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Abstract 

Satellite imagery has been demonstrated to be an effective technology for producing 
accurate pre-harvest estimates in many agricultural crops. For Australian sugarcane, yield 
forecasting models have been developed from a single date SPOT satellite image acquired 
around peak crop growth. However, a failure to acquire a SPOT image at this critical 
growth stage, from continued cloud cover or from competition for the satellite, can 
prevent an image being captured and therefore a forecast being made for that season. In 
order to reduce the reliance on a single image capture and to improve the accuracies of 
the forecasts themselves, time series yield prediction models have been developed for 
eight sugarcane growing regions using multiple years of free Landsat satellite images. In 
addition to the forecasting of average regional yield, an automated computational and 
programming procedure enabling the derivation of crop vigour variability (GNDVI) maps 
from the freely available Sentinel 2 satellite imagery was developed. These maps, 
produced for 15 sugarcane growing regions during the 2017 growing season, identify both 
variations in crop vigour across regions and within every individual crop. These outputs 
were made available to collaborating mills within each growing region. This paper 
presents the accuracies achieved from the time series yield forecasting models versus 
actual 2017 yields for the respective regions, as well as provides an example of the 
derived mapping outputs. 

 
Introduction 

Satellite imagery has been used to provide accurate pre-harvest yield estimates in many 
agricultural crops (Bolton and Friedl, 2013). While a number of studies have used satellite imagery 
to provide a pre-harvest estimate of sugarcane yield, these models have been developed for growing 
conditions different to those experienced in Australia i.e. Brazil and Reunion Island (Fernandes et al., 
2011; Morel et al., 2014). Additionally, whilst these models were demonstrated to be accurate for 
predicting yield at the local scale, the models were not tested at the regional level. Robson et al. 
(2012) developed a yield forecasting model based on satellite imagery specifically for each Australian 
sugarcane growing region, to account for region specific climate and growing conditions. The models 
used the relationship between the historic yield achieved at the individual block level and the 
corresponding Green Normalised Difference Vegetation Index (GNDVI) extracted from a SPOT 5, 6 
or 7 satellite image (acquired around the time of peak GNDVI) to predict yield in tonnes of cane per 
hectare (TCH). GNDVI has been shown to be less prone to reflectance saturation at higher leaf area 
index (LAI) than the commonly used Normalised Difference Vegetation Index (NDVI) (Robson et 
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al., 2012). The yield prediction model initially developed for the Bundaberg region, has now been 
replicated across many Australian growing regions. 

The disadvantage of this method is the difficulty to acquire a satellite image during the 
window of peak GNDVI (from March to June) when cloud cover persists, or global competition for 
the satellite is at its highest. In addition, the acquisition of SPOT imagery does incur a cost 
(approximately $4 000 to $5 000 per sugarcane growing region) (Rahman et al., 2017), which can 
add up if multiple images are required during the growing season. To address these limitations,  ‘time 
series’ yield models from historic Landsat imagery have been developed for each growing region 
following the process described by ( Rahman and Robson, 2016; Rahman et al., 2017). By developing 
an understanding of historic crop growth trends within each region and matching those trends with 
annual regional yield, the time series approach has been shown to be more sensitive to seasonal 
variations in climate and to be less dependent on forecasting yield during the peak growth period. 
The time series models have also allowed for predictions of regional yield to be made earlier in the 
growing season i.e. January or February.  

In addition to regional forecasting, an image processing methodology, using the Python 
programming language, to automate the pre-processing of satellite imagery and the derivation of 
classified crop vigor (GNDVI) and yield maps for all crops within the participating sugar growing 
regions has been developed. During the 2017 season, Sentinel-2 and SPOT crop variability (GNDVI) 
maps were delivered to 15 sugarcane growing regions (~90,000 crops), yield maps from SPOT 
imagery and developed Landsat time series yield prediction models for eight sugarcane growing 
regions (Tully, Mackay, Burdekin, Herbert, Condong, Harwood, Broadwater) (models will be 
developed in the future for other regions). 

This paper provides an overview of the image processing methodologies and time series yield 
models developed, as well as validation of the accuracies of yield predictions achieved for the eight 
growing regions in 2017. The mapping outputs from this research will provide industry with a tool 
that can accurately identify the spatial and temporal variability in crop performance at both the region 
and block level. With this information varietal and crop class responses can be clearly observed as 
well as variations in crop vigour resulting from nutritional constraints, irrigation efficiencies and the 
incidences of pest and disease outbreaks. Accurate regional forecasts provided to each mill will 
support pre-harvest planning, forward selling and marketing.  

 

Methods 
The research spans 15 sugarcane growing regions, from Mulgrave in northern Queensland to 

Harwood in New South Wales (NSW) (Figure 1). These growing regions experience very different 
climatic conditions i.e. rainfall, temperature, humidity and solar radiation. Previous research has 
shown that a generic relationship between SPOT satellite imagery and TCH across all sugarcane 
growing regions is not possible due to these climatic differences and therefore individual models for 
each region are required (Robson et al., 2012). 

SPOT 6/7 satellite imagery was purchased for each growing region during the peak GNDVI 
period (assumed to be the same as peak growing period) from March to June in 2017. Early season 
(i.e. January to March) Sentinel-2 imagery corrected to top of atmosphere reflectance was 
downloaded from the website https://remotepixel.ca. For eight of the regions (Tully, Mackay, 
Herbert, Burdekin, Bundaberg, Condong, Harwood and Broadwater) all available Landsat imagery 
were downloaded via the National Computation Infrastructure Thredds server: 
http://dapds00.nci.org.au/thredds/catalogs/rs0/catalog.html. Landsat 5, 7 and 8 surface reflectance 
imagery as well as the corresponding cloud and cloud shadow masks were downloaded, resulting in 
~ 100 individual Landsat scenes per sugarcane growing region. The spatial resolutions for the three 
satellite platforms used in this study are SPOT 6/7 (6 m) Sentinel-2 (10 m) and Landsat (30 m).  
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Fig. 1— Sugarcane growing regions. 

 
Historic and current mill block data were sourced as GIS spatial layers from each respective 

mill and saved as ESRI shapefiles. The GNDVI (Eq. 1) was calculated for each SPOT 6/7 and 
Sentinel-2 satellite image and saved as a new image output. For cloud affected areas in for SPOT 6/7 
imagery, individual crop boundaries influenced by cloud and cloud shadow were manually removed 
before further analysis; whilst for sentinel 2 imagery the F-Mask cloud masking algorithm was 
adapted to automatically create cloud and shadow masks http://pythonfmask.org. The mill boundary 
layers were used to extract the GNDVI values from each of the satellite images. 

GNDVI = RNIR-RGreen
RNIR+RGreen

                                                           Eq. 1 

 
For both the Sentinel-2 imagery and SPOT 6/7 imagery the K-Means unsupervised 

classification method was used to classify the GNDVI into eight classes of low to high GNDVI across 
each region (i.e. eight classes spread across all blocks) and also to classify each individual block into 
eight classes (i.e. eight classes within each block). These sugarcane variability maps were then 
provided to mills and growers in both an electronic format i.e. 2D map and as an image file for display 
in a GIS system. 

Using the GIS block boundaries, the mean GNDVI values from each SPOT image were 
extracted for each region. Previously developed exponential equations relating yield to GNDVI for 
each region were applied to predict the regional yield in TCH (Robson et al., 2012). 

The Landsat time series processing is depicted in Figure 2 and is further described by Rahman 
et al., (2017) and Rahman and Robson (2016).  
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Fig. 2— Landsat time series yield prediction workflow. 

 
GNDVI images were created from each Landsat image. Where two Landsat images were 

required to cover a sugarcane growing region the GNDVI images were mosaicked together to form 
one image. Masks were applied to remove cloud and cloud shadow areas from further analysis. GIS 
block boundaries provided for each growing season were used to extract the mean GNDVI from each 
masked Landsat GNDVI image acquired during that corresponding season. All extracted GNDVI 
values were then plotted against the ‘season day’ (between 1 November to 30 June) and a polynomial 
fitted to the data for all years. This polynomial form was then “vertically shifted” to match the GNDVI 
points for each individual year, and the maximum GNDVI derived from the “vertically shifted” 
polynomial for each year was then regressed against the corresponding annual regional yield. For the 
prediction of the 2017 seasonal yield, a Landsat image was acquired early in the growing season (i.e. 
February) and the maximum GNDVI calculated using the polynomial relationship derived from the 
‘time series’ analysis. The maximum GNDVI value was then converted to predict average regional 
yield by using the linear algorithm produced from the historic relationship between annual maximum 
GNDVI and average yield. 

In order to validate the accuracies of both the single date SPOT yield forecast and that 
achieved from the Landsat time series, measures of ‘average yield to date’ were sourced from each 
respective mill. Note that as harvesting was not yet completed for most sugarcane growing regions, 
‘average yield to date’ takes into account cane that had already been milled (around 90% of the 
regional harvest), and an estimate of what had not yet been harvested. 

Results and Discussion 
The development of the single date SPOT imagery yield algorithm is an ongoing process 

where the relationship between the yield achieved by every individual crop and its corresponding 
GNDVI value for each growing region is added to previous year’s data. Whilst this relationship for 
some regions such as Bundaberg has been found to be relatively stable across many seasons, even 
under extreme weather events (Figure 3), other regions are quite variable. Variations in this annual 
relationship are likely driven by seasonal climate variability, timing of imagery capture and the 
satellite image ‘look angle’ at the time of capture. For the latter, thresholds of <15 degrees are 
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specified. However, greater values can occur, such as during the 2016 season where a number of 
SPOT images had look angles over 30 degrees, resulting in very low GNDVI values and therefore a 
low value for predicted yield. This stability over time has obvious implications on the accuracies of 
predictions in current growing seasons and as such was why the alternative time series models were 
developed. 

 

 
Fig. 3— Spot 5/6/7 GNDVI vs block level TCH for each year and the exponential model fitted to the 

data with the R2 values. The thick red line shows the model using data for all years. Example shown is for the 
Bundaberg region. 

 
Time series models were developed for eight growing regions including Bundaberg, 

Burdekin, Herbert, Mackay, and Tully as well as two models (1 and 2 year cane) for each of the three 
NSW growing regions Condong, Broadwater and Harwood. Figure 4a provides an example of a 
Landsat time series GNDVI model and depicts the annual average growth trend of all crops within 
the Tully growing region over a 10 year period (2007-2016). Each point represents the average 
regional crop GNDVI value extracted from a Landsat image, with 70 images used to develop this 
relationship. The strong quadratic relationship (R2= 0.8) implies that the underlying growth of crops 
is similar across years within this region, particularly up until May, when the points start to exhibit 
more variation around the regression line. The development of this time series model not only serves 
as a benchmark for future seasons i.e. identify how a current season is progressing in comparison 
with previous years but allows any major deviations, such as those associated with severe weather 
events or biosecurity outbreaks to be quickly identified. Figure 4b identifies the strong relationship 
achieved between the model derived maximum GNDVI for each growing season versus the average 
yield achieved (R2 = 0.89). For the forecasting of yield within a current season, the quadratic equation 
is vertically shifted so the GNDVI value for the current season sits on the quadratic line. The 
maximum GNDVI can be calculated from the “vertically shifted” quadratic equation presented in 
Figure 4a, as early as January or February, and then converted to a predicted average regional yield 
using the linear algorithm presented in Figure 4b. Further discussion and explanation of this model 
development is given in Rahman and Robson (2016). 
 



 
Fig. 4—a. Landsat time series GNDVI using a fitted 2nd order polynomial using all available image dates with 
less than 50% cloud cover for the Tully region. b. relationship between maximum model derived GNDVI and 

associated TCH for each year 2005 to 2016. 

 
Figure 5 presents the prediction accuracies of annual regional yield for eight growing regions 

(2017), using both the single capture SPOT and the Landsat time series methods. It should be noted 
that the reported mill harvest in TCH is only ‘harvest to date’, as the 2017 harvest had yet to be 
completed in many regions. The single date SPOT prediction was not completed for either Tully or 
Mackay due to insufficient historical imagery available to develop the model. In future years this data 
will be sourced and the single date algorithm will be created for these regions. In addition, the Herbert 
single date SPOT prediction was only based on the southern half of the region, due to persistent cloud 
preventing a full capture of the region during the critical period of peak growth. 
 

 
Fig. 5— Comparison of TCH predicted from SPOT 6/7 single date imagery, Landsat time series, and 

actual harvested TCH to date (data sourced from the mills). 
 

For all regions other than the NSW sugarcane growing regions (Broadwater, Condong and 
Harwood) the time series models were found to be more accurate in forecasting average regional 
yield than the single date models derived from SPOT imagery. The lower accuracy of the Landsat 
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time series models for NSW may be due to the complexity of the 1-year and 2-year farming system. 
As such, further investigation of the NSW datasets will be conducted in an attempt to improve the 
models. 

As well as the forecast of annual yield, a number of mapping products were generated from 
both SPOT and Sentinel-2 imagery. Examples of K-Means eight class crop variability mapping, 
ranking GNDVI from low to high, derived from Sentinel-2 satellite imagery at both the regional and 
block level are shown in Figure 6. Regional level maps (Figure 6 (top)) compare the performance 
(vigor and yield) of all crops within the growing region prior to harvest. This provides mills with a 
clear representation of those sub-regions that are performing better than others and can assist with 
harvest scheduling or identifying the incidence of pest, disease or isolated flooding events. The block 
level variability mapping (Figure 6 (bottom)) offers greater benefit at the grower level as it clearly 
shows the variability in crop vigor (derived yield) at the farm and sub block level. With this 
information growers can better understand the spatial variation that is occurring within their crops 
and as such can implement targeted agronomy and possibly variable rate management to minimise 
inputs and maximise production. The image product is supplied to growers or agronomists as a 
“Geotiff” or “ASCII” file format, common input formats for farm machinery software used in 
precision agriculture applications, i.e. the block classification image can be loaded onto tractor 
software and used to specify rates of nitrogen application. 

 

   
 



 
Fig. 6— Example of Sentinel-2 K-Means classification applied across all crops within a growing 

region (top) and to individual blocks (bottom) for the Tully sugarcane growing region. The entire region is 
shown (left) for each classification, as well as a zoomed in version to show the difference between the 

“regional” and “block” classifications. 
 
An important aspect of our research is the dissemination of the derived mapping and imagery 

products. Currently a commercialisation plan is being developed that will support the automation and 
delivery of image products to all levels of industry.  

Conclusions 
These methods offer significant benefit to many levels of the Australian sugar industry. 

Accurate regional yield forecasts can assist mills with harvest scheduling and forward selling 
decisions; whilst the mapping outputs provide a strong understanding of the spatial and temporal 
variation in crop performance at the regional to individual crop level. These maps can be used as a 
tool for understanding yield variability, as well as for identifying a wide range of abiotic and biotic 
constraints on production.   
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