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Abstract

Traditional sampling methods for the study of poultry gut microbiota preclude longitudinal

studies as they require euthanasia of birds for the collection of caecal and ileal contents.

Some recent research has investigated alternative sampling methods to overcome this

issue. The main goal of this study was to assess to what extent the microbial composition of

non-invasive samples (excreta, litter and poultry dust) are representative of invasive sam-

ples (caecal and ileal contents). The microbiota of excreta, dust, litter, caecal and ileal con-

tents (n = 110) was assessed using 16S ribosomal RNA gene amplicon sequencing. Of the

operational taxonomic units (OTUs) detected in caecal contents, 99.7% were also detected

in dust, 98.6% in litter and 100% in excreta. Of the OTUs detected in ileal contents, 99.8%

were detected in dust, 99.3% in litter and 95.3% in excreta. Although the majority of the

OTUs found in invasive samples were detected in non-invasive samples, the relative abun-

dance of members of the microbial communities of these groups were different, as shown

by beta diversity measures. Under the conditions of this study, correlation analysis showed

that dust could be used as a proxy for ileal and caecal contents to detect the abundance of

the phylum Firmicutes, and excreta as a proxy of caecal contents for the detection of Teneri-

cutes. Similarly, litter could be used as a proxy for caecal contents to detect the abundance

of Firmicutes and Tenericutes. However, none of the non-invasive samples could be used

to infer the overall abundance of OTUs observed in invasive samples. In conclusion, non-

invasive samples could be used to detect the presence and absence of the majority of the

OTUs found in invasive samples, but could not accurately reflect the microbial community

structure of invasive samples.
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Introduction

The large and complex communities of bacteria that inhabit the mucosa and lumen of the

intestinal tract play an important role in host health, nutrition and physiology [1, 2]. Caecal

microbiota has been widely investigated in birds because of its role in fermentation and diges-

tion of complex carbohydrates such as cellulose, starch, and resistant polysaccharides. This

digestion results in the production of short-chain fatty acids which influence bird health and

performance [3–5]. Caeca also play a major role in water absorption [6–8]. The ileum is

important for nutrient digestion and absorption but its microbiota is less diverse [9, 10]. Cae-

cal microbiota is qualitatively and quantitatively the most diverse and functionally the most

complex in birds compared to other parts of the intestinal tract [11]. Sampling of caecal con-

tents or other sections of the intestinal tract is labour-intensive and requires the bird to be sac-

rificed which may add variability in studies due to animal to animal microbiota variation [4].

Additionally, longitudinal studies are not possible when using invasive sampling as samples

can only be collected at a single time-point from each bird. Thus, some research effort has

been devoted to identifying and characterising non-invasive samples as an alternative to intes-

tinal samples. This would contribute both to reduce the noise in the data, as the same birds

would be sampled, and decrease the number of birds required [12], which is in line with the

current framework for humane animal research.

The microbiota found in commonly used non-invasive samples, such as cloacal swabs and

excreta are not stable and abrupt temporal fluctuations occur due to the cyclic emptying of the

different regions of the gastrointestinal tract [13]. Overall, Firmicutes is the most dominant

phylum in the chicken intestine [14]. Lactobacillus is the primary bacterial taxa found in the

crop, gizzard, duodenum and ileum while Bifidobacterium and Enterobacter are also com-

monly detected in the crop [15, 16]. Clostridium, Ruminococcus, Streptococcus, Candidatus,
Arthromitus (phylum Firmicutes) and Escherichia and Enterococcus (phylum Proteobacteria)

have also been reported in the ileum [16–20]. The most abundant phyla found in the caecum

are Firmicutes followed by Bacteroidetes while Proteobacteria and Archaea are present in lesser

amounts [21–24]. The most dominant bacterial taxa in the caecum within the phylum

Firmicutes were found to be Clostridiaceae, Lactobacillus, Ruminococcus, Faecalibacterium,

Bacteroidaceae, Clostridium, Sporobacter, Oscillospira, Acetanaaerobacterium, Subdoligranu-
lum and Pseudobutyrivibrio [18, 19, 25, 26]. Lactobacillus, Clostridium, Faecalibacterium,

Ruminococcus, Bacillus, Eubacterium (phylum Firmicutes) are predominant in cloaca and

excreta [3, 27, 28]. Although excreta has been shown to contain microbial taxa present in the

caecum, there are quantitative differences in the microbial composition between sample types

[4].

Microbial communities of cloacal swabs have been shown to be representative of litter sam-

ples, and to a lesser extent representative of ileum samples, while cloacal swabs are not repre-

sentative of caecal contents [4, 29]. No difference in bacterial genera has been reported

between cloacal swabs and ileal contents at day 2, 7 and 14 while Faecalibacterium, Blautia and

Enterococcus have been found to be highly abundant in excreta compared to ileal contents at

day 35 [30]. Caecal droppings have been suggested as a useful alternative to study caecal micro-

biota composition longitudinally as no difference in bacterial genera has been reported

between these sample types, except for a higher abundance of facultative anaerobic bacteria

such as Lactobacillus in caecal droppings [12, 31]. The collection of caecal droppings is, how-

ever, more labour-intensive than cloacal swabs or excreta as chickens produce a caecal drop-

ping after 7–8 excreta droppings [32].

Non-invasive population-level samples have also been explored for their ability to evaluate

the gut microbiota [31]. The microbiota of boot sock samples, which are a mixture of excreta
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and litter, was reflective of caecal microbiota composition early in the grow-out period (days 0

to 14) but not at later stages [31]. The management, quality and type of litter, which is a mix-

ture of a bedding material (e.g. wood shavings, straw) and bird excreta, have been demon-

strated to directly influence the gut microbiota composition in a reciprocal manner [33].

Lactobacillus has been shown to be a predominant bacterial taxa in the ileal mucosa of chick-

ens raised on fresh pine shavings while unclassified groups of Clostridiales were dominant in

the ileal mucosa of chickens raised on reused litter [33].

Poultry house dust could potentially be used as a non-invasive sample type, at the popula-

tion level, for monitoring flock microbiota. Poultry dust is a mixture of dried excreta, exfoli-

ated skin and feathers, feed, litter and microorganisms that become aerosolised during human

and chicken movement in the poultry house [34]. Excreta is the major component of poultry

house dust in turkey [35] and meat chicken flocks [34, 36]. A recent study by Luiken et al. [37]

that investigated antimicrobial resistant bacteria in farmers and livestock, showed that the

microbiota of settled poultry house dust are associated with the microbiota of chicken excreta,

providing evidence that this approach could be useful for the study of gut microbiota. In addi-

tion, previous studies on molecular testing of poultry dust for population-level monitoring of

viruses, protozoa, and bacteria in commercial flocks have shown that dust samples collected at

any location of the poultry house could be used to detect microorganisms of interest even at

relative low levels of infection (approximately 20% of infected birds) [38–44], suggesting that

this may be a practical sample type for population-level monitoring of pathogens and perhaps

gut microbiota. This study aimed to compare non-invasive samples (dust, excreta, and litter)

to invasive (caecal and ileal contents) sampling methods for studying microbiota composition.

Samples were collected from Eimeria and Clostridium perfringens challenged and unchallenged

birds; however, no difference in microbial communities between challenged and unchallenged

birds was observed. Therefore, the data obtained from both groups were combined and ana-

lysed together to test the following propositions. 1) The comparison of the microbial commu-

nities of non-invasive samples (dust, excreta and litter) with invasive samples (ileal and caecal

contents) will show similarities in the detected operational taxonomic units but quantitative

differences in their abundance; and 2) the comparison of microbial communities of non-inva-

sive samples will show similarities in the detected operational taxonomic units and their

abundance.

Methodology

Sample collection

Samples used in this study were collected as part of a previous experiment [45] that was

approved by the University of New England Animal Ethics Committee (AEC18-059). Briefly,

972 day-old Ross cockerels (Aviagen breeder hatchery, Goulburn, New South Wales, Austra-

lia) were assigned into a ‘challenged’ or an ‘unchallenged room’ containing 72 equal sized floor

pens for rearing chickens. Birds were randomly allocated to a group of 13–14 birds into each

of the floor pens (120 × 75 cm) covered with fresh wood shavings at approximately 7 cm depth

on arrival [45]. The facility underwent a deep clean before placement of chickens, to minimise

the microbial load from previous use. On day 9, birds in the challenged room were orally

gavaged 2,500 sporulated oocysts of Eimeria brunetti, and 5,000 sporulated oocysts each of E.

maxima and E. acervulina (Eimeria Pty Ltd., Ringwood, Victoria, Australia) in 1 mL phos-

phate buffer solution. Birds in the unchallenged room were given 1 mL sterile phosphate buffer

solution. Challenged birds were orally gavaged with 1 ml of approximately 108 colony forming

units per ml of C. perfringens suspension in thioglycolate broth on day 14 with a repeat dose
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on day 15 for the induction of subclinical necrotic enteritis [45]. Unchallenged birds received

1 mL of sterile thioglycolate broth each day.

Birds were fed with starter diet (24.6% CP) until day 7, which was composed of wheat, sor-

ghum, and soybean meal (3,000 kcal/kg). After day 7, birds were fed with pelleted diets isoe-

nergetic at 3,080 kcal/kg for the grower diet (7–21 days) and 3,100 kcal/kg (days 21–35) for the

finisher diet. Two pens in which chickens were fed with an industry-standard diet (S1 Table),

were selected from both challenged and unchallenged rooms for sample collection in this

study.

Excreta swab and litter samples from the selected pens were collected at days 0, 7, 13, 16, 21,

28 and 35. For the collection of fresh excreta, a clean white paper was placed on the floor of the

selected pens and fresh excreta was immediately sampled by rolling a flocked swab (FLOQS-

wabs, Copan, Brescia, Italy) until all its surface was covered with excreta from one individual

bird per pen, total of 28 samples. Two excreta samples were discarded due to poor quality

DNA making a total of 26 excreta samples analysed in this study. Dust samples were collected

using two dust plates (surface area of 520 cm2 each) suspended at approximately 1.5 m height

in each room as previously described [46], total of 24 samples. Briefly, the dust plates were

installed at chick placement and dust settled on the plates was scraped using a tissue into a zip-

lock bag at days 7, 13, 16, 21, 28 and 35. After each dust collection, the plates were repositioned

until the next collection day. The settled dust was dry and there was enough accumulated

material for testing (at least 50 mg dust) in each sampling day.

Swabs of ileal and caecal contents were collected from two birds per pen shortly after eutha-

nasia on days 16 and 35, total of 32 samples, and were immediately placed on ice until arrival

to the laboratory. Litter was collected from nine different locations per pen using a spatula and

pooled together (approximately 4 g/pen) to form a single sample per pen, total of 28 samples.

The litter samples were collected without entering the pen. Once transported to the laboratory,

each pooled litter was dried in an oven at 36˚C for up to 7 days and was ground, using an

ultra-centrifugal grinder (ZM 200, Retsch, Germany), to pass through a 2 mm sieve, and thor-

oughly mixed. All samples were stored at -20˚C until further analysis.

DNA extraction and 16S rRNA sequencing

DNA extraction was performed using DNeasy PowerSoil Pro Kit (Qiagen, Hilden, Germany)

according to the manufacturer’s instructions, with minor modifications. Briefly, all samples

(swabs of excreta, ileal and caecal contents, 10 mg dust, 50 mg excreta or 50 mg litter) were

added to powerbead pro tubes, resuspended in 800 μl of lysis buffer and homogenised for 5

min at maximum speed in a bullet blender (Model BBY24M-CE, Sigma Aldrich, St. Louis,

USA) with subsequent heating of the homogenised suspension at 90˚C for 10 min. A negative

control (no sample added) was used in each DNA extraction batch. DNA concentration of

each sample was measured using a Nanodrop before proceeding to the library generation step.

Amplicons of the V3-V4 region of 16S rRNA genes, targeting the 343–806 bp region, were pro-

duced using forward (ACTCCTACGGGAGGCAGCAG) and reverse (GGACTACHVGGGTWTCTA
AT) primers. The primers also contained barcodes, spacer sequences, and Illumina sequencing

linkers [47]. Water was used as a negative control for each PCR amplification in a 96 well

plate. The sequencing of the amplicons was performed on the Illumina MiSeq platform using

2 × 300 bp paired-end reads and sequence data were processed in QIIME [48]. Paired-end

sequences were combined using Fastq-Join algorithm allowing no mismatch within over-

lapped regions. The reads with the Phred quality scores of 20 or above were used for analysis.

The operational taxonomic unit (OTUs) were picked at 97% similarity using UCLUST [49].

Chimera sequences were checked using Pintail [50] and taxonomy assignment was performed
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against the GreenGenes database (v 2013_8) using QIIME default parameters [51]. After qual-

ity trimming, rare sequences that represented Operational Taxonomic Units (OTUs) present

at less than 0.01% of the total sequences, were removed from further analysis. The data set con-

sisted of 2,668,239 sequences, with an average of 24,257 sequences per sample. The sequence

data is publicity available at the MG-RAST database under a project ID mgm4926609.3 and

library ID mgl839711.

Statistical analysis

Hellinger transformation was used for normalizing microbial community composition data

before statistical analyses, which were performed using Calypso software [52]. Alpha diversity

was calculated using the Shannon index, which is a measure of species richness and evenness,

and Chao1, which also measures microbial richness but gives more weight to low abundance

species compared to Shannon [53]. The difference in microbial community composition

between the samples types were visualized using principal coordinate analysis (PCoA) using

Bray–Curtis distance metric, as a quantitative measure of beta diversity (abundance of OTUs),

and Jaccard distance metric, as a qualitative measure (presence/absence of OTUs) [54]. Hierar-

chical clustering was performed on Bray–Curtis and Jaccard distance metrics to visualize the

cluster of different samples and the output was shown as dendrograms. Homogeneity of multi-

variate dispersion was tested using permutational analyses of multivariate dispersions (PERM-

DISP) on Bray–Curtis and Jaccard distance metrics [55]. The overall difference in microbial

community between the sample types for the challenged and unchallenged groups was investi-

gated using permutational multivariate analysis of variances (PERMANOVA) on Bray–Curtis

and Jaccard distance metrics using the Adonis function. Venn diagrams were constructed to

visualise common bacterial taxa and linear discriminant analysis effect size (LEfSe) was per-

formed to find the most discriminatory features between the sample types. Spearman rho

ranked order correlation coefficient was performed to investigate if non-invasive samples

(dust, excreta and litter) could serve as a proxy to study the microbiota of invasive sampling

methods (ileal and caecal contents). Correlation coefficient values < 0.1 were considered as

negligible correlation, 0.10–0.39 as weak, 0.40–0.69 as moderate, 0.70–0.89 as strong and> 0.9

were considered very strong correlation [56]. Non-invasive samples (dust, excreta and litter)

were considered as a proxy for invasive samples (caecal and ileal contents) if the correlation of

the microbial abundance between non-invasive and invasive samples was strong (� 70).

Results

There was no significant difference in the microbial communities between challenged and

unchallenged birds for any sample type (S2 Table), therefore the data of both groups were

combined and analysed together. Because of the low number of samples collected for each age

group, samples collected after challenge with Eimeria spp. were combined. The results of the

study are presented below.

Microbial alpha diversity

Overall, the highest microbial diversity was observed in dust samples and the lowest was

observed in excreta and ileal contents using both Shannon and Chao1 alpha-diversity indices

(Fig 1). Shannon diversity was similar in caecal contents and litter (P = 0.21), and the diversity

in those samples were higher than ileal contents and excreta (P< 0.001) (Fig 1). Chao1 diver-

sity was higher in litter compared to excreta, ileal and caecal contents (P< 0.001) and was sim-

ilar among the latter samples (Fig 1). The number of OTUs found in caecal, ileal and excreta
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was lesser than previous studies [57–59] because of the stricter quality control and trimming

steps applied in this study for removing sequences of low quality and low abundance OTUs.

Microbial community structure

The microbial composition of ileal and caecal contents, excreta, litter, and dust samples at phy-

lum and genus level are shown in Fig 2. There was a clear differentiation of the phylogenetic

structure of each sample type at phylum and genus levels (Fig 2).

The clustering by sample type was also evident in the PCoA plots in which most samples

tended to cluster together based on their source, with some interspersion between sample

sources, particularly among ileal contents and excreta (Fig 3, S1 Fig). Microbiota of all sample

types contained microbial taxa of phyla Firmicutes, Actinobacteria, Proteobacteria and Teneri-
cutes (Fig 2), with Firmicutes the most abundant phyla in all sample types. Lactobacillus was

the most dominant genera in ileal contents, dust, excreta and litter samples while unclassified

Lachnospraceae was the most dominant genera in caecal contents (Fig 2).

Overall, the microbial communities of each sample type were significantly different from

each other in both Adonis Bray-Curtis and Jaccard diversity measures on pair-wise compari-

sons (Table 1).

Fig 1. Alpha diversity assessed by Shannon diversity (A) and Chao1 richness (B). �Denotes significant difference at

the P< 0.05 level, �� denotes significant difference at P< 0.01 level, ��� denotes significant difference at the P< 0.001

level between sample types connected by a line.

https://doi.org/10.1371/journal.pone.0255633.g001

Fig 2. Abundance at the phylum level and top 20 most abundant genera for each sample type (caecal and ileal

contents, dust, excreta and litter).

https://doi.org/10.1371/journal.pone.0255633.g002
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The elements of the microbiota that are most responsible for differentiating the composi-

tion of the different sample types are shown in Fig 4.

The proportion of operational taxonomic units (OTUs) shared by invasive

and non-invasive samples

The number of OTUs in dust (n = 526), litter (n = 521) and excreta (n = 500) was higher than

in ileal (n = 427) and caecal contents (n = 359) (Fig 5A, S3 Table). Although the number of

OTUs were higher in non-invasive samples compared to invasive samples, most of the OTUs

found in caecal and ileal contents were detected in dust, litter and excreta. A total of 99.7% of

OTUs detected in caecal contents were also detected in dust, while 98.6% were detected in lit-

ter and 100% in excreta (Fig 5A, S4 Table). Lactobacillus helveticus (otu_256176) was detected

in caecal contents but not in dust [abundance sqrt (TSS) = 0.01, occurrence = 12%]. Lachnos-
piraceae (otu_884077), Catabacteriaceae (otu_1033420), RF39 (otu_764779), Lachnospiraceae
(otu_351809) and Blautia (otu_961773) were detected in caecal contents but not in litter

[abundance sqrt (TSS) = 0.24–0.40, occurrence = 38–94%].

A total of 99.8% of OTUs detected in ileal contents were also detected in dust, 99.3% in litter

and 95.3% in excreta (Fig 5A). Lactobacillus helveticus (otu_256176) was detected in ileal con-

tents but not in dust [abundance sqrt (TSS) = 0.1, occurrence = 38%]. Similarly, Blautia

Fig 3. Principal coordinates analysis (PCoA) using Bray-Curtis (A) and Jaccard distance metric (B) showing the

difference in the microbial community between caecal and ileal contents, dust, excreta and litter samples.

https://doi.org/10.1371/journal.pone.0255633.g003

Table 1. Difference in the microbial community between the two groups measured using permutational multivariate analysis of variances (PERMANOVA) on

Bray–Curtis and Jaccard distance metrics using the Adonis function.

Comparison Adonis Bray-Curtis Adonis Jaccard

R-square P-value PERMDISP (P-value) R-square P-value PERMDISP (P-value)

Caecal contents vs dust 0.41 <0.001 0.54 0.32 <0.001 0.73

Caecal contents vs litter 0.61 <0.001 0.43 0.45 <0.001 0.56

Caecal vs ileal contents 0.58 <0.001 0.005 0.43 <0.001 0.005

Caecal contents vs excreta 0.32 <0.001 <0.001 0.25 <0.001 <0.001

Ileal contents vs dust 0.41 <0.001 0.09 0.31 <0.001 0.07

Ileal contents vs litter 0.38 <0.001 0.19 0.28 <0.001 0.18

Ileal contents vs excreta 0.06 0.02 0.06 0.05 0.02 0.04

Dust vs excreta 0.27 <0.001 <0.001 0.22 <0.001 <0.001

Dust vs litter 0.25 <0.001 0.81 0.21 <0.001 0.78

Litter vs excreta 0.31 <0.001 0.001 0.25 <0.001 0.73

PERMDISP = permutational multivariate dispersions test calculated using Bray-Curtis and Jaccard distance metrics. R-square is the proportion of the variance

explained by the group. Bolded values signify statistical difference at a P<0.05 level.

https://doi.org/10.1371/journal.pone.0255633.t001
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(otu_961773), Lachnospiraceae (otu_884077) and Propionibacterium acnes (otu_522210) were

detected in ileal contents but not detected in litter [abundance sqrt (TSS) = 0.004, occur-

rence = 6%]. There were 20 OTUs detected in ileal contents but not in excreta (S5 Table); how-

ever, they were not part of the ileal core OTUs as their occurrence and abundance was

relatively low [abundance sqrt (TSS) = 0.003–0.03, occurrence = 6–31%]. The OTUs found in

dust, excreta and litter but absent in ileal or caecal contents are presented in S5 Table.

Dust, excreta and litter shared 92% of total detected OTUs among them. A total of 99.2%

of OTUs detected in excreta and litter were also detected in dust (Fig 5A). The OTUs detected

in excreta and litter but absent in dust were Actinobacteria (otu_216320), Clostridium
(otu_306483), Lactobacillus helveticus (otu_256176) and Enterococcus faecalis (otu_115349)

[abundance sqrt (TSS) = 0.003–0.12].

When the microbial composition between the sample types were compared across top 100

OTUs, 91% of the total detected OTUs were shared between dust, litter and caecal contents

while 100% were shared between litter, dust and ileal contents (Fig 5B).

Fig 4. Genera that differentiate sample types identified using linear discriminant analysis effect size (LEfSe).

https://doi.org/10.1371/journal.pone.0255633.g004

Fig 5. Venn diagram showing common bacterial OTUs between sample types A) across all OTUs and in the B) top

100 most abundant OTUs.

https://doi.org/10.1371/journal.pone.0255633.g005
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Correlation of microbial composition between invasive samples and non-

invasive samples

The overall microbial abundance of non-invasive samples (excreta, dust, litter) was weakly to

moderately correlated (Spearman rs < 70) with invasive samples (caecal and ileal contents) (S6

Table). Overall, there was a moderate positive correlation of OTUs abundance between caecal

contents and dust (rs = 0.41; P< 0.001), and caecal contents and excreta (rs = 0.58; P< 0.001),

while a moderate negative correlation was found between caecal contents and litter (rs = -0.46;

P< 0.001). Similarly, moderate positive correlation of the OTUs abundance was found

between ileal contents and excreta (rs = 0.49; P< 0.001), and ileal contents and litter (rs = 0.55;

P< 0.001), while a weak positive correlation was found between ileal contents and dust (rs =

0.34; P< 0.001).

No phylum was significantly positively correlated in abundance between ileal contents and

excreta (P> 0.05) (S7 Table). Tenericutes was the only phylum showing a strong positive cor-

relation between caecal contents and excreta (rs = 0.78, P< 0.001). Strong positive correlations

between caecal contents and dust, and caecal contents and litter samples were found for the

phylum Firmicutes (rs = 0.83–0.85, P< 0.001) while negative correlations between caecal con-

tents and dust, and caecal contents and litter were found for Actinobacteria and Proteobacteria
(rs = -0.71 –-0.82, P< 0.001). Strong positive correlation between caecal contents and litter

was also found for the phylum Tenericutes (rs = 0.81, P< 0.001) (S7 Table). Similarly, strong

positive correlation between ileal contents and dust, and ileal contents and litter was found for

Firmicutes (rs = 0.75–0.77, P< 0.001) and negative correlation was found for Tenericutes, Pro-
teobacteria and Actinobacteria (rs = -0.50 –-0.85, P< 0.001). The correlation of the microbiota

at the genus level between non-invasive samples and invasive samples are shown in Table 2.

Discussion

In this study, the microbial community structures of non-invasive samples (dust, excreta and

litter) were different from invasive samples (caecal and ileal contents), particularly on the

abundance of the detected OTUs. However, the majority of OTUs detected in the caecal and

ileal contents were also detected in non-invasive samples. This suggests that dust, litter or

excreta could be used to determine the presence/absence of most of OTUs present in invasive

samples. Similarly, the microbial community structure of non-invasive samples was also differ-

ent between sample types but the majority of OTUs were detected in all non-invasive sample

types.

The results partially support the proposition that compared to invasive samples, the micro-

bial communities of non-invasive samples will show similarities in the detected OTUs but

quantitative differences in abundance of the OTUs. Although the majority of the OTUs

detected in invasive samples were also detected in non-invasive samples, a higher number of

unique OTUs were detected in dust, excreta and litter compared to caecal and ileal contents as

reflected in differences in beta-diversity measures. The microbiota of the gut is primarily com-

posed of anaerobic bacteria [60] whereas litter and dust samples contain both aerobic bacteria

and the nucleic acid remnants of obligate anaerobes, similarly to excreta. This could be a rea-

son for the higher number of OTUs in dust, excreta and litter compared to ileal and caecal

contents. When comparing the number of OTUs that were shared between different sample

types, 98–100% OTUs detected in caecal contents and 95–99.8% of OTUs detected in ileal con-

tents were present in non-invasive samples, suggesting that non-invasive samples could be

used to identify presence and absence of most of the OTUs of invasive samples. The majority

of OTUs detected in ileal or caecal contents that were not detected in non-invasive samples

were of low abundance. This is similar to [61], which demonstrated that ~99% of the OTUs
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Table 2. Spearman’s rank correlation between the relative abundance of genera of non-invasive samples (dust, excreta and litter) and invasive samples (ileal and

caecal contents).

Genera Spearman’s rank correlation

Caecal contents and

litter

Caecal contents and

dust

Ileal contents and

dust

Ileal contents and

litter

Caecal contents and

excreta

Ileal contents and

excreta

Acinetobacter -0.80 -0.88 -0.85 -0.75 -0.12 0.25

Adlercreutzia 0.84 0.74 -0.83 -0.38 0.71 -0.31

Aerococcus -0.84 -0.84 -0.68 -0.75 -0.28 0.28

Arthrobacter -0.80 -0.88 -0.88 -0.8 -0.12 -0.12

Bacillus -0.79 -0.67 -0.57 -0.76 0.05 0.37

Blautia 0.83 0.8 -0.85 -0.38 0.81 -0.18

Brachybacterium -0.83 -0.8 -0.57 -0.76 -0.20 0.26

Brevibacterium -0.84 -0.85 -0.63 -0.77 -0.25 0.27

Burkholderia -0.12 -0.19 -0.05 0.06 NA 0.2

Clostridium 0.83 0.68 -0.77 -0.52 0.55 -0.48

Coprobacillus 0.8 0.4 -0.86 -0.39 0.78 -0.25

Coprococcus 0.83 0.81 -0.85 -0.37 0.73 -0.17

Corynebacterium -0.83 -0.77 -0.42 -0.63 -0.18 0.36

Curtobacterium -0.55 -0.79 -0.68 -0.33 NA 0.47

Dermacoccus -0.78 -0.52 -0.37 -0.71 -0.22 0.11

Eggerthella 0.92 0.84 -0.64 -0.2 0.76 -0.35

Enterococcus -0.83 -0.85 -0.75 -0.77 -0.57 -0.24

Epulopiscium -0.24 -0.52 -0.52 -0.24 -0.22 -0.22

Eubacterium 0.83 0.72 -0.85 -0.47 0.62 -0.35

Facklamia -0.78 -0.77 -0.41 -0.64 -0.03 0.47

Faecalibacterium 0.75 0.36 -0.85 -0.62 0.71 -0.21

Jeotgalicoccus -0.78 -0.83 -0.55 -0.64 -0.02 0.33

Klebsiella -0.85 -0.88 -0.86 -0.84 -0.18 0.15

Kocuria -0.68 -0.52 -0.42 -0.62 -0.12 0.16

Lactobacillus 0.06 -0.3 0.85 0.83 -0.61 0.25

Nocardiopsis -0.85 -0.79 -0.64 -0.81 NA 0.41

Oceanobacillus -0.75 -0.23 -0.23 -0.75 NA NA

Pediococcus -0.34 -0.73 -0.28 0.21 -0.55 -0.05

Propionibacterium NA -0.31 -0.21 0.2 -0.12 0.05

Proteus -0.85 -0.76 -0.77 -0.85 -0.21 -0.23

Pseudomonas -0.5 -0.88 -0.88 -0.5 -0.12 -0.12

Ruminococcus 0.83 0.69 -0.85 -0.52 0.67 -0.22

Salinicoccus -0.8 -0.75 -0.45 -0.37 -0.21 0.32

Serratia -0.55 -0.67 -0.67 -0.55 -0.22 -0.22

Staphylococcus -0.84 -0.85 -0.66 -0.68 -0.26 0.31

Streptomyces -0.6 -0.88 -0.87 -0.56 -0.18 -0.03

Trichococcus -0.78 -0.73 -0.56 -0.7 -0.22 0.25

Unclassified Actinobacteria -0.85 -0.86 -0.68 -0.8 -0.37 -0.06

Unclassified Aerococcaceae -0.55 -0.61 -0.58 -0.51 NA 0.2

Unclassified Bacilli -0.79 -0.64 -0.33 -0.54 -0.20 0.25

Unclassified

Catabacteriaceae
0.92 0.53 -0.79 -0.2 0.87 -0.29

Unclassified Clostridiaceae -0.08 -0.48 -0.25 0.15 -0.29 -0.09

Unclassified Clostridiales 0.79 0.6 -0.85 -0.71 0.74 -0.16

(Continued)

PLOS ONE Microbial communities in invasive and non-invasive chicken samples

PLOS ONE | https://doi.org/10.1371/journal.pone.0255633 August 5, 2021 10 / 17

https://doi.org/10.1371/journal.pone.0255633


found in caecal samples were present in excreta and ~87% of the OTUs found in ileal samples

were present in excreta, but higher than [62], reporting that ~60% of the OTUs found in caecal

swabs were present in the cloacal swabs. Differences among studies could be attributed due to

differences in sample size, sampling techniques, age of the birds, DNA extraction methods,

feed, breed or other factors.

In this study, abundance of bacterial phylum Firmicutes in caecal contents and dust, caecal

contents and litter, ileal contents and dust, and ileal contents and litter were strongly and posi-

tively correlated while the abundance of the phylum Tenericutes in caecal contents and excreta,

and caecal contents and litter were strongly positively correlated. This indicates that, under the

conditions of this study, dust and litter could be used as a proxy for ileal and caecal contents to

study the abundance of the phylum Firmicutes, and excreta as a proxy for caecal contents to

study the abundance of the phylum Tenericutes. Similarly, litter could also be used as a proxy

for caecal contents to study the abundance of phylum Tenericutes but not necessarily to inves-

tigate the abundance of specific OTUs. None of the non-invasive sample types could be used

as a proxy to map the overall microbial composition of invasive samples. Similar to our find-

ings, previous research has shown that arbitrarily collected excreta and cloacal swabs cannot

be used as a reference to accurately monitor the microbiota of caecum or ileum [12, 63]. Con-

trarily, when caecal droppings were sampled, there was a correlation between the microbiota

of this sample type and the caecum microbiota [12, 31].

The results partially support the second proposition that the comparison of microbial com-

munities of non-invasive samples will show similarities in the detected OTUs and their

Table 2. (Continued)

Genera Spearman’s rank correlation

Caecal contents and

litter

Caecal contents and

dust

Ileal contents and

dust

Ileal contents and

litter

Caecal contents and

excreta

Ileal contents and

excreta

Unclassified

Dermabacteraceae
-0.8 -0.79 -0.62 -0.72 -0.29 0.11

Unclassified Dietziaceae -0.65 -0.67 -0.54 -0.53 0.05 0.38

Unclassified

Enterobacteriaceae
-0.72 -0.75 -0.85 -0.84 0.18 -0.57

Unclassified

Enterococcaceae
-0.84 -0.86 -0.49 -0.71 -0.65 -0.03

Unclassified

Erysipelotrichaceae
0.72 0.11 -0.82 -0.48 0.62 -0.38

Unclassified

Lachnospiraceae
0.83 0.83 -0.85 -0.3 0.73 -0.22

Unclassified Lactobacillales -0.84 -0.85 -0.58 -0.7 -0.58 -0.06

Unclassified Planococcaceae 0.52 0.03 -0.76 -0.24 0.61 -0.12

Unclassified RF39 0.84 0.49 -0.83 -0.45 0.80 -0.29

Unclassified Rickettsiales -0.53 -0.88 -0.81 -0.01 -0.43 0.23

Unclassified

Ruminococcaceae
0.83 0.72 -0.85 -0.72 0.81 -0.32

Unclassified Streptophyta -0.6 -0.88 -0.74 0.17 -0.51 0.54

Vagococcus -0.85 -0.76 -0.67 -0.84 NA 0.29

Weissella -0.81 -0.74 -0.41 -0.46 -0.30 0.32

Yaniella -0.58 -0.31 -0.14 -0.51 -0.12 0.15

Positive correlated taxa are coloured red, while negatively associated taxa are coloured yellow and grey indicates non-significant association. Significance was set a

P<0.05 level. NA indicates that a particular genus was absent in both sample types.

https://doi.org/10.1371/journal.pone.0255633.t002
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abundance. A higher number of unique OTUs was detected in the dust compared to excreta

and litter, as depicted by beta diversity measures. The difference in substrate requirements for

growth and multiplication of different bacterial species [64] may influence species distribution

and abundance level of the same bacterium in different sample types. When comparing the

number of OTUs shared between dust and excreta, and litter and dust, 99.2% of the total

OTUs found in excreta and litter were detected in the dust. The OTUs exclusive to excreta and

litter had low abundance.

The similarity of OTUs shared between non-invasive samples highlights health concerns as

it is well-known that aerosolised poultry dust and litter can pose serious issues for farm work-

ers and birds [65]. Culture of settled poultry dust collected from meat chickens and laying hen

farms has found an average total bacteria of 3.2 × 109 colony forming units (cfu)/g dust, and

actinomycetes at 5.5 × 106 cfu/g, and fungi at 1.2 × 106 cfu/g [65]. Commonly cultivated bacte-

ria in settled dust were Bacillus, Clostridia, Corynebacterium, Enterobacter, Flavobacterium,

Pseudomonas, Staphylococcus and E. coli; in addition several biological toxins, allergens and

odorous gases have been also detected [65]. Likewise, poultry litter can harbour high levels of

culturable potential pathogens such as Salmonella and Campylobacter [66] in addition to anti-

biotic resistance genes that may persist in horticultural soils amended with poultry litter [67].

A previous study using a culture-based methodology has shown a differential capacity of aero-

solization and survival of bacteria present in litter samples of four commercial meat chicken

farms during summer and winter grow-outs, which was affected by the environment tempera-

ture and relative humidity [66]. Although Campylobacter was detected at high levels in poultry

litter (107 most probable number [mpn]/g), it could not be isolated from aerosols inside the

poultry house, while Salmonella (103–105 mpn/g) could be cultured from aerosols and settled

dust and E. coli was readily isolated in litter and aerosols (102–105 cfu/g). It appears, however,

that the survival of these microorganisms outside of tunnel-ventilated meat chicken houses is

limited to 20 m beyond the exhaust fan [68].

In this study, no difference in the microbial community structure between challenged and

unchallenged groups was observed. The challenge of birds induced subclinical necrotic enteri-

tis as previously described [45] and the lack of difference is unexpected as several studies have

reported marked differences in the microbiota of challenged birds in similar experiments [69–

71]. A possible explanation for this is the small sample size of the current study which reduced

the power to detect changes between groups. In the current study, 18–20 samples were col-

lected for each sample type after inoculation with Eimeria spp and C. perfringens or sham-

inoculation (5 sampling times, 2–4 samples per sampling time). Although the use of 8–10 sam-

ples per treatment (challenged or control group) per sample type would provide sufficient

power for differentiation of the microbiota between treatments [69–71], combining the sam-

ples from birds of different ages is likely to have increased the variation in the microbiota of

the chickens. Additionally, the microbial composition from samples collected at later stages,

i.e., at d 35 is unlikely to differ between treatments as the birds recovered from subclinical

necrotic enteritis soon after challenge. All these factors may have contributed to the lack of dif-

ference between treatments. A larger sample size should be used and combination of samples

from different age should be avoided in future studies to reduce issues of individual bird varia-

tion in microbiota studies. Functional analysis of the microbiota would provide additional

insights into the capabilities of the microbial communities of different sample types.

In conclusion, dust, excreta, and litter could not be used to map the overall microbial com-

position of caecal and ileal contents; however, they could be used to detect the presence and

absence of the majority of the OTUs found in caecal and ileal contents. This could potentially

be useful for screening poultry flocks for bacterial taxa of interest such as pathogenic bacteria

or for investigating the effects of microbial feed additives using specific molecular assays or
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changes in microbial community structure after management interventions. This study pro-

vides insight on the use of non-invasive sample types to monitor intestinal microbiota. Further

investigation on a larger sample size would be useful to determine the relationship between the

microbiota of diverse sample types and their relationship with gut health and production

parameters.
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