High resolution remote sensing for native vegetation assessment and monitoring: an impact assessment approach

Ross Barrett Jenkins

BSc (JCUNQ); DipSci (Newcastle); MSc (Newcastle); GradDipGIS (UQ)

A thesis submitted for the degree of Doctor of Philosophy of the University of New England.

October 2009

Candidate's Certification

I certify that the substance of this thesis has not already been submitted for any degree and is not currently being submitted for any other degree or qualification.

I certify that any help received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Signature

Acknowledgements

Financial support for this research was through ACARP C15013: The Effect of Longwall Mining on Vegetation (University of New England: Dr Paul Frazier). Additional financial support was from a Keith and Dorothy Mackay Travelling Scholarship (UNE). I would like to extend my gratitude to my supervising committee, in particular the committee chair, Paul Frazier, and David Lamb and Janelle Wilkes for their advice, support and encouragement. Thanks too, to Nicholas Coops, University of British Columbia, for his advice and encouragement while I attended UBC on the Mackay Scholarship.

Particular thanks go to staff at BHP Billiton – Illawarra Coal: Gary Brassington, Bruce Blunden, Peter Crowe and Michael Nicholson, both for discussion and advice, as well as provision of airborne laser scanning data and high resolution aerial photography, without which this thesis would not be possible in its present form.

Thanks also to Biosis Research PL, particularly Matt Richardson and Sian Wilkins, along with David Keith, Department of Environment, Climate Change and Water (DECCW), for invaluable advice and logistical support in the field. Likewise, thanks to staff at Beltana Highwall Mining Pty Limited: Ralph Northey and Tim Walls. Thanks to DECCW via Peter Bowen, Coordinator GIS Support, for provision of Department of Lands Cessnock and Wollongong 1:100,000 map sheet areas digital topographic, cadastral and terrain models.

At UNE, thanks to Cate Macgregor for GIS support, Jo Lenehan for independent ecological assessment of swamp boundary mapping, Jeff Thompson for assistance with orthorectification of Beltana imagery, and Tieneke and Mark Trotter for dGPS location capture at Beltana. Thanks again to Tieneke for many discussions on all things research.

To my family and dear friends, as always. And Jane, for getting me back on the right track.

This thesis is dedicated to the memory of Jane Azevedo d. 9 May 2000

Abstract

The last decade has seen major advances in remote sensing technology, particularly in high-resolution satellite imagery and airborne laser scanning (ALS). Fundamental differences in data capture mean that new assessment techniques are required, particularly for vegetation structure and multi-temporal analysis. Here, high-resolution remote sensing tools are developed using a longwall mine subsidence impact assessment framework, based primarily on a scrubby forest-woodland setting on the Woronora Plateau, NSW Australia.

Linear regression and *t*-tests were used to compare vegetation structural metrics from field and ALS data, with ANOVA and post-hoc tests used to determine solar energy and moisture controls on vegetation variation at hillslope scale. Landscape stratification was based on insolation and topographic wetness surfaces derived from ALS-based digital elevation models (DEM). Image matching and linear regression was used to test 3D-method orthorectification accuracy for off-nadir QuickBird imagery using different-resolution DEM.

High resolution ALS-derived digital elevation models (DEM) allow pixel-accurate orthorectification of off-nadir imagery, a necessary precursor to multi-temporal image analysis. ALS-derived vegetation metrics correlate well with field data (canopy height: $R^2 = 0.915$; SE = 2.08 m; p < 0.01; and foliage projective cover: $R^2 = 0.916$; SE = 4.5%; p < 0.01; and a significant though weaker correlation for canopy cover: R^2 c. 0.5; SE c. 16%; p < 0.01). Repeat survey indicates that individual tree mortality is detectable, and that height percentiles from the upper part of the canopy are robust, as are foliage cover and canopy cover. Foliage cover and crown cover are moderately well correlated ($R^2 = 0.65$; SE = 16%; p < 0.001). Statistically significant structural and spectral vegetation variations were quantified at hillslope scale. Foliage cover varies according to insolation and NDVI (normalised difference vegetation index) varies according to topographic wetness, demonstrating that different remote sensing metrics capture local vegetation variation according to the fundamental plant growth requirements of energy and water.

A particular application was developed for upland swamp assessment and monitoring; identified as a key mine-subsidence monitoring requirement for the Sydney Basin Southern Coalfield. Swamp boundaries can be derived from stratification of ALS canopy height models to tree-level accuracy (overall accuracy 98%), and multispectral image classification is suitable for swamp vegetation community monitoring.

The various techniques described, developed and evaluated also have more general ecological and environmental application for fine-grained environmental impact studies, and this study provides a warmtemperate Australian context to studies predominately focussed on cool-temperate or boreal resource management applications.

TABLE OF CONTENTS

HIGH RESOLUTION REMOTE SENSING FOR NATIVE VEGETATION ASSESSMENT AND MONITORING: AN IMPACT ASSESSMENT APPROACH

ASSESSMENT APPROACH	I
Candidate's Certification Acknowledgements	i ii
Abstract	iii
CHAPTER 1	1
High resolution remote sensing for native vegetation assessment and monitoring: an impact assessment approach	1
1 INTRODUCTION	1
1.1 Native vegetation assessment and monitoring	1
1.1.1 Background	1
1.1.2 Remote sensing	2
1.1.3 High spatial resolution imaging systems	4
1.1.4 Laser scanning	8
1.2 The impact assessment framework	11
2 AIMS AND OBJECTIVES	12
2.1 Longwall mine subsidence: components, criteria and indicators	12
2.1.1 Coal mining	13
2.1.2 Longwall mine subsidence	13
2.1.3 Subsidence mechanism	16
2.1.4 Subsidence fracture and hydraulics	18
2.1.5 Reported impacts	20
2.1.6 Groundwater	21
2.1.7 Native vegetation	22
2.2 Assessment framework: contingency and causality	23
2.3 Assessment framework: indicators and methodology	25
2.3.1 Indicator sensitivity	25
2.3.2 Data and techniques	27
2.3.3 Statistical validation	28
3 THESIS STRUCTURE	29
CHAPTER 2	31
Study areas	31
1 LOCATIONS	31
1.1 Dendrobium study area	31
1.1.1 Location and landuse	31
1.1.2 Landform, geology and hydrology	31
1.1.3 Climate	33
1.1.4 Vegetation	33
1.1.5 Fire	34
1.1.6 Disturbance	34
1.2 Beltana study area	34
1.2.1 Location, landuse and climate	34
1.2.2 Geology	35
1.2.3 Vegetation	35
CHAPTER 3	37
Operational factors for orthorectification of high resolution, off-nadir imagery	37

1	Abstract	37
2	INTRODUCTION	37
3	DATA AND METHODS	39
3	.1 Study Site	39
3	.2 Data	39
3	.3 Pre-processing	4(
3 3	.5 Image matching	40
4	RESULTS	4
4	1 DFM accuracy and rectification precision	4
4	.2 Relative orthorectification precision	42
4	.3 Registration accuracy	42
5	DISCUSSION	43
Снарте	R 4	4
Airborn	e laser scanning for vegetation structure quantification in a south east Australian scrubby	
forest-v	voodland	4
1	ABSTRACT	4
2	INTRODUCTION	4
3	Methods	48
3	.1 Study area	48
3	.2 Sample areas	4:
3	.4 Remote sensing data	53
3	.5 ALS processing	54
	3.5.1 Surface modelling	54
0	3.5.2 Forest metrics	56
ۍ ۲	.6 Statistical methods	56
4	RESULTS	5
	4.1.1 DEM comparison	5
	4.1.2 Forest metric comparison	59
5	Discussion	60
•	5.1.1 Forest metrics	60
	5.1.2 Question 1: to what extent do ALS vegetation metrics correlate with site-based	0
	observations?	62
	5.1.3 Question 2: are the ALS metrics replicable through repeat observation?	6
Снарте	R 5	67
High-re	solution remote sensing of upland swamp boundary and vegetation for baseline mapping a	nd
		0
T	ABOTRAUT	о
Снарте	r 6	85
	ape controls on structural variation in Eucalypt vegetation communities: Woronora Plateau	,
Austral		Ö
1	ABSTRACT	8
2		85
3	METHODS	8
3	.1 Study area	87

3.2 Data	89
3.2.1 Field data	89
3.2.2 Imagery and ALS survey	89
3.3 Landscape position classification	90
3.4 Plot selection	91
3.5 Vegetation pattern analysis	91
3.6 Statistical methods	92
4 RESULTS	92
4.1 Vegetation-landscape comparison	92
4.2 Correlation – regression	95
4.3 Spatial pattern – geostatistics	95
5 DISCUSSION	97
5.1.1 Question 1: How does fine-scale vegetation structure vary with landscape posi5.1.2 Question 2: Can ALS and QuickBird data provide complementary assessment	tion?98 for a
range of vegetation metrics?	98
CHAPTER 7	103
Discussion	103
1.1 Indicators for further research	105
1.2 Relevance to wider research	106
References	109

LIST OF FIGURES

Figure 1 Horizontal layover	5
Figure 2 ALS scanning principles	9
Figure 3 ALS-derived topographic information	10
Figure 4 Canopy height model	11
Figure 5 Longwall mining cross-section	14
Figure 6 Longwall mining, Beltana area	15
Figure 7 Subsidence profile	17
Figure 8 Subsidence modelling and subsidence profiles	17
Figure 9 Soil cracks and subsidence trough	19
Figure 10 Subsidence fracture zones and strain parameters	20
Figure 11 Impact framework contingency matrix	24
Figure 12 Swamp boundary mapping.	27
Figure 13 Study areas	32
Figure 14 Dendrobium study area	33
Figure 15 Beltana study area	36
Figure 16 Study area	49
Figure 17 Example ALS surfaces at sample plot A3_020	55
Figure 18 Canopy height profile examples	61
Figure 19 Study area	69
Figure 20 Typical swamp-woodland ecotone	71
Figure 21 Swamp boundary mapping from 1 m CHM stratification	76
Figure 22 Swamp classification and ecotone mapping	79
Figure 23 Variations in Wet Heath and vegetation cover 2006 – 2007	80
Figure 24 Location map	88
Figure 25 Topography and sample plots	91
Figure 26 Semivariance range plots for ALS height data	96
Figure 27 Vegetation response to energy and water availability (Scale bar 50m)	97

LIST OF TABLES

Table 1 Selected, commonly used satellite image systems. B = blue, G = green, R = red, NIR = near infrared,	
SWIR = short wave infrared, TIR = thermal infrared (Jensen 2007)	.3

Table 2 Recent studies using high spatial resolution imagery	6
Table 3 Temporal components of the analytical framework	23
Table 4 Spatial components of the analytical framework	23
Table 5 Indicator analysis parameters	
Table 6 QuickBird image metadata	
Table 7 Orthorectification precision	
Table 8 Orthorectification accuracy	
Table 9 Vegetation plot attributes	51
Table 10 Zig-zag transect attributes	52
Table 11 ALS metadata	53
Table 12 T ₁ -T ₂ elevation difference statistics obtained by DEM subtraction	57
Table 13 Canopy height regression	58
Table 14 fCover regression	58
Table 15 CHM height correspondence for field canopy cover	59
Table 16 Canopy cover regression (9 m stratification)	59
Table 17 Height percentile comparison T ₁ - T ₂	59
Table 18 fCover comparison T ₁ - T ₂	60
Table 19 CHM stratification comparison T ₁ - T ₂	60
Table 20 Swamp boundary accuracy assessment	76
Table 21 Vegetation class accuracy assessment	77
Table 22 Vegetation class variation 2006 – 2007	78
Table 23 Plot means, standard error and ANOVA significance α < 0.05	
Table 24 Between-plot correlation of QuickBird NDVI versus ALS-derived metrics	95
Table 25 Correlation of NDVI versus CHM semivariance ranges	97
Table 26 Vegetation condition indicators in eastern Australia	104
Table 27 A qualitative evaluation of indicator utility	105

ix