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Introduction: Phenotype predictions of beef eating quality for individual animals
could be used to allocate animals to longer and more expensive feeding regimes as
they enter the feedlot if they are predicted to have higher eating quality, and to sort
carcasses into consumer or market value categories. Phenotype predictions can
include genetic effects (breed effects, heterosis and breeding value), predicted from
genetic markers, as well as fixed effects such as days aged and carcass weight, hump
height, ossification, and hormone growth promotant (HGP) status.

Methods:Herewe assessed accuracy of phenotype predictions for five eating quality
traits (tenderness, juiciness, flavour, overall liking and MQ4) in striploins from 1701
animals from a wide variety of backgrounds, including Bos indicus and Bos taurus
breeds, using genotypes and simple fixed effects including days aged and carcass
weight. The genetic components were predicted based on 709k single nucleotide
polymorphism (SNP) using BayesR model, which assumes somemarkers may have a
moderate to large effect. Fixed effects in the prediction included principal
components of the genomic relationship matrix, to account for breed effects,
heterosis, days aged and carcass weight.

Results and Discussion: A model which allowed breed effects to be captured in the
SNP effects (e.g., not explicitly fitting these effects) tended to have slightly higher
accuracies (0.43–0.50) compared towhen these effects were explicitly fitted as fixed
effects (0.42–0.49), perhaps because breed effects when explicitly fitted were
estimated with more error than when incorporated into the (random) SNP
effects. Adding estimates of effects of days aged and carcass weight did not
increase the accuracy of phenotype predictions in this particular analysis. The
accuracy of phenotype prediction for beef eating quality traits was sufficiently
high that such predictions could be useful in predicting eating quality from DNA
samples taken from an animal/carcass as it enters the processing plant, to enable
optimal supply chain value extraction by sorting product into markets with different
quality. The BayesR predictions identified several novel genes potentially associated
with beef eating quality.
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Introduction

Historically the value of breeding cattle has been principally based on
improved growth, milk and fertility traits and correlated measures of meat
quality and quantity. Recent years have seen a shift fromproducer-driven to
consumer-driven beef production, with significant emphasis placed on
consumer satisfaction and interest in eating quality indicators, with
incentives implemented by beef brands for improved compliance and
product quality.

Genomic selection (Meuwissen et al., 2001) offers the opportunity to
select directly for beef eating quality. Samples of beef that are consumer
evaluated for quality can be genotyped for genomewidemarkers and then
marker prediction equations for eating quality derived. Then young bulls
and heifers could be genotyped and evaluated on their eating quality
genomic estimated breeding values (GEBVs) (Pimentel and König, 2012;
Bedhane et al., 2019; Magalhães et al., 2019).

Phenotype predictions, which predict the eating quality of beef from
an individual animal, may also be of interest, for example to sort carcasses
into consumer or market value categories, or to allocate animals to longer
and more expensive feeding regimes as they enter the feedlot if they are
predicted to have higher eating quality. Phenotype predictions could
include genetic effects, predicted from genetic markers, as well as
estimates of fixed effects such as days aged and carcass weight.
Alsahaf et al. (2018) used an analogous approach to predict slaughter
age in pigs and found combining estimates of fixed effect predictors and
genetic effects gave higher accuracy than genetic effects alone.

Our aim here was to determine the most accurate method for
predicting phenotypes of beef eating quality traits from genotypes and
other independent factors such as carcass weight and days aged, using
consumer eating quality data from the striploins of 1701 beef cattle.

Materials and methods

The phenotype data consisted of eating quality traits from
striploin samples from 1701 cattle collected from 65 cohorts
between 1997 and 2019 in Australia. The eating quality traits were
scores for tenderness (TENDER), juiciness (JUICY), flavour
(FLAVOR), overall liking (OVERALL), and MQ4 score formed by
weighting the four sensory scores, MQ4 = 0.4 × TENDER + 0.1 ×
JUICY + 0.2 × FLAVOR + 0.3 × OVERALL, obtained using optimum
linear discriminating function (Watson et al., 2008). All samples were
assessed by consumer panels as described by Watson et al. (2008).
Each sample was 70 mm long by 40 mm wide by 25 mm thick, cooked
for 5 min 15 s on a silex grill with the top plate being 195 Celsius and
bottom is 210 Celsius, rested for 3 min, cut in half and served directly
to consumers who are instructed to eat it immediately after receiving.
Each panel assessment of an animal was eaten by 10 consumers, to
remove extreme values, the two highest and two lowest values were
removed. The remaining six values were then averaged for a “clipped”
sensory score (as described by Watson et al., 2008). Each treatment
group within an experiment is a cohort. All animals in the project were
HGP free.

The breed background of the animals was diverse, including
261 Brahman (Bos indicus), 285 Angus, 274 Hereford, 38 Shorthorn,
72 Holstein, 23 Jersey (Bos taurus), 100 Belmont Red, 83 Santa Gertrudis
(composite), 121 crossbred and 444 with unknown breed. The animals
included 1,319, 345 and 37 steers, heifers, and bulls, respectively, although
sex was completely confounded with contemporary group. As these were

largely commercial animals, little pedigree was available, however breed
information could be reconstructed by genotype as described below.

Genotypes with a missing rate >0.1, a minor allele frequency (MAF)
of <0.01 and those departing from the Hardy-Weinberg equilibrium at
p < 1 × 10−8 were removed. After quality control, the genotypes were
imputed up to 7,09,068 SNPs (Illumina HD array) using findhap4
(VanRaden et al., 2013). The reference panel for imputation was
4,506 animals genotyped with the Illumina HD array of a wide
variety of breeds and crossbreds, including Bos indicus breeds, Bos
taurus breeds, and crossbreds and composites, encompassing the target
breeds in this study. All imputation achieved with 91%–98% accuracy
for the current study. The first four principal components (PCs) of the
genomic relationship matrix (derived with GCTA, Yang et al., 2011)
which comprised 25% of the variance in genotype data were used as
proxies for breed composition. Inspection showed that the first principal
component was 99.9% correlated with Bos indicus content.

The BayesR approach (Erbe et al., 2012) with four strategies were
implemented for phenotype predictions. In the BayesR, the variance
associated with the ith SNP is assumed to come from one of four
distributions σ2i � 0, 10−4σ2

g , 10
−3σ2

g , 10
−2σ2

g{ }, where σ2g is the
genetic variance of the trait. This allows the BayesR model (Moser
et al., 2015) to have a flexible SNP effect distribution which is a
mixture of four possible normal distributions:
N(0, 0),N(0, 10−4σ2g ),N(0, 10−3σ2

g ),N(0, 10−2σ2g ), all with a mean
of 0 but with different variances.

In strategy 1, the accuracy of predicting phenotype from genomic
breeding values only was assessed. A mixed linear model was fitted,
including fixed effects of PCs and heterosis, for each of the 5 eating
quality traits separately using BayesR (Erbe et al., 2012). The heterosis
was defined as the regression of the trait on proportion of heterozygote
loci across all loci for each animal.

y � µ + cg + days aged + carcass weight + PC1 + PC2 + PC3

+ PC4 + heterosis + Zg + e, (1)

where y is phenotype; cg is a fixed contemporary group effect
(65 groups), days_aged is a covariate of days aged after slaughter
(ranging from 3 to 35 days; mean ± SD: 10.92 ± 5.18 days), carcass_
weight is a covariate on carcass weight (ranging from 50.6 to 576 kg;
mean ± SD: 261 ± 74 Kg), PC1 toPC4 are the first 4 principal components
of the genomic relationshipmatrix, fitted to control for Bos indicus content
and breed, heterosis is a regression on marker heterozygosity, Z is matrix
allocating genotypes of individuals to SNP effects, g is a vector of SNP
effects, and e is a random residual with e ~ N(0, σ2

e ).
Next, phenotype was predicted with a genomic estimated breeding

value in a validation set as

ŷ � Zĝ (2)
In strategy 2, phenotype predictions were made first by fitting the

model 1 to the training set like strategy 1, but in a validation set
phenotype was predicted including all estimates of fixed effects as below:

ŷ � Zĝ + ̂days aged + ̂carcass weight + P̂C1 + P̂C2 + P̂C3 + P̂C4

+ ̂heterosis

(3)
where for example ̂days aged is the number of days aged for the
sample in the validation set multiplied by the estimate of the effect of
days_aged from model 1.
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In strategy 3, exactly the same model as strategy 1 and 2 (Model 1)
were used for the training set, however for a validation set, the
phenotype was predicted only from genetic effects and fixed effects
that were derived from genotypes (i.e., those effects that would be
available before the animal entered the processing plant, in the feedlot
for example) as below:

ŷ � Zĝ + P̂C1 + P̂C2 + P̂C3 + P̂C4 + ̂heterosis (4)
Finally, in strategy 4, model 5 was implemented in training set as

below:

y � µ + cg + days aged + carcass weight + Zg + e (5)
where y, cg, days_aged, carcass_weight, Z, g, and e are the same as
Model 1.

The assumption here is that all genetic effects, including breed
effects, are captured by the SNP effects when PCs are not explicitly
fitted. Next, phenotype was predicted with a genomic estimated
breeding value in a validation set using Model 2.

To evaluate accuracies of phenotype prediction from the
4 strategies, five-fold cross-validation was used, with random
grouping of animals such that all groups have approximately
equal size. In each rotation of the cross validation the
phenotypes of 1 group were masked and the remaining 4 groups
were used to estimate the GEBV of the group without phenotypes.
The accuracy of phenotype prediction for each group was
calculated as the Pearson correlation between predictions and
raw phenotypes of animals for which their phenotypes were
masked. Correlations were averaged across 5 groups and
standard error (SE) was calculated as the standard deviation
divided by the square root of the number of groups i.e., SE � STD�

5
√ .

For each cross-validation fold, the BayesR model simultaneously
provides estimates for the SNP effects (ĝ), the genetic σ̂2g and residual

variances σ̂2e and the SNP-basedt heritability h2 � σ̂2g

σ̂2g+σ̂2e
. These

estimates were mean of the posterior distribution for each
parameter. The posterior distributions were sampled using Markov
Chain Monte Carlo (MCMC) with Gibbs Sampling in GCTB (Zeng
et al., 2018) with 25,000 iterations of which the first 5,000 are discarded
as burn-in and thinned by 10 (2,000 MCMC samples).

We also investigated the posterior probability of inclusion of each
SNP in strategy 1, to identify any genes of moderate effect on eating
quality. Note that the posterior probabilities of inclusion of SNP from
the other strategies were very similar to that in strategy 1
(Supplementary File S1).

We also identified the nearest genes within a window of 1 Mb
upstream or down stream of top 20 SNPs with highest posterior
probability of inclusion for all five eating quality traits. We then
performed Gene Ontology analysis on the list of genes associated
with eating quality traits using the DAVID web server (Huang et al.,
2009) and considering the entire Bos taurus gene set as a reference
data set.

Results

Heritabilities of the eating quality traits fromModel 1 ranged from
moderate (0.37) to low (0.23), Table 1. The highest and lowest
heritability was observed for TENDER and JUICY, respectively.

The predictions of eating quality phenotype based on GEBV alone
(Strategy 1) was modest, Table 1. When breed effects and heterosis
were not explicitly fitted in the model in the training set, that is they
were included in the SNP effects, accuracy of phenotype predictions
was much higher (Strategy 4). Interestingly, adding the estimated
effect of carcass weight and days aged did not improve the accuracy of
phenotype prediction (Strategy 2). The accuracy of phenotype
prediction when Strategy 3 was implemented (only including fixed
effects that could be derived from genotypes) were slightly worse than
implementing Strategy 4 for all traits.

We conducted a follow-up study of potential genes affecting eating
quality in cattle. We used the nearest genes within a window of 1 Mb
upstream or down stream of top 20 SNPs with highest posterior
probability of inclusion for all five eating quality traits. The most
strongly enriched pathway identified by Gene Ontology analysis of
genes associated with eating quality was “dopamine metabolic
process” (p-value < 8.7 × 10−5).

Of note is that we have also discovered novel genes associated with
the traits of interested by running the BayesR model. Figure 1 shows
the Manhattan plot of probability a SNP is included in the BayesR
prediction model for all traits. Interestingly, for TENDER and MQ4,
SNPs in and close to the μ-calpain (CAPN1) and Calpastatin (CAST)
genes had the highest probability of inclusion in the model, (Figures
1A, E). For JUICY and FALVOR the monooxygenase DBH like 1
(MOXD1) had the highest probability of inclusion. However, the same
SNP close to the MOXD1 were also included in the prediction model
for OVERALL and MQ4 (Figures 1D, E). For OVERALL, SNPs
associated with CAST (Calpastatin), CAPN1, Kinesin Family 13A
(KIF13A) and Apolipoprotein B (APOB) genes were also included
in the prediction model (Figure 1D). The same SNPs close to KIF13A
and APOB had the highest posterior probability of inclusion for
FLAVOR as well (Figure 1C).

Discussion

Generally, levels of heritability in this study (0.23–0.37; Table1)
were in agreement with previous studies (Kause et al., 2015; Wolcott
et al., 2009), showing the possibility of improvement of these traits by
conducting selection. For example, Kause et al. (2015) reported the
moderate heritability for carcass weight (0.39–0.48) in five beef cattle
breeds in Finland (Hereford, Aberdeen Angus, Simmental, Charolais
and Limousin).

Phenotype predictions, which predict the eating quality of beef
from an individual animal, may benefit industry by sorting carcasses
into consumer or market value categories. Phenotype can be
predicted by including the genetic effects such as breed, heterosis
and breeding value effects, as well as fixed effects such as days aged
and carcass weight, hump height and ossification and hormone
growth promotant (HGP) status. Interestingly, adding the
estimated effect of carcass weight and days aged did not improve
the accuracy of phenotype prediction (Strategy 2), likely because
these effects were relatively poorly estimated in our study due to the
large number of cg groups and confounding of these effects with the
cg group effect (Figures 2A, B). Explicitly fitting breed effects (as
PCs) and heterosis as covariates and using these estimates in the
prediction (Strategy 3), performed slightly worse than not explicitly
fitting these effects, and allowing these effects to be captured in the
SNP effects (Strategy 4) perhaps because breed effects when
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TABLE 1 Means (±standard deviations), heritability (±SE), and accuracy of predicting phenotype (±SE) of phenotype prediction for 5 eating quality traits [tenderness
(TENDER), juiciness (JUICY), flavour (FLAVOR), overall liking (OVERALL), and MQ4 score formed by weighting the four sensory scores]. See methods for description of
strategies. The significant difference of strategies was shown in different letters (a, b, c).

Trait Means h2 Accuracy

Strategy 1 Strategy 2 Strategy 3 Strategy 4

TENDER 56.84 ± 16.99 0.37 ± 0.05 0.20 ± 0.02a 0.40 ± 0.03b 0.49 ± 0.02c 0.50 ± 0.02c

JUICY 57.53 ± 14.47 0.23 ± 0.05 0.08 ± 0.02a 0.30 ± 0.01b 0.41 ± 0.02c 0.43 ± 0.01c

FLAVOR 58.83 ± 12.52 0.30 ± 0.04 0.16 ± 0.02a 0.34 ± 0.02b 0.42 ± 0.02c 0.43 ± 0.02c

OVERALL 57.94 ± 14.52 0.30 ± 0.04 0.16 ± 0.03a 0.35 ± 0.02b 0.45 ± 0.02c 0.47 ± 0.01c

MQ4 47.46 ± 14.10 0.32 ± 0.04 0.21 ± 0.02a 0.37 ± 0.02b 0.47 ± 0.02c 0.49 ± 0.01c

FIGURE 1
Posterior probability of inclusion in the BayesR predictionmodel for 7,09,698 SNP for TENDER (A), Juicy (B), Flavour (C), OVERALL (D), andMQ4 (E) traits.
Odd chromosomes are colored in red, even chromosomes are colored in blue.

Frontiers in Genetics frontiersin.org04

Forutan et al. 10.3389/fgene.2023.1089490

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1089490


explicitly fitted were estimated with more error than when
incorporated into the (random) SNP effects.

For TENDER, the CAST and CAPN1 genes had the highest
probability of inclusion in the model (Figures 1A–E), that is SNP
associated with both these genes were used in the prediction model.
Considerable evidence has demonstrated that the CAPN1 gene and its
inhibitor CAST gene are major factors affecting meat quality (e.g., (Sun
et al., 2018)). These results shed some light on why our phenotype
predictions including breed effects (e.g., Strategies 2,3,4) are so much
more accurate than predictions based on GEBV alone - part of the
prediction accuracy is derived from predicting the CAST effect, which is

at quite different frequencies in Bos indicus and Bos taurus cattle (Page
et al., 2002; Casas et al., 2006), and therefore partially captured by PC1.
In addition to the CAST effect. Bos indicus cattle have been widely
reported to have less tender meat, and hump height is currently used as
proxy for Bos indicus content when predictingMeat Standards Australia
grade (Watson et al., 2008). It is important to point out that our eating
quality predictions are relevant for mixed cohorts including Bos indicus
and Bos taurus cattle and their crosses. If predictions were made for
single breed cohorts (with no variation in Bos indicus content), the
predictive information fromPC1would be irrelevant, and the prediction
accuracy would default to that from the GEBV alone (e.g., Strategy 1).

FIGURE 2
Scatter plot of contemporary group (cg) and days aged (A) and carcass weight (B) in 1701 striploin samples.
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The results implicate some interesting candidate genes for eating
quality. Kinesin Family 13A (KIF13A) is in a pathway associated with
skeletal muscle cells increasing insulin signalling, glucose uptake, and
maximal oxygen consumption (Massart et al., 2021). Apolipoprotein B
(APOB) is a building block of a type of lipoprotein called a
chylomicron. As food is digested, chylomicrons form to carry fat
and cholesterol from the intestine into the bloodstream.

In conclusion, the accuracy of phenotype prediction for beef eating
quality traits was sufficiently high that such predictions could be useful
in predicting eating quality from samples taken from an animal/
carcass as it enters the processing plant, to sort for markets with
different quality. The BayesR predictions identified several novel genes
potentially associated with beef eating quality. Future predictions will
be expanded to incorporate all the parameters in the Meat Standards
Australia (MSA) models (Watson et al., 2008) as well as genotype
information.
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