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Heterogeneity in the phenotypic mean and variance across populations is often
observed for complex traits. One way to understand heterogeneous phenotypes lies in
uncovering heterogeneity in genetic effects. Previous studies on genetic heterogeneity
across populations were typically based on discrete groups in populations stratified by
different countries or cohorts, which ignored the difference of population characteristics
for the individuals within each group and resulted in loss of information. Here, we
introduce a novel concept of genotype-by-population (G × P) interaction where
population is defined by the first and second ancestry principal components (PCs),
which are less likely to be confounded with country/cohort-specific factors. We applied
a reaction norm model fitting each of 70 complex traits with significant SNP-heritability
and the PCs as covariates to examine G × P interactions across diverse populations
including white British and other white Europeans from the UK Biobank (N = 22,229).
Our results demonstrated a significant population genetic heterogeneity for behavioral
traits such as age at first sexual intercourse and academic qualification. Our approach
may shed light on the latent genetic architecture of complex traits that underlies the
modulation of genetic effects across different populations.

Keywords: genotype-phenotype relationship, complex traits, SNP-based heritability, genetic heterogeneity, UK
Biobank, selection bias

INTRODUCTION

Most human traits are polygenic and their phenotypes are typically influenced by numerous
genes and environmental factors, and possibly by their interactions, e.g., genotype-environment
(G × E) interaction (Plomin et al., 1977; Mackay, 2001; Reddon et al., 2016). These traits
have been termed as “complex traits,” which are distinguished from Mendelian traits that are
shaped by a single or few major genes (Lander and Schork, 1994). Genome-wide association
studies (GWAS) have successfully discovered thousands of associations between single-nucleotide
polymorphisms (SNPs) and complex traits, which have revolutionized our understanding of the
polygenic architecture of complex traits (Stranger et al., 2011; Goddard et al., 2016; Visscher et al.,
2017). Subsequently, in order to increase the power and precision to identify more causal variants,
there have been numerous follow-up studies using meta-analyses of GWAS summary statistics
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or mega-analyses of multiple GWAS by combining diverse data
sources that usually span across different nations or populations
(Torgerson et al., 2011; Nagel et al., 2018). However, many
human complex traits [e.g., height and body mass index (BMI)]
are substantially different between diverse populations (Guo
et al., 2018). For instance, the mean height across European
nations generally increases with latitude (Robinson et al., 2015).
Although across-population differences in the mean values
are often observed for the phenotypes of complex traits, the
underlying genetic and environmental bases remain largely
unknown (Robinson et al., 2015).

One way to understand such phenotypic heterogeneity lies
in uncovering genetic differentiation for the traits captured by
common variants across populations (Falconer and Mackay,
1996). Some studies (Maier et al., 2015; Robinson et al.,
2015; Yang et al., 2015; Tropf et al., 2017) have focused
on examining population genetic differentiation for several
anthropometric, behavioral and psychiatric phenotypes, using
whole-genome statistical methods such as applying bivariate
genomic restricted maximum likelihood (GREML) (Lee et al.,
2012) to estimate genetic correlations between populations
from the United States and Europe for height and BMI (Yang
et al., 2015) or determining interaction of genotype by seven
sampling populations for behavioral traits by a GREML approach
(Tropf et al., 2017). They reported significant evidence for
interaction of genotype by populations in behavioral phenotypes
(education and human reproductive behavior) and BMI (Tropf
et al., 2017). The analytical method and designs used in
their studies were based on discrete groups, which ignored
the difference of population characteristics for the individuals
within each group. Furthermore, the population groups used
in their studies were classified according to their country of
origin, thus the results were likely to reflect heterogeneity across
countries due to country-specific factors (e.g., trait definition
and measurement (van der Sluis et al., 2010; Evangelou et al.,
2011; Manchia et al., 2013), cultural and societal difference
and socio-economic status). In addition, genetic measurement
errors (e.g., due to the genotyping platform or imputation
quality) across different cohorts within country may further
cause confounding with genuine genetic heterogeneity across
populations (Tropf et al., 2017).

Principal component (PC) analysis provides a powerful tool
to characterize populations and the first few PCs are typically
used to control population stratifications in large-scale GWAS
(Novembre and Stephens, 2008). PCs allow us to cluster
individuals that are genetically similar to each other. Unlike
discrete variables such as cohort and country, PCs are continuous
variables that can differentiate individuals even within a cohort
or a country according to their underlying genetic characteristics.
Here, we introduce a novel concept of genotype-by-population
(G × P) interaction where population is defined by the first
and second PCs. It is of interest to test if different genotypes
respond differently to the gradient of the first or second PC
for complex traits using a whole-genome reaction norm model
(RNM) (Ni et al., 2019), which has been recently introduced
and allows fitting continuous environmental covariates, i.e.,
PCs in this study. RNM has been well established to estimate

G × E interaction in agriculture (Gregorius and Namkoong,
1986; Jarquín et al., 2014) and ecology (Nussey et al., 2007).
Furthermore, in this study we used the data source of UK
BioBank (UKBB), which is a prospective cohort study with deep
genetic and phenotypic data collected on approximately 500,000
individuals across the United Kingdom, aged between 40 and
69 at recruitment (Sudlow et al., 2015; Bycroft et al., 2018).
Therefore, in our G × P interaction model applied to UKBB, the
population characteristics for individuals are fully utilized and
the findings are less likely to be confounded with country-specific
factors or genetic measurement errors as mentioned above.

The aim of the study is to explore if there exists significant
G× P interaction, which is also referred as genetic heterogeneity
(heterogeneous genetic effects) across populations, for a wide
range of complex traits. To do so, we applied the whole-genome
RNM with PCs as continuous covariates to investigate G × P
interactions for more than one hundred phenotypes using the
UKBB data. The significant G × P interaction detected in this
study may shed light on the latent genetic architecture of complex
traits that underlies the modulation of genetic effects across
different population backgrounds.

MATERIALS AND METHODS

Data and Quality Control (QC)
Our study was based on the UKBB data which contains
approximately 500,000 individuals sampled across the
United Kingdom (Bycroft et al., 2018). UKBB’s scientific protocol
and operational procedures were reviewed and approved by
the North West Multi-centre Research Ethics Committee
(MREC), National Information Governance Board for Health
& Social Care (NIGB), and Community Health Index Advisory
Group (CHIAG). Research Ethics approval was obtained
from University of South Australia Human Research Ethics
Committee (HREC). According to the ethnic background (data
field 21000), there are currently 472,242 individuals of the white
British ancestry and 17,038 individuals of any other white ethnic
background (not with British or Irish ethnicity) in the UKBB
participants. In order to match the sample size between the white
British and the other white ethnic individuals, we randomly
selected 17,000 individuals from the white British group, totaling
34,038 admixed European populations considered in this study.
As the information of the first and second ancestry PCs is efficient
to infer genetic ancestry and geographical origin with a high
accuracy in Europeans (Novembre et al., 2008), we examined a
two-dimensional scatter plot of PC1 and PC2 provided by the
UKBB of the 17,000 white British and the 17,038 other white
ethnic subjects (Figure 1A). It is shown that the white British
group is situated within the group of the other white Europeans
and we named the white British group as POP1 (N = 17,000). As
shown in Figures 1B,C, we used a geometric method by which
we constructed a rectangle with maximums and minimums of
PC1 and PC2 of the white British group as four sides and then
group the individuals of the other white Europeans inside this
rectangle, named as POP3 (N = 9,809). The rest of the other
white Europeans except POP3 were named as POP2 (N = 7,229).
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FIGURE 1 | Two-dimensional scatter plots of PC1 and PC2 with red points representing white British individuals and blue points representing other white ethnic
individuals from the UKBB. The white British group named as POP1 is situated within the group of the other white Europeans (see panel A). As shown in panels
(B,C), we used a geometric method by which we constructed a rectangle with maximums and minimums of PC1 and PC2 of POP1 as four sides and then group the
individuals of the other white Europeans inside this rectangle, named as POP3. The rest of the other white Europeans except POP3 were named as POP2. As POP1
and POP3 are very close in terms of PCs, the individuals in the two data designs POP1 + POP2 and POP2 + POP3 have similar population structures while
POP1 + POP3 was a negative control as there was little population difference among this combination (see panel D).

Our primary interest was to investigate G × P interaction
where population was classified by ancestry PCs. For this
purpose, we used three designs of combinations of the three
groups, i.e., POP1 + POP2 (Figure 1B), POP2 + POP3
(Figure 1C), and POP1 + POP3 (Figure 1D). To avoid any
potential bias due to an imbalance in the sample size across
populations, we made sample size consistent across POP1 and
POP2 in the design of POP1 + POP2 by randomly selecting 7,500
individuals from the 17,000 white British individuals, which were
used as POP1 in the downstream analyses.

We extracted genetic data including around 92 million
imputed SNPs across autosomes from the UKBB for all
the individuals of POP1, POP2 and POP3. Stringent QC
was applied to the combined data across POP1, POP2 and
POP3. The QC criteria were to exclude (1) all duplicated
and non-autosomal SNPs, (2) SNPs with INFO score <0.6,
(3) SNPs with call rate <0.95, (4) individuals with missing
rate >0.05, (5) SNPs with Hardy-Weinberg equilibrium

p-value < 0.0001, (6) SNPs with minor allele frequency
<0.01, and (7) ambiguous SNPs with A/T or G/C alleles.
We also retained HapMap3 SNPs only as they are reliable
and robust to bias in estimating SNP-heritability and genetic
correlation (The International HapMap 3 Consortium, 2010;
Bulik-Sullivan et al., 2015; Tropf et al., 2017). Hereafter,
1,133,957 common SNPs remained for the G × P analyses.
Moreover, we excluded one individual randomly selected
from any pair with a genetic relationship >0.05 (see section
“Statistical Models”) to avoid bias due to confounding by
shared environment among close relatives. After the QC, the
sample sizes of POP1, POP2, and POP3 were reduced to 7,487,
6,913 and 7,829.

UKBB Phenotypes
For current UKBB resource, we have access to 496 variables
whose data types are categorical (multiple), categorical (single),
continuous, integer, date, text and time. Here, we focused
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on the variables of categorical (multiple), categorical (single),
continuous and integer types, and categorized each variable
as one of four value types: continuous, binary, ordered
categorical and unordered categorical variable (Millard et al.,
2019; Supplementary Table S1). Where a data field is measured
at several time points we use the first occurrence only. It
was noted that qualifications (data field 6138), a categorical
(multiple) trait, was reorganized according to the underlying
system (Guggenheim and Williams, 2016). Briefly, the original
and unordered seven categories were reclassified and ordered as
(1) none, (2) O-levels or CSEs, (3) A-levels, NVQ, HND, HNC
or other professional qualification, and (4) college or university
degree. Then the continuous, binary and ordered categorical
variables were selected and used as the main phenotypes in G× P
interaction analyses.

Among the 199 variables, we selected 128 variables as the
main phenotypes (Supplementary Table S2) in our proposed
model to estimate G× P interactions where population difference
was inferred from the first and second PCs. The other variables
were used to control confounding effects owing to sex, age,
year of birth, genotype batch, and assessment center (basic
confounders adjusted for all the main phenotypes; the first 20 PCs
were also used as basic confounders to account for population
stratification) and Townsend deprivation index, smoking status,
alcohol consumptions and many other variables (additional
cofounders adjusted for some relevant phenotypes) or excluded if
they were not likely to affect any of the main phenotypes (see the
note of Supplementary Table S2). It is noted that in this paper,
for the covariates used as fixed effects in the models to correct
mean difference across confounding factors, we used the term
“confounders” to distinguish the covariates used in the RNM
methods, i.e., PC1 and PC2 (see Section “Statistical Models”).

Statistical Models
A Linear Mixed Model Without Considering G × P
Interaction (Baseline Model)
A standard linear mixed model assuming no G × P interaction
can be written as:

y = µ+ g+ e,

where y is an n× 1 vector of phenotypes with n being the sample
size, µ is an n × 1 vector for fixed effects, g is an n × 1 vector of
total genetic effects of the individuals with g ∼ N(0, Aσ2

g) and e is
an n× 1 vector of residual effects with σ2

g , where σ2
g is the variance

explained by all common SNPs and σ2
e is the residual variance.

In the GREML context (Yang et al., 2010, 2011), A is a genomic
relationship matrix (GRM) and I is an identity matrix. GRM can
be estimated based on common SNPs across the genome and the
elements of GRM can be defined as (VanRaden, 2008; Yang et al.,
2010; Lee and Van der Werf, 2016):

Aij =
1
L

L∑
l=1

(xil − 2pl)(xjl − 2pl)
var(xl)

,

where L is the number of all common SNPs (L = 1,133,957 in this
study), xil denotes the number of copies of the reference allele
for the lth SNP of the ith individual, xl denotes all the numbers

of copies of the reference allele across all the individuals, andpl
denotes the reference allele frequency of the lth SNP.

The variance-covariance matrix of the observed phenotypes
(V) is:

V = Aσ2
g + Iσ2

e .

The SNP-based heritability, the proportion of the additive genetic
variance explained by the genome-wide SNPs over the total
phenotypic variance, is then referred as:

h2
SNP =

σ2
g

σ2
y
=

σ2
g

σ2
g + σ2

e
.

The phenotypes with significant SNP-based heritability from
this baseline model will subsequently be investigated for
G× P interaction.

G × P RNM Method
In cases where G × P interaction exists across populations, the
baseline model cannot account for heterogeneous genetic effects.
We therefore applied RNM methods to detect heterogeneity
across populations using the UKBB data. RNM and multivariate
RNM (MRNM) have been demonstrated to perform better
than the current state-of-the-art methods when detecting
genotype-covariate and residual-covariate interactions in terms
of simulation studies on type I error rate and power analyses (Ni
et al., 2019). Here, we focus on G × P interaction by considering
PCs as covariates in the RNM:

y = µ+ g+ e = µ+ g0 + g1 · c+ e,

where y, µ, g and e are the same defined in the baseline model
above, g0 and g1 are n × 1 vectors of the zero- and first-order
random regression coefficients, respectively, c is an n × 1 vector
of covariate values of the n individuals (for which we used PC1
and PC2 values in this study). In the RNM, the random genetic
effects, g, are regressed on the covariate gradient (reaction norm),
which can be modeled with random regression coefficients, g0
and g1. This G × P RNM accounts for phenotypic plasticity
and norms of reaction in response to different populations
(represented by PC values) among samples.

The mathematical properties of variance-covariance structure
between g0 and g1 allow us to verify whether estimates of the
parameters are reasonable or not. Specifically, estimated values
should be within a valid parameter space:

(1) var(ĝ0) ≥ 0;
(2) var(ĝ1) ≥ 0;
(3) −

√
var(ĝ0)var(ĝ1) ≤ cov(ĝ0, ĝ1) ≤

√
var(ĝ0)var(ĝ1).

The estimates which violated one of above criteria were
excluded for follow-up analyses. We obtained a p-value to
detect G × P interaction using a likelihood ratio test (LRT)
that compared the goodness of fitness of two models (GREML
and G × P RNM), penalizing the difference in the number of
parameters between them.

We further tested if the significant G × P interactions
were orthogonal (independent without confounding) to residual-
population (R× P) interactions, i.e., residual heterogeneity across
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populations (Ni et al., 2019). Similarly, the R× P interaction can
be detected by an R× P RNM:

y = µ+ g+ e = µ+ g+ e0 + e1 · c,

where e0 and e1 are n × 1 vectors of the zero- and first-
order random regression coefficients when residual effects, e, are
regressed on the covariate, c, i.e., an n vector of PC1 or PC2.
Furthermore, a full RNM model with both G × P and R × P
interactions can be expressed as:

y = µ+ g0 + g1 · c+ e0 + e1 · c.

Since the G × P and R × P models are nested within the full
model, LRT comparing the full and R × P or G × P model with
an appropriate degree of freedom can determine the significance
of orthogonal G × P or R × P interaction (Ni et al., 2019). More
details about RNM can be found elsewhere (Ni et al., 2019).

For the analyses showing a significant G × P interaction,
we used rank-based INT phenotypes to check explicitly if
the significance was due to phenotypic heteroscedasticity or
normality assumption violation (Robinson et al., 2017). The bias
of RNM/MRNM estimates due to non-normality of phenotypic
values can also be remedied by applying the rank-based INT
(Ni et al., 2019). In short, the pipeline of our G × P analysis
method is briefly as below: firstly, exclude the phenotypes
with no significant heritability by GREML; secondly, for the
remained phenotypes, exclude the ones with no significant result
by LRT comparing RNM and GREML considering basic and
additional confounders of fixed effects; thirdly, for the remained
phenotypes, exclude the ones with no significant result after
further considering robustness to normality assumptions of
phenotypic values. We also presented a flowchart showing the
pipeline of our G × P analysis on the design of POP1 + POP2
(Figure 2). All models described above (i.e., GREML, bivariate
GREML, RNM, MRNM) can be fitted using software MTG2
(Lee and Van der Werf, 2016).

Spurious Signals Due to Selection or Collider Bias
We used the UKBB data that have only a 5.5% response
rate, i.e., selection. Consequently, the resulting sample may not
be representative of the UK population as a whole and the
selection may be associated with some of the phenotypes in
the UKBB, causing selection or collider bias (Swanson, 2012;
Munafò et al., 2018). To test whether the G × P interaction
effects detected by our method was genuine or spurious due to
selection or collider bias, we conducted a series of simulation
studies with phenotypes differentially selected for POP1 (white
British) and POP2 (other white Europeans). If two or more
phenotypic variables simultaneously influence the probability
of participation of individuals in a study, then investigating
associations between those variables in the selected sample may
induce collider bias (Munafò et al., 2018). Therefore, we further
considered the same selection model but including two traits
to evaluate collider bias effects on the detection of G × P
interaction across POP1 and POP2. The statistical models to
test selection and collider bias can be found in Supplementary
Text S1 or Munafò et al. (2018).

RESULTS

Estimating SNP-Based Heritability for
128 Phenotypes
We first applied the standard GREML model to estimate h2

SNP
for the 128 phenotypes across POP1 + POP2, POP2 + POP3
and POP1 + POP3, respectively. The phenotypes with significant
h2
SNP (Supplementary Tables S3–S5) were further investigated

for G× P interaction effects using our G× P RNM approach.

Genetic and Residual Correlations
Between Phenotypes and PCs
The main response (y) and environmental covariates (c) are not
always uncorrelated, for which multivariate RNM accounting for
(genetic and residual) correlations between y and c should be
used (Ni et al., 2019). We examined if there were non-negligible
genetic and residual covariances between the main phenotypes
and covariate (PC1 or PC2) for the complex traits with significant
heritabilities (Supplementary Tables S6–S8). All genetic and
residual covariances estimated by bivariate GREML were not
significantly different from zero, and thus we used univariate
RNM to detect the G × P interaction effects with covariate
PC1/PC2 for those phenotypes.

G × P Interaction
For POP1 + POP2, we fit the data of the 70 phenotypes with
significant h2

SNP by modeling the G × P RNM with covariates
PC1 and PC2, respectively (Supplementary Tables S9, S10).
We excluded those estimates, which were not within the valid
parameter space (see Statistical models), from the follow-
up statistical test analyses, resulting in 29 and 32 traits
remaining for PC1 (Supplementary Table S9) and PC2
analyses (Supplementary Table S10). We examined if there was
significant G × P interaction and obtained p-values based on
LRT comparing the fit to the data of the G × P RNM and
null model. Significance level was determined by Bonferroni
multiple testing correction: 0.05/140 = 3.57E−4 for the 70
phenotypes with covariates PC1 and PC2. Supplementary
Figure S1 show that significant G × P interactions were found
for ten complex traits which are related to blood pressure
(pulse rate, automated reading), bone-densitometry of heel
(heel BMD T-score, automated; heel broadband ultrasound
attenuation, direct entry; heel QUI, direct entry; heel BMD),
diet (lamb/mutton intake), sexual factor (age at first sexual
intercourse), sleep (sleep duration), smoking (ever smoked) and
education (qualifications). For each of the ten traits, we further
considered a multiple covariate model that fit PC1 and PC2
jointly (Supplementary Table S11). However, G× P interactions
were less significant than those obtained using the single covariate
model fitting PC1 or PC2 separately (Supplementary Figure S2),
otherwise, the estimates were out of the valid parameter space.
This was probably due the fact that there was collinearity between
G× P interactions from PC1 and PC2.

In addition to the basic confounders for which the main
phenotypes were initially adjusted (see Materials and methods),
we further considered additional trait-specific confounders that
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FIGURE 2 | A flowchart of the G × P analysis on the design of POP1 + POP2.
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might be relevant to some of traits (Supplementary Table S2),
e.g., Townsend deprivation index, smoking status, alcohol
drinker status, etc. After controlling for additional trait-specific
confounders, the G × P interactions in POP1 + POP2 were still
significant for bone-densitometry of heel (heel BMD T-score,
automated; heel broadband ultrasound attenuation, direct entry;
heel QUI, direct entry; heel BMD), age first had sexual intercourse
and qualifications, whereas the signals disappeared for the other
traits (Supplementary Table S12).

We examined the distribution of phenotypic values after
controlling additional confounders of the six traits with
significant G × P interactions (Supplementary Figure S3) and
could not rule out the possibility that the interaction signals
were due to non-normality (e.g., residual heteroscedasticity). We
conducted the same analyses for the six traits using rank-based
INT phenotypes (Table 1), which could control type I error
rate due to a skewed and non-normal distribution of residual
values (Ni et al., 2019). Indeed, phenotypic heteroscedasticity was
remedied when using rank-based INT for the phenotypes of six
traits as shown in Supplementary Figures S4–S9.

For age first had sexual intercourse and qualifications that
were shown to have significant G × P interactions, we further
tested if the G × P interactions were orthogonal to R × P
interactions, i.e., residual heterogeneity (see section “Materials
and Methods”). Using the rank-based INT phenotypes adjusted
for basic and additional confounders, we carried out an R × P
model and a full model in which both G × P and R × P
were fitted jointly. Subsequently, we conducted LRT to obtain
p-values, comparing the full and nested models. A significant
p-value from LRT between the full and R × P model indicates
that G × P interaction is orthogonal to R × P interaction (see
section “Materials and Methods” and Supplementary Table S13).
For age first had sexual intercourse, although G × P or R × P
interaction was significantly detected from the G × P or R × P

model, it was shown that G× P interaction was not orthogonal to
R× P (p-value = 0.88 for PC1 and 0.92 for PC2 in Supplementary
Table S13). For qualifications, on the other hand, it was shown
that the G × P and R × P interactions were statistically
independent (p-value = 4.15E−05 for PC1 and 0.003 for PC2 in
Supplementary Table S13).

For POP2 + POP3, we conducted analyses using the
same procedure as in the analyses of POP1 + POP2. The
POP3 individuals are very close to those in POP1 in terms
of ancestry PC, but their ethnicities are not white British
as in POP1 (see section “Materials and Methods” and
Figure 1). Thirteen phenotypes demonstrated a significant
genetic heterogeneity for covariate PC1 or PC2 as shown in
Supplementary Tables S14, S15. After controlling for additional
trait-specific confounders and transforming by rank-based INT
(Supplementary Table S16), the results for age first had sexual
intercourse (p-value = 7.86E−05 for PC1) and qualifications (p-
value = 1.06E−15 for PC1) have demonstrated strong genetic
heterogeneity signals (Table 2), which are consistent with
our findings for POP1 + POP2. For qualifications, G × P
interactions were significantly orthogonal to R × P interactions
(p-value = 0.003 for PC1 in Supplementary Table S17). We also
found significant results across POP2 + POP3 for anthropometric
traits (waist circumference and weight) and diabetes diagnosed by
doctor (Table 2). However, these phenotypes were not discovered
across POP1 + POP2 with significant G× P interaction signals.

We also performed the same analyses on POP1 + POP3,
which is not a diverse population group as POP1 + POP2 or
POP2 + POP3, and thus was used as a negative control group
(see section “Materials and Methods”). For several traits showing
significant heterogeneous signals with covariate PC1 or PC2 after
Bonferroni correction (see Supplementary Tables S18, S19),
we further examined them by adding stringent confounders
to correct for fixed effects and applying rank-based INT. The

TABLE 1 | Genetic variance, interaction variance and their covariance component estimates for six phenotypes across POP1 + POP2 with the covariates PC1 and PC2.

UKBBdata
field

Phenotype Covariate var(g0) (SE) var(g1) (SE) cov(g0, g1) (SE) var(e0) (SE) P-value by
LRT

comparing
with baseline

model (DF = 2)

78 Heel bone mineral density PC1 0.3151(0.0459) 0.0124(0.0110) 0.0013(0.0120) 0.6739(0.0456) 0.1586

(BMD) T-score, automated PC2 0.3187(0.0460) −0.0008(0.0047) −0.0037(0.0110) 0.6838(0.0450) Excluded

3144 Heel Broadband ultrasound PC1 0.2754(0.0454) 0.0094(0.0110) 0.0087(0.0120) 0.7161(0.0454) 0.0789

attenuation, direct entry PC2 0.2774(0.0454) 0.0006(0.0048) −0.0024(0.0111) 0.7232(0.0450) 0.8987

3147 Heel quantitative ultrasound PC1 0.3151(0.0459) 0.0124(0.0110) 0.0013(0.0120) 0.6739(0.0456) 0.1597

index (QUI), direct entry PC2 0.3187(0.0460) −0.0009(0.0047) −0.0037(0.0110) 0.6839(0.0450) Excluded

3148 Heel bone mineral density PC1 0.3070(0.0458) 0.0107(0.0109) 0.0046(0.0120) 0.6836(0.0455) 0.1315

(BMD) PC2 0.3106(0.0459) −0.0016(0.0046) −0.0069(0.0110) 0.6926(0.0450) Excluded

2139 Age first had sexual PC1 0.1006(0.0266) 0.0080(0.0078) 0.0203(0.0087) 0.8909(0.0290) 5.16E−05

intercourse PC2 0.1012(0.0266) 0.0110(0.0057) −0.0015(0.0087) 0.8880(0.0286) 0.0097

6138 Qualifications PC1 0.1194(0.0235) 0.0706(0.0103) −0.0791(0.0090) 0.8124(0.0261) 9.21E−18

PC2 0.1778(0.0214) 0.0360(0.0059) 0.0833(0.0081) 0.7885(0.0233) 2.22E−24

The phenotypes were adjusted by basic plus additional confounders of fixed effects and transformed by rank-based INT. The G × P interaction signals of age first had
sexual intercourse and qualifications were remained significant even after applying rank-based INT phenotypes, however, the other traits were not significant anymore.
The estimates which were not within the valid parameter space are marked as “Excluded.” SE denotes standard error. DF denotes degree of freedom.
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TABLE 2 | Genetic variance, interaction variance and their covariance component estimates for six phenotypes across POP2 + POP3 with the covariates PC1 and PC2.

UKBB data
field

Phenotype Covariate var(g0) (SE) var(g1) (SE) cov(g0, g1) (SE) var(e0) (SE) P-value by
LRT

comparing
with baseline

model (DF = 2)

48 Waist circumference PC1 0.1802(0.0243) 0.0222(0.0069) −0.0395(0.0079) 0.7990(0.0256) 2.92E−06

PC2 0.1789(0.0243) 0.0076(0.0037) 0.0300(0.0078) 0.8147(0.0252) 0.0004

21002 Weight PC1 0.2537(0.0252) 0.0209(0.0069) −0.0328(0.0081) 0.7270(0.0257) 0.0002

PC2 0.2529(0.0252) 0.0077(0.0040) 0.0219(0.0080) 0.7408(0.0252) 0.0252

2443 Diabetes diagnosed by PC1 0.1688(0.0203) 0.0259(0.0070) −0.0015(0.0077) 0.7901(0.0218) 6.65E−11

doctor PC2 0.1734(0.0204) 0.0162(0.0051) −0.0005(0.0076) 0.7966(0.0219) 3.73E−08

2139 Age first had sexual PC1 0.0936(0.0258) 0.0267(0.0086) −0.0072(0.0087) 0.8795(0.0283) 7.86E−05

intercourse PC2 0.0933(0.0258) 0.0153(0.0056) 0.0112(0.0086) 0.8918(0.0278) 0.0071

6138 Qualifications PC1 0.0937(0.0264) 0.0324(0.0094) 0.0159(0.0091) 0.8715(0.0287) 1.06E−15

PC2 0.1139(0.0267) 0.0150(0.0057) 0.0137(0.0086) 0.8713(0.0285) 0.0162

The phenotypes were adjusted by basic plus additional confounders of fixed effects and transformed by rank-based INT. The results for behavioral phenotypes age first
had sexual intercourse and qualifications have demonstrated strong genetic heterogeneity signals, which are consistent with the findings for POP1 + POP2. The significant
results for anthropometric traits (waist circumference and weight) and diabetes diagnosed by doctor were also detected. However, these phenotypes were not discovered
across POP1 + POP2 with significant G × P interaction signals. SE denotes standard error. DF denotes degree of freedom.

final results included no significant G × P interaction across
POP1 + POP3 (see Supplementary Tables S20, S21).

For the categorical phenotype qualifications, there were
various ways to convert the seven UKBB categories into a
continuous or a binary measure (Okbay et al., 2016; Gazal
et al., 2017; Lee et al., 2018). Following a previous study
(Okbay et al., 2016), we transformed the multiple categories
(data fields: 6138.0.0 to 6138.0.5) into an educational year
measure (Supplementary Table S22). Based on this continuous
phenotypic measure, we found significant genetic heterogeneity
across POP1 + POP2 and POP2 + POP3 but no signal across
POP1 + POP3 (Supplementary Table S23), which was consistent
with our results obtained using four-level categories. We also
examined G × P interactions for qualifications based on
two types of binary measures (highest educational attainment
versus other levels, and lowest educational attainment versus
other levels) (Gazal et al., 2017). The results were consistent
with those obtained using four-level qualifications, except that
an unexpected significant signal across POP1 + POP3 for
covariate PC1 was detected based on the binary measure
of “college or university degree” versus other six categories
(Supplementary Table S24).

The Findings Are Robust to Selection or
Collider Bias
We examined the distribution of phenotypic values for age
first had sexual intercourse and qualifications in which G × P
interactions were consistently detected from both POP1 + POP2
and POP2 + POP3 (Supplementary Tables S25, S26). The
distribution of age first had sexual intercourse is similar across
POP1, POP2 and POP3. However, for qualifications, it is
apparently shown that the subjects in POP2 and POP3 (other
white Europeans) have higher qualification levels than those in
POP1 (white British). Moreover, it is likely that the individuals in
POP1 have higher educational levels than the general population

of United Kingdom because individuals with higher educational
levels are more likely to response to surveys from UKBB
(Munafò et al., 2018).

Our simulation studies testing for detecting spurious
heterogeneity across POP1 and POP2 with multiple scenarios
varying the level of selection odds ratios (see Supplementary
Text S1 for details) have verified that (1) both G × P RNM
and bivariate GREML are robust to the selection bias when
using the same selection odds ratio across populations
(Table 3); (2) only bivariate GREML is robust against the
selection bias when using different selection odds ratios
across populations (Table 3); (3) bivariate GREML is robust
against the collider bias when estimating genetic correlation
between POP1 and POP2, however, it generates biased
estimation of genetic correlation between the two traits
(Table 4). It is noted that the level of selection odds ratios
used in simulations is likely to reflect the real situation
of qualifications, i.e,. different selection pressure between
POP1 and POP2 in UKBB (see Supplementary Text S1 and
Supplementary Table S27).

For age first had sexual intercourse and qualifications, we
also confirmed our findings using bivariate GREML, a robust
approach against selection bias (Table 5). As confirmed by
the bivariate GREML, it was not likely that the findings for
qualifications were spurious because of selection and collider
bias. This was also evidenced by the fact that G × P RNM
detected a significant interaction signal from POP2 + POP3,
noting that POP2 and POP3 were similarly distributed for
qualifications (see Supplementary Table S26). Similarly, the
findings for age first had sexual intercourse were mostly robust
whether using RNM or bivariate GREML except that there
was no signal for POP1 + POP2 when using the bivariate
GREML, probably due to the lack of power. It was noted
that the phenotypic distributions of age first had sexual
intercourse were very similar across POP1, POP2 and POP3
(Supplementary Table S25).
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TABLE 3 | Simulation study results for selection bias on the phenotype Y
across POP1 + POP2.

Selection
scenarios in
POP1 + POP2

Type I error
rate by G × P

RNM with
PC1

Type I error
rate by

bivariate
GREML

100 estimated
genetic correlations

Mean SE

ORPOP1,Y = 1,
ORPOP2,Y = 1

5% 0% 0.9722 0.0145

ORPOP1,Y = 1,
ORPOP2,Y = 2

55% 2% 0.9876 0.0166

ORPOP1,Y = 2,
ORPOP2,Y = 2

1% 0% 1.0245 0.0160

ORPOP1,Y = 2,
ORPOP2,Y = 3

64% 6% 0.9882 0.0202

Different odds ratio combinations (ORPOP1,Y andORPOP2,Y ) generated phenotypic
values in POP1 + POP2 with different selection bias levels. Type I error rates based
on 100 simulation replicates were examined by G × P RNM and bivariate GREML
respectively. The genetic correlations of the phenotype between POP1 and POP2
were estimated by bivariate GREML. The results by G × P RNM indicated high
type I error rates for selection scenarios of ORPOP1,Y = 1, ORPOP2,Y = 2 and
ORPOP1,Y = 2, ORPOP2,Y = 3. But for same selection pressures (ORPOP1,Y = 1,
ORPOP2,Y = 1 and ORPOP1,Y = 2, ORPOP2,Y = 2), G × P RNM can effectively
control false positive rate. Type I error rates assessed by bivariate GREML were
controlled for all scenarios and the estimated genetic correlations were not
significantly different from one for all selection scenarios. Here, we consider 0.05
as a significance level for controlling type I error rate. SE denotes standard error.

DISCUSSION

Previous results (Maier et al., 2015; Robinson et al., 2015;
Yang et al., 2015; Tropf et al., 2017) were more likely to
reflect heterogeneous genetic effects across nations or cohorts
rather than populations as those designs were evidently
confounded with country-specific factors (e.g., trait definition
and measurement, cultural and societal difference). In this study,
we focused on populations and proposed the new concept
“genotype-population interaction” in which population is defined
by the first and second ancestry PCs (each individual has a
unique PC value). Using the RNM with whole-genome data from
the UKBB, we have demonstrated significant G × P interaction
effects for qualifications and age first had sexual intercourse
across populations. Our findings corroborate the results in

TABLE 4 | Simulation study results for collider bias on two phenotypes Y and Z
across POP1 + POP2.

Selection
scenarios
with collider
bias in
POP1 + POP2

Type I
error
rate

Estimated genetic
correlations of the

phenotype Y
between POP1 and

POP2

Estimated genetic
correlations between
Y and Z on selected

POP1 + POP2

Mean SE Mean SE

ORPOP1,Y = 2,
ORPOP1,Z = 2,
ORPOP2,Y = 3,
ORPOP2,Z = 2

1% 1.0141 0.0189 −0.2516 0.0032

ORPOP1,Y = 2,
ORPOP1,Z = 2,
ORPOP2,Y = 3,
ORPOP2,Z = 3

2% 1.0220 0.0165 −0.2942 0.0031

ORPOP1,Y = 2,
ORPOP1,Z = 3,
ORPOP2,Y = 3,
ORPOP2,Z = 3

2% 1.0091 0.0187 −0.3415 0.0036

Different odds ratio combinations (ORPOP1,Y , ORPOP2,Y , ORPOP1,Z , and ORPOP2,Z )
generated phenotypes in POP1 + POP2 with different selection bias levels.
Type I error rates based on 100 simulation replicates were examined through
estimated genetic correlations of the phenotype Y between POP1 and POP2
by bivariate GREML. Type I error rates under the null hypothesis that genetic
correlation of 1 implies no interaction were controlled for these combinations
(<5%), and meanwhile, significant negative genetic correlations between the two
simulated phenotypes Y and Z demonstrated strong collider bias signal in selected
POP1 + POP2. Here, we assume that the phenotype Z involves a sum of collider
bias effects across all other traits on the main response Y. Here, we consider 0.05
as a significance level for controlling type I error rate. SE denotes standard error.

Tropf et al. (2017) who reported that behavioral phenotypes
(education and human reproductive behavior) have significant
G × E interactions across populations. For anthropometric
phenotypes, height and BMI, our G × P RNM model did not
detect any significant interaction signals (Yang et al., 2015).
However, the analyses of another two anthropometric traits
(waist circumference and weight) have demonstrated significant
genetic heterogeneity across the POP2 + POP3 group (other
white Europeans). Actually, the results by Tropf et al. (2017)
across seven populations have also revealed significant G × E
interaction for BMI although the heterogeneity is not strong as
for education and reproductive behaviors. Robinson et al. (2015)

TABLE 5 | Genetic correlation estimates between population groups (POP1, POP2, and POP3) by bivariate GREML for two phenotypes.

Phenotype Genetic correlation between
POP1 and POP2

Genetic correlation between
POP2 and POP3

Genetic correlation between
POP1 and POP3

Estimate SE P-value Estimate SE P-value Estimate SE P-value

Qualifications 0.2554 0.2223 8.09E−04 0.4795 0.1550 7.85E−04 0.5676 0.2743 0.1149

Age first had sexual intercourse 0.7418 0.3984 0.5169 0.0491 0.2284 3.14E−05 1.2176 0.3629 0.5488

The phenotypes were adjusted by basic plus additional confounders of fixed effects and transformed by rank-based INT. The bivariate GREML results for qualifications
indicated a significant genetic heterogeneity between POP1 and POP2 (p-value = 8.09E−04), and between POP2 and POP3 (p-value = 7.85E−04), but showed no
genetic heterogeneity between POP1 and POP3. These results were consistent with our findings from the G × P RNM. For age first had sexual intercourse, the bivariate
GREML detected a significant heterogeneity between POP2 and POP3 (p-value = 3.14E−05), however, there was no interaction signal between POP1 and POP3 (as
expected). Unexpectedly, the bivariate GREML failed to find genetic heterogeneity across POP1 + POP2 although RNM provided a significant signal. SE denotes standard
error. P-value was obtained through a Wald test under a null hypothesis that genetic correlation equals to 1.
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also reported that, for BMI, environmental differences across
Europe masked genetic differentiation. Thus, these findings may
be consistent for some anthropometric phenotypes when using
diverse European ancestry populations. The previous results
(Maier et al., 2015; Robinson et al., 2015; Yang et al., 2015;
Tropf et al., 2017) were based on data collected from multiple
countries. Therefore, various trait definitions in phenotypic
measure and genetic measurement errors across countries may
generate artificial heterogeneity. In our study, however, we
used the UKBB data that have less cross-country factors and
confounders. The phenotypic definitions and measurement of
complex traits in the UKBB samples are well standardized
and calibrated. Moreover, UKBB utilized uniform standards of
imputation and quality control for genotype data. Therefore,
our results may provide more reliable estimations of G × P
interaction effects across populations.

From the POP2 + POP3 analyses, we also found a
significant G × P interaction for diagnosis of diabetes that
is a binary response variable. As the RNM has not been
explicitly verified for binary traits, we also used bivariate
GREML to estimate the genetic correlation between POP2 and
POP3 for this disease trait and found no significant signal
for genetic heterogeneity (estimate is 0.7988, SE = 0.2044,
p-value = 0.3249). This might be due to the fact that there
was no genuine interaction effects or that the bivariate GREML
was simply underpowered. For the two binary measuring ways
of qualifications (lowest educational attainment versus other
levels, and highest educational attainment versus other levels),
we also used bivariate GREML to examine genetic correlations
between POP1, POP2 and POP3 (Supplementary Table S28).
The results for the binary phenotype of “none of the above” versus
other six educational categories demonstrated significant genetic
heterogeneity between POP1 and POP2 (p-value = 5.58E−05)
and between POP2 and POP3 (p-value = 7.59E−05) but no
significant signal between POP1 and POP3 (p-value = 0.0619),
which were consistent with those obtained from the main
analyses. For the binary data of “college or university degree”
versus other six categories, the bivariate GREML indicated a
marginally significant heterogeneity between POP1 and POP2
(p-value = 0.035) and no significant signal between POP2 and
POP3 (p-value = 0.494), and POP1 and POP3 (p-value = 0.94).
The reason that the genetic heterogeneity became weaker or
disappeared is probably due to the fact that the bivariate
GREML has less power compared to the RNM approach, and the
phenotype categories reduced from four to two levels.

Our results imply that causal variants at multiple loci
may not be universal but rather specific to populations for
some complex traits. The results on qualifications across
POP1 + POP2 suggested that G × P interaction might be a
reason for attenuation of SNP-based heritability when using
data from different populations (see Supplementary Text S2
and Supplementary Table S29), which are agreed with Tropf
et al. (2017). This missing or hidden heritability issue (Witte
et al., 2014) can produce lower predictive power of polygenic risk
scores from large GWAS (usually generated from meta-analyses
of different populations) compared with single homogenous
population since the reference heritability obtained from the

meta-analyses among several populations is smaller than that
obtained from single homogenous population (de Vlaming et al.,
2017). Therefore, our findings suggest that large homogeneous
population data sources (e.g., around 400,000 white British
individuals in the UKBB) should be used to conduct polygenic
risk prediction for some specific traits such as human behaviors.

The current methods used for estimating G × E (or G × P)
interactions, e.g., random regression (RR)-GREML (Jarquín et al.,
2014) and GCI-GREML (Tropf et al., 2017), require that the
main response should be stratified into multiple discrete groups
according to covariate levels even for a continuous covariate
(Maier et al., 2015). However, the arbitrary grouping ignores
the difference of covariate values for the individuals within each
group, and results in some loss of information. In contrast,
the RNM allows us to fit a continuous covariate representing
individuals uniquely (e.g., PC) in the model and produces
unbiased estimates (Ni et al., 2019). In our results, bivariate
GREML which labels the individuals into two discrete groups
(POP1 and POP2) failed to find genetic heterogeneity for age
first had sexual intercourse (Supplementary Table S27), while
RNM detected significant G× P interaction across POP1 + POP2
(see Table 1). It may imply that G × P RNM is more powerful
as it uses individual-level information represented by PC across
populations, while bivariate GREML ignores such information
within each stratified group. However, on the other hand, RNM
may suffer from the selection bias when using different selection
odds ratios across populations (Table 3) while bivariate GREML
is robust against such selection and collider bias (Tables 3, 4). It
is noted that bivariate GREML requires pre-defined population
labels (e.g., self-reported ethnicities).

Residual-covariate interaction may result in heterogeneous
residual variances across different covariate values, thus it is
necessary to examine and distinguish genotype-covariate and
residual-covariate interactions (Ni et al., 2019). Our results
(Supplementary Tables S13, S17) provided cogent evidence of
G × P and R × P interaction effects, which are (partially)
independent without confounding, across populations for
qualifications. However, for age first had sexual intercourse, there
was no evidence showing that G × P interaction was orthogonal
to R × P interaction from LRT comparing the full and nested
models. Therefore, we could not rule out the possibility that the
significant signal was mainly because of residual heterogeneity
across populations. In order to disentangle G × P interaction
from R × P interaction, the magnitude of G × P interaction
should be large (e.g., qualifications) or sample size may have
to be increased.

There are several limitations in this study. Firstly, we
examined G × P interaction across populations using three data
designs (POP1 + POP2 and POP2 + POP3 as primary data,
and POP1 + POP3 as a negative control), in which population
is referred to the first and second ancestry PCs. As POP1 and
POP3 are very close in terms of PCs, the individuals in the two
primary groups POP1 + POP2 and POP2 + POP3 have common
population structures (Figure 1). But both groups involve in
different white ethnic backgrounds, i.e., POP1 may be closer to
native British and POP2/POP3 is more likely to be descended
from recent immigrants from many other European nations.
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Therefore, for our data designs, we cannot rule out the possibility
that G × P interaction was confounded with immigration-
specific factors such as socioeconomic attainment, social relations
and cultural beliefs (Drouhot and Nee, 2019). We also notice that,
in the UKBB data source, there are numerous samples with other
ethnicities (e.g., Indian, Caribbean, and African), thus future
studies using our approach may aim to detect genotype-ethnicity
interaction, which may uncover challenges for investigations into
the genetic architecture of phenotypes across various ethnicities.
Secondly, population defined by PCs in this study or by discrete
groups in others (Yang et al., 2015; Tropf et al., 2017) includes
both environmental and genetic information for individuals, thus
the G× P interaction may not merely embody G× E interaction
but also contains confounded genotype-by-genotype (G × G)
interaction across populations. It may become a new challenge
in the future to distinguish G × E and G × G in studies of
genetic heterogeneity across populations. Thirdly, the sample size
for people with other white ethnicity in UKBB (i.e., the sum of
POP2 and POP3) is not large, thus the study may lack power for
phenotypes with small SNP-based heritability such as behavioral
traits. The phenotypes without significant heritability in the
current samples were not investigated for G × P interaction,
however, if boosting statistical power for those phenotypes,
there may be new findings for heterogeneity across populations.
Fourthly, the simulations on selection bias have demonstrated
that the G× P RNM is not robust for data across populations with
different selection odds ratios (see Table 3). Thus our approach
is more preferable and restricted to data without selection bias
or with the same selection pressure for populations. Finally, for
genotypic information used in this study, we only examined
common SNPs (minor allele frequency > 0.01). However, a
recent study (Wainschtein et al., 2019) reported that the missing
heritability for height and BMI may be explained by rare genetic
variants accessed from whole-genome sequence data. Therefore,
can rare population-specific variants increase our understanding
of genetic heterogeneity across populations? Further research is
required to answer this question.

In conclusion, the main findings in our study demonstrated
a significant population genetic heterogeneity for behavioral
traits (age first had sexual intercourse and qualifications). Our
study provided a paradigm shift tool in investigating genetic
heterogeneity across populations. The new concept of G × P
interaction with the use of ancestry PC is more plausible in
explaining the genetic architecture of complex traits across

heterogeneous populations. The G × P interaction effects on age
first had sexual intercourse and qualifications were found by a
powerful approach based on technically homogeneous data (free
of genetic measurement errors and cohort/country confounding
factors), and these findings were validated in both data designs
POP1 + POP2 and POP2 + POP3. The analyses performed in this
study can be applied to dissect the genetic architecture of complex
traits and diseases across populations, and the results from these
analyses will provide important information and suggestion for
studies of polygenic risk prediction across Europeans.
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