolaena bicornis 0.31 0.066 0.35 0.038 

Sclerolaena convexula -0.08 0.627 -0.14 0.432 

Sclerolaena muricata 0.32 0.061 0.32 0.061 

Sida sp. 0.35 0.036 0.35 0.036 

Solanum ellipticum 0.28 0.095 0.29 0.087 

Swainsona microphylla 0.32 0.058 0.32 0.058 

Themeda australis 0.20 0.247 0.20 0.247 

Thyridolepis mitchelliana -0.12 0.487 -0.07 0.665 

Tripogon loliiformis 0.35 0.036 0.21 0.219 

Triraphis mollis 0.04 0.825 0.04 0.825 

Vittadinia sp. 0.27 0.117 0.27 0.117 

  289 
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5.5.2 Univariate analyses 290 

5.5.2.1 Grazing treatment 291 

At the plot scale, palatable species were more frequent (P ≤ 0.05) in the ungrazed 292 

treatment, while unpalatable species were more frequent in the rotationally grazed 293 

treatment (Table 5.4), and understorey species turnover (pattern diversity) was 294 

significantly greater in the ungrazed treatment (0.053 ± 0.002 and 0.064 ± 0.005 in 295 

rotationally grazed and ungrazed treatments, respectively, P = 0.021). However, there 296 

were no significant differences between the two grazing treatments in understorey 297 

species richness or the richness or proportions of other functional trait categories 298 

(Table 5.5), Shannon–Wiener diversity, evenness or functional diversity measures 299 

(P > 0.05) at the plot scale. 300 

 301 

Table 5.4. Community-weighted mean (CWM) (± 1 s.e.) of plant functional trait categories in the rotationally 302 
grazed (RG) and ungrazed (UG) treatments. Values in bold are significant (P ≤ 0.05). 303 

 Functional trait category 
CWM 

P-value  
RG UG 

Annual 0.16 (0.02) 0.15 (0.03) 0.711 

Annual forb 0.10 (0.01) 0.10 (0.03) 0.804 

Annual grass 0.06 (0.010 0.05 (0.02) 0.534 

Perennial 0.84 (0.02) 0.85 (0.03) 0.711 

Perennial forb 0.29 (0.02) 0.25 (0.04) 0.744 

Perennial grass 0.54 (0.17) 0.60 (0.04) 0.796 

Unpalatable 0.40 (0.02) 0.28 (0.03) 0.004 

Moderately palatable 0.40 (0.02) 0.34 (0.04) 0.198 

Palatable 0.20 (0.02) 0.38 (0.04) <0.001 

Height 0.50 (0.01) 0.46 (0.02) 0.122 

Seed length 2.09 (0.10) 1.87 (0.13) 0.513 

Leaf area 549.68 (72.57) 265.23 (64.35) 0.302 

Rarity 0.33 (0.02) 0.31 (0.02) 0.794 

 304 

 305 
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At the quadrat scale, perennial grass and unpalatable species richness were greater in 306 

rotationally grazed quadrats than ungrazed quadrats (Table 5.5). There was also a 307 

significantly greater proportion of unpalatable species in rotationally grazed quadrats 308 

and a significantly greater proportion of palatable species in ungrazed quadrats, but 309 

again there was no difference in total species richness between rotationally grazed and 310 

ungrazed quadrats.  311 

Within the plots, density of seedling and large overstorey species was greater in the 312 

rotationally grazed plots (seedlings = 23.19 ± 4.37; large = 31.08 ± 4.93) than ungrazed 313 

plots (seedlings = 4.07 ± 1.01; large = 17.00 ± 2.77), but the differences were not 314 

significant (P > 0.05). There was no significant difference in species richness of 315 

overstorey species in rotationally grazed and ungrazed plots (3.67 ± 0.19 and 5.53 ± 316 

0.39, respectively), but diversity of overstorey species was greater in rotationally 317 

grazed plots (0.83 ± 0.05) than ungrazed plots (0.51 ± 0.11; P = 0.004). There was a 318 

greater proportion of palatable plant cover in the ungrazed compared to the rotationally 319 

grazed treatment (Table 5.6), and greater cover of unpalatable species in the 320 

rotationally grazed plots, but there were no significant differences in total ground 321 

cover, or of plant, litter or cryptogam cover between grazing treatments.322 



 

    

 

1
3
3

 

 323 

 324 

Table 5.5. Species richness and proportion of plant species by different functional groups (mean ± 1 s.e.) at plot and quadrat scales. Values in bold are significant (P ≤ 0.05). 325 
RG = rotationally grazed treatment, UG = ungrazed treatment.  326 

* Data did not meet assumptions of model and therefore was not analysed (very low richness) 327 
 328 

  329 

   Plot scale    Quadrat scale  

 Species richness P-

value 

 

Proportion of total species 

richness 
P-

value 

 

Species richness P-

value 

 

Proportion of total 

species richness 
P-

value 

  RG UG  RG UG  RG UG  RG UG 

Total  12.50 (0.54) 11.47 (0.54) 0.78 
 

 – –  –  
 

2.69 (0.88) 1.75 (0.12) 0.265 
 

–  –  –  

Annual 2.33 (0.20) 1.60 (0.19) 0.523 
 

0.18 (0.01) 0.14 (0.01) 0.372 
 

0.50 (0.04) 0.27 (0.04) 0.408 
 

0.18 (0.01) 0.11 (0.02) 0.066 

Annual forb 1.56 (0.18) 0.93 (0.12) 0.606 
 

0.12 (0.01) 0.08 (0.01) 0.671 
 

0.31 (0.03) 0.19  (0.04) 0.127 
 

0.11 (0.01) 0.07 (0.01) 0.109 

Annual grass 0.78 (0.07) 0.67 (0.13) NA* 
 

0.07 (0.04) 0.06 (0.04) NA* 
 

0.19 (0.02) 0.08 (0.02) NA* 
 

0.07 (0.01) 0.05 (0.01) NA* 

Perennial 10.17 (0.42) 9.80 (0.47) 0.916 
 

0.72 (0.01) 0.86 (0.02) 0.421 
 

2.19 (0.08) 148 (0.10) 0.222 
 

0.79 (0.02) 0.67 (0.04) 0.444 

Perennial 

forb 
4.89 (0.36) 4.93 (0.34) 0.904 

 
0.38 (0.02) 0.43 (0.02) 0.445 

 
0.78 (0.05) 0.47 (0.06) 0.513 

 
0.26 (0.02) 0.19 (0.02) 0.058 

Perennial 

grass 
5.28 (0.20) 4.87 (0.27) 0.431 

 
0.44 (0.02) 0.43 (0.02) 0.848 

 
1.41 (0.05) 1.01 (0.08) 0.013 

 
0.51 (0.02) 0.48 (0.03) 0.753 

Unpalatable 3.92 (0.21) 3.13 (0.24) 0.363 
 

0.32 (0.01) 0.27 (0.02) 0.094 
 

1.03 (0.048) 0.47 (0.05) <0.001 
 

0.36 (0.02) 0.19 (0.02) <0.001 

Mod 

palatable 
3.69 (0.25) 3.27 (0.24) 0.726 

 
0.29 (0.01) 0.28 (0.03) 0.569 

 
1.01 (0.05) 0.61 (0.06) 0.202 

 
0.37 (0.02) 0.28 (0.03) 0.064 

Palatable 3.39 (0.25) 3.27 (0.25) 0.969 
 

0.27 (0.01) 0.29 (0.02) 0.563 
 

0.53 (0.04) 0.59 (0.05) 0.753 
 

0.17 (0.01) 0.28 (0.030 0.007 
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Table 5.6. Percent ground cover (± 1 s.e.) by different components and proportion of plant cover by 330 
functional groups. RG = rotationally grazed treatment, UG = ungrazed treatment. Values in bold are 331 
significant (P ≤ 0.05). 332 

 Cover 
P-

value  

 Proportion of total plant 

cover P-

value 
  RG UG 

 
RG UG 

Total 5.14 (0.62) 2.59 (0.73) 0.302 
 

 – –  –  

Bare ground 69.13 (1.75) 60.11 (3.24) 0.232 
 

 – –  –  

Litter cover 19.07 (1.48) 25.01 (3.21) 0.060 
 

 –  –  – 

Cryptogam 

cover 
3.64 (0.84) 10.76 (1.78) 0.189*  

 
 –  – –  

Annual 0.22 (0.05) 0.05 (0.02) 0.151* 
 

0.08 (0.02) 0.05 (0.03) 0.175* 

Annual forb 0.08 (0.02) 0.03 (0.01) 0.096* 
 

0.03 (0.01) 0.02 (0.01) 0.754* 

Annual grass 0.14 (0.04) 0.02 (0.01) 0.274* 
 

0.05 (0.01) 0.03 (0.02) 0.186* 

Perennial 4.98 (0.61) 2.56 (0.73) 0.318 
 

0.94 (0.02) 0.96 (0.01) 1† 

Perennial forb 0.24 (0.05) 0.13 (0.02) 0.752* 
 

0.13 (0.03) 0.12 (0.03) 0.810* 

Perennial grass 4.74 (0.63) 2.43 (0.74) 0.351 
 

0.81 (0.04) 0.84 (0.04) 0.961‡ 

Unpalatable 0.40 (0.06) 0.13 (0.02) 0.002* 
 

0.16 (0.03) 0.13 (0.04) 0.531* 

Moderately 

palatable 
4.47 (0.63) 2.15 (0.74) 0.336 

 
0.73 (0.05) 0.61 (0.08) 0.434* 

Palatable 0.20 (0.05) 0.29 (0.78) 0.105 
 

0.08 (0.03) 0.24 (0.06) 0.001* 

* Square-root transformation used in models 333 
† Glmer model with a binomial family used in model 334 
‡ Power of 2 transformation used in model 335 

 336 

5.5.2.2 Distance from water 337 

At the plot scale, species richness (Figure 5.1c), along with annual, perennial, 338 

perennial forb and palatable species richness, and frequency of annual and annual 339 

grasses, were positively related to distance from water (P ≤ 0.05). Species diversity 340 

was also positively related to water (marginally significant, P ≤ 0.1). In addition, 341 

functional richness and functional diversity (Figure 5.1e) were positively related to 342 

distance from water (P ≤ 0.05). However, the proportion of perennial grass species 343 

and frequency of perennial species was negatively related to distance from water 344 
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(P ≤ 0.05). There were no significant relationships between distance from water and 345 

species diversity, evenness or turnover.  346 

At the quadrat scale, the number and proportion of total annual and annual grass 347 

species was positively related to distance from water, while the proportion of perennial 348 

species was negatively related to distance from water (P ≤ 0.05). Species richness was 349 

not significantly correlated with distance from water at the quadrat scale (Figure 5.1d). 350 

We found no significant relationships between distance from water and the density or 351 

richness of overstorey species in plots. The proportion of bare ground cover 352 

(P = 0.002) was negatively related to distance from water (Figure 5.1f), while 353 

cryptogam cover (P < 0.001) and litter cover (marginally significant, P = 0.080) were 354 

positively related to distance from water. There were no differences in the proportion 355 

of the cover of different plant functional groups with distance from water.  356 

 357 

5.6 Discussion  358 

In this study, we compared a commercial livestock grazing property that regularly 359 

rotates livestock and rests paddocks with an adjacent nature reserve where commercial 360 

livestock production had been excluded for 38 years, and examined trends associated 361 

with distance from water, to identify the impacts of alternative grazing management 362 

versus grazing exclusion and increasing intensity of rotational grazing on floristic 363 

composition, diversity, vegetation structure and ground cover. Significant differences 364 

in floristic composition, diversity and ground cover were observed with increasing 365 

grazing intensity and between rotationally grazed paddocks and the nature reserve. 366 

  367 
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5.6.1 Composition 368 

Multivariate ordination revealed differences in understorey floristic species 369 

composition between rotationally grazed and ungrazed plots. Livestock can modify 370 

species composition through herbivory and soil disturbance, resulting in species 371 

vulnerable to grazing being lost from the species pool, while selection allows for 372 

increases in species with traits that avoid or benefit from grazing (Olff and Ritchie 373 

1998). In our study, greater turnover was recorded in the ungrazed than rotationally 374 

grazed plots, indicating homogenisation of the understorey floristic community under 375 

grazing. More grazing-sensitive species may have been present in ungrazed plots 376 

which may explain why turnover was greater in ungrazed plots. Thyridolepis 377 

mitchelliana, Monachather paradoxa and Chenopodium desertorum are grazing-378 

sensitive (decreaser) and palatable species that are often selectively grazed (Beadle 379 

1948; Harrington et al. 1984; Cunningham et al. 2011). These species were more 380 

frequent in the ungrazed reserve, indicating they may have declined under grazing on 381 

the adjacent commercially grazed property. By contrast, Sclerolaena convexula was 382 

more frequent in the grazed treatment as it has spines that can deter livestock and is 383 

therefore more persistent under grazing. Eragrostis eriopoda, which was also more 384 

frequent on the grazed property, is a hardy perennial species tolerant of drought and 385 

grazing, provided grazing pressure is not too high (Cunningham et al. 2011).  386 

Distance from water was a major factor explaining differences in floristic composition, 387 

as seen in the ordination analysis. The majority of species significantly (P ≤ 0.05) or 388 

marginally significantly (P ≤ 0.05) correlated with distance from water increased in 389 

cover or frequency further from water and were decreasers. Only one species, Ptilolus 390 

sessifolius, was negatively associated with distance from water (P ≤ 0.1). This species 391 

is a grazing-tolerant perennial, is not readily grazed, and recovers well from grazing 392 
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(Cunningham et al. 2011). These results are similar to previous studies in semi-arid 393 

Australia, such as that of Landsberg et al. (2003), who found a greater number of 394 

decreaser than increaser species associated in response to grazing intensity. 395 

5.6.2 Functional composition 396 

Previous research suggests that unpalatable, prostrate, exotic, annual and forb species 397 

are more abundant under increasing livestock grazing intensity (Noy-Meir et al. 1989; 398 

Friedel et al. 2003; Landsberg et al. 2003; Hendricks et al. 2005; Díaz et al. 2007). In 399 

this study, unpalatable species were more frequent and had greater cover in 400 

rotationally grazed plots. At the quadrat scale, there was a greater richness and 401 

proportion of unpalatable species under rotational grazing. In contrast, palatable 402 

species were more frequent in and contributed a greater proportion of plant cover in 403 

the ungrazed plots. A greater proportion of palatable species were also recorded in the 404 

quadrats in the nature reserve. These patterns were expected as selective grazing by 405 

livestock increases grazing pressure on palatable species (Díaz et al. 2007). Friedel et 406 

al. (2003) recorded a similar reponse of palatable species along grazing gradients in 407 

Australian rangelands. Perennial grass richness was also greater in grazed quadrats. 408 

At a local scale, moderate livestock grazing pressure can reduce inter-species 409 

competition and create niches for plant establishment (Olff and Ritchie 1998), which 410 

may explain the greater richness of perennial species at the smallest scale. No other 411 

significant differences were detected in functional composition between the grazing 412 

treatments. The conservative grazing regime, which incorporated long periods of rest 413 

from grazing, may have minimised negative effects associated with livestock grazing, 414 

allowing the vegetation to recover between grazing events (Chillo and Ojeda 2014; 415 

Chillo et al. 2015). The frequencies of annual species and annual grasses increased 416 

with distance from water and the frequency of total perennial species and the 417 
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proportion of perennial grass species decreased with distance from water. There were 418 

no other significant differences in richness, proportion or frequency of functional 419 

groups in relation to distance from water. By contrast, Landsberg et al. (1997a) and 420 

Díaz et al. (2007) reported more annuals and fewer perennials with increasing grazing 421 

intensity surrounding water points. The patterns observed in this study were a 422 

reflection of the dry season, with more palatable annual species having been 423 

selectively grazed and eliminated closer to water, but still present further from water 424 

at low grazing intensity. Perennial species have a more robust root system than 425 

annuals, allowing access to a larger volume of soil and moisture, which may assist 426 

them in persisting despite high grazing intensity, and in resprouting after grazing. 427 

Perennials also generally have tougher leaves, which may reduce the preferential 428 

grazing of perennial species compared to annual species and hence they comprise a 429 

greater proportion of the species pool under higher grazing intensities. 430 

Greater functional diversity is beneficial for ecosystem function and resilience 431 

(Cadotte et al. 2011; Valencia et al. 2015). In this study, functional richness, diversity 432 

and dispersion significantly increased with distance from water. Few other studies 433 

have considered impacts of grazing management on functional diversity measures in 434 

rangelands. These results support those of Chillo et al. (2017), who also reported a 435 

loss of functional diversity associated with increasing grazing intensity close to water 436 

points. As livestock graze vegetation and modify habitat, selection favours traits that 437 

convey tolerance of grazing disturbance, such as prostrate, unpalatable or annual 438 

species with a short life cycle (Díaz et al. 2001). Species with traits that convey 439 

sensitivity to grazing are lost.  440 

  441 
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5.6.3 Richness, diversity, evenness, turnover 442 

In dry, infertile environments, moderate to intense livestock grazing is expected to 443 

reduce plant biodiversity due to the local extinction of grazing-sensitive species, and 444 

the limited potential for colonisation due to infertility (Milchunas et al. 1988; Olff and 445 

Ritchie 1998). In addition, Australia’s rangelands have a short history of livestock 446 

grazing and therefore may be more vulnerable to sustained ungulate grazing than 447 

rangelands with a long evolutionary history of ungulate grazing, such as the rangelands 448 

of Africa or the Americas (Milchunas et al. 1988; Olff and Ritchie 1998; Landsberg 449 

et al. 2003). Species richness increased with distance from water as grazing intensity 450 

decreased, as did diversity (marginally significant), consistent with previous studies 451 

in semi-arid regions (Landsberg et al. 2003; Hendricks et al. 2005; Todd 2006; Chillo 452 

et al. 2015). However, there was no significant difference in species richness or 453 

diversity between the rotationally grazed and ungrazed treatments in this study. Arid 454 

and semi-arid regions experience unpredictable rain events and frequent droughts. 455 

Both grazing and drought (water stress) result in loss of vegetative material, and 456 

adaptations to tolerate water stress can be comparable to adaptations for tolerance of 457 

grazing due to the similarity of the selection pressures (Milchunas et al. 1988). 458 

Rotational grazing with long rest periods can allow soil and vegetation to recover 459 

between grazing events (Müller et al. 2007; Teague et al. 2008), and careful 460 

management of stocking rates can reduce overgrazing and the associated negative 461 

effects, which may also explain the lack of difference between the rotationally grazed 462 

and ungrazed treatments. Silcock and Fensham (2013) also found no difference in 463 

plant species richness between grazed areas and areas excluded from livestock in long-464 

term exclosures in arid Australia.  465 
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5.6.4 Vegetation structure and ground cover 466 

Increased grazing pressure is often associated with shrub encroachment in semi-arid 467 

rangelands (Archer et al. 1995; Moleele and Perkins 1998; Van Auken 2000, 2009; 468 

Local Land Services 2014). However, in this study, woody vegetation density was not 469 

significantly related to grazing pressure, and there was no difference in woody 470 

vegetation density between rotationally grazed and ungrazed plots. Goats were the 471 

dominant livestock grazing the commercial property for 10 years prior to this study. 472 

Goats are known to consume a significant portion of their diet from shrub and tree 473 

species (Wilson et al. 1975; Harrington 1979; Dawson and Ellis 1996) and may have 474 

reduced the reproductive potential and establishment of new shrubs, balancing the 475 

tendency for livestock grazing to facilitate shrub encroachment. In addition, 476 

significant heterogeneity of woody vegetation patches across the landscape may have 477 

increased the variability of results and masked significant differences, as means of 478 

both seedlings and large woody vegetation density were greater in the rotationally 479 

grazed treatment. Rotational grazing of goats, allowing the paddocks to rest between 480 

grazing events, may have also reduced the impact of grazing on woody shrub 481 

encroachment.  482 

As distance from water decreased, grazing intensity increased. Soil compaction, 483 

trampling and herbivory are expected to increase with grazing intensity and can all 484 

reduce ground cover. The increase in bare ground and decline in cryptogam and litter 485 

cover associated with proximity to water in this study were consistent with previous 486 

studies (Andrew and Lange 1986b; Tongway et al. 2003; Tabeni et al. 2014). 487 

Increased bare ground is associated with soil erosion and reduced landscape function 488 

(Freudenberger et al. 1997; Bartley et al. 2006; Muñoz-Robles et al. 2011). Thus, even 489 

conservative rotational grazing management can have an impact on ground cover close 490 
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to water where grazing intensity is greater, than at the furthest points from water in 491 

large paddocks. However, when averaged at the paddock scale, including the plots 492 

further from water, there was no significant difference in the various components of 493 

ground cover between the rotationally grazed and ungrazed treatments – reduced 494 

ground cover was restricted to the high-impact areas near water points. 495 

5.6.5 Dung 496 

As expected, goat and sheep dung abundance was negatively correlated with distance 497 

from water, supporting our use of distance from water as a measure of grazing 498 

intensity. Kangaroo dung counts were positively correlated with distance from water. 499 

Previous research has found little relationship between kangaroo density and distance 500 

from water for up to 6 km from water (Montague-Drake and Croft 2004; Fensham and 501 

Fairfax 2008) and differing spatial distributions of livestock (sheep and cattle) and 502 

kangaroos (Andrew and Lange 1986a). Kangaroos are not constrained by commercial 503 

fencing and so prefer to avoid livestock and access otherwise untouched feed. 504 

Fensham and Fairfax (2008) suggested that sheep can travel up to 3 km from water, 505 

cattle 6 km and red kangaroos 7 km, but these distances depend on seasonal conditions 506 

and the availability of forage (James et al. 1999), landscape heterogeneity, the salinity 507 

of the drinking water, grazing history and provision of supplements (Pringle and 508 

Landsberg 2004). In this study, some goat and sheep dung was recorded in plots up to 509 

6 km from water, and kangaroo dung >8 km from water. 510 

5.6.6 Study design limitations 511 

The design of this study was limited by the inability to find replicate properties of 512 

rotational grazing paddocks and more than one protected area on the same land system. 513 

It is therefore important that further comparisons of rotational grazing and traditional 514 
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conservation management (livestock excluded) are undertaken to confirm whether the 515 

results found in this study are replicated across other land systems in western NSW 516 

rangelands. Previous studies have highlighted variation when large study areas have 517 

been utilised (see Chapter 3; Landsberg et al. 2003). The decision to focus on just one 518 

land system was justified to ensure the results of this study are relevant and applicable 519 

to the local surrounding area. In addition, random location of plots with a minimum 520 

distance of 400 m between plots ensured plots were independent.  521 

5.6.7 Conclusion 522 

Greater understanding of the impacts of alternative grazing regimes and grazing 523 

intensity on vegetation and ground cover in semi-arid rangelands is necessary to 524 

improve biodiversity and the environmental sustainability of livestock production 525 

enterprises. We found significant differences in floristic composition between a 526 

commercial rotationally grazed property and an adjacent nature reserve area and with 527 

increasing distance from water on the rotationally grazed property. Though results 528 

differed with the scale of analysis, the protected area usually had a greater frequency, 529 

richness and proportion of palatable species, while the rotationally grazed paddocks 530 

showed the reverse trend. Plant species richness, diversity, functional diversity 531 

measures and ground cover increased with distance from water (as grazing intensity 532 

decreased). However, there were no differences in these measures between the 533 

rotationally grazed property and the ungrazed protected area. While there was an 534 

impact associated with increasing grazing pressure close to water points under 535 

rotational grazing management, there were few differences in plant biodiversity and 536 

ground cover between the rotationally grazed and ungrazed treatments at the paddock 537 

scale. This suggests that rotational grazing and similar alternative grazing strategies 538 

may have the potential to sustain biodiversity and ground cover and offer an alternative 539 
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method of large-scale conservation to exclusion of livestock from protected areas in 540 

semi-arid regions.  541 

  542 
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Chapter 6. Synthesis and conclusions 1 

6.1 Introduction 2 

Protected areas are inadequate for conserving all biodiversity (James et al. 1995; 3 

Margules and Pressey 2000; Rodrigues et al. 2004; Fischer et al. 2006; Lindenmayer 4 

et al. 2010). Off-reserve conservation is necessary to assure regional and continental-5 

scale biodiversity conservation, and may also improve connectivity between reserves 6 

(Morton et al. 1995; Fischer et al. 2006; Heller and Zavaleta 2009; Lindenmayer et al. 7 

2010; Salmon and Gerritsen 2013; Butchart et al. 2015). Alternate grazing 8 

management strategies have the potential to maintain and improve biodiversity 9 

conservation and landscape function outside reserves in pastoral regions, compared to 10 

conventional grazing management (Norton 1998a; Dorrough et al. 2004; Teague et al. 11 

2008; Papanastasis 2009). In recent decades, a considerable amount of research has 12 

been undertaken into grazing management to improve both the productivity and the 13 

environmental sustainability of grazing enterprises. However, detailed information on 14 

the effects of different grazing management strategies in semi-arid rangelands has 15 

been lacking. Landholders and resource managers need local, reliable scientific 16 

research to inform grazing management and conservation goals. In particular, little 17 

research has been undertaken in western NSW rangelands comparing alternative 18 

grazing management strategies that incorporate long periods of rest, with traditional 19 

continuous grazing strategies and areas managed for conservation. 20 

6.1.1 Aims and objectives 21 

Preceding chapters of this thesis have: (1) reviewed the global literature on the 22 

ecological and animal production effects of grazing management that incorporates 23 
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periods of strategic rest, compared to continuous grazing strategies and ungrazed 24 

areas, and examined the extent to which the literature reports simultaneously on 25 

ecological and production outcomes; (2) investigated the potential for alternative 26 

livestock grazing practices to improve biodiversity, ground cover, soil properties and 27 

landscape function compared to traditional continuous grazing practices and areas 28 

managed for conservation on contrasting soil types in western NSW, and explored the 29 

potential of these alternative livestock grazing systems for off-reserve biodiversity 30 

conservation; and (3) examined changes in floristic species composition, biodiversity, 31 

ecosystem structure and ground cover associated with alternative grazing management 32 

along a grazing intensity gradient. This chapter provides a summary of the main 33 

findings of this research and explains how it contributes to current theoretical and 34 

practical knowledge of grazing management and biodiversity conservation in semi-35 

arid rangelands. Limitations of the research are outlined and recommendations for 36 

future research to improve biodiversity conservation and landscape function in 37 

livestock grazing enterprises in semi-arid rangelands are suggested.  38 

 39 

6.2 Summary of main findings 40 

6.2.1 Review of ecological and production effects of incorporating periods of rest 41 

from grazing in grazing regimes 42 

In Chapter 2, a systematic review and meta-analyses of scientific literature were 43 

undertaken describing the response of ecological and animal production variables to 44 

grazing management incorporating periods of planned rest (strategic-rest grazing, 45 

SRG) compared with continuously grazed (CG) and ungrazed (UG) systems. A trend 46 

analysis was undertaken to determine the proportion of papers that reported 47 
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significantly greater, neutral or lesser outcomes in ecological and animal production 48 

response variables. The majority of studies reported greater or neutral plant, mammal 49 

and bird species richness and diversity under SRG compared to UG areas, but neutral 50 

or lower invertebrate richness and diversity, ground cover and biomass. Invertebrate 51 

species richness and diversity, and animal production per unit area were usually 52 

greater under SRG, than CG. Responses of plant, mammal and bird species richness 53 

and diversity, plant biomass, and livestock weight gain were predominantly neutral, 54 

when comparing SRG with CG management. However, when a difference was 55 

observed, these ecological and animal production variables were more often in favour 56 

of SRG than CG, with the exception of livestock weight gain, which showed the 57 

reverse trend. Most studies reported a difference in species composition between SRG 58 

areas and CG or UG systems, highlighting the importance of investigating changes in 59 

composition that may not otherwise be detected using traditional measures of richness 60 

and diversity.  61 

Meta-analyses were undertaken to examine the effects of SRG on plant species 62 

richness, diversity, animal weight gain and animal production per unit area compared 63 

to CG or UG systems. Overall, no significant difference in plant species richness, 64 

diversity, livestock weight gain or animal production per unit area was found between 65 

SRG and CG or UG systems. The meta-analyses revealed that type of SRG 66 

management and the amount of rest relative to grazing time (rest:graze ratio) were 67 

important contributors to differences between SRG and CG or UG systems. Multi-68 

paddock SRG systems resulted in lower plant richness relative to CG, but seasonal 69 

SRG systems had greater diversity than CG systems. As the rest:graze ratio increased, 70 

both weight gain and animal production per unit area increased under SRG compared 71 

to CG, but plant richness decreased. These differences highlight the importance of 72 
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detailed reviews of the effects of different types of SRG management, to tease out 73 

potential grazing strategies that are beneficial or detrimental to achieving ecological 74 

as well as livestock production outcomes.  75 

An understanding of both the ecological and economic (production) trade-offs 76 

associated with different grazing management strategies is necessary to make 77 

informed decisions about best-management practices (Metera et al. 2010). The extent 78 

to which ecological and animal production outcomes were considered simultaneously 79 

in the literature comparing SRG with CG or UG systems was investigated. The 80 

majority of studies did not report ecological and animal production response variables 81 

simultaneously. This indicates that information pertinent to one discipline is not being 82 

communicated effectively to the other, and vice versa, impeding progress towards a 83 

holistic understanding of how to integrate livestock production and biodiversity 84 

conservation outcomes in grazing lands. 85 

6.2.2 Response of biodiversity to alternative grazing management systems 86 

In Chapters 3 and 5, understorey floristic species composition and biodiversity 87 

measures were compared at different scales between alternative grazing management, 88 

traditional grazing management (Chapter 3 only), and areas currently managed for 89 

conservation.  In comparison to traditional continuous grazing management, 90 

alternative grazing management resulted in greater understorey plant species richness 91 

and diversity, depending on the season and scale of sampling. Differences were more 92 

pronounced in spring and at larger scales (100 and 1000 m). At small (1 m) scales, 93 

grazing can reduce competition and provide niches for germination, but as grazing-94 

sensitive species are lost from the species pool, richness declines at larger scales (Olff 95 

and Ritchie 1998; Landsberg et al. 2002; Kohyani et al. 2008). When comparing 96 
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alternative grazing management with adjacent areas that were ungrazed by 97 

commercial livestock and managed for conservation, there were few differences in 98 

plant richness, Shannon–Wiener diversity or functional diversity measures (Chapters 99 

3 and 5). However, more infrequent species were recorded in conservation areas 100 

(Chapter 3), and when examined at a local (property) scale, significant differences in 101 

composition were apparent. For example, an increase in palatable species such as 102 

Thyridolepis mitchelliana, Monachather paradoxa and Chenopodium desertorum was 103 

recorded in ungrazed areas and an increase in unpalatable species in areas under 104 

rotational grazing (Chapter 5). Selective grazing of palatable species can reduce their 105 

vigour and abundance in semi-arid rangelands (Milchunas et al. 1988; Olff and Ritchie 106 

1998).  107 

Soil type (clay and sand) explained the greatest amount of floristic variation in the 108 

ordination analysis (Chapter 3). The location (longitude and latitude) of sites, seasons 109 

and preceding rainfall also explained a significant proportion of variation in 110 

understorey floristic composition, whereas the effect of grazing treatment on floristic 111 

composition at the regional scale was not significant. In arid and semi-arid rangelands, 112 

sporadic rainfall events and non-equilibrium community dynamics are the dominant 113 

drivers of change, masking the effects of grazing and other disturbances (Ellis and 114 

Swift 1988; Westoby et al. 1989; Silcock and Fensham 2013), and these drivers may 115 

likely account for the lack of a grazing treatment effect on composition at the regional 116 

scale. These findings suggest that commercial grazing management incorporating long 117 

periods of rest is more compatible with biodiversity conservation than traditional 118 

grazing management, but potentially at the expense of palatable, rare and grazing-119 

sensitive species. 120 

  121 
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6.2.3 Response of ground cover, soil and landscape function to alternative grazing 122 

management systems 123 

Chapter 4 focused on the effects of alternative grazing management, traditional 124 

grazing management, and exclusion of commercial livestock grazing for conservation, 125 

on ground cover, soil attributes and landscape function indices. Areas managed under 126 

alternative grazing management had greater total ground cover in comparison to 127 

traditional grazing management treatments, but both alternative and traditional grazing 128 

management treatments had significantly less ground cover than adjacent areas 129 

managed for conservation. Herbivory and trampling reduce the amount of understorey 130 

plant biomass, increase the rate of litter decomposition, and destroy cryptogamic 131 

crusts (Graetz 1986; Eldridge and Greene 1994; Williams et al. 2008; Schönbach et 132 

al. 2010; Mofidi et al. 2012). Ground cover was also compared between a rotationally 133 

grazed property and an adjacent nature reserve in Chapter 5. However, unlike the 134 

results in Chapter 4, no difference in ground cover was detected between the 135 

rotationally grazed area and the nature reserve in this comparison, indicating that 136 

rotational grazing management can maintain ground cover under certain 137 

circumstances.  138 

Evidence of the benefits of alternative grazing management for landscape function 139 

was also obtained. Alternative grazing management did not differ significantly from 140 

areas managed for conservation in terms of landscape function, whereas many indices 141 

of landscape function (stability, nutrient cycling, landscape organisation index, patch 142 

area and average interpatch length) were significantly lower under traditional grazing 143 

management than conservation treatments, indicating the impact of alternative grazing 144 

management on landscape function may have been lower than traditional grazing 145 

management. However, there were also no significant differences in landscape 146 
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function indices between alternatively grazed areas and adjacent traditionally grazed 147 

areas. Greater ground cover and LFA indices under alternative grazing management 148 

compared to traditional grazing management were likely a result of rest from grazing 149 

allowing recovery of plants and soil structure between grazing events (Teague et al. 150 

2011). Soil organic carbon, bulk density, pH and EC did not differ significantly 151 

between grazing treatments, but organic nitrogen was greater under traditional grazing 152 

management than under conservation management on sandy soils, presumably as a 153 

result of dung deposition (Eldridge et al. 2016). 154 

6.2.4 Relationships between floristic diversity and ground cover and landscape 155 

function  156 

In Chapter 4, the relationships between measures of floristic biodiversity (richness, 157 

evenness, Shannon–Wiener diversity and turnover) and ground cover and landscape 158 

function were examined. Ground cover components (plant, litter, cryptogam, total 159 

vegetative and total ground cover) were often positively correlated with understorey 160 

species richness, diversity and evenness. This suggests that improved plant 161 

biodiversity contributes to greater plant productivity, and vice versa, and that 162 

managing for improved ground cover can benefit biodiversity conservation. However, 163 

there were few correlations between floristic biodiversity measures and landscape 164 

function indices. In this semi-arid rangeland, understorey plant biodiversity was not 165 

closely linked to landscape function. The lack of significant relationships between 166 

plant biodiversity measures and landscape function indices may be a result of 167 

similarity in landscape function indices between sites and the lack of sensitivity in the 168 

LFA to pick up changes in landscape function, as has been found in other studies 169 

(Munro et al. 2012). 170 



Chapter 6 

153 

 

6.2.5 Patterns of biodiversity and ground cover along grazing intensity gradients 171 

In Chapter 5, the patterns of floristic biodiversity and ground cover were examined 172 

with distance from water on an alternatively grazed property. Total plant species 173 

richness, Shannon–Wiener diversity, and plant functional richness, diversity and 174 

dispersion increased with distance from water under alternative grazing management, 175 

while the proportion and frequency of perennial species decreased. Increased grazing 176 

intensity close to water points (Lange 1969) increases soil disturbance and selection 177 

favours species tolerant of grazing, while grazing-intolerant and sensitive species are 178 

lost from the species pool, thus reducing overall biodiversity close to water (Milchunas 179 

et al. 1988; Díaz et al. 2007). However, no other differences in functional trait groups 180 

(e.g. annuals, annual and perennial grasses, annual and perennial forbs, palatable 181 

species, tall species, leaf area or seed length) were related to distance from water (i.e. 182 

the grazing intensity gradient). The conservative rotational grazing regime in the 183 

present study may have confined the negative effects of grazing to the sacrifice zone 184 

close to water (Müller et al. 2007; Teague et al. 2008), as well as reducing the impact 185 

of grazing intensity by allowing soil and vegetation to recover between grazing events 186 

(Chillo and Ojeda 2014).  187 

No significant differences in density of woody shrub species were observed with 188 

increasing grazing intensity in Chapter 5, contrasting with suggestions that increasing 189 

grazing pressure results in shrub encroachment (Archer et al. 1995; Moleele and 190 

Perkins 1998; Van Auken 2000, 2009; Local Land Services 2014). Grazing by a 191 

commercial goat herd was the dominant livestock enterprise in the 10 years prior to 192 

this study. Goats consume a significant portion of their diets from shrubs or trees, and 193 

browsing by goats may have suppressed woody shrub increase in this instance (Wilson 194 

et al. 1975; Harrington 1979; Dawson and Ellis 1996). This indicates that when 195 
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managed with regular periods of rest, livestock production can maintain vegetation 196 

structure. Total ground cover increased with distance to water as a result of increased 197 

cryptogam and litter cover. This indicates that even under alternative grazing 198 

management, livestock can significantly alter soil surface attributes at high grazing 199 

intensity. 200 

6.2.6 Biodiversity and landscape function response to grazing management on 201 

contrasting soil types 202 

In Chapters 3 and 4, the response of biodiversity measures and landscape function 203 

indices to contrasting grazing management regimes was compared on sand and clay 204 

soils. Significant differences in soil carbon, nitrogen, bulk density, landscape function 205 

indices and plant biodiversity measures were observed between sand and clay soil 206 

communities. Clay soils had greater organic carbon and organic nitrogen and lower 207 

bulk density than sandy sites. Soil stability, nutrient cycling and landscape 208 

organisation indices were also greater on clay than sand, and average interpatch length 209 

was shorter on clay soils. Clay soils had greater vegetative cover than sand soils, while 210 

sand soils had greater cryptogam cover. Floristic biodiversity measures (species 211 

richness, evenness, diversity, turnover) were significantly greater on sand than clay 212 

soils at the plot (100 m) and site (1000 m) scales, though there was no difference in 213 

species richness at the smallest scale (1 m). Despite the common perception that heavy 214 

clay soil communities are more resilient to disturbance than communities on sandy 215 

soils (Harrington et al. 1984; Lewis et al. 2009b), we found no difference between 216 

sand and clay soils in the response of plant biodiversity measures, total ground cover, 217 

landscape function, total organic carbon, total organic nitrogen or bulk density to 218 

alternative or traditional grazing management or conservation management. This 219 

result suggests that alternative grazing management may provide a sustainable option 220 
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for biodiversity conservation on commercial livestock grazing properties across a wide 221 

range of rangeland communities in western NSW.  222 

 223 

6.3 Contribution to scientific theory and practice 224 

This research has contributed to scientific theory and practice by: (1) synthesising 225 

current knowledge of the effects of SRG management, compared to continuous 226 

grazing management and grazing exclusion on key ecological and animal production 227 

variables; (2) highlighting research gaps in the literature and the lack of integration 228 

between ecological and animal production research; (3) increasing knowledge of 229 

biodiversity and landscape function effects of grazing management incorporating 230 

planned rest in semi-arid rangelands, on contrasting soil types; (4) contributing new 231 

knowledge about relationships between landscape function and floristic biodiversity 232 

on sand and clay soils; and (5) highlighting the importance of alternative grazing 233 

management to improve biodiversity and ground cover compared to traditional 234 

grazing practices. 235 

Previous reviews comparing grazing incorporating periods of rest with continuous 236 

grazing management systems have predominantly focussed on animal production (e.g. 237 

(Heady 1961; Holechek et al. 2000; Briske et al. 2008), with few reviews investigating 238 

the effects on biodiversity or taking a holistic perspective. This research provided a 239 

detailed synthesis of existing scientific literature, summarising trends in relation to 240 

both ecological and animal production outcomes across different geographic and 241 

climatic regions. Lack of differences in plant richness, diversity, animal weight gain 242 

or production per unit area are consistent with previous reviews comparing continuous 243 

or season-long grazing practices with SRG (O'Reagain and Turner 1992; Holechek et 244 
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al. 2000; Briske et al. 2008). However, these reviews have generally not considered 245 

the effects of different types of SRG system. The results of our review indicate that 246 

seasonal SRG systems, where an otherwise continuously grazed area is rested for part 247 

of the grazing season often to achieve a strategic outcome, increase diversity and 248 

increasing rest relative to grazing time increases animal weight gain and production 249 

per unit area, justifying further research into SRG. Our review also outlined current 250 

knowledge gaps in relation to ecological and animal production effects of SRG and 251 

highlighted associated trade-offs, notably a lack of knowledge of the effects of SRG 252 

on (1) fauna, (2) management of SRG in the tropics and (3) of different types of SRG 253 

management, for example different intensities, timing, frequency and length of rest 254 

periods and species of livestock. Results of this study should guide future research and 255 

management of SRG systems for both conservation and production.  256 

While there have been numerous calls for greater integration and collaboration 257 

between ecological research and animal production research in recent decades 258 

(Jackson and Piper 1989; Fuhlendorf and Engle 2001; Watkinson and Ormerod 2001; 259 

Dorrough et al. 2004; Vavra 2005; Fischer et al. 2006; Metera et al. 2010), no previous 260 

reviews of grazing management systems have considered both biodiversity and animal 261 

production effects simultaneously. This research addressed this gap in the literature, 262 

and highlights the need to improve communication and collaboration between 263 

ecological and agricultural production researchers in order to improve integration of 264 

ecological and animal production outcomes in grazing lands. 265 

This study also contributed to the knowledge of the response of floristic biodiversity 266 

and landscape function to alternative grazing management in semi-arid rangelands. 267 

Previous research into grazing management, and in particular grazing management 268 

that incorporates rest, has been predominantly focussed in temperate regions and has 269 
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not generally utilised ungrazed areas managed for nature conservation as contrasts to 270 

understand the trade-offs between different management approaches. No research has 271 

previously compared alternative grazing management to areas managed for 272 

conservation in the NSW semi-arid rangelands. Results of this research address these 273 

literature gaps and build on existing knowledge of the effects of alternative grazing 274 

practices for improved biodiversity conservation.  275 

Theoretical models describing the effect of grazing in semi-arid rangelands have been 276 

generally based on the effects of varying grazing intensity, rather than different 277 

grazing management systems. However, the results of this study provide some support 278 

for theoretical models of grazing intensity. The significant influence of season and 279 

rainfall in ordination analysis compared to grazing treatment, and the significant 280 

correlations between previous rainfall and understorey floristic biodiversity measures 281 

provide support for the non-equilibrium theorem. These findings are similar to those 282 

of Lunt et al. (2007b); Lewis et al. (2009b); Fensham et al. (2010); Fensham et al. 283 

(2014). The lack of difference in plant species richness and diversity between 284 

alternatively grazed areas and areas managed for conservation, and lower richness and 285 

diversity in traditionally grazed areas and at high grazing intensities (close to water) 286 

also supports the theoretical model of Milchunas et al. (1988), which predicted low 287 

levels of grazing to increase diversity in semi-arid rangelands with a short evolutionary 288 

history of livestock grazing, but that further increases in grazing intensity would 289 

reduce diversity. This study did not observe an increase in plant richness or diversity 290 

under alternative grazing management. Milchunas et al. (1988) predicted an increase 291 

in plant biodiversity under low livestock grazing intensities in semi-arid regions with 292 

a short evolutionary history of ungulate grazing. In this study the grazing intensity 293 

under alternative grazing management may not have been low enough to achieve an 294 
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increase in diversity. Functional diversity is an important indicator of ecosystem 295 

function and may highlight otherwise undetected differences (Cadotte et al. 2011). 296 

While the effects of alternative grazing management on functional diversity have been 297 

examined overseas (Chillo et al. 2017), no previous research in the Australian 298 

rangelands has examined this. Significant differences in functional diversity measures 299 

along the grazing intensity gradient in this study highlight the importance of the 300 

consideration of these measures in future research investigating the effects of grazing 301 

management. 302 

While ecosystems on sandy soils in south-eastern Australian rangelands are 303 

considered to be less resilient to grazing and disturbance than heavy-clay communities 304 

(Harrington et al. 1984; Lewis et al. 2009b), little research has considered the effect 305 

of alternative grazing management on biodiversity and landscape function across 306 

contrasting soil types. Arid and semi-arid rangelands in south-eastern Australia are 307 

spatially heterogeneous with multiple soil and vegetation types (Walker 1991; Isbell 308 

2016). It is important to understand the response of management strategies across 309 

different landscapes in order to identify areas more vulnerable than others to the 310 

impacts of grazing and to tailor management strategies appropriate to different 311 

rangeland types. This research goes some way towards achieving this at a broad scale 312 

in the NSW semi-arid rangelands. In contrast to previous suggestions, we found no 313 

difference in the response of heavy-clay and sandy-loam soil and vegetation 314 

communities to different grazing strategies, indicating that from a biodiversity 315 

conservation and landscape function perspective, similar management strategies may 316 

be appropriate for both soil types in western NSW rangelands. 317 

Relationships between floristic biodiversity measures and landscape function indices 318 

have not previously been studied in detail. Understanding these relationships provides 319 
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greater insight into the mechanisms behind floristic biodiversity and landscape 320 

function responses in semi-arid rangelands, and the potential to use one as an indicator 321 

of another. Previous studies have suggested that more functional landscapes have 322 

greater species biodiversity (Ludwig et al. 2004) and that greater biodiversity can 323 

contribute to landscape multifunctionality of landscapes (Maestre et al. 2012; Tilman 324 

et al. 2012, 2014; Pasari et al. 2013). In contrast to these expectations, we did not find 325 

many significant correlations between landscape function indices and floristic 326 

biodiversity measures, relative to the number of relationships between ground cover 327 

components and floristic biodiversity measures. The few relationships between LFA 328 

indices and plant biodiversity measures were not consistent across sand and clay soil 329 

types. This indicates that measures of floristic biodiversity and landscape function are 330 

not closely linked in western NSW semi-arid rangelands, and that LFA may provide 331 

an alternative measure of landscape change associated with different grazing 332 

management approaches that would be undetected following vegetation surveys alone. 333 

The results of this study have demonstrated the important role that grazing 334 

management (in particular, grazing management incorporating frequent long periods 335 

of rest from grazing) can play in improving biodiversity, ground cover and to some 336 

extent, landscape function in semi-arid rangelands managed for livestock production, 337 

relative to traditional continuous grazing. These findings are consistent with recent 338 

studies (Teague et al. 2011; Deng et al. 2014; Chillo et al. 2015; Read et al. 2016; 339 

Sanjari et al. 2016). The research provides support for utilising alternative grazing 340 

management strategies to improve conservation outcomes in the rangelands, and for 341 

closer alignment of livestock and conservation outcomes in semi-arid rangelands. The 342 

findings of this research may also be beneficial to guide policy surrounding livestock 343 

enterprises in Australian rangelands, highlighting the benefits of incorporating periods 344 
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of rest in grazing management to improve landscape and biodiversity conservation 345 

outcomes. 346 

 347 

6.4 Research limitations 348 

The research reported in this thesis was constrained by time. Greater replication of 349 

surveys across different seasonal conditions and different soil and vegetation types 350 

would have ensured that conclusions were relevant to more community types and 351 

enabled better-informed management recommendations to accommodate for natural 352 

climatic variation. Locating properties to achieve sufficient replication of grazing the 353 

different management strategies was an additional limitation. Subdivisional fencing 354 

for rotational grazing management requires significant economic investment in terms 355 

of infrastructure and management changes. Therefore, adoption rates of alternative 356 

grazing management in western NSW are low and finding suitable grazing contrasts 357 

in adjacent areas or in similar land systems and vegetation types was a challenge. No 358 

other sites employing alternative grazing practices adjacent to ungrazed areas 359 

managed for conservation were available in the study region, and therefore it was not 360 

possible to increase replication of these contrasts. 361 

Grazing by feral and native herbivores is difficult to control across large paddocks in 362 

heterogeneous landscapes, and legacy effects of historical grazing management were 363 

not accounted for. Areas managed for conservation often had evidence of grazing 364 

impact, which may have masked differences between livestock grazing strategies and 365 

the benefits of grazing exclusion. Despite this, areas selected as ‘ungrazed’ treatments 366 

were representative of current conservation management within western NSW, where 367 

unmanaged feral goats have access to public reserves that predominantly do not have 368 
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goat-proof boundary fencing and where goats have to be periodically removed from 369 

reserves (Ballard et al. 2011). Exclusion of all feral herbivores is costly and near-370 

impossible to achieve in this region, and therefore these study sites provided suitable 371 

controls. 372 

The meta-analysis comparing strategic-rest grazing with continuous grazing and 373 

ungrazed systems was limited by the data provided in individual studies. Many studies 374 

did not report mean values, and were therefore unable to be included in the meta-375 

analyses. In addition, many studies did not provide measures of variance. Although 376 

we were able to impute missing variances, greater accuracy would have been possible 377 

if measures of variance were available for all studies. Interpretation of results from the 378 

meta-analyses was also limited by confounding stocking rates between grazing 379 

contrasts, and the large amount of unexplained variation which indicated that other 380 

factors influenced the results. As the systematic review was restricted to studies 381 

published in English in Scopus, and to specific search terms, not all studies of 382 

strategic-rest grazing were included in our systematic review and meta-analyses. 383 

However, it is considered that the subset of literature examined is likely to be a 384 

representative sample of all literature published on this topic.  385 

 386 

6.5 Management recommendations 387 

It is important to retain areas that are ungrazed by livestock in landscapes for the 388 

conservation of grazing-sensitive species and ecosystems at a regional scale (Margules 389 

and Pressey 2000), either through grazing exclusion or remoteness from water 390 

(Landsberg et al. 1997a; Fensham and Fairfax 2008). Despite the benefits of 391 

alternative grazing management compared to continuous grazing management, the 392 
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results support the retention of areas excluded from livestock grazing for the protection 393 

of rare and grazing-sensitive species. Maintenance of areas ungrazed by livestock will 394 

also assist in increasing landscape heterogeneity, which is important to increase 395 

biodiversity at landscape scales (Fuhlendorf and Engle 2001; Fischer et al. 2006). 396 

Provision of financial incentives and support would increase establishment of grazing 397 

exclusion areas on commercial livestock grazing properties, especially for vulnerable 398 

areas of the landscape and to compensate for lost production. In addition, maintenance 399 

and upgrading of boundary fences around nature conservation areas and fencing of 400 

water points in reserves is necessary to achieve total grazing exclusion and water-401 

remoteness in areas where feral herbivores have unrestricted access (Fensham and 402 

Fairfax 2008).  403 

Exclusion of livestock from all rangelands is not a viable option in a socio-economic 404 

sense, and may not be necessary to achieve biodiversity conservation in arid and semi-405 

arid rangelands at a regional scale (Fischer et al. 2011; Neilly et al. 2016). This study 406 

has shown benefits from incorporating periods of rest from livestock grazing for 407 

floristic biodiversity, ground cover and landscape function in semi-arid rangelands, 408 

relative to continuous grazing management (Chapters 3 and 4). Management strategies 409 

for improving biodiversity and landscape function in livestock production areas in 410 

semi-arid rangelands should therefore focus on greater adoption of alternative grazing 411 

management incorporating periods of rest from grazing, along with careful 412 

management of grazing intensity, especially in response to seasonal conditions. 413 

Consideration of economic factors is important in the development and 414 

implementation of alternative grazing strategies, as the greater amount of 415 

subdivisional fencing and water infrastructure associated with alternative grazing 416 

systems has significant monetary costs. In order to implement and increase adoption 417 
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of rotational grazing systems, provision of financial support to erect subdivisional 418 

fencing and new water points would be valuable, along with restricting access to water 419 

points and erecting goat-proof fencing to ensure land is completely rested, allowing 420 

soil and vegetation to recover between grazing events. In addition, financial support 421 

for educational courses and the development of extension material to inform 422 

landholders of the importance of alternative grazing management for improving 423 

biodiversity conservation and landscape function would be useful in areas managed 424 

for commercial livestock production in western NSW. Increased fencing may also 425 

pose additional ecological consequences, such as disrupting movements and gene-426 

flow of native wildlife; blocking access to water; altering predator–prey relationships, 427 

and increasing wildlife mortality as a result of collisions with fences (Pople et al. 2000; 428 

Haywood and Kerley 2009; Bradby et al. 2014). 429 

Effective grazing management should aim to provide sufficient rest periods to allow 430 

recovery and persistence of grazing-sensitive species and maintain ground cover and 431 

landscape function. Increasing length of rest to graze time was associated with a 432 

decline in species richness (Chapter 2), and therefore careful management of timing is 433 

important. Rest from grazing during certain stages of plant development or during 434 

certain seasons (seasonal SRG management) can benefit plant diversity (Chapter 2). 435 

Identification and close monitoring of grazing-sensitive indicator species (Caro and 436 

O'doherty 1999) and adjustment of grazing intensity and the length of graze and rest 437 

periods is necessary to increase the abundance of these species. Identification and 438 

protection of vulnerable areas of the landscape is also necessary to develop appropriate 439 

grazing management strategies (or grazing exclusion) to promote the conservation of 440 

biodiversity and landscape function in these areas. Understanding and monitoring of 441 

thresholds at which negative effects of grazing are likely to occur – such as thresholds 442 
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of grazing intensity or leading into a long dry period – are necessary to inform 443 

management decisions and prevent degradation under commercial grazing. In Chapter 444 

5, increasing grazing intensity had negative effects on plant biodiversity measures and 445 

ground cover. Conservative grazing intensities are recommended to minimise this 446 

degradation.  447 

 448 

6.6 Future research 449 

Growing demand for livestock products will place greater pressure on rangelands to 450 

increase production (FAO 2011), thus increasing the potential for degradation. 451 

Degradation of biodiversity and landscape function may, in turn, result in reduced 452 

production (Fischer et al. 2006; Reynolds et al. 2007; Tilman et al. 2012). Therefore, 453 

there is significant incentive to increase understanding of and improve grazing 454 

management to maintain and improve biodiversity and landscape function. 455 

The results of the systematic review (Chapter 2) highlighted a lack of research on 456 

alternative grazing management in tropical and arid regions, with the majority of 457 

research concentrated in the temperate zone. In addition, less research had been 458 

undertaken into alternative management strategies in developing countries. Additional 459 

research is necessary in these regions to improve sustainability and biodiversity 460 

conservation outcomes in grazing lands globally. The review also revealed a scarcity 461 

of knowledge of the effects of alternative grazing management on fauna. Effects of 462 

grazing management on fauna are likely to be different to those on vegetation (Kruess 463 

and Tscharntke 2002; Zhu et al. 2012; van Klink et al. 2015), and therefore the 464 

response of vegetation to grazing management is not necessarily a reliable indicator 465 

of the response of fauna. More research is necessary to understand grazing 466 
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management variables (including differences in timing, frequency and duration of rest 467 

and graze periods, livestock type and grazing intensity) that have the potential to 468 

achieve better integration of ecological and production outcomes in grazing lands. 469 

Future research must also focus on greater collaboration between agricultural 470 

production scientists and ecologists, in order to improve both ecological and 471 

production outcomes, to understand trade-offs between these, and to increase adoption 472 

of more sustainable grazing practices by landholders.  473 

Undertaking this study in different seasons and on contrasting soil types afforded 474 

greater generality and applicability of the results. Additional research is necessary to 475 

increase our understanding of the situations (e.g. soil and vegetation types, seasonal 476 

conditions) in which grazing is not appropriate for achieving biodiversity and 477 

landscape conservation, along with the management strategies that are most 478 

appropriate to achieve this (e.g. the timing, duration, and frequency of grazing and the 479 

type of livestock). Variability in biodiversity and landscape function responses to 480 

differing grazing management strategies and across different clusters and soil types 481 

(Chapters 3 and 4) indicates a need to undertake more research to ensure results and 482 

management recommendations are applicable to different soil and vegetation types. 483 

By repeating sampling in two different seasons, this study showed that season and 484 

rainfall were significant drivers of plant composition and biodiversity measures, and 485 

that effects of grazing management on composition and biodiversity differ with 486 

season. Many studies of grazing management in semi-arid rangelands utilise a one-off 487 

measurement only. It would be beneficial to replicate studies of grazing management 488 

across multiple years and seasons (including dry and wet seasons) to capture a 489 

complete understanding of grazing management impacts. 490 
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This research project analysed the response of understorey floristic biodiversity to 491 

alternative grazing management at differing scales, and found differences in response 492 

depending on the scale of measurement. Scale is widely recognised as influencing 493 

floristic biodiversity (Stohlgren et al. 1999; Landsberg et al. 2002; Adler et al. 2005; 494 

Kohyani et al. 2008; Li et al. 2015). However, little research in semi-arid rangelands 495 

has examined the response of floristic biodiversity measures to grazing management 496 

strategies at different scales. Studies utilising small-scale study plots may not detect 497 

negative effects of grazing on plant species biodiversity or composition at landscape 498 

scales, therefore it is important that the scale of the study is considered in interpreting 499 

results. To improve understanding of whole-ecosystem responses to grazing 500 

management, it is important that this matter is addressed.  501 

This research investigated the effect of alternative grazing management on 502 

commercial properties and publically managed reserves. Although locating study sites 503 

on commercial properties and public reserves brought some additional variability into 504 

results compared to experimentally contrived grazing treatments, the grazing 505 

treatments reflected real-world conditions. Much of the previous research into grazing 506 

management has been undertaken as experiments in small plots or paddocks, and this 507 

is recognised as a key reason for differences observed in literature between rotational 508 

and continuous grazing systems. In small plots, patch-grazing dynamics are reduced 509 

in continuous grazing systems and grazing patterns become more similar to those of 510 

rotational systems (Teague et al. 2013). Utilising commercial grazing properties is 511 

important to understand effects at a paddock and landscape scale, and to ensure results 512 

are reliable and applicable under natural conditions. 513 

The meta-analysis reported in Chapter 2 highlighted the significant effect of different 514 

types of strategic-rest grazing management on ecological and animal production 515 
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response variables, in particular, the length of time of rest from grazing in relation to 516 

the length of time an area is grazed. Greater research into different types of adaptive 517 

rotational grazing management, at multiple stocking rates, would be beneficial to 518 

determine optimum management strategies for the ecological and socio-economic 519 

sustainability of livestock grazing enterprises. In particular, a focus on timing and 520 

duration of rest periods to achieve optimum biodiversity and landscape function 521 

outcomes in semi-arid NSW would be beneficial (Müller et al. 2007). In addition, 522 

climate-change is expected to alter ecosystem dynamics and vulnerability in response 523 

to grazing (Heller and Zavaleta 2009). Modelling the response of biodiversity and 524 

landscape function to different grazing management strategies under different climate 525 

change scenarios would assist in planning for the future. Research into the effects of 526 

different grazing strategies in conjunction with other rangeland management strategies 527 

(e.g. total grazing exclusion fencing) may also identify potential methods of improving 528 

biodiversity conservation in arid and semi-arid rangelands. 529 

Historical management practices and degradation can result in legacy effects (Monger 530 

et al. 2015). Arid and semi-arid rangelands require long periods of time to recover 531 

from degradation events (Meissner and Facelli 1999; Daryanto and Eldridge 2010; 532 

Seymour et al. 2010; Fensham et al. 2011), and often require significant rainfall events 533 

to recover (Stafford Smith et al. 2007). Studies have shown that recovery of arid and 534 

semi-arid rangelands can take over 20 years (Hall et al. 1964; Fuhlendorf et al. 2001; 535 

Valone et al. 2002; Seymour et al. 2010). Some sites utilised in this study had only 536 

been under current management for five years, and therefore may not have had 537 

sufficient time to respond to new management practices (Teague et al. 2013). Many 538 

previous studies investigating effects of alternative grazing management have also not 539 

studied the effects of grazing management strategies beyond five years since the 540 
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implementation of current management (Teague et al. 2013). Long-term studies and 541 

measurements of biodiversity and landscape function in response to changed grazing 542 

management may reveal additional benefits of grazing exclusion or alternative grazing 543 

management relative to traditional grazing management strategies, and should be 544 

established as a priority.  545 

Finally, additional research into the relationships between floristic biodiversity and 546 

landscape function utilising a broader range of sites on the landscape function 547 

continuum may be useful to develop a better understanding of these relationships. The 548 

sites in this study were relatively similar with regards to landscape function and the 549 

LFA methodology may not have been sensitive enough to capture potential differences 550 

in landscape function between these sites. 551 

 552 

6.7 Conclusions 553 

Biodiversity conservation and maintenance of landscape function in agricultural 554 

landscapes is essential for the maintenance of ecosystem service provision and the 555 

production of food and fibre in semi-arid rangelands. Better understanding of the 556 

effects of different grazing strategies on biodiversity and landscape function is 557 

necessary to inform management and enhance biodiversity and landscape 558 

conservation. This research has provided important new insights into the effects of 559 

alternative grazing management on biodiversity and landscape function in the NSW 560 

semi-arid rangelands, across different scales and seasons and on contrasting soil types. 561 

It has highlighted the potential for alternative methods of grazing management to 562 

improve biodiversity and landscape conservation outcomes outside the public reserve 563 

system. Greater collaboration between ecologists and animal production scientists is 564 
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needed to improve understanding of the ecological and agricultural trade-offs 565 

associated with different grazing management systems and in developing and 566 

extending sustainable commercial grazing management strategies to improve 567 

biodiversity conservation and landscape function in the semi-arid rangelands.  568 
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Appendix 1 1 

Table A1.1. Glossary of terms 2 

Term Definition 

Biodiversity The variety of life at all levels of organisation (Cresswell and 

Murphy 2017) 

Carrying capacity Number of animals that can be held on a unit of land over a 

defined time, without deterioration of land (Allen et al. 2011) 

Composition In the context of this thesis, floristic species composition 

refers to the identity of plant species within the defined area 

Continuous grazing Livestock have unrestricted and uninterrupted access to a unit 

of land throughout the grazing season or year (Allen et al. 

2011) 

Diversity In the context of this thesis, floristic species diversity refers to 

the richness and evenness of different plant species within a 

defined area (Colwell 2009), as measured by the Shannon–

Wiener diversity index or Simpson’s diversity index 

Ecosystem service Benefits provided by ecosystems for people. These include 

provisioning, regulating, supporting and cultural services. 

(MA 2005) 

Evenness In the context of this thesis, evenness refers to how equal the 

abundance of species is within a defined area (Colwell 2009), 

as measured by Pielou’s evenness index (J’) 

Grazing intensity The cumulative effects of grazing (Holechek et al. 1998) 

Invasive Native Scrub (INS) Woody plant species “that are encroaching or regenerating 

densely following disturbance” (Tighe et al. 2009) 

Land degradation Long-term loss of productivity and ecosystem function (Bai 

et al. 2008) 

Landscape function The ability of landscapes to capture, retain and utilise 

resources such as water and nutrients (Tongway and Ludwig 

1997b) 

Productivity The capacity of land to support plant growth and animal 

production (Reynolds et al. 2007) 

Rangeland Areas of native vegetation grazed by livestock, including 

grasslands, savannas, shrublands, deserts, steppes, tundras, 

alpine and marsh communities (Allen et al. 2011) 
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Richness In the context of this thesis, richness refers to the total 

number of different species present within the defined area 

(Colwell 2009) 

Rotational grazing Repeated periods of grazing an rest across a land unit, 

achieved by moving livestock throughout multiple paddocks 

(Allen et al. 2011) 

Stocking rate Number of animals held in a unit of land over a specified time 

(Allen et al. 2011) 

Turnover In the context of this thesis, floristic species turnover refers to 

the change in species composition between defined areas 

within the same vegetation community type (also known as 

pattern diversity; Tuomisto 2010) 

 1 
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Appendix 2 1 

Table A2.1. List of papers included in systematic review. R = plant species richness, D = plant diversity, W 2 
= animal weight gain, P = animal production per unit area, I = integrated. Ticks in columns R, C, W and P 3 
= paper was included in meta-analyses for response variable, tick in column I = paper was considered 4 
integrated.  5 

Reference R D W P I 
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Australian Journal of Experimental Agriculture 43:127-133. 
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Parasitology 161:218-231. 
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management for sheep production on crownvetch (Coronilla varia L.). 

Journal of the Grassland Society of Southern Africa 9:83-89. 

          

Barthram, G., and S. Grant. 1995. Interactions between variety and the 

timing of conservation cuts on species balance in Lolium perenne‐

Trifolium repens swards. Grass and Forage Science 50:98-105. 

          



Appendix 2 

222 

 

Reference R D W P I 

Beck, P., C. Stewart, M. Sims, M. Gadberry, and J. Jennings. 2016. 

Effects of stocking rate, forage management, and grazing management 

on performance and economics of cow–calf production in Southwest 

Arkansas. Journal of animal science 94:3996-4005. 

         

Bertelsen, B., D. Faulkner, D. Buskirk, and J. Castree. 1993. Beef cattle 

performance and forage characteristics of continuous, 6-paddock, and 

11-paddock grazing systems. Journal of animal science 71:1381-1389. 

        

Beukes, P., and R. Cowling. 2000. Impacts of non-selective grazing on 
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Table A2.2. Proportion of papers with missing data for each response variable dataset. ‘n’ = the number of 1 
studies, and the number of contrasts. ‘SD’ and ‘rest:graze’ = the number of contrasts with incomplete data 2 
(and percentages) for standard deviations (SD) and rest:graze ratios. SRG = strategic-rest grazing, CG = 3 
continuous grazing, UG = ungrazed 4 

Response  Missing data types 

 n SD Rest:graze 

Biodiversity variables   

Plant 

diversity       

SRG-CG (8, 13) (5, 38%) (0, 0%) 

SRG-UG (9, 22) (4, 18%) (9, 41%) 

Plant 

richness       

SRG-CG (17, 50) (31, 62%) (6, 12%) 

SRG-UG (13, 23) (6, 26%) (8, 35%) 

Production variables   

Animal production per 

unit area     

SRG-CG (27, 86) (37, 43%) (3, 3.5%) 

Weight gain     

SRG-CG (62, 154) (61, 40%) (2, 1.3%) 

 5 

  6 
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Table A2.3. Publication bias within each of dataset of the four response variables and each comparison. ‘n’ 1 
= the number of studies, and the number of contrasts. β0, z and P are output from Egger’s regression test 2 
(Egger et al. 1997; Sterne and Egger 2005). A significant intercept term (β0) is indicative of publication bias, 3 
and is analogous to funnel-plot asymmetry. SRG = strategic-rest grazing, CG = continuous grazing, UG = 4 
ungrazed 5 

Response  Model terms 

 
n β0 z P 

Biodiversity variables 

Plant diversity 

SRG–CG (8, 13) -0.144 -0.572 0.567 

SRG–UG (9, 22) 0.087 0.536 0.592 

Plant richness 

SRG–CG (17, 50) 0.046 0.791 0.429 

SRG–UG (13, 23) 0.191 1.827 0.068 

Production variables 

Animal production per unit area 

SRG–CG (27, 86) -0.023 -0.443 0.658 

Weight gain 

SRG–CG (62, 154) -0.031 -0.929 0.353 

  6 
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Table A2.4. Mean (± 1 s.e.) rest:graze ratio of multi-paddock and seasonal SRG systems for studies included 1 
in meta-analyses. SRG = strategic-rest grazing, CG = continuous grazing, UG = ungrazed 2 

Biodiversity variables Multi-paddock Seasonal 

Plant diversity 
  

SRG-CG 4.00 ± 3.928 2.222 ± 1.788 

SRG-UG 3.077 ± 1.144 2.746 + 1.419 

Plant richness     

SRG-CG 3.396 ± 5.032 1.864 ± 2.036 

SRG-UG 2.186 ± 0.886 0.848 ± 0.568 

Production variables 

Animal production per unit area   

SRG-CG 5.935 ± 4.392 0.556 ± 0.711 

Weight gain   

SRG-CG 5.313 ±4.045  1.104 ± 1.062 

3 
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Appendix 3 1 

Table A3.1. Grazing information for sites as communicated by landholders. DSE = Dry sheep equivalent when grazed, 1 DSE = 0.2 animal units (AU). CON = conservation 2 
management, AGM = alternative grazing management, TGM = traditional grazing management 3 

Cluster 

Grazing 

contrast 

Grazing 

treatment DSE ha-1 

Months rest 

(per year) 

Type of livestock 

grazing paddock 

Length of 

current 

management 

(years) 

Dung counts 

(pellets or pats per m2) 

Kangaroo Sheep/Goat Cattle 

1 1 AGM 30.00 11 Cattle  13 2.53 0.00 0.26 

1 1 CON 0 12 NA 5.25 6.52 0.07 0.00 

1 1 TGM 0.82 3 Sheep >50 0.50 9.61 0.25 

2 2 CON 0 12 NA 5.25 6.00 2.29 0.00 

2 2 AGM 0.40 4 Sheep 30 4.63 4.46 0.00 

2 3 AGM 0.50 4 Sheep 30 4.45 11.13 0.00 

2 3 TGM 0.84 2.6 Sheep & cattle 6 1.21 25.84 0.00 

3 4 CON 0 12 NA 6.7 4.45 0.01 0.00 

3 4 TGM 0.20 3 Cattle 50 2.85 0.11 0.10 

3 5 CON 0 12 NA 6.7 0.13 0.14 0.02 

3 5 AGM 0.37 6 Sheep & Cattle 35 0.09 0.09 0.19 

3 6 CON 0 12 NA 6.7 3.49 7.77 0.02 

3 6 TGM 0.20 3 Cattle >50 2.68 6.83 0.15 

3 7 CON 0 12 NA 6.7 2.03 9.06 0.00 

3 7 AGM 0.82 6 Sheep & Cattle 35 2.43 16.55 0.00 

4 8 AGM 0.25 8 Sheep & Cattle 5 1.81 6.89 0.03 

4 8 TGM 0.25 0 Sheep >50 1.90 9.25 0.00 

4 9 AGM 0.25 8 Sheep & Cattle 5 3.47 11.75 0.07 

4 9 TGM 0.20 0 Cattle 14.5 2.23 0.54 0.02 

5 10 CON 0 12 NA 6.6 4.98 0.28 0.03 

5 10 TGM 1.19 4 Cattle >50 2.71 1.14 0.15 

5 11 CON 0 12 NA 6.6 3.73 7.98 0.01 

5 11 TGM 0.16 4 Cattle >50 3.93 5.45 0.06 

6 12 AGM 0.15 6 Goats & cattle 7 1.11 11.66 0.03 

6 12 CON 0 12 NA 35 4.52 0.89 0.00 



 

 

 

2
4
3
 

Cluster 

Grazing 

contrast 

Grazing 

treatment DSE ha-1 

Months rest 

(per year) 

Type of livestock 

grazing paddock 

Length of 

current 

management 

(years) 

Dung counts 

(pellets or pats per m2) 

Kangaroo Sheep/Goat Cattle 

6 13 AGM 0.15 6 Goats & cattle 7 2.65 10.55 0.01 

6 13 TGM 0.30 3 Cattle 15 2.83 2.31 0.04 

1 

2 
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4
 

Table A3.2 Grazing regime information for sites as communicated by landholders. CON = conservation management, AGM 1 
= alternative grazing management, TGM = traditional grazing management 2 

Cluster 
Grazing 

contrast 

Grazing 

treatment 
Rotation frequency per year* 

1 1 AGM 1-5 days, 8 month rest. Variable.  

1 1 CON NA 

1 1 TGM Nil 

2 2 CON NA 

2 2 AGM Depending on seasonal conditions 

2 3 AGM Depending on seasonal conditions 

2 3 TGM Nil 

3 4 CON NA 

3 4 TGM 9 months to nil 

3 5 CON NA 

3 5 AGM 4 months 

3 6 CON NA 

3 6 TGM 9 months to nil 

3 7 CON NA 

3 7 AGM 4 months 

4 8 AGM 2 weeks, 3 month rest 

4 8 TGM Nil 

4 9 AGM 2 weeks, 3 month rest 

4 9 TGM Nil 

5 10 CON NA 

5 10 TGM Nil 

5 11 CON NA 

5 11 TGM Nil 

6 12 AGM 2 weeks to 3 months  

6 12 CON NA 

6 13 AGM 2 weeks to 3 months  

6 13 TGM 9 months to nil 

* Typical rotation strategies. These strategies were not strictly employed on properties, and 3 

depended on seasonal conditions, all AGM managed adaptively according to seasonal 4 

conditions. Rest was employed on TGM properties when feed and water availability became too 5 

low to support livestock.   6 
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Table A3.3. Average rainfall (MAP), soil and vegetation characteristics of study clusters, and grazing contrasts compared within each cluster. CON = conservation 1 
management, AGM = alternative grazing management, TGM = traditional grazing management 2 

Cluster 
MAP 

(mm) 

Soil 

type1 

ASC soil 

type2 

Land 

System3 Bioregion 
Vegetation community 

(overstorey) 

Gazing treatments 

compared 

CON AGM TGM 

Cluster 1  

     Contrast 1 

400  

Clay 

 

Vertosol  

Long 

Meadow 

Darling 

Riverine 

Plains 

Chenopodium nitrariaceum  

 

 

 

 

 

Cluster 2 

     Contrast 2 

 

     Contrast 3 

354  

Clay 

 

Clay 

 

Vertosol 

 

Vertosol 

Long 

Meadow 

Darling 

Riverine 

Plains 

Eucalyptus largiflorens, Euc. 

coolabah, Acacia stenophylla, 

Eremophila bignoniiflora, Duma 

florulenta 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster 3  

     Contrast 4 

 

     Contrast 5 

 

     Contrast 6 

 

     Contrast 7 

310  

Clay 

 

Clay 

 

Sand 

 

Sand 

 

Vertosol 

 

Vertosol 

 

Calcarosol 

 

Calcarosol 

 

Nelyambo 

 

 

 

East Toorale 

Darling 

Riverine 

Plains 

 

Ere. bignoniiflora, Aca. 

stenophylla, Dum. florulenta  

 

 

Euc. populnea, Grevillea striata, 

Atalaya hemiglauca, Aca. excelsa, 

Aca. cambagei, Alectryon 

oleifolius, Casuarina cristata, Ere. 

sturtii, Ere. mitchellii, Dodonaea 

viscosa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster 4  

     Contrast 8 

 

 

 

 

 

 

    Contrast 9 

303  

Sand 

 

 

 

 

 

 

Clay 

 

Kandosol 

 

 

 

 

 

 

Vertosol 

 

Goonery 

 

 

 

 

 

 

Walkdens 

Mulga Lands 

 

 

Euc. populnea, Aca. cambagei, 

Aca. aneura, Aca. excelsa, Ata. 

hemiglauca, Flindersia maculosa, 

Ale. oleifolius, Dod. viscosa, Ere. 

sturtii 

 

Dum. florulenta 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster 5  

    Contrast 10 

275  

Clay 

 

Vertosol 

Warrego Mulga Lands 

 

  

 

 

 

 

 
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Cluster 
MAP 

(mm) 

Soil 

type1 

ASC soil 

type2 

Land 

System3 Bioregion 
Vegetation community 

(overstorey) 

Gazing treatments 

compared 

CON AGM TGM 

 

 

    Contrast 11 

 

 

Sand 

 

 

Kandosol 

Dum. florulenta, Eragrostis 

australasica 

 

Ata. hemiglauca, Aca. excelsa, 

Alectryon oleifolius, Aca. aneura, 

Euc. populnea, Ere. sturtii, Dod. 

viscosa,  Cas. cristata 

 

 

 

 

 

 

 

 

 

Cluster 6  

     Contrast 12 

 

     Contrast 13 

275  

Sand 

 

Clay 

 

Calcarosol 

 

Calcarosol 

Waverly Mulga Lands 

 

Aca. aneura, Euc. populnea, Aca. 

excelsa, Gre. striata, Senna spp., 

Dod. viscosa, Ere. longifolia, Ere. 

sturtii, 

 

 

 

 

 

 

 

 

 

 

 
1 Grouped as sand or clay for analysis in this study 1 
2 Australian Soil Classification. Isbell, R. 2016. The Australian soil classification. CSIRO publishing, Clayton South, Australia. 2 
3 Walker, P. J. 1991. Land System of Western NSW, Technical Report No. 25. Soil Conservation Service of NSW, Sydney.  3 
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Table A3.3.  Species frequency of occurrence and functional characteristics of understorey species recorded within quadrats. O = origin, N = native, E = exotic, LH = life 1 
history, A = annual, P = perennial, FG =functional group, AF = annual forb, PF = perennial forb, AG = annual grass, PG = perennial grass, Height = height at maturity, 2 
SL = seed length, LA = leaf area index, RI = rarity index, P = palatability, L = low palatability, M = moderate palatability, H = highly palatable 3 

Species Quadrat frequency - Spring Quadrat frequency - 

Autumn 

Functional traits 

Sand Clay Sand Clay O LH FG Height 

(cm) 

SL 

(mm) 

LA 

(mm2) 

RI P 

Abutilon otocarpum 0.189 0 0.169 <0.001 N P PF 0.6 3 4800 67.9 L 

Actinobole uliginosum 0.042 0 0.041 0 N A AF 0.05 0.7 65 85.8 L 

Alternanthera angustifolia 0.024 0.089 0.016 0.006 N A AF 0.05 1.5 60 84.57 H 

Amaranthus mitchellii 0 0.228 0 0.005 N A AF 0.4 2.5 1250 85.19 H 

Amphipogon caricinus v. caricinus 0.001 0 0.009 0 N P PG 0.5 3 450 98.15 L 

Aristida anthoxanthoides 0 0.009 0 0 N A AG 0.5 6 135 98.77 H 

Aristida contorta 0.477 0 0.210 0 N A AG 0.5 4 100 62.35 M 

Aristida jerichoensis v. jerichoensis 0.069 0 0.003 0 N P PG 0.9 4.5 3450 90.74 L 

Asperula conferta 0 <0.001 0 0 N P PF 0.2 1.5 8 99.38 M 

Astrebla elymoides 0 0.004 0 0 N P PG 1 7 1375 98.77 H 

Astrebla lappacea 0 0.169 0 0.288 N P PG 0.9 5 2100 79.01 H 

Astrebla pectinata 0 0.020 0 0 N A AG 1.2 5 1500 98.15 H 

Atriplex eardleyae 0 0.010 0 0.004 N P PF 0.3   180 96.91   

Atriplex holocarpa 0 0.034 0 0 N A AF 0.4   1400 95.68 L 

Atriplex leptocarpa 0 <0.001 0 0 N P PF 0.3   240 99.38 L 

Atriplex limbata 0 0 0.002 0 N P PF 0.4   540 98.77 M 

Atriplex muelleri 0 0.004 0 0 N A AF 0.4   1250 98.77 L 

Atriplex stipitata  0.020 0 0.017 0 N P PF 1   300 94.44 L 

Austrostipa scabra 0.021 0 0.019 0 N P PG 0.6 2 500 91.36 M 

Boerhavia dominii 0.193 0.050 0.282 0.091 N P PF 0.05 4.5 800 37.04 H 

Brachyscome ciliaris v. lanuginosa 0.010 <0.001 0.007 0 N P PF 0.45 2 1200 93.21 M 

Brachyscome curvicarpa 0 0.002 0 0 N A AF 0.4   900 98.77 H 

Brachyscome lineariloba 0.003 <0.001 0 0 N A AF 0.15 2.5 800 98.15 H 

Brachyscome whitei 0.010 0 0 0 N A AF 0.15   1120 98.15   

Bromus diandrus 0 0.008 0 0 N A AG 1   3300 97.53 M 

Brunonia australis 0.002 0 0 0 N P PF 0.3 3 1800 99.38 M 
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Species Quadrat frequency - Spring Quadrat frequency - 

Autumn 

Functional traits 

Sand Clay Sand Clay O LH FG Height 

(cm) 

SL 

(mm) 

LA 

(mm2) 

RI P 

Bulbine semibarbata 0.022 0.021 0.041 0.028 N A AF 0.5 3 1350 70.99 H 

Calandrinia eremaea 0.092 <0.001 0.050 0 N A AF 0.05 0.5 440 72.84 H 

Calandrinia ptychosperma 0.006 0 0 0 N A AF 0.01 0.5 210 98.15 H 

Calostemma purpureum 0 0.002 0 0 N P PF 0.5   10800 98.77 L 

Calotis ancyrocarpa 0 0.010 0 0 N A AF 0.22 3 240 98.77 H 

Calotis hispidula 0.168 0.089 0 0 N A AF 0.1 3 140 72.22 M 

Calotis scabiosifolia 0 0 0 0.004 N P PF 0.45 2 7200 98.77 M 

Cenchrus ciliaris 0.003 0 0.003 0 E P PG 1.5 1.3 2960 98.15 H 

Centipeda thespidioides 0.014 0.002 0.007 0 N P PF 0.2 2.5 175 94.44 H 

Cheilanthes sieberi 0 0 0.010 0 N P PF 0.4 0.1 12250 96.91 L 

Chenopodium auricomum 0 0.058 0 0.046 N P PF 2 1.5 1800 93.83 L 

Chenopodium carinatum 0.001 0 0 0 N A AF 0.3 0.5 600 99.38   

Chenopodium curvispicatum 0.027 0 0.009 0 N P PF 1 1.5 225 96.3 L 

Chenopodium desertorum 0.009 0.005 0.012 0.002 N P PF 0.3 1.5 200 90.12 M 

Chenopodium melanocarpum 0.220 0.008 0 0 N A AF 0.05 0.5 900 79.63 L 

Chloris truncata  0.017 0.145 0.007 0.074 N P PG 0.5 2.2 700 78.4 H 

Convolvulus erubescens 0.092 0.267 0.060 0.132 N P PF 0.05 4 2400 55.56 H 

Crassula colorata v. acuminata 0.031 0 0 0 N A AF 0.15 0.5 15 93.21 H 

Cullen graveolens  0 0.016 0 0 N A AF 0.8 3 700 98.77 H 

Cullen tenax 0 0.007 0 0 N P PF 0.15 3 300 97.53 H 

Cuphonotus andraeanus 0.020 0 0 0 N A AF 0.25 1.5 150 97.53   

Cymbonotus maidenii 0 0.005 0 0.002 N A AF 0.4   24000 96.91 L 

Cyperus bifax 0 <0.001 0 0 N P PF 0.9 1.5 2720 99.38 L 

Cyperus gilesii 0 <0.001 0 0 N A AF 0.35 5 15750 99.38 L 

Dactyloctenium radulans 0.029 0.029 0.001 0 N A AG 0.2 2.5 720 87.04 H 

Daucus glochidiatus 0.029 0.068 0.012 0.130 N A AF 0.6   1500 70.37 H 

Dichanthium sericeum 0.003 0.303 0 0.149 N P PG 1.2 3 600 74.07 H 

Digitaria ammophila 0.009 0.003 0 <0.001 N P PG 0.8 3 1000 95.68 M 

Digitaria coenicola 0.007 0 0 0 N P PG 0.8 3.5 900 98.77 H 
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Species Quadrat frequency - Spring Quadrat frequency - 

Autumn 

Functional traits 

Sand Clay Sand Clay O LH FG Height 

(cm) 

SL 

(mm) 

LA 

(mm2) 

RI P 

Dissocarpus paradoxus 0 0 0.010 0 N P PF 0.5   45 98.15 L 

Duma florulenta 0 <0.001 0 0.003 N P PF 3 4 700 97.53 L 

Einadia nutans 0.009 0 0.009 <0.001 N P PF 0.2 1 600 91.36 H 

Einadia polygonoides 0 <0.001 0 <0.001 N A AF 0.2 1 100 98.77 H 

Enchylaena tomentosa 0.002 0.006 0.003 0 N P PF 1   30 95.06 L 

Enneapogon avenaceus 0.463 0.123 0.458 0.096 N A AG 0.5 1.6 480 45.68 H 

Enteropogon acicularis 0.083 0.004 0.069 0 N P PG 0.4   800 83.95 M 

Eragrostis australasica 0 0.006 0 0 N P PG 3 1 600 98.15 L 

Eragrostis cilianensis 0.001 0.003 0 0 E A AG 0.6 0.5 1400 98.15 L 

Eragrostis dielsii 0.044 0.003 0.002 0 N A AG 0.4 2 160 90.12 H 

Eragrostis eriopoda 0.204 0 0.214 0 N P PG 0.5 0.75 10 75.31 M 

Eragrostis lacunaria 0 0.003 0 0 N P PG 0.5 0.5 140 98.15 H 

Eragrostis microcarpa 0 <0.001 0 0 N P PG 0.6 0.4 200 99.38 L 

Eragrostis setifolia 0.171 0.196 0.131 0.201 N P PG 0.6 0.4 260 31.48 H 

Eremophila latrobei 0.019 0 0.004 0 N P PF 2   450 96.91 H 

Eriochlamys squamata 0.002 0 0 0 N A AF     42 98.77   

Eriochloa crebra 0 0.183 0 0.047 N P PG 1 6 1500 79.01 H 

Erodium crinitum 0.061 0.274 0.193 0.057 N A AF 0.5 10 1200 66.67 H 

Euphorbia Drummondii 0.220 0.068 0.034 0.015 N P PF 0.05   50 61.11 L 

Euphorbia planiticola 0 0 0 0.051 N A AF 0.5   250 95.06 H 

Euphorbia tannensis  0 0 0.001 0 N P PF 1 3 490 99.38 L 

Evolvulus alsinoides. v. villosicalyx 0 0 0.010 0 N P PF 0.4 1.5 150 95.68 M 

Frankenia gracilis 0 0.002 0 0 N P PF 0.5   8.4 98.77   

Geranium solanderi v. solanderi 0 <0.001 0 0 N P PF 0.2   1500 99.38 M 

Glossocardia bidens  0.004 0 0.001 0 N P PF 0.3 10 2700 96.91 L 

Gnephosis tenuissima 0.004 0 0.001 0 N A AF 0.1 0.4 40 98.77   

Goodenia cycloptera  0.038 0 0.062 0 N P PF 0.3 6 1500 81.48 M 

Goodenia fascicularis 0.090 0.041 0.194 0.223 N P PF 0.2 5 3500 55.56 H 

Goodenia glauca 0 0.004 0 0.024 N P PF 0.3 4 800 95.06 H 
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Species Quadrat frequency - Spring Quadrat frequency - 

Autumn 

Functional traits 

Sand Clay Sand Clay O LH FG Height 

(cm) 

SL 

(mm) 

LA 

(mm2) 

RI P 

Haloragis glauca 0 0.004 0 0 N P PF 0.4   360 98.15 H 

Harmsiodoxa blennodioides 0.004 0 0 0 N A AF 0.3 2.2 2000 97.53 H 

Hibiscus brachysiphonius 0.004 0.085 0 0.004 N P PF 0.5 3 2500 90.12 H 

Hordeum leporinum 0 0.002 0 0 E A AG 0.2   1540 99.38 H 

Iseilema membranaceum 0 0.028 0 0.005 N A AG 0.8 2.2 1000 95.06 H 

Isoetopsis graminifolia 0.017 0 0 0 N A AF 0.05 2 100 95.68 H 

Leiocarpa brevicompta 0 0.012 0 0.003 N A AF 0.6 2 175 96.91 M 

Leiocarpa tomentosa 0 0.010 0 0.002 N P PF 0.7 5 120 96.3 M 

Lepidium bonariense 0 0.008 0 0 E A AF 0.5 1.5 160 98.15 M 

Lepidium oxytrichum 0.057 <0.001 0 0 N A AF 0.3 2 300 89.51 M 

Lepidium papillosum 0 <0.001 0 0 N A AF 0.3 2 2000 99.38 L 

Lepidium pseudohyssopifolium 0 0.002 0 0 N P PF 0.6 1.5 1350 99.38   

Leptorhynchos squamatus 0 0.003 0 0 N P PF 0.4 3 140 99.38 L 

Lotus cruentus 0.003 0.036 0 0 N P PF 0.15 1.5 105 92.59   

Maireana aphylla 0 0.084 0 0.029 N P PF 1.5   8 91.98 L 

Maireana coronata 0 0.103 0 0.106 N P PF 0.15   20 88.27 M 

Maireana decalvans 0 0 0 0.004 N P PF 0.5   10 98.77 L 

Maireana pyramidata 0.040 0 0.033 0 N P PF 1.5 1.5 5 92.59 L 

Maireana villosa 0.066 0 0 0 N P PF 0.5   15 93.21 L 

Malacocera tricornis 0 0.036 0 0.039 N P PF 0.8 2 20 93.83 M 

Malvastrum americanum 0.002 0.124 0 0.054 E P PF 0.6   2100 76.54 L 

Marsilea drummondii 0 0.050 0 0.020 N P PF 0.3   900 82.72 L 

Medicago laciniata 0.006 0 0 0 E A AF 0.35 3 66 98.77 H 

Medicago minima 0 0.038 0 0.089 E A AF 0.2 2 112 87.65 H 

Medicago polymorpha 0 0.041 0 0.137 E A AF 0.2 4 540 90.12 H 

Menkea australis 0 <0.001 0 0 N A AF 0.05 0.6 210 99.38   

Monachather paradoxus 0.038 0 0.008 0 N P PG 0.6 1 800 95.06 H 

Neobassia proceriflora 0 0.044 0 0.020 N P PF 0.4   20 91.36 H 

Neptunia gracilis 0.003 0 0 0 N P PF     250 99.38 H 
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Species Quadrat frequency - Spring Quadrat frequency - 

Autumn 

Functional traits 

Sand Clay Sand Clay O LH FG Height 

(cm) 

SL 

(mm) 

LA 

(mm2) 

RI P 

Nicotiana megalosiphon v. megalosiphon 0.001 0 0 0 N P PF 0.9   13600 99.38   

Omphalolappula concava 0.002 0 0.002 0 N A AF 0.35 10 240 97.53   

Ophioglossum lusitanicum 0 0 0.009 0 N A AF 0.15   500 96.3 L 

Osteocarpum acropterum v. deminuta 0.001 0.011 0 0.005 N P PF 0.2   6 95.68 M 

Oxalis perennans  0.008 0.007 0.002 0.004 N P PF 0.1   60 88.89   

Panicum decompositum 0 0.355 0.001 0.371 N P PG 1 1.5 6000 64.2 H 

Panicum effusum 0.038 0 0.006 0 N P PG 0.7 2 1500 91.98 H 

Panicum queenslandicum 0 0.470 0 0.126 N P PG 0.8   12250 80.86 M 

Parsonsia eucalyptophylla 0.002 0 0 0 N P PF     4800 98.77 M 

Paspalidium constrictum 0.106 0 0.006 0 N P PG 0.6   450 94.44 H 

Perotis rara 0.006 0 0 0 N A AG 0.4   200 97.53 M 

Phlegmatospermum cochlearinum  0.004 0.013 0 0 N A AF 0.35 2 1800 95.68 L 

Phyllanthus lacunarius 0 0.004 0 0 N A AF 0.25 1.5 140 98.77 L 

Phyllanthus maderaspatensis 0 0.006 0 0.003 N P PF 0.5 1.5 200 96.91 L 

Phyllanthus virgatus 0 0.002 0 0 N P PF 0.5 1.5 1400 99.38 L 

Pimelea penicillaris 0.017 <0.001 0.017 0 N P PF 2 4 114 93.83 L 

Pimelea simplex v. continua 0 0 0 0.003 N A AF 0.5 3.5 60 98.77 L 

Pimelea trichostachya 0.087 0.003 0.010 0 N P PF 0.75 3.5 45 87.04 L 

Plagiobothrys plurisepaleus 0 <0.001 0 0 N A AF 0.05 1.5 135 99.38 H 

Plantago cunninghamii 0 <0.001 0 0 N A AF 0.15 3 1500 99.38 H 

Plantago turrifera 0.023 0.093 0 0.002 N A AF 0.1 3 2500 85.8 H 

Pluchea dentex 0 0.003 0 0 N P PF 0.6 1.5 360 98.15   

Podolepis jaceoides 0 0.012 0 0 N P PF 0.7 3 4000 98.77 L 

Podolepis muelleri 0.013 0 0 0 N A AF 0.22 1.5 600 97.53 L 

Polycarpaea corymbosa 0.007 0 0 0.002 N A AF 0.3   6 97.53 L 

Portulaca oleracea 0.460 0.199 0.149 0.034 N A AF 0.05 1 375 34.57 H 

Pseudognaphalium luteoalbum 0 0.003 0 0 N A AF 0.45   250 98.77 L 

Ptilotus gaudichaudii v. parviflorus 0.017 0.004 0 0 N A AF 0.5 1.5 520 95.06 L 

Ptilotus leucocoma 0.006 0 0 0 N P PF 0.25   210 98.77 L 
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Species Quadrat frequency - Spring Quadrat frequency - 

Autumn 

Functional traits 

Sand Clay Sand Clay O LH FG Height 

(cm) 

SL 

(mm) 

LA 

(mm2) 

RI P 

Ptilotus nobilis v. nobilis 0 <0.001 0 0.005 N P PF 1 2 15000 97.53 H 

Ptilotus nobilis v. semilanatus 0.001 0 0 0 N P PF 0.3 3 1200 99.38 H 

Ptilotus polystachyus 0.062 0 0.003 0 N P PF 1 2 7560 89.51 H 

Ptilotus sessilifolius v. sessilifolius 0.038 0 0.034 0 N P PF 1   2000 91.36 M 

Pycnosorus chrysanthes 0 0.002 0 0 N A AF 0.6 2 700 98.77 L 

Ranunculus pentandrus. v. platycarpus 0 0.002 0 0 N A AF 0.3 2 500 99.38 L 

Rapistrum rugosum 0 0.018 0 0 E A AF 0.6 2 12500 98.77 M 

Rhagodia spinescens 0.008 0 0 0 N P PF 3 1.5 300 96.91 M 

Rhodanthe floribunda 0.053 0.065 0 0 N A AF 0.3 5 40 85.8 L 

Rhodanthe uniflora 0 0.033 0 0 N A AF 0.07 3.5 5 98.15 L 

Salsola australis 0.069 0.057 0.028 0.030 N A AF 1   90 69.14 M 

Salvia verbenaca 0 0.006 0 0 E P PF 0.7 3 8000 98.77 L 

Sauropus trachyspermus 0.049 <0.001 0.068 0.007 N P PF 0.2 5 60 75.93   

Schoenia ramosissima 0.042 0 0 0 N A AF 0.15 2.5 40 96.3 L 

Sclerolaena parallelicuspis 0 0 0.006 0 N P PF 0.3   25 99.38 M 

Scleroblitum atriplicinum 0 0.024 0 0 N A AF 0.15 1 1500 97.53 H 

Sclerolaena articulata 0.006 <0.001 0 0 N P PF 0.4   15 98.77 L 

Sclerolaena bicornis v. bicornis 0.191 0.096 0.102 0.074 N P PF 0.8   25 63.58 M 

Sclerolaena brachyptera 0 0.030 0 0.030 N P PF 0.2   15 95.06 H 

Sclerolaena calcarata 0 0.145 0 0.113 N P PF 0.3   15 82.1 M 

Sclerolaena convexula 0.116 0 0.213 0 N P PF 0.4   10 75.93 L 

Sclerolaena decurrens 0.002 0 0.007 0 N P PF 0.3   15 95.68 L 

Sclerolaena divaricata 0.012 0.103 0.028 0.077 N P PF 0.75   12 78.4 L 

Sclerolaena intricata 0.007 0 0 0 N P PF 0.7   50 98.77 L 

Sclerolaena lanicuspis 0.037 0.036 0.049 0 N P PF 0.4   15 87.04 H 

Sclerolaena muricata v. villosa 0.026 0.063 0.002 0.016 N P PF 1.5   40 79.01 L 

Sclerolaena muricata v. semiglabra 0.027 0 0.033 <0.001 N P PF 1.5   60 88.89 L 

Sclerolaena patenticuspis  0.001 0 0 0 N P PF 0.3   10 99.38 M 

Sclerolaena stelligera 0.001 0.077 0 <0.001 N P PF 0.3   15 95.68 H 
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Species Quadrat frequency - Spring Quadrat frequency - 

Autumn 

Functional traits 

Sand Clay Sand Clay O LH FG Height 

(cm) 

SL 

(mm) 

LA 

(mm2) 

RI P 

Sclerolaena tricuspis 0 0.003 0 0 N P PF 0.75   15 99.38 L 

Senecio diaschides 0 0.002 0 0 N P PF 1   3000 98.77   

Sida trichopoda 0 0.193 0 0.102 N P PF 0.4 4 240 74.07 H 

Sisymbrium erysimoides 0.001 0 0 0 E A AF 0.8   6000 99.38 L 

Solanum ellipticum 0.018 0 0.030 0 N P PF 1 3 2400 85.8   

Solanum esuriale 0.119 0.059 0.089 0.106 N P PF 0.3 3 1200 59.88 L 

Solanum parvifolium 0 0 0.001 0 N P PF 1 2.5 600 99.38   

Sonchus oleraceus 0.003 0.14 0 0.035 E A AF 1.1 3 42000 86.42 H 

Sporobolus actinocladus 0 0.06 0.016 0.018 N P PG 0.8 0.8 450 91.36 H 

Sporobolus caroli 0.021 0.217 0.021 0.074 N P PG 0.6 0.7 680 62.35 H 

Sporobolus mitchellii 0 0.005 0 0 N P PG 1 1 200 98.15 M 

Stemodia glabella 0 0.004 0 0 N P PF 0.4 0.5 250 96.91 L 

Stenopetalum lineare 0 0.008 0 0 N A AF 0.5 1.2 700 98.77 H 

Swainsona greyana 0 0.006 0 0.046 N P PF 1.5 4 9000 95.06 H 

Swainsona microphylla  0.016 0.003 0.026 0 N P PF 0.6 1.5 1500 90.74 L 

Tephrosia sphaerospora 0.010 0 0.007 0.002 N P PF 0.3 2.5 630 94.44   

Tetragonia tetragonioides 0.049 0.004 0.057 0.152 N A AF 0.05 3 5000 72.84 H 

Teucrium racemosum 0.001 0.020 0 0.028 N P PF 0.4 2 120 87.04 H 

Thyridolepis mitchelliana 0.090 0 0.070 0 N P PG 0.5 4 270 88.27 H 

Tragus australianus 0.072 0.013 0.001 0 N A AG 0.4 2.1 360 82.72 M 

Trianthema triquetra 0 0.037 0.007 0.035 N A AF 0.05 1.2 120 87.65   

Tribulus terrestris 0.040 0.006 0.036 0.071 E P PF 0.05   48 69.75 L 

Triglochin calcitrapa 0 0.012 0 0 N A AF 0.12 1 880 98.77 M 

Trigonella suavissima 0 0.002 0 0 N A AF 0.5 1 300 98.77 H 

Tripogon loliiformis 0.028 0.067 0.233 0.052 N P PG 0.4 2.2 19.5 70.99 H 

Triraphis mollis 0.182 0 0.013 0 N P PG 0.8 2.5 2000 84.57 L 

Verbena officinalis 0 <0.001 0 0 E P PF 1   2100 99.38 L 

Vittadinia cuneata. v. hirsuta 0.029 0 0 0 N P PF 0.3 3.5 125 93.21 L 

Vittadinia cunneata 0.001 0.004 0.011 0 N P PF 0.4 3.5 125 94.44 L 
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Species Quadrat frequency - Spring Quadrat frequency - 

Autumn 

Functional traits 

Sand Clay Sand Clay O LH FG Height 

(cm) 

SL 

(mm) 

LA 

(mm2) 

RI P 

Vittadinia sulcata 0.006 0.01 0.001 0 N A AF 0.3 4 1200 96.91 L 

Vittadinia dissecta 0 0 0.002 0 N P PF 0.35   125 98.77 L 

Vittadinia eremaea 0 0 0.001 0 N A AF 0.25 4 500 99.38 L 

Wahlenbergia spp. 0.008 0.02 0 0.002 N A AF       91.98   

Zygophyllum ammophilum 0.001 0.036 0.006 0.044 N A AF 0.25   150 91.98 M 

Zygophyllum iodocarpum 0 0.034 0 0 N A AF 0.2 4 240 96.3 H 

Digitaria spp. #1  0.013 0 0 0             98.15   

Digitaria spp. #2 0.063 0 0 0             94.44   

Lepidium spp. 0 <0.001 0 0             99.38   

Sida spp. #1 0.251 0.060 0.231 0.022   P PF       56.79   

Sida spp. #2 0 0 0.001 0.002   P PF       95.06   

Sida spp. #3 0 0.039 0 0.014   P PF       98.77   

Unidentified species (spring) x 13             

Unidentified species (autumn) x 35             

1 
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Table A3.4.  Predicted (weighted) means for species frequency in sites, and functional diversity indices at the site scale. 1 
CON = conservation management, AGM = alternative grazing management, TGM = traditional grazing management 2 

Response variable CON AGM TGM P-value 

Total annual 0.35 0.31 0.29 0.418 

Annual forb 0.24 0.21 0.19 0.592 

Annual grass 0.08 0.06 0.06 0.097 

Total perennial 0.65 0.69 0.71 0.418 

Perennial forb 0.36 0.39 0.36 0.585 

Perennial grass 0.27 0.28 0.33 0.398 

Native 0.95 0.95 0.96 0.489 

Exotic 0.91 0.90 0.93 0.359 

Unpalatable 0.20 0.20 0.18 0.45 

Moderate palatable 0.25 0.23 0.22 0.789 

Palatable 0.56 0.57 0.60 0.546 

Height 0.54 0.52 0.54 0.759 

Leaf area index 1599.00 1487.66 1760.54 0.505 

Seed length 2.79 2.67 2.80 0.676 

FRic 

     Spring 

     Autumn 

 

25.08 

16.87 

 

19.88 

19.97 

 

16.74 

24.35 

0.023 

FEve 0.65 0.61 0.60 0.068 

FDiv 0.29 0.30 0.29 0.838 

RaoQ 0.11 0.12 0.12 0.844 

3 
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Table A3.5.  Predicted (weighted) means for species frequency in plots and functional diversity indices at the plot scale. 1 
CON = conservation management, AGM = alternative grazing management, TGM = traditional grazing management 2 

Response variable CON AGM TGM P-value 

Total annual 0.33 0.31 0.27 0.122 

Annual forb 0.22 0.21 0.18 0.264 

Annual grass 0.07 0.05 0.05 0.075 

Total perennial 0.67 0.69 0.73 0.122 

Perennial forb 0.35 0.37 0.35 0.372 

Perennial grass 0.32 0.32 0.39 0.125 

Native 0.97 0.97 0.98 0.352 

Exotic 0.02 0.02 0.2 0.387 

Unpalatable 0.20 0.20 0.17 0.130 

Moderate palatable 0.20 0.19 0.19 0.887 

Palatable 0.59 0.61 0.64 0.264 

Height 0.55 0.52 0.54 0.408 

Leaf area index 1658.61 1549.88 1804.02 0.265 

Seed length 

          Sand 

          Clay 

 

2.47 

3.05 

 

2.58 

2.84 

 

2.28 

3.24 

0.007 

FRic 

          Spring 

          Autumn 

 

9.70 

8.57 

 

9.65 

9.45 

 

8.46 

10.75 

0.007 

FEve 0.70 0.66 0.67 0.11 

FDis 0.28 0.28 0.28 0952 

RaoQ 0.10 0.10 0.11 0.687 

3 
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Table A3.6.  Pearsons correlations for clay soils. * = significant at P ≤ 0.05. 1 

 
 

Spring Autumn 

    

R
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E
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R
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E
v

en
n
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D
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T
u
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o

v
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R
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n
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Average rainfall -0.485* -0.502* -0.538* 0.657* -0.017 0.055 0.098 -0.269 

Three month -0.162 -0.095 -0.178 0.229 0.448* 0.394* 0.558* -0.353* 

Six month 0.348* 0.039 0.192 0.104 0.422* 0.454* 0.568* -0.388* 

Twelve month 0.419* 0.188 0.348* -0.267 0.444* 0.394* 0.558* -0.354* 

S
p

at
ia

l 

Longitude -0.498* -0.491* -0.544* 0.632* 0.022 0.088 0.159 -0.246 

Latitude 0.298* 0.169 0.239 -0.085 0.213 0.228 0.317* -0.114 

S
o
il

 

pH – – – – -0.08 0.151 -0.031 -0.324 

EC – – – – 0.137 0.015 0.149 0.207 

Organic nitrogen – – – – 0.022* 0.088 0.159* -0.246* 

Organic carbon – – – – 0.213* 0.228 0.317* -0.114* 

Bulk density – – – – 0.049 -0.141 -0.01 0.409* 

G
ra

zi
n
g
 

Average DSE -0.172 -0.109 -0.173 0.234 0.011 0.141 0.118 -0.221 

Ave rest 0.235 0.14 0.193 0.124 -0.027 0.321* 0.071 -0.279 

Kangaroo dung 0.119 -0.022 0.081 0.22 0.232 0.017 0.236 0.184 

Sheep/ goat dung -0.011 -0.091 -0.058 0.064 0.06 -0.254 -0.028 0.178 

Cattle dung -0.109 -0.011 -0.071 0.026 0.126 0.203 0.19 -0.295* 

  2 

  3 
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Table A3.7. Pearsons correlations for sand soils. * = significant at P ≤ 0.05. 1 

 
 

Spring Autumn 

  Diversity measure 
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E
v

en
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D
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T
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v
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R
ai

n
fa

ll
 Average rainfall 0.618* 0.131 0.586* -0.674* 0.071 -0.536* -0.103 -0.17 

Three month 0.248 0.138 0.244 -0.504* 0.181 0.356* 0.262 0.018 

Six month -0.122 -0.119 -0.139 -0.235 -0.072 0.329* 0.033 0.285 

Twelve month -0.075 -0.153 -0.102 -0.27 -0.218 -0.312 -0.294 0.397* 

S
p

at
ia

l 

Longitude 0.387* 0.177 0.376* -0.551* -0.221 -0.537* -0.357* 0.224 

Latitude -0.726* -0.12 -0.687* 0.545* -0.293 0.287 -0.175 0.490* 

S
o

il
 

pH         0.209 -0.345 0.058 -0.169 

EC      0.086 0.158* 0.175 -0.013 

Organic nitrogen      0.242 0.214 0.272 0.035 

Organic carbon      0.245 0.341* 0.336* -0.024 

Bulk density         0.003 -0.325 -0.1 -0.299 

G
ra

zi
n
g
 

Average DSE 0.085 -0.068 0.041 -0.378* 0.016 -0.385* -0.112 -0.159 

Ave rest 0.238 0.114 0.24 0.122 -0.311 -0.059 -0.258 0.221 

Kangaroo dung -0.089 0.255 0.011 -0.06 -0.232 -0.112 -0.235 -0.117 

Sheep/ goat dung 0.407* 0.055 0.379* -0.195 -0.133 -0.189 -0.145 0.102 

Cattle dung 0.18 0.172 0.182 -0.092 0.137 0.001 0.098 -0.03 

 2 
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Appendix 4 1 

Table A4.1. Soil surface indicators assessed as part of the landscape function assessment, and contribution of indices to difference landscape function indices. 2 

Indicator Description and brief methodology Stability Infiltration Nutrient 

cycling 

Rainsplash Protection The degree to which physical surface cover and projected plant cover ameliorate the effect of 

raindrops impacting on the soil surface. 5 classes; 1 = no rainsplash protection – 5 = very high 

rainsplash protection 

X   

Perennial Vegetation Cover The contribution of the below-ground biomass of perennial vegetation in contributing to 

nutrient cycling and infiltration processes. Determined from butt lengths of grasses and canopy 

cover and density of trees and shrubs. 4 classes; 1 = no below ground contribution – 4 = high 

below ground contribution. 

 X X 

 Litter  The amount, origin and degree of decomposition of plant litter. 3 components; (1) percent 

cover of plant litter, 10 classes; 1 = <10% – 10 = 100%, >170 mm thick; (2) orgin, local or 

transported; (3) degree of decomposition/ incorporation, 4 classes, 1 = nil decomposition – 4 = 

extensive decomposition 

X   

Cryptogam cover The percentage cover of soil crust by cryptogams. 5 classes; 0 = no stable crust present – 4 = 

extensive contribution 

X  X 

Crust broken-ness The extent to which the surface crust is broken, leaving loosely attached soil material available 

for erosion. 5 classes; 0 = no crust present – 4 = crust present but intact, smooth 

X   

Erosion type and severity The type and severity of recent/current soil erosion i.e. soil loss from the query zone. 5 forms 

of erosion (rills and gullies, terracettes, sheeting, scalding, pedestalling) and 4 severity classes 

(insignificant – severe)  

X   

Deposited materials The nature and amount of alluvium transported to and deposited on the query zone. 4 classes; 

1 = extensive amount available – 4 = none or small amount of material available 

X   
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Surface roughness The surface roughness for its capacity to capture and retain mobile resources such as water, 

propagules, topsoil and organic matter. 5 classes (<3 mm relief in soil surface, smooth – very 

deep depressions or cracks >100 mm, extensive retention 

 X X 

Surface Nature (resistance to 

disturbance) 

The ease with which the soil can be mechanically disturbed to yield material suitable for 

erosion by wind or water. 5 classes; 5 = non-brittle – 1 = loose sandy surface 

X X  

Slake test The stability of natural soil fragments to rapid wetting. 5 classes; 0 = not applicable – 4 = very 

stable 

X X  

Soil texture Classify the texture of the surface soil, and relate this to permeability. Uses a pedologists’ 

moist bolus test. 4 classes; 1 = silty clay to heavy clay – 4 = sandy to clayey sand 

 X  

1 
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Appendix 5 1 

Table A5.1. Species list and functional trait information for all species recorded in surveys. N = native, E = exotic, PF = perennial forb, AF = annual forb, PG = perennial grass, AG = 2 
annual grass, L = low palatability, M = moderate palatability, H = high palatability 3 

 

Species 

Frequency 

in plots 

Mean 

frequency 

in 

quadrats 

Origin 
Functional 

group 

Life 

form 

Life 

history 
Palatability 

Height 

(cm) 

Seed 

length 

(mm) 

Leaf 

area 

index 

(mm2) 

Rarity 

index 

Abutilon otocarpum 0.373 0.052 N PF S P L 60 3.0 4800 0.78 

Actinobole uliginosum 0.706 0.176 N AF F A L 5 0.7 65 0.41 

Aristida behriana 0.020 0.000 N PG G P M 40 8.0 75 1.00 

Aristida contorta 0.745 0.159 N AG G A M 50 4.0 100 0.41 

Aristida jerichoensis 0.667 0.133 N PG G P L 90 4.5 3450 0.59 

Austrostipa scabra 0.667 0.153 N PG G P M 60 2.0 500 0.53 

Boerhaevia dominii 0.078 0.009 N PF F P H 5 4.5 800 0.94 

Chenopodium desertorum 0.235 0.033 N PF S P M 30 1.5 200 0.86 

Convolvulus erubescens 0.039 0.002 N PF F P H 5 3.7 2400 0.98 

Digitaria sp. 0.647 0.059 N PG G P     0.65 

Eragrostis eriopoda 0.961 0.458 N PG G P M 50 0.8 10 0.08 

Eragrostis setifolia 0.118 0.000 N PG G P H 60 0.4 260 1.00 

Eremophila latrobei 0.137 0.004 N PF S P H 200  450 0.98 

Lepidium oxytrichum 0.020 0.002 N AF F A M 30 2.0 300 0.98 

Maireana villosa 0.569 0.039 N PF S P L 50  15 0.78 

Monachather paradoxa 0.510 0.059 N PG G P H 60 1.0 800 0.71 

Portulaca oleracea 0.255 0.020 N AF F A H 5 1.0 375 0.86 

Ptilotus sessifolius 0.392 0.004 N PF F P M 100  2000 0.96 

Salsola australis 0.333 0.063 N AF S A M 100  90 0.78 
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Species 

Frequency 

in plots 

Mean 

frequency 

in 

quadrats 

Origin 
Functional 

group 

Life 

form 

Life 

history 
Palatability 

Height 

(cm) 

Seed 

length 

(mm) 

Leaf 

area 

index 

(mm2) 

Rarity 

index 

Sclerolaena bicornis 0.059 0.013 N PF S P M 80  25 0.96 

Sclerolaena convexula 0.941 0.440 N PF S P L 40  10 0.04 

Sida cunninghamii 0.529 0.031 N PF S P H    0.80 

Solanum ellipticum 0.882 0.041 N PF F P  100 3.0 2400 0.69 

Thyridolepis mitchelliana 0.490 0.063 N PG G P H 50 4.0 270 0.73 

Tribulus terrestris 0.078 0.000 E PF F P L 5  48 1.00 

Tripogon lolliformis 0.941 0.351 N PG G P H 40 2.2 19.5 0.08 

Triraphis mollis 0.039 0.011 N PG G P L 80 2.5 2000 0.98 

Vittadinia cuneata 0.118 0.009 N AF F A L    0.94 

Wahlenbergia communis 0.020 0.000 N AF F A     1.00 

Enteropogon acicularis 0.078 0.004 N PG G P M 40  800 0.96 

Podolepis capillaris 0.020 0.000 N AF F A H 45  500 1.00 

Einadia nutans 0.098 0.004 N PF F P H 20 1.0 600 0.96 

Ptilotus polystachyus 0.098 0.004 N PF F P H 100 2.0 7560 0.96 

Dianella porracea 0.020 0.000 N PF G P  120 3.3  1.00 

Unidentified 1 0.020 0.000   G      1.00 

Swainsona microphylla 0.020 0.002 N PF F P L 60 1.5 1500 0.98 

Goodenia fascicularis 0.020 0.002 N PF F P H 20 5.0 3500 0.98 

Sclerolaena muricata, subsp. 

semiglabra 
0.020 0.002 N PF S P L 150  60 0.98 

Solanum esuriale 0.137 0.000 N PF F P L 30 3.0 1200 1.00 

Evolvulus aslinoides, subsp. 

villosicalyx 
0.020 0.002 N PF F P M 40 1.5 150 0.98 

Daucus glochidiatus 0.020 0.000 N AF F A H 60  1500 1.00 



 

    

 

2
6
3

 

 

Species 

Frequency 

in plots 

Mean 

frequency 

in 

quadrats 

Origin 
Functional 

group 

Life 

form 

Life 

history 
Palatability 

Height 

(cm) 

Seed 

length 

(mm) 

Leaf 

area 

index 

(mm2) 

Rarity 

index 

Euphorbia drummondii 0.020 0.002 N PF F P L 5 1.5 50 0.98 

Hibiscus sturtii 0.020 0.000 N PF S P M 600  1000 1.00 

Themeda triandra 0.020 0.002 N PG G P M 120 10.0 2400 0.98 

 1 




