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AUTOMORPHISMS OF NONDEGENERATE CR QUADRICS AND
SIEGEL DOMAINS. EXPLICIT DESCRIPTION

VLADIMIR V. EZOV AND GERD SCHMALZ

ABSTRACT. In this paper we give the complete explicit description of the holo-
morphic automorphisms of any nondegenerate CR-quadric @ of arbitrary CR-
dimension and codimension and of Siegel domains of second kind with not neces-
sarily Levi-nondegenerate Silov-boundary.

We introduce a family of k-dimensional chains (k = codim @), the analogues
of one-dimensional Chern-Moser chains for hyperquadrics.

We also analyse some different types of rigid quadrics.

1. INTRODUCTION
Let z = (2,...,2"), w = (w!,...,w") be coordinates in C"**, k > 1, and

(z,2)!

be a CF-valued Hermitian form on C".

Consider the cone C' being the interior of the convex hull of {(z,2) : z € C"}.
Suppose C' is an acute cone, i.e., C' does not contain any entire line. This property
takes place if and only if the form (z,z) is positive definite, i.e., in appropriate
coordinates all the forms (z, z)* are positive definite.

Let V O C be an open acute cone in R*. The domain

Qy = {(z,w) € C"™" : Imw — (2,2) € V}

is called Siegel domain of the second kind, associated with the cone V. (For
simplicity we shall call them Siegel domains.)

Siegel domains were introduced by Pyatetskii-Shapiro [11] for the study of au-
tomorphic forms in several variables, homogeneous and symmetric domains. In
particular, Pyatetskii-Shapiro constructed an example of a Siegel domain which is
homogeneous but not symmetric. In general, a Siegel domain €2y is not necessarily
homogeneous.

Kaup, Matsushima and Ochiai [8] proved that the infinitesimal automorphisms
of Siegel domains are quadratic vector fields and that the automorphisms of 2
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extend to birational maps of C*™*. An explicit description of of these infinitesimal
automorphisms was given by Satake [13].
The quadric

Q={(z,w) € C"™* : Imw = (2, 2)}

forms the Silov boundary of Q. Any automorphism of Q maps Q into @ (but may
have poles on Q).

Henkin and Tumanov [7] established a natural correspondence between Aut {2
and the group of CR automorphisms of () in the case when V = (. Under the
assumption that the forms (z,2)*, » = 1,...,k, are linearly independent they
proved that any ¢ € Aut Q¢ extends to a biholomorphic automorphism! of @ and,
conversely, any locally defined CR automorphism of () extends to an automorphism
of the entire domain €2 and, in particular to a global automorphism of Q).

Considering the group Aut () of an arbitrary Hermitian quadric @), Belosapka [2]
found a necessary and sufficient condition for (z, z) (not necessarily positive definite)
which implies that Aut @) is a finite dimensional Lie group:

i.) The forms (-,-)*, ¢ =1,..., k are linearly independent. Geometrically this
condition means that C' has nonempty interior.

ii.) The form (z, z) does not have an annihilator, i.e., the condition (a,z) = 0
for all z € C™ implies that a = 0.

Quadrics ) which satisfy these conditions are called nondegenerate.

The nondegenerate quadrics which represent Silov boundaries of Siegel domains
should just satisfy condition i.) because any positive definite form (z, z) does not
have an annihilator.

For nondegenerate quadrics Belosapka [1] described the infinitesimal automor-
phisms which are quadratic vector fields as in the case of Siegel domains (A simple
proof of this was given in ([6]) by the authors). Tumanov [14] proved that their
automorphisms are rational and extend to birational automorphisms of C***.

In this paper we obtain an explicit formula for the automorphisms of arbitrary
nondegenerate quadrics, and for the automorphisms of Siegel domains of second
kind.

We are grateful to V. Belosapka and A. Tumanov for inspiration and many useful
discussions.

2. INFINITESIMAL AUTOMORPHISMS OF CR QUADRICS AND SIEGEL DOMAINS

The quadric @ : Imw = (z,z) is a homogeneous manifold. The group H of
Heisenberg translations (z,w) — (z+p, w+q+2i(z,p)), (p,q) € Q acts transitively
on . Thus, Aut @) splits into the semidirect product

"n the given non-bounded representation of {2 the birational extension of ¢ may have poles on
Q, but if we choose coordinates where ) is bounded then ¢ has no poles on Q.
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AutQ = H x Auty Q,

where Autg @ = {¢ € Aut@ : ¢(0) = 0} is the isotropy group of the origin.
Autgy Q also splits:

Auty @ = L x Autg;q @,

where Autg;a @ = {¢ € AutyQ : d¢(0)|T§Q = id}, and L is the group of lin-
ear transformations (z,w) — (Cz pw) (C € GL(n,C),p € GL(k,R)) such that
(Cz,Cz) = p(z,2).

Hence,

Ath =H X L x AU_to,id Q (1)

There is a similar splitting of the automorphism groups of Siegel domains. It
is easy to verify that the Heisenberg group of the Silov boundary  consists of
automorphisms of the Siegel domain 2. Now, any automorphism can be represented
as a composition of a Heisenberg translation and an automorphism without pole at
the origin. The latter automorphisms can be uniquely decomposed as above.

As mentioned above, Satake and Belosapka gave explicit descriptions of the Lie
algebras g of infintesimal automorphisms of Siegel domains, resp. nondegenerate
quadrics. The splitting (1) implies that g can be represented as semidirect sum

g:g—@go@g—H

where g_, go, g+ are the Lie algebras of H, L, Aut 4, respectively.
The algebra g_ consists of the vector fields

"0 koo 0
= E pfi E J ; J
X* j:1 829 + j:1(q + 2Z<Z7 p> )awj )

with p € C*, g € R*.
The algebra g, consists of the vector fields

— J J
0= L) o+ e o

where X € gl(n,C), s € gl (k,R) satisfy the condition 2 Re(X z, z) = s(z, z), and,
in the case of a Siegel domain, s is contained in the Lie algebra g(V') corresponding
to the subgroup of G(V') C GL(k,R) of linear mapping which preserve the cone V.

For the description of g, we need the following tensors A, a, B, r:

Let a : C¥ — C" be a linear operator, A be a C"-valued symmetric bilinear form
on C"®C", r be an R¥-valued symmetric bilinear form on R¥, and B be a C*-valued
bilinear form on C* @ C" satisfying



(A(z,2), 2)
Re(B(u, z), )
Im(B((z, z), 2), 2)
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2i(z,a(z, 2)), (2)
r(u, (z,2)), (3)

for all z € C"* and u € R¥, and, in the case of a Siegel domain,

for all z,{ € C" and u € R*.
Then

n

X+ = _(aw+ A(z,2) + B(w, 2))

Jj=1

i 9

027

M M M

+ ;(22'(2, aw) + r(w,w))’

S a a «

T2 o~ o~
<
~—

dwi’

The additional conditions in the case of Siegel domains are automatically satisfied
when the Silov boundary is a nondegenerate quadric and V' coincides with the acute

open cone C'.

Any automorphism ¢ € Autg;q is the image of some infinitesimal automorphism
under the exponential map. This follows directly from the uniqueness theorem (see
6], for Siegel domains see also [8]). In fact, any ¢ € Autg;q is determined by the

parameters

daf
dw
d*g
dw?

0

Moreover, there exist A and B such that the systems (2) and (3) are satisfied. On
the other hand, the one-parametric family ¢; that corresponds to these parameters

takes for t = 1 the value ¢.

In order to calculate ¢ we have to integrate the system

d
3t =
d

%gt

age + A(fe, fr) + B(gs, fi)

2i<ft, ag_t> + T(gta gt)
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The first step will be to determine all first and second derivatives of f; and g; at
the origin. In order to do this we derive the system of ODE from above with respect
to z, resp. w and restrict it to z = 0, w = 0. This leads to

fi = z+taw+tA(z, 2) +tB(w,z) + t*A(z, aw) + it*a(z, aw) (4)
+E (w, w) + of|2]* + wl?)
g = w+2it(z,aw) + tr(w,w) + it*(aw, aw) + o(|z|* + |w|?).

(K will be determined later.)

It is still an open question whether the dimension of g, can be estimated by
2n + k. For Siegel domains this sharp estimate was proved by Kaup, Matsushima
and Ochiai [8] (see also [12]). Using Cartan’s theorem they showed that the radical of
g intersects gy by {0} and therefore g, is isomorphic to the dual of the factor space
of g_ by the radical. However, there are nondegenerate quadrics with nontrivial
intersection of g, with the radical (e.g., the parabolic quadric in C?*2 being defined
by Imw! = |2!?, Imw? = 2Re z'22).

3. RESULTS

Let ) be a nondegenerate quadric, or  be a Siegel domain, and ¢ = (f,g) €
Autg;q be the automorphism which corresponds to the parameters (a, A, r, B). Fur-
thermore, let f = 372, fi, g = >_72, g1 be the expansion into homogeneous polyno-
mials then we prove

Theorem 1. The polynomials f;, g; are determined by the recursive relations

- @) ) (Zgl Zg“’) (A(Z,§3< B(w, » )+A(aw,?)—ia<z,aw>>7 .

91 gL aw) + r(w,w) + i{aw, aw)

for 1 > 1 and the nitial conditions fo = 0,90 =0, fi = z + aw, g1 = w.

Consider the real k-plane I'y = {z = 0,Imw = 0} which is contained in ). The
orbit of 'y under the action of Auty () composes a biholomorphically invariant family
of real k-manifolds on @) passing through the origin. These k-manifolds are called
chains as the analogous objects on hypersurfaces. The following theorem generalizes
the fact that the chains on hyperquadrics are the intersections of the hyperquadric
with complex lines passing through the origin and being transversal to the complex
tangent space.

Theorem 2. Any chain I' C Q) is the intersection of () with the complex k-plane
{z = aw}, with a € A.

The main result of this paper is the following explicit description of the automor-
phisms from Autq.
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Theorem 3. Let (2, w*) = ¢(z,w) be from Autg,a, then

()= (o= (3 B) (s nons )

where By, Qp, Pq, Qq are the following polynomial matrices:

B = 2A(z,:)+ B(w,-) + Alaw, -) —ia(-, aw) — 2A(A(z,-),2) +
+A(A(z,z),-)+A(B(w,z),-)—A(B(w, ) >_1B(< >7 )
+iB({z,aw),-) — B(w, A(z,-)) + A(A(z, aw), -) — A(A(z, ), aw) —
—A(A(-, aw), 2) — 2a(z, al{aw, -)),
Q, = i aw) +2(z alaw,-)) - %(B(w, ), @) + £ (- ar(@, @) -
—ir((:, aw), w) + (aw, afaw, -)),
PBqs = 2a+2B(-,z2) —24A(a-, 2) — 2ia(z,a") — 2B(w, a-) — 2ia({aw, a-) —
—4iB({(z,a7), 2) + 2A(A(z,a-), 2) — A(A(z, 2),a") — B(w, B(+,2)) +
+B(-, B(w, z)) — 2B(r(-,w), z) + B(w, A(a-, z)) + iB({(a-, aw), z) +
+iB(-,a(z, aw)) — iB(w, a(z,a-)) + B(-, A(aw, 2)) — 2iB((z, a*), aw) —
—zB((aw a-y, z) + 4ia(z, B(w,a")) — 2ia{z, ar(w,~)) — A(B(w, 2),a) +
+A(B(w, a-), z) = A(B(:, 2), aw) — A(B(:, aw), 2) + ia{B(w, z), a-) —
—ia(B(+, z),aw) + ia(z, A(aw, a)) + A(A(aw, a-), z) — A(A(aw, 2),a-) +
+A(A(a-, 2), aw) + ia(A(z, aw), a”) —ia(A(z,a+), aw) + alaw, ala~, z)) —

Qg = 2i(z,a") +2r(-,w) — i{a, aw) + i(aw, a-) — 2i(z, B(w, a")) —
)—i—r( (w,w), ) +i(B(w,a-),aw) —

w,-),
—i{ar(w,-),aw) + ir({a- ,au7> w) —ir({aw, a), w) + ir({aw, aw), -) —
a-, ar(w,w)) + ;<ar(w w),ar) — i{aw, ar(w,?)) — {(aw, alaw, a-)).

In B, and Q, the dot stands instead of a complex n-dimensional vector argument
and in P4 and Qg instead of a complex k-dimensional vector argument.

4. RECURSIVE FORMULAS FOR THE AUTOMORPHISMS

For shortness of the notations we introduce the following abbreviations: in the
given fixed coordinates we will denote the vector field y = >"7_; C¥ a‘zy +Z 1 D” o

ow*
by x = (C, D) as well. If f is an n-vector and E is an n X m matrix with columns

E,, then by (f, E) we denote the k x m-matrix with columns (f, E,,).
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We consider the canonical action of Autg;q @) on the Lie algebra g: Let y € g and
¢ = (f, g) c Aut(md Q, then

¢" () (z,w) = (do) " (x(f, ).
Hence, if x = (C, D) = ¥7_, Ci2 43k D52 then ¢*(C, D) = (P, Q) equals

(e - (& &) (500)
and is also from g.

Equation (6) is equivalent to

Cif.9)\ _ (% 832) (P(zjw)>
(D(f,g)>_<§§ % )\ Qe w) @)

Taking into account that the polynomials P and () are of second degree and that

of ot id a
TRY
(aiafio 0 id

one can obtain the polynomials (P, Q) for given x = (C, D) considering equation
(7) up to the second order if one knows the derivatives of ¢ in 0 up to third order.
For any quadric @) and for any Siegel domain g, contains a vector field x. =
(z,2w). This infinitesimal automorphism corresponds to the 1-parametric subgroup

2 = ez
E3

w* = e*w.
Let now ® € Autg;q be the automorphism corresponding to (a,r). Then one can
compute ¢*(xe) = (P., Q.) using (4):

P. = z—aw— A(z,z) — 2B(w, 2)

Qe = 2w —2i(z,aw) — 2r(w,w).
Moreover, one obtains

1 2 1 '
K(w,w) = gB(w, aw) + gar(w,w) + §A(aw, aw) + %a(aw, aw),

where B is the tensor from (3) which is determined by r.
For (C, D) = (z,2w) the identity (7) takes the form

I\ _ % % z—aw— A(z,z) — 2B(w, 2)
(29> B (39 ;‘%) ( 2w — 2i(z, aw) — 2r(w, w) > ' (8)

8z
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Before studying this system, we will consider the action of ¢ on the vector field
Xi = (iz,0). This infinitesimal automorphism corresponds to the 1-parametric sub-

group

zZ = €2z
*

w = w.

One obtains ¢*(y;) = (P;, Q;) with

P, = iz +iaw —iA(z, 2) — 2iA(aw, z) — 2a(z, aw)
Qi = 2(z,aw)+ 2(aw, aw).
It follows
f\ % %—1{} 2+ aw — A(z,2) — 2A(aw, ) + 2ia(z, aw) ()
0) \§ —2i(z, aw) — 2i{aw, aw) '

Combining (8) and (9) leads to

(f) B (%JZC %’;) (z — A(z,2) — B(w, 2) — A(aw, z) + ia(z, a@})

—\9% 99 — 9 N .

g 9 - w — 2i(z, aw) — r(w,w) — i{aw, aw) (10)
Let fi, i be the homogeneous components of f and g with respect to z and w.

Then

dfi afz

(92 “t 871} = U
dg Oq1
82 z+ % = l qgi.

Isolating in (10) the component of degree [, one obtains a recursive formula which
determines f;, g; for [ > 1:

f B 8fzz1 8flwl A(Z, Z) + B(U}, Z) + A(aw7 z) — ia(z, CL7I)>
(l - 1) <g§> = (85(?1 1 331 1) < 2i<z,aw) + r(wﬂu) + i(aw,m@ ) ’

0z ow
with initial conditions fo =0, g9 = 0, fi = 2+ aw, g = w. Thus, we have proved
Theorem 1.

5. GEOMETRIC DESCRIPTION OF K-DIMENSIONAL CHAINS

The description of the chains formulated in Theorem 2 is a direct consequence of
the formula (5):
The image of Ty under ¢ = (f, g) is {f(0,u), g(0,u) : u € R*}. From (5) follows
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(=1 fi(0,u) = W(T(u, u) + i{au, au))
folw) = 0, fi(u) =au

(1 =1)g(0,u) = W(r(u, w) + i{au, au))
go(u) = 0, g1(u) =u.

For any solution ¢(0,u) = >7°,¢:(0,u), evidently, f(0,u) = ag(0,u) is the
uniquely determined solution for f(0,u). This finishes the proof.

Any automorphism ¢ € Autg;q Q with parameters (a,r) can be uniquely decom-
posed into ¢, 0¢, corresponding to (a,r) = (a,0)o(0,r). Then ¢, maps the standard
chain T'y onto the chain {z = aw} N Q, ¢, leaves the standard chain invariant, but
changes the parameter.

6. EXPLICIT FORMULA FOR THE AUTOMORPHISMS

We consider now the action of ¢ on the infinitesimal Heisenberg automorphisms:

Xp = (p,2i(z,p)) withp e C"
g = (0,¢) with ¢ € R".

Let (P,, Q,) and (F,, Q,) the images of x, and x, under ¢*. If p resp. ¢ runs over
the standard basis in C" resp. R¥, one can collect the resulting equations (7) into a

matrix equation:
<§Jz‘ —%{ )‘1( id o) B <Hp Hq>
52 2 2i(f,id) id v, ¥,)’

which is equivalent to

or o\ (M, T, id 0) "
<§9 %g) (qu qu) (—2i<f,id) id ) (1)

Before determining the matrix blocks IL,, ¥, II,, ¥, we simplify (11) and obtain
an expression for the Jacobian matrix of ¢ which does not depend on f. Inserting
this expression into (8) one gets an explicit formula for ¢.

Let ¢ € Autg;q be the automorphism corresponding to (a, A, r, B). Furthermore,
set ¢o(z,w) = (cz,|c|*w) with ¢ € C*. Then ¢! 0 ¢ o ¢. € Autgiq @ is the auto-
morphism corresponding to (ca, |c|?r). Hence, if we substitute z, w, a, A,r, B, 2*, w*
by cz, \c|2w,%,%,#7%,cz*, lc|>w* in ¢ we obtain again ¢. This can be refor-
mulated using the following weights: We associate z,w, a, A,r, B with the weights
(1,0),(1,1),(0,-1), (=1,0),(—=1,—=1), (=1, —1), respectively. The vectorsp € C",p €
Cn, ¢ € R* have the weights (1,0), (0, 1), (1, 1), respectively.
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The observation from above means then that f is homogeneous with weight (1,0)
and ¢ is homogeneous with weight (1,1). It follows

weight <g§> = (0,0)
weight (25}) = (0,-1)
weight (gi) = (0,1)
weight (35)) = (0,0).
Set
1
m=(6 &) =(a mi)

where Hyy, Hryr, Hrrp, Hrpgr are blocks of dimensions (n,n), (n, k), (k,n) and
(k,k). Then we have

Lemma 1.
weight(Hrr) = (0,0)
wez’ght(HLU) = (O,—l)
weight(HHJ) = (0,1)
weight(HILH) = (0,0)
Proof. Set
of of
(% %)
0z ow
Then
~det J;
H.: = (—1)li-1="20
i = (=1) det J ’

where jji is the (n + k — 1) x (n + k — 1)-matrix which is obtained by omitting
the j-th line and the i-th column in J.

It is easy to see that weight(det J) = (0,0), since det J is a sum of products con-
taining as many factors from STJ: as from %. By the same reason, weight(det jﬂ) =
(0,0) for 7,5 <n and i,j > n.

In the products of det jji with ¢ < n,7 > n there will be one factor from ST{;
more than factors from %. Hence, det jji has the weight (0,—1). Analogously, for

i <mn,j>n weight(det J;;) equals (0,1). O
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Now we are going to compute the weights of IL,, II,, ¥, W, Let (P,,Q,) be
the image of (p,2i(z,p)). If p was associated with the weight (1,0), then P, would
have the weight (1,0) and @), would have the weight (1, 1). Passing to II, resp. W,
we substitute p by constants of weight (0,0). Consequently, the components which
depend holomorphically on p get the weight (0,0), resp. (0,1), at the same time
those components which depend antiholomorphically on p get the weight (1,—1)
resp. (1,0).

Analogously one obtains weight(Il,) = (0, —1) and weight(¥,) = (0,0). Finally,
the weight of (f,id) is (1,0).

From (11) follows Hy; = I1, — 2iI1,(f,id). Since weight(IL,(f,id)) = (1,—1) and
weight(Hy ) = (0,0) then Hy; = (I1,)(0,0), where (II,)(,0) is the (0,0)-component
of I1,,.

In the same manner from Hy;; = W, — 2V, (f,id) follows Hr; 1 = (¥p)(0.1)-

Thus, the desired expression for the Jacobian matrix is

(%J; %{,) _ <(Hp)(070) Hq>1
8*2 ﬁ (‘I/p)(O,l) \I/q ’

where (II,,)(0,0), (¥)(0,1) can be obtained from (P,,Q,) by omitting the antiholo-
morphic terms with respect to p and by substituting p in the holomorphic terms
by a free argument. To get (II,, ¥,) one inserts in (P, Q),) ¢ by a free holomorphic
complex argument.

Now we go to compute (P,, @),) and (P,,Q),). Therefore we need the derivatives
of ¢ in 0 up to third order. They can be easily obtained by means of the recursive

formula.
The recursive formula gives at once a simpler expression for fs:

fa = A(z,2)+ B(w, 2) + Alaw, 2) + ia(z, aw) +
+ar(w, w) + ia{aw, aw).

Comparing with (4) leads to the following identities:

B(w,az) = ar(w,w) (12)
Alaw, aw) = 2ia(aw,aw). (13)

Identity (13) is evidently equivalent to
Alaw, aw) = ia{aw, aw) + ialaw, aw).

Set now f3 = f... + f.ow + frww + fuwww, Where the indices show the distribution
of z and w variables. By means of (5) one obtaines
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fzzz = A(A(Z,Z),Z)
forw = A(B(w,z),2)+ ;B(w, A(z,2)) +iB({z,aw), z) +

+A(A(aw, 2), z) + ;A(A(z, z), aw) +ia{A(z, z), aw)

Fors = ;B(w,B(w,z))+;B(r(w,w),z)+;B(w,A(aw,z))—

—;B(w, a(z,aw)) + ;A(B(w, 2), aw) + 2iar({z, aw), w) +

—i—%a(B(w, z), aw) + %a(z, ar(w,w)) + %B((aw, aw), z) +
—|—;A(ar(w, w), z) + ;A(A(aw, z),aw) + %a(A(aw, z),aw) +
1 1

—|—§A(a<aw, aw), z) — §a<z, a{aw, aw)) — §a<aw, a{aw, z)).

We do not need the expression for fu.w-
For 93 = G222 + Gozw + Grww T Guww ONE gets

9222 = 0
Goow = 20{A(z,2),aw), 2)
Goww = (B(w,2),aw) + 2ir({z, aw), w) + i{z, ar(w,w)) +
+2i{A(aw, 2), aw) |
Juoww = r(r(w,w),w) +ir({aw, aw), w) + 3(aw, ar(w,w)) +
+%<ar(w, w), aw) + %(A(aw, aw), aw),

As in the case of (P,, Q) we can now determine the vector fields (P,, @,) as well
as (Fy, Qq). Let P, = Py + PP+ P+ Pl + P, and Q, = Qg+ Q2+ QF, + QF, +QF,,
be the expansion into homogeneous components with respect to z and w. Then
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= p (14)

= —24(zp) ~ 2ia(sp)

—B(w,p) — A(aw, p) + ia(p, aw) — 2ia{aw, p)

2A(A(z,p), 2) — A(A(z, 2), p) + 2iA(z,a{z, p)) + 2a{z, a(p, z)) —
—2iB((z,p), 2)

A(B(w,p), z) — A(B(w, z),p) + iB((p, aw), z) — iB({z, aw), p) +
+B(w, A(z,p)) — A(A(z, aw), p) + A(A(2,p), aw)+

+A(A(p, aw), z) + 2a(z, alaw, p)) — 2iB({aw, p), z) +
+2iA(alaw, p), z) + 2i(z, A(aw, p)) — 2a{a(z, p), aw)

0

2i(z, p)

= —2i(p,aw) + 2i{aw, p)

—4(z, a{aw, p)) — 2i{z, B(w, p)) — 2i(z, A(aw, p)) + 2(z, a{p, aw))
i(B(w,p),aw) — i(p, ar(w,w)) + 2ir((p, aw), w)—

—2(aw, a{aw, p)) + 2i{ar(w,w), p) — 4ir({aw, p),w) —
—2({a{aw, aw), p) — 2{(alaw, p), aw) + 2(aw, a{p, aw))

The terms which depend holomorphically on p and, therefore, contribute to the
formula of the Jacobian are underlined.
The computation of (P, Q,) leads to

B = —aq
P! = —B(q,z) + Alaq, ) + ia(z, aq)

z

Pl = B(w,aq) + ia{aw, aq)

w

P! = 2iB((z,aq),z) — A(A(z,aq), z) + ;A(A(z, z),aq)

zZz
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Pi, = 5B, B(g2) ~ 5Bla, Bw2) + B(r(g.w),2) — 3 Blw, Alag,2)) -

—éB((aq, aw), z) — ;B(q, a(z,aw)) + ;B(w, alz,aq)) —

— 5Bl Alaw, 2)) +iB({z,aq),aw) +  B({aw, aq), =) -

—2ia(z, B(w, aq)) + ia(z, ar(w, q)) + lA(B(w z),aq) —

—SA(B(w,ag),2) + S A(B(4,2),aw) + S A(B(g, aw), 2) -
L a(B(w.2).aq) + La(Blg.2).aw) ~ Lo
—;A(A(aw, aq), 2) + ;A(A(aw, 2),aq) — ;A(A(aq, 2, aw) —
—;a<A(z, aw), aq) + ;a(A(z, aq), i) — ;amw, alag, =) +

1

+o0log, alaw, 2)),

(z, A(aw, aq)) —

q9 __

o — 4
i = —2i(z,aq)
4 = =2r(q,w)+i{aq,aw) — i{aw, aq)
w,aq)) + 2(z,alaw, aq))
w) —

1, = 2i(z, B(
( ( ) Q) - Z<B(w7QQ)7aw> + i<ar(qu)7aw> -

) .
—ir((aq, aw), w) + ir({aw, aq), w) — ir({aw, aw), q) + %(aq, ar(w,w)) —
—%(ar(w, w), aq) + i{aw, ar(w,q)) + (aw, alaw, aq)).

Hence, all ingredients of the automorphism formula

-1
f) < (Hp)( 0) 2Hq> ( P )
= 15
(9 3(W)on ¥y ) \5Q (15)
are completely described.

7. THE HEISENBERG SPHERE IN C?2

In this section we want to demonstrate the obtained formula in the simple case
of the sphere in C? (the Silov boundary of the ball). Let Q@ = {(z,w) € C*: Imw =
|2]?}. Then any ¢ € Autgiq @ can be described by Poincaré’s formula (see [10])
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zZ 4 aw
1 —2iaz — (r +ila]>)w
w
1= 2iaz — (r +ila|>)w’

where a € C and r € R.
We will now obtain ¢ by means of the procedure developped above.

We have

(L)oo = 1—4iaz—rw—ilal’w —4a*z* + 2iarzw — 2a*azw
1
- 0.0) = —iaw — 2a°zw — a”aw
- \ij 00) . 2 2 2 2
2(Il,) = —2a+ 6ila|’z — 2rz + 2arw + 2ia*aw + 4iarz* + 4aa’z* +
+2r? 2w + 2|al*zw
(U,) = 1—2iaz — 2rw + 2aazw + 2iarzw + r’*w? + |a|*w?
P, = z—aw— 2iaz*>—2rzw
1
—Q. = w—iazw —rw’.

Since

(almm QHg__C_sz_Qa_%Z+%M%>N

P
(T 00 Y4 —iaw 1 —rw+ ila]?w
with N =1 — 2iaz — (r + ila|*)w, and
P.\  (1—-2iaz —2a—2rz+2ia]?z\ (2 + aw
1Q.) — \ —iaw 1 —rw+ ila]?w w ’
cancelling the corresponding matrices in the formula (15) we obtain the unique
automorphism (16) with parameters (a, ).

The most natural way to represent the automorphisms (16) is to pass to homoge-
neous coordinates (£ : ¢ : w) in P2. Let C* C P? be the subset of all (£ : ¢ : w) with

w

¢ #0. Then z = g and w = £ are coordinates in C2. The Heisenberg sphere can be
extended to

Imwé = |¢]*

in P2.
The fractional linear automorphisms (16) can be written in the linear form



16 VLADIMIR V. EZOV AND GERD SCHMALZ

& = &+ 2ial + (r +ilal’)w (17)
¢ = (taw
= .

8. POINCARE AUTOMORPHISMS

A natural generalization of the automorphisms of the Heisenberg sphere are
Poincaré automorphisms which were introduced in [5]. It was shown that the au-
tomorphisms from ¢ € Autg;q () with parameters (a, A, r, B) can be described by
a much simpler "matrix fractional linear” formula which is similar to the Poincaré
formula (16) if there exist a C"-valued bilinear form A : C" ® C* — C" and a
C*-valued Hermitian form # : C* ® Ck — CF such that

(A(2,0).6) = 2i(2,a(&,)), (18)
(B(w,(),&) = #(w,(§¢)) (19)
is satisfied for all z,(,& € C*, w € C*. Then ¢ takes the form
2 = (d—A(z,) - Bw,") — ;A(aw, Nz + aw), (20)
w* = (id —2i(z,a") — #(w,~) — i{aw, a-))  w.

For proving this one needs to consider the algebra 2( of all pairs (D, d) € gl (n,C) x
gl (k, C) with the property (Dz, z) = d(z, z).
It follows from (18) and (19) that

Da = ad, (21)
A(Dz,¢) = DA(z),
B(dw,z) = DB(w,z),
rdw,w) = dr(w,w),

(see Appendix).
Moreover, (18) and (19) mean that

(A(z,-),2i(z,a7)) € A (22)

and

(B(w, ), 7(w,~)) € 2. (23)
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Though the direct proof of the formula (20) is rather easy, we show that it can
be also obtained from (15) by cancelling appropriate matrices, as in the case of the
Heisenberg sphere. Using the identities (18), (19), (21), (13) and (12) one can show
that

()0 210\  (id —A(., 2) —2a—2B(-,2) + A(w, 2)
<§(‘1’p)<o,o> \Ifq> - <—i(-,aw> id +i{a-, aw) — #(-, @) ) X (24)

y <id ~A(z,") = B(w,") — tA(aw, -) 0 )

0 id —2i(z,a") — 7(w,~) — i{aw, a-)

—i(-,aw)  id +i(a-, ,aw) — (-, W)

( P ) _ (id —A(-,2) —2a—2B(-, 2) + Aa-, z)) (Z + aw)
1 - )
QQe w

(See the Appendix below for the proof of the first identity, the proof of the second
one is simple).

There is also a linear representation of the Poincaré automorphisms (20) similar
0 (17). Set L = A ® C* @ C* with coordinates ((Z,€),(,w). The group A* of all
invertible elements of 2 acts on L by

(D,d) o ((E,€),¢w) = ((DE, d§), D¢, dw).

We introduce homogeneous coordinates ((Z,€) : ¢ : w) in the factor space L/A*.
The quadric () can be extended by

Imdw = ((, ()

to Q C L. Q is invariant under the action of A*. According to (21), the automor-
phisms (20) can be lifted to the linear L automorphisms

+(B(w,-) + ;A(aw, ), T(w, ) + i{aw, a-))
¢ = (+aw

The theory of Poincaré automorphisms gives a complete description of the au-
tomorphisms of nondegenerate quadrics of codimension k¥ = 1,2,n? and of real
associative quadrics (see [3] [4]). However, Palinc¢ak [9] found a quadric in C° of
codimension 3 with a 9-dimensional Autg;q group which does not contain Poincaré
automorphisms.
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9. AUTOMORPHISMS OF DIFFERENT TYPES OF RIGID QUADRICS

We introduce the following terminology: A nondegenerate quadric () will be called
srigid if from (Xz, sw) € g, follows that s = ¢ -id with ¢ € R (in particular, any
hyperquadric is s-rigid); it will be called a-rigid, resp., r-rigid if A = {0}, resp.,
R ={0}.

Proposition 1. If a nondegenerate quadric QQ is a-rigid then it is also r-rigid.

Proof. Consider P? in (14). For a = 0 follows that B(-,p) is contained in A for all
p € C" . Hence, if there was some B # 0 then would exist some p € C" such that

Proposition 2. If ) is a s-rigid nondegenerate quadric then Autgiq Q) consists of
fractional linear mappings. If, moreover, k > 1 then @) is r-rigid.

Proof. Consider @ in (14). Then s = R implies

(p, aw) = l(p)w, (25)

where [ is a complex linear functional on C". Setting in (25) w = (z,() one

obtains a solution A of (18) corresponding to a: (p,a(z, ¢)) = I(p)(¢, z) = ((p)¢, 2),
i.e., A(p,¢) = 2il(p)¢. But then

2 = (1-2il(2) —il(aw)) ' (2 + aw)
w* = (1-2il(2) —il(aw)) 'w

is the uniquely determined automorphism corresponding to (a,0).
Now we consider ()4, and set there a = 0. It follows

(g, w) = Mq)w, (26)
where )\ is a real linear functional on R*. Setting again w = (z, (), one obtains
B(u, z) = Mu)z and 7#(w,w) = Mw).

Hence,

2 = (1—Aw)) 'z
w* = (1-\w)) 'w
is the automorphism corresponding to 7.

From the symmetry of r follows r(u,v) = AMu)v = A(v)u, i.e.,if s =R and k > 1,
then R = {0}. O

Remark. The considerations of this section can be directly applied to Siegel
domains.
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10. CANONICAL PARAMETRIZATION OF THE CHAINS

Let Iy = {# = 0,Imw = 0} be the standard chain on (). Then there exists a
canonical family of parametrizations of I'y which can be obtained from the standard
parametrization {z = 0,w = u : u € R*} by means of a "reparametrization”
automorphism corresponding to parameters (0, ).

From (15) and (9) we derive a simple equation for this reparametrization map:

Proposition 3. The automorphism ¢,, corresponding to (0,7) has the form

2 = (id—B(w,-)) 'z
w* = (id=2r(w,-) + 2r(r(w,-), w) — r(r(w,w))) " (w — r(w,w)).
Proof. At first we set in (9) a = 0. It follows

_of
f(Z,'U)) - azz
Setting in
of
(IL)0,0) = 3

a = 0 one obtains immediately f(z,w) = (id —B(w,-))™'z.
The expression for g can be derived by setting a = 0 in (15). O

The expression for the g-component in ¢, can be simplified if the following con-
dition is satisfied:

Proposition 4. Let ¢, be as in Proposition 3 and 7#(-) be a linear map C* — gl (k, C)
with

rww = r(w,w) (27)
Fw)” = #(r(w,w)),
then
w* = g(z,w) = (id —#(w)) w.

Proof. From Proposition 3 follows that g does not depend on z. The recursive
formula for g therefore takes the simple form

9911
(l - 1)gl(27 w) = w T(wv w)
with go = 0 and ¢g; = w.
One easily verifies that g, := 7(w)"!w is the solution of the recursive equations.

OJ
It follows
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Proposition 5. Let () be a nondegenerate quadric and r € R with the property
r(w,w) = (aw,aw) (resp. r(w,w) = —(aw,aw)). Then 7(w) = (aw,a) (resp.
7(w) = —(aw, a") ) satisfies (27).

Proof. Set r(w,w) = (aw, aw) and 7(w) = (aw, a-). Because of (2) then

Fw)? = (aw, ala-, aw)) = Z(A(aw,aw),cﬂ.

On the other hand it follows from (13) that

#r{w,w) = (o, aw)a) = o (Afow, aw), @),

i

Remark. The representation r(w,w) = (aw, aw) is not unique. Moreover, there
can exist tensors 7 satisfying (27) which cannot be obtained in the described manner.

For automorphisms corresponding to (a,0) one can derive the following simple
equation for the g-component:

Proposition 6. Let &, € Autyiq Q withr =0. Then
w* = (id —2i(z, a*) — i{aw, a-)) " w.

Proof. Set d := 2i(z,a") + i(aw,a"). We show by induction that g, = d'~*w. This
implies the assertion.

For [ = 1 we have g; = w. By inductive assumption then ¢;_; = d"~2w. Using the
recursive formula (5) we come to

(l—1Dg = §d8(2i<A(2, 2),a) + 2i(Aaw, z), a+)y +
:——;<a<z, aw), a-))d"* Bw +
+ li; d*(—2{a(z,aw), @) — (al{aw, aw), a-))d" 3w +
+c;;_2(2i<z, aw) + i{aw, aw))
= §d5(22'</1(2, 2), @) + 2i(Alaw, z), @) —

—(a{aw, aw), a-yd" 3w +
+d"2(2i(z, aw) + i{aw, aw))
The assertion follows if we show that
2i(A(z, 2), @) + 2i(A(aw, 2), @) — {alaw, aw), a-)) = d°.

For d? we obtain
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> = —4(z,ala-,z2)) — {aw, ala, aw)) —
—2(z,a{a-, aw)) — 2(aw, {a-, z)).

Because of (2) then

—4(z,a(a-, z)) = 2i(A(z,2),a")
and — 2(z,a{a-, aw)) — 2{aw, (a-, 2)) = 2i(Alaw, z),a).
Because of (13) and (2)
—(aw, a(a-, aw)) = ;(A(aw,aw),w) = —(aw, (a~, aw)).
0

Proposition 6 and Theorem 2 give a description of the chains including the canon-
ical parameter:

Corollary 1. The chains of the nondegenerate quadric () have the following canon-
ical parametrization

f(u) = a(id—i{au,a-)) u
g(v) = (id—i(au,a'))  u
with u € R*.

Proof. The expression for g can be obtained by setting z = 0 and w = u in the
formula from Proposition 6. The expression for f follows then from Theorem 2. [J

11. APPENDIX

In this Appendix we perform the rather huge verification of (24): We use (2), (3),
(18), (19), its consequence (22), (23) and the following identities

[\
co

A~ /N /™~ —~
w
(==

~— N — ~— ~—

Da = ad, forac A (D,d) e
A(Dz,0) = DA(z.()
Flw,dw) = di(w,w),
(

[\
=)

w
—

rdw,w) = dr(w,w),
B(dw,z) = DB(w,z2)

At first we verify these identities:
To show (28) it is sufficient to check

2i(z, Da(&, () = 2i(z,ad(£,()), for all z,(,&.
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This follows from

2i(z, Da(¢,¢)) = 2id(z,a(¢, () = d(A(z,¢),€) =

= (A(2,0), D) = 2i(z,a{Dg,¢)) = 2i(z, ad(, ).

Now we prove (29)

(A(Dz,¢). &) = 2i(Dz,a(£,Q)) = 2id(z,a(,()) =

= d(A(Dz,¢),&) = (DA(2,(),¢).

(30) is a consequence of the following transformations

rw, d{C,2) = 7w, (D¢, 2)) = (B(w,z), D() =
UB(w,2),¢) = di(w,d(C,z2)).
This implies (31)

7(dw,w) = 7(w, dw) = drf(w,w) = dr(w,w),
and (32)

(Bldw,z),¢) = #(dw,((,2)) = di(w, (¢, 2)) =
d(B(w,z),() = (DB(w,z),().

The equality of the left upper blocks in (24) is a consequence of the equalities

id = id,
—24(z,) = —A(z) = A(2),
— B(w, 2) —B(w, z),
— ;A(aw, ) = —Aaw,-) + ia(-, aw),
A(A(z,)),2) = 2A(A(z,),2) — A(A(z, 2), ),
SAGA(aw, ),2) = —A(A(z,aw), ) + A(A(z, ), aw) +

A( w), z) + 2a(z, a{aw, -))

A(a
AB(w,-),z) = A(B(w,-),z) — A(B(w,z),-) +iB({-, aw

—iB((z,aw), ) + B(w, A(z,)),

(33)
(34)
(35)
(36)
(37)
(38)

(39)

Equations (33) and (35) are tautologies, (34) follows by symmetrization of (18).
To prove (36) we show that %A(-, aw) = ia(-,aw) and apply (34). The latter equality

follows from the fact that (A(p,-),2i(p,a7)) € A and (28).
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In order to obtain (37) we express the right hand side in terms of A

Then we apply the identities

1. 1. 2

FAE Az ) = SAA(z 2),)
1. . 1.
514(14(',2),2) = iA('aA(ZVZ))
1. . 1.
FAA(z),2) = SA(z A(,2))

Cancelling appropriate terms we get an expression that equals to the left hand
side.

In (38) we use the identity

2a(z, alaw,-)) = —iA(z, al-, aw)) = —;fl(fl(z, 1), aw).
The right hand side of (38) takes then the form
1. 1. - PN 1. -
—ZA(A(z,aw), ) = ZA(-, (z,aw)) — ZA(A(aw, 2),) — EA(.’ (aw, 2)) +
+i121(fl(z, ), aw) + ifl(aw, A(z,)) + iA(A(-, 2),aw) + iA(aw, A( =) +
+lefl(/l(, aw), z) + lefl(fl( ,aw), z) + ifl(z, A aw)) + ifl(z, Alaw, ) —
—;A(A(z, ), aw)

Using the identities

23
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we find an expression equal to the left hand side.
It remains to prove (39). The right hand side of (39) takes the form

We have

—

w,-),z) +

1
2

JAG, B, )
SABw,2), )
SAC B(w, 2)
SBlw,A(2)

A<Z> B(w7 ))
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After cancelling equal terms of opposite sign we find an expression which equals

to the left hand side.

;A(B(w7 ')) Z)

A<B(w’ ')7 Z)

~

+SAC B(w,2)

The equality of the right upper blocks is a consequence of the equalities
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—2a = —2a
—2B(-,z) = —2B(-,2)
dia(z,a?) + Ala-,z) = 2A(a-,z) + 2ialz, @)

9 = 2B(w,a)
2ia(aw,a”y = 2ia{aw,a)
) =
)
)

A~ N N N /N /N o/~
e e =
=~ W N = O
~— Y~ ~— Y Y ~— ~—

2ar(w,

4iB((z,a7), 2 4iB((z,a-),2) 45
—2iA(a(z,a),2) = —2A(A(z,a),2) + A(A(z, 2), ") 46
2B(#(w,),z) = B(w,B(-,z)) — B(-, B(w,z)) + 47
+2B(r(-,w), 2
— Alai(w,?), 2)+ (48)
+2iB((aw,a7),z) = —B(w,A(az2)) —iB({a, aw),z) —
—iB(-, a(z, aw)) +iB(w, a(z,a)) —
—B(+, Alaw, 2)) + 2iB((z, a*), aw) +
+iB({aw, a*), z) — 4ia(z, B(w,a")) +
+2ia(z, ar(w,-)) + A(B(w, 2),a-) —
—A(B(w,a-),z) + A(B(-, 2),aw) +
+A(B(-, aw), z) —ia(B(w, z),a-) +
+ia(B(-, z), aw)
—iA(alaw, a),z) = —ia(z, Alaw, @) — A(A(aw, ,a-), z) + (49)

+A(A(aw, 2),a-) — A(A(a-, 2), aw) —
—ia{A(z, aw), a*) + ia{A(z, a"), aw) —

—aaw,a(a-, z)) + ala-, a{aw, z)).

The equalities (40), (41), (44), (45) are tautologies. Using (22) and (23), one
easily proves (42) and (43).
The equality (46) is a consequence of
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—2A(A(z,a),2) + A(A(z,2),a-) = —;A(A(z, a),z) — ;fl(z, Az, a)) —
A, 2),2) ~ JA(z, Afa2) +
+;A(A(z, z),a)
= —A(A(z,a), 2)

= —2iA(a(z,a?), 2).

(47) follows immediately after applying the identities

Then we obtain

2B(r(-,w),z) = B(f(w,~),z)+ B(f(-, @),z
= B(r(w,~),z)+ B(w, B(+, 2))
= B(r(w,~),z) + B(-, B(w, 2))
= 2B(f(w,~), 2)

~

The left hand side of (48) equals —A(B(w, a-), z)+ A(aw, B(-, z)). The right hand
side can be transformed in the following way

—lB(w,A(a-,z)) - 1B(w,A(z,a-)) — ZA(a-, Bw, 2)) — ;B(-,fl(z,aw)) +

1
2

This equals to
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S AB(w,a),2) ~ SAB(w,2), @) ~ SA(w, Bw,2)) ~ SA(B(,2),aw) +
;A(B(w,z),a-) - ; W(B(- aw), ) — ;A(B( ), aw) + Az, B(-, aw)) +

+5 Alaw, B(.,2)) — 2A(z, B( aw)) + S A(z Bl aw)) + 5 A(z, Blw,a)) +
+;A(B(w, 2),a-) ;Am-, B(w, z)) — ;A(B(w, a), z) — ;A(z, B(w,a)) +
5 AB(,2),0w) + 5 A, B(,2)) + SAB(aw), 2) + SA(z, B, aw)) -
S AB(w,2), @) + SAGB(, 2),aw)

Cancelling appropriate terms we just obtain the terms from the left hand side.
It remains to prove (49). We transform the right hand side:

—;a<z, A, @) — ;a<z, Alar, am)) — ifl(fl(aw, 0),2) — ifl(z, (aw, a-)) —
_iA(fua-, aw), 2) — ifl(z, Ala-, aw)) + iA(A(aw, 2).0) + 1A Alaw, 2)) +
+iA(A(z, aw), a-) + i/i(a-, Az, aw)) — ifl(fl(a-, 2), aw) — ifl(aw, Ala-, 2)) —
_iA(A(z, a), aw) — ifl(aw, Az,0)) — LalA(z,aw), @) — La(Alaw,2), @) +
+%a<A(z, o), a@) + —a{A(a-, 2), aw) + %a(fl(aw, 2), @) — %Wi(a-, 2), aw).

The terms %a(/l(aw, z),a-) as well as %a(/l(a-, z), aw) with positive and negative
sign cancel out.
Using the identities

~

ifl(z,A(aw,a-)) _ iA(A(z,aw),a-)
ifl(fl(w,aw),z) — ifl(a-,fl(aw,z))
VA(AGaw,2),.a) = {A(aw, Az, )
ifl(a-,fl(z,aw)) = iA(A(a-,z),aw)

four more pairs cancel out.
Now, we take into account that the two equal terms
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A, @), 2) = L Aaw, Ao, )

together compensate the left hand side. Thus, it remains to show that the terms

l s ? A 1. .
—§a<z, Alaw,a)) — §a<z,A(a-,aw)> - ;A(A(aw,w),z) -

—ifl(aw, Ala-, 2)) — ;a<A(z, aw),a-) + %a(fl(z, a-),aw)

together do not contribute to the final expression at the right hand side.
Thus, we have to show that

. A . A 1.
—salz, Alaw, @) - Sa(z A(ar, aw)) — JA(A(z, a-), aw) -
—%a@zl(z, aw), a-) + %a(fl(z, a),aw).
equals 0.
Now, the terms
i - _ _ 1 . _ 1, =
—§a<z,A(aw, a )> = —a(z, a<aw7 CL>> = _ZA(Za a<a'7 CL’LU>) = ZA<Z>A(G'7 aw))

cancel with

and

i A 1. . 1.

_§a<z7 A(CLT, aU_})> = 7A<Z7 A(awv CL)) = ZA<A(Z7 CL’LU), a')
cancels with
(A _ 1~ -
—§a<A(z,aw),a-) = —EA(A(z,aw),a-).

The equality of the left lower blocks is a consequence of the equalities
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—i(-,aw) = —i(-,aw)
i(A(z, "), aw) = —.2(z,a<au7, )) |
‘Z<B(w, ), aw) = %(B(w, ), aiw) — %(-,ar(w,w)) +ir({-, aw), w)
E(fl(aw, ),aw) = —(aw,a(aw,")).
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(50) is a tautology, (51) a direct consequence of (22) and (53) holds because of

(18). In order to prove (52) we have to show

(B, ), a) = — (- b, w)) + A @), w) + SFw,{ am, )
We have
—§<~,af"(71),w)> = —?ar(u?,w), )
= —f(w,(-,aw))
= _if(<7aw>7w)

which cancels with the corresponding term at the right hand side. Since

N | .

both sides are equal.
The equality of the right lower blocks is a consequence of the equalities
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id = id (54)
—2i(z,a") = —2i(z,a") (55)
— (w,~) — (-, ) —2r(-,w) (56)
—i{aw,a") +i{a-,aw) = —i(aw,a)+ i{a-, aw) (57)
2ir((z,a7),w) = 2i(z, B(w,a)) (58)
2(a(z,a"),aw) = 2(z,a{aw,a-)) (59)
r(r(w,?),w) = 2r(r(w,-),w)—r(r(w,w),-) (60)
— i{ar(w,~), aw) + ir({aw, a-), w) —i(B(w, a+), aw) + i{ar(w, ), aw) — (61)

—ir({a-, aw), w) + i.r((aw, a),w) —

—i‘r(<aw, aw),-) + %(a-, ar(w,w)) —

—%(ar(w, w), a) + i{aw, ar(w,"))

(a{aw, a-),aw) = (aw,al{aw,a)). (62)

The equalities (54), (55), (57) are tautological, (56) follows from (3) and (19).
(58) is a consequence of (23), (59) follows from (22). (18) and (22) imply (62). (60)
can be obtained by the following transformations of the right hand side:

2r(r(w,-),w) —r(r(w,w),-) = —r(f(w,~),w)+

+ N

L.
S, 7(,)) -

and taking into account that

;f(f(w,),w) — ;f(w,f(-,w))

S m)) = i)

S i(@,)) = 57w, 0),)
It remains to prove (61). Since

—i{af(w,?), aw) = —i(B(w, a-), aw),

these terms cancel out immediately. In the remaining terms on the right hand
side we express r by 7.
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ot (w,7), am) + L {ai(0), aw) — (o aw),w) — - F{w, (m, ) +
57 ({aw, @), D) + S, (a7, aw) = SF((aw, a),) = S#(-, (o, aw)) +
5 (o, ai (i, w)) - %(af(w,u_)), a) + %(aw, ai(w,-)) + %(aw, ai (-, w))
Using the identities

;<af(w,),aw> = ;f(uu (aw, a-))

S{ar(,w),a0) = i, (o, aw))

;f(<a,au‘)>,w) = ;(a,ar(?ﬂ,w»

;}(w, (@7, aw) = ;<af*(w,u7),a)

%maw,a@,f) — %(aw,af(,w»

%<aw,af(w,-)> - %A((aw,cf),w)

and cancelling out the corresponding terms in the right hand side of (61) we obtain

P({aw, a-), w),
which coincides with the remaining term on the left hand side.
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