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Abstract The effective field theory of heterotic vacua that realise R3,1 preserving
N=1 supersymmetry is studied. The vacua in question admit large radius limits taking
the form R3,1 × X, with X a smooth threefold with vanishing first Chern class and
a stable holomorphic gauge bundle E. In a previous paper we calculated the kinetic
terms for moduli, deducing the moduli metric and Kähler potential. In this paper, we
compute the remaining couplings in the effective field theory, correct to first order
in α� . In particular, we compute the contribution of the matter sector to the Kähler
potential and derive the Yukawa couplings and other quadratic fermionic couplings.
From this we write down a Kähler potential K and superpotential W.
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1 Introduction

We are interested in heterotic vacua that realiseN=1 supersymmetric field theories in
R3,1. At large radius, these take form R3,1 ×XwhereX is a compact smooth complex
threefold with vanishing first Chern class. We study the E8×E8 heterotic string, and
so there is a holomorphic vector bundle E with a structure group H ⊂ E8 × E8 and
a d = 4 spacetime gauge symmetry given by the commutant G = [E8×E8,H]. The
bundle E has a connection A, with field strength F satisfying the Hermitian Yang–
Mills equation. The field strength F is related to a gauge-invariant three-form H
and the curvature of X through anomaly cancellation. The triple (X,E, H) forms a
heterotic structure, and the moduli space of these structures is described by what we
call heterotic geometry. In this paper, we compute the contribution of fields charged
under the spacetime gauge group G to the heterotic geometry.

The challenge in studying heterotic vacua is the complicated relationship between
H , the field strength F and the geometry of X. Supersymmetry relates the complex
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On the effective field theory of heterotic vacua 1033

structure J and Hermitian form ω of X to the gauge-invariant three-form H :

H = dcω, dcω = 1

2
Jm1

n1 Jm2
n2 Jm3

n3(∂n1ωn2n3) dx
m1dxm2dxm3 . (1.1)

where xm are real coordinates on X. Green–Schwarz anomaly cancellation gives a
modified Bianchi identity for H

dH = −α�

4

(
Tr F2 − Tr R2

)
, (1.2)

where in the second of these equations R is the curvature two-form computed with
respect to a appropriate connection with torsion proportional to H . This means the
tangent bundleTX has torsion if H is nonzero. Unless one is considering the standard
embedding—inwhichE is identifiedwithTX the tangent bundle toX—the right-hand
side of (1.2) is nonzero even when X is a Calabi–Yau manifold at large radius. This
means that H is generically non-vanishing, though subleading in α� , and so even for
large radius heterotic vacua X is non-Kähler. Torsion is inescapable.

The effective field theory of the light fields for these vacua is described by a
Lagrangian with N = 1 supersymmetry, whose bosonic sector is of the form

L = 1

2κ24

√−G4

(
R4 − 1

4
Tr |Fg|2 − 2GABD̂e


AD̂e

B − V (
, 
̄)+ · · ·

)
.

(1.3)

Here κ4 is the four-dimensional Newton constant, R4 is the four-dimensional Ricci
scalar, Fg is the spacetime gauge field strength, the 
A is range over the scalar fields
of the field theory, and their kinetic term comes with a metricGAB . The fields


A may
be charged under g, the algebra of the gauge group G, with an appropriate covariant
derivative D̂e. Finally V (
, 
̄) is the bosonic potential for the scalars.

WhenE ∼= TX the moduli space of the heterotic theory reduces to that of a Calabi–
Yau manifold and is described by special geometry. The unbroken gauge group in
spacetime is E6, and the charged matter content consists of fields charged in the 27
and 27 representations. The Yukawa couplings were calculated in supergravity in, for
example, [1,2]. The effective field theory of this compactification was described in a
beautiful paper [3], in which relations between the Kähler potential and superpotential
were computed using string scattering amplitudes, (2, 2) supersymmetry and Ward
identities. The Kähler and superpotential were shown to be related to each other and
in fact were both determined in terms of a pair of holomorphic functions. These are
known as the special geometry relations. For a review of special geometry in the
language of this paper, see [4]. A key question is how these relations generalise to
other choices of bundle E.

We work towards answering this question by computing the effective field theory
couplings correct to first order in α� . In a previous paper [5] we commenced a study
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1034 J. McOrist

of heterotic geometry using α� -corrected supergravity. This is complementary to a
series of papers [6–10] who identified the parameter space with certain cohomology
groups. In the context of effective field theory (1.3), one of the results of [5] was to
calculate the contribution of the bosonic moduli fields to the metricGAB . In this paper,
we compute the contribution of the matter sector to the metric GAB , and the Yukawa
couplings, correct to order α� . We describe an ansatz for the superpotential and Kähler
potential for effective field theory:

K = − log

(
4

3

∫
ω3

)
− log

(
i
∫
��

)
+ Gξη TrC

ξCη + Gρτ Tr D
τDρ,

W = −i
√
2e−iφ

∫
�

(
H − dcω

)
.

(1.4)

The superpotential is normalised by comparing with the Yukawa couplings computed
in the dimensional reduction using the conventions of Wess–Bagger [31].

The moduli have a metric

ds2 = 2Gαβ dy
α ⊗ dyβ,

Gαβ = 1

4V

∫
�α

μ � �β
ν gμν̄ + 1

4V

∫
Zα � Zβ +

+ α�

4V

∫
Tr

(
DαA � Dβ A

)
− α�

4V

∫
Tr

(
Dα� � Dβ�

†
)
,

(1.5)

where Zα = Bα + i∂αω is the α� -corrected, gauge-invariant generalisation of the
complexified Kahler form δB + iδω, the χα form a basis of closed (2, 1)-forms, and
the last line is the Kobayashi metric, extended to the entire parameter space, including
deformations of the spin connection onTX. The metric expressed this way is an inner
product of tensors corresponding to complex structure�α , Hermitian moduli Zα , and
bundle moduli DαA. The role of the spin connection Dαθ is presumably determined
in terms of the other moduli as they do not correspond to independent physical fields.
The tensors depend on parameters holomorphically through

�α
ν̄ = 0, Zα = Bα + i∂αω = 0, DαA

0,1 = 0, Dαθ
0,1 = 0. (1.6)

de laOssa andSvanes [6] showed that there exists a choice of basis for the parameters in
which each of the tensors in the metric are in an appropriate cohomology; 1 hence, the
moduli space metric (5.2) is the natural inner product (Weil–Peterson) on cohomology
classes.

The matter fields are Cξ and Dτ and appear in the Kähler potential trivially, as
they do in special geometry. The matter metric is the Weil–Petersson inner product of
corresponding cohomology elements

1 I would like to thank Xenia de la Ossa for explaining this choice of basis to me.
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On the effective field theory of heterotic vacua 1035

Gτσ = α�

4V

∫

X
ψτ � ψσ , Gξη = α�

4V

∫

X
φξ � φη (1.7)

where φξ , ψρ are (0, 1)-forms valued in a sum over representations of the structure
group H.

In some sense it was remarkable that one was able to find a compact closed expres-
sion for the Kähler potential for the moduli metric. This was not a priori obvious,
especially given the nonlinear PDEs relating parameters in the anomalous Bianchi
identity and supersymmetry relations (1.1)–(1.2). Indeed, it turned out that the Kähler
potential for the moduli in (1.4) is of the same in form as that of special geometry,
except where one has replaced the Kähler form by the Hermitian form ω. At first sight
this is confusing as the only fields appearing in the Kähler potential are ω and �.
Nonetheless, the Kähler potential still depends on bundle moduli in precisely the right
way through a non-trivial analysis of the supersymmetry and anomaly conditions. The
Hermitian form ω contains, hidden within, information about both the bundle and
Hermitian moduli.2

The metric (5.2) is compatible with the result in [11], who studied the α� and α� 2

corrections to the moduli space metric in the particular case where the Hermitian part
of the metric varies, while the remaining fields are fixed: (∂aω)1,1 �= 0, Ba = �a =
Da A = 0. In general all fields vary with parameters and the metric is nonzero already
at O(α� ).

The analysis in [5] focussed primarily on D-terms relevant to moduli. In this paper,
we compute the remaining D-terms, including the metric terms for the bosonic matter
fields charged under g. We also compute the F-terms up to cubic order in fields,
exploiting the formalism constructed in [5]. The primary utility of this is to derive an
expression for the Yukawa couplings in a manifestly covariant fashion. Together with
the metrics discussed above, one is now finally able to compute properly normalised
Yukawa couplings, relevant to any serious particle phenomenology. The F-terms are
protected in α� -perturbation theory, and so the only possible α� -corrections are due
to worldsheet instantons.

The fields neutral under g, the singlet fields, also do not have any mass or cubic
Yukawa couplings. In fact, all singlet couplings necessarily vanish. They correspond
to moduli which are necessarily free parameters and so the singlets need to have
unconstrained vacuum expectation values. If there were a nonzero singlet coupling at
some order in the field expansion, e.g. 1n , or in a e6 theory (27 ·27)326 ·1101, then some
parameter yα would have its value fixed, a contradiction on it being a free parameter.3

2 It is important to note that the derivation here and in [5], no assumption is made about expanding around
the standard embedding. E is not related to the tangent bundle.
3 An important open question is, when are singlet couplings are generated by worldsheet instantons? At
least for vacua derived from linear sigma models, there are arguments that suggest that after summing over
all worldsheet instantons all the singlet couplings vanish [12,13]. Here we assume the vacua is well defined
with a large radius limit, and so all singlet couplings vanish.
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1036 J. McOrist

The superpotentialW in (1.4) is an ansatz designed to replicate these couplings. Its
functional form can be partly argued by symmetry. There is a complex line bundle over
the moduli space in which the holomorphic volume form onX, denoted�, transforms
with a gauge symmetry � → μ� where μ ∈ C∗. The superpotential is also a section
of this line bundle, and transforms in the same way W → μW. Hence, W has an
integrand proportional to�. To make the integrand a nice top-form we need to wedge
it with a gauge-invariant three-form. The three-form needs to contain a dependence
on the matter fields, and this can only occur through the ten-dimensional H field.
The other natural gauge-invariant three-forms that are not defined in a given complex
structure are dω and dcω.W is also required not to give rise to any singlet couplings.
So all derivatives of W with respect to parameters must vanish. The combination
H − dcω manifestly satisfies this request. Derivatives with respect to matter fields of
W do not vanish. As these are charged in g, the only nonzero contributions come from
H . This allows us to fix the normalisation of W by comparing with the dimensional
reduction calculation of the Yukawa couplings. Finally, W must be a holomorphic
function of chiral fields, which is straightforward to check. It is convenient that the
single expression for the superpotential captures both thematter andmoduli couplings,
and fact seemingly not realised before.

A complementary perspective on W was studied by [8]. In that paper, one starts
with an su(3)-structuremanifoldX, posits the existence ofW, and uses it as a device to
reproduce the conditions needed for the heterotic vacuum to be supersymmetry. This
builds on earlier work in the literature, see, for example, [14–16]. The superpotential
ansatzed in those papers is of a different form to that described here, and the cubic and
higher-order singlet couplings nor Yukawa couplings were not consistently computed.
We choose to work with the expression above as it manifestly replicates the vanishing
of all singlet couplings.

The layout of this paper is the following. In Sect. 2 we review the necessary
background to study heterotic vacua, reviewing the results of [5]. In Sect. 3, we dimen-
sionally reduce the Yang–Mills sector to obtain ametric on thematter fields. In Sect. 4,
the reduction is applied to the gaugino to get the quadratic fermionic couplings, includ-
ing the Yukawa couplings. In Sect. 5, we summarise the results. In Sect. 6 we show
how these couplings are represented in the language of a Kähler potential K and
superpotential W.
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On the effective field theory of heterotic vacua 1037

1.1 Tables of notation

Table 1 A table of objects used

Quantity Definition Comment

g d = 4 spacetime gauge algebra Group is G

h Structure algebra of E Group is H

r Representation of h dim r = r

R Representation of g dim R = R


 d = 10 gauge field in (r, R) of h ⊕ g φ = 
0,1, 
 = φ − ψ†

� d = 10 gauge field in (r, R) of h ⊕ g ψ = �0,1, � = ψ − φ†

φξ Basis for H1(X,Er ) Valued in r of h

ψρ Basis for H1(X,Er ) Valued in r of h

Cξ , Dρ, Yα d = 4 bosons in the R, R, 1 of g (e.g. 27, 27, 1 of e6) ξ, τ, α label harmonic bases

Cξ ,Dρ,Yα d = 4 fermions in R, R of g Calligraphic for anticommuting

Be dXe g-valued connection on R3,1 Occasionally embed in Ae8
Am dxm h-valued connection for E on X Occasionally embed in Ae8
δA Fluctuation of connection for E Occasionally δAh

δB Fluctuation of connection for g Occasionally use δAg

ε Majorana–Weyl so(9, 1) spinor

ζ ⊗ λ so(3, 1)⊕ so(6) spinors λ, λ′ positive/negative chirality

Table 2 A table of coordinates and indices

Coordinates Holomorphic indices Real indices

Calabi–Yau manifold xμ μ, ν, . . . m, n, . . .

R3,1 spacetime Xe − e, f, . . .

basis for rep r of h e.g. h = su(3) [Th]i j ∈ r i, j = 1, . . . , r −
basis for rep R of g e.g. g = e6 [Tg]M N ∈ R M, N = 1, . . . , R −
parameters of heterotic structure yα α, β, γ, . . . a, b, c . . .

indices for d = 4 spinors (occasional) ζa , ζ
ȧ − a, b,

2 Heterotic geometry

The purpose of this section is to establish conventions and notation through a review
of heterotic moduli geometry, most of which is explained in [5]. In terms of notation,
there are occasional refinements and new results towards the end of the section. We
largely work in the notation of [5], with a few exceptions, most important of which
is that real parameters are denoted by ya and complex parameters by yα, yβ . The
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1038 J. McOrist

discussion both there and in this section refers to forms defined on the manifold X.
This is generalised in later sections in order to account for the charged matter fields. A
table of notation is given in Tables 1 and 2. Basic results and a summary of conventions
are found in Appendices. Hodge theory and forms are in “Appendix A”; spinors in
“Appendix B”; and representation theory in “Appendix C”.

We consider a geometry R3,1×XwithX smooth, compact, complex and vanishing
first Chern class. While X is not Kähler in general, we take it to be cohomologically
Kähler satisfying the ∂∂-lemma, meaning that its cohomology groups are that of a
Calabi–Yau manifold.

The heterotic action is fixed by supersymmetry up to and including α′2–corrections.
In string frame with an appropriate choice of connection for TX, it takes the form
[17,18]:

S = 1

2κ210

∫
d10X

√
g10 e

−2

{
R− 1

2
|H |2 + 4(∂
)2 − α′

4

(
Tr |F |2−Tr |R(�+)|2)

}
,

(2.1)
Our notation is such thatμ, ν, . . . are holomorphic indices alongXwith coordinates x ;
m, n, . . . are real indices alongX; while e, f, . . . are spacetime indices corresponding
to spacetime coordinates X. The 10-dimensional Newton constant is denoted by κ10,
g10 = − det(gMN ), 
 is the 10-dimensional dilaton, R is the Ricci scalar evaluated
using the Levi–Civita connection and F is the Yang–Mills field strength with the trace
taken in the adjoint of the gauge group.

We define an inner product on p-forms by

〈S, T 〉 = 1

p! g
M1N1 . . . gMpNp SM1...Mp TN1...Np .

and take the p-form norm as

|T |2 = 〈T, T 〉.

Thus, the curvature squared terms correspond to

Tr |F |2 = 1

2
Tr FMN F

MN and Tr |R(�+)|2 = 1

2
Tr RMN PQ(�

+)RMN PQ(�+),

where the Riemann curvature is evaluated using a twisted connection

�±
M = �M ± 1

2
HM ,

with �M is the Levi–Civita connection. The definition of the H field strength and its
gauge transformations are given in Sect. 2.3.
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On the effective field theory of heterotic vacua 1039

We write the metric on X as

ds2 = 2gμν̄dx
μdx ν̄ .

The manifold X has a holomorphic (3, 0)-form

� = 1

3!�μνρdx
μdxνdxρ,

where �μνρ depends holomorphically on parameters and coordinates of X. � is a
section of a line bundle over the moduli space, meaning that there is a gauge symmetry
in which � → μ� where μ(yα) ∈ C∗ is a holomorphic function of parameters.

There is a compatibility relation

i

||�||2�� = 1

3!ω
3, ||�||2 = 1

3!�μνρ�
μνρ

, (2.2)

where ||�|| is the norm of �. For fixed X, this is often normalised so that ||�||2 = 8.
However, ||�|| depends on moduli and is gauge dependant and so it is not consistent
in moduli problems to do this.

2.1 Derivatives of � and �α

A variation of complex structure given by a parameter yα can be described in terms
of the variation of the holomorphic three-form by noting that ∂α� ∈ H (3,0) ⊕ H (2,1)

and writing

∂�

∂yα
= − kα �+ χα ; χα = 1

2
χα κλν̄ dx

κdxλdx ν̄ . (2.3)

Here χα are ∂-closed (2, 1)-forms. Variations of complex structure J : TX → TX

can also be phrased in terms of (0, 1)-forms valued in TX

∂α J = 2i�α ν̄
μdx ν̄ ⊗ ∂μ, ∂α∂β J = 2i�αβ = 2i�αβν̄

μdx ν̄ ⊗ ∂μ.

Wehave denoted ∂β�α = �αβ whichmakesmanifest the symmetry property ∂β�α =
∂α�β . Occasionally we will denote parameter derivatives by ∂αω ∼= ω,α .

The �α and χα are related

χα = 1

2
� ν̄
ρσ �α μ̄ν̄dx

ρdxσdx μ̄, � μ
α = 1

2 ‖�‖2�
μτρ

χξ τρ σ dx
σ . (2.4)

The symmetric component of �α
μ appears in variations of the metric δgμ̄ν̄ =

�α (μ̄ν̄) δyα .
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1040 J. McOrist

It is best to describe variations of complex structure through projectors P and Q
onto holomorphic and antiholomorphic components, respectively,

Pm
n = 1

2

(
δm

n − iJm
n) , Qm

n = 1

2

(
δm

n + iJm
n) .

The projectors capture the implicit dependence on complex structure. For example,
the operator ∂ = dxmQm

n ∂n undergoes a variation purely as a consequence of the
implicit dependence on the complex structure:

[∂α, ∂] = [
∂α, (Qm

ndxm ⊗ ∂n)
] = −�α

μ∂μ (2.5)

2.2 The vector bundle E

Let E denote a vector bundle over X, with structure group H, and A the connection
on the associated principal bundle. That is, A is a gauge field valued in the adjoint
representation adh of the Lie algebra h of H.

Under a gauge transformation, A has the transformation rule


A = 
(A − Y )
−1, Y = 
−1d
, (2.6)

where 
 is a function on X that takes values in G. We take 
 to be unitary and then
d

−1 and A are anti-Hermitian. The field strength is

F = dA + A2,

and this transforms in the adjoint of the gauge group: F → 
F
−1.
Let A be the (0, 1) part of A then, since A is anti-Hermitian,

A = A − A†.

On decomposing the field strength into type, we find F0,2 = ∂A + A2. The bundle
E is holomorphic if and only if there exists a connection such that F (0,2) = 0. The
Hermitian Yang–Mills equation is

ω2F = 0.

2.3 The B and H fields

There is a gauge-invariant three-form

H = dB − α�

4

(
CS[A] − CS[�]

)
, (2.7)
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On the effective field theory of heterotic vacua 1041

where CS denotes the Chern-Simons three-form

CS[A] = Tr
(
AdA + 2

3
A3

)
= Tr

(
AF − 1

3
A3

)
,

and� is the connection on TX for Lorentz symmetries. The three-form dB is defined
so that H to be gauge invariant, and so dB itself has gauge transformations. Under a
gauge transformation

CS[A] → CS[A] − d Tr(AY )+ 1

3
Tr

(
Y 3

)
,

togetherwith the analogous rule forCS[�]. The integral of Tr (Y 3)over a three-cycle is
awinding number, so it vanishes if the gauge transformation is continuously connected
to the identity. The integral vanishes for every three-cycle and so Tr (Y 3) is exact
1
3 Tr (Y 3) = dU, for some globally defined two-form U . There are corresponding
transformations for the connection � in which Y is replaced by Z and U by W .

Anomaly cancellation conditionmeans that the B field is assigned a transformation

B → B − α�

4
{Tr (AY )−U − Tr (�Z)+ W } . (2.8)

With this transformation law, B is a 2-gerbe and H is invariant.
An important constraint arising from supersymmetry is that H is related to the

Hermitian form ω and complex structure J of X:

H = dcω, dcω = 1

2
Jm1

n1 Jm2
n2 Jm3

n3(∂n1ωn2n3) dx
m1dxm2dxm3 , (2.9)

which for an integrable complex structure reduces to

dcω = Jm∂mω − (dJm)ωm . (2.10)

We denote the real parameters of the compactification by ya and complex parameters
by yα, yβ . If the parameters are fixed to y = y0, the second term in (2.10) vanishes
and the relation simplifies to

dcω|y=y0 = i(∂ − ∂)ω. (2.11)

However, when complex structure is varied ∂α(dJ ) = 2i∂�α , the second term in
(2.10) is nonzero and is important as it contributes to the equations satisfied by the
moduli.

123



1042 J. McOrist

2.4 Derivatives of A

The heterotic structure (X, H,E) depends on parameters. This means the gauge con-
nection A and its gauge transformations 
 depend on parameters. As constructed in
[5], the gauge covariant way of describing a deformation of A is given by introducing
a covariant derivative

Da A = ∂a A − dA Aa, (2.12)

where A� = Aadya is a connection on the moduli space with a transformation law


Aa = 
(Aa − Ya)

−1, Ya = 
−1 ∂a
. (2.13)

With this transformation property Da A transforms homogeneously under (2.6):

Da A → 
 Da A

−1.

Themoduli spaceM is complex, andwe introduce a complex structure ya = (yα, yβ).
When parameters vary complex structure the holomorphic type of forms change, and
the covariant derivatives DαA is no longer gauge covariant. This is remedied by
defining a generalisation, termed the holotypical derivative DαA:

DαA = (DαA)
(0,1) = ∂αA −�α

μA†
μ − ∂AA�α,

DβA = (Dβ A)
(0,1) = ∂βA −�β

μ̄Aμ̄ − ∂AA�
β

= 0,
(2.14)

where the vanishing of DβA follows from (2.5). It follows from the definition that
under a gauge transformation the holotypical derivative transforms in the desired form

DαA → 
DαA
−1.

Without the extra term −�α
μA†

μ in the holotypical derivative, this property does not
hold as ∂ fails to commute with ∂α .

The holotypical derivative can be extended to act on (p, q)-forms. Define

Wr,s
m = 1

r !s! Wmμ1···μr ν̄1···ν̄sdxμ1···μr ν̄1···ν̄s ,

and understand Wr,s
m = 0 if r or s are negative or r+s > n−1. The holotypical

derivatives are then given by

DαW
p,q = (DαW )p,q = DαW

p,q −� μ
α W p−1,q

μ +� μ
α W p,q−1

μ ,

DβW
p,q = (DβW )p,q = DβW

p,q +�β
ν̄W p−1,q

ν̄ −�β
ν̄W p,q−1

ν̄ .
(2.15)
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On the effective field theory of heterotic vacua 1043

The holotypical derivative has the nice feature that it preserves holomorphic type:

DβDαW
p,q = (DβDαW )p,q = (DβDαW )p,q .

We use Dα to denote the covariant derivative to account for any gauge dependence of
the real form W . For example, the covariant derivative of the field strength is related
to that of A:

DMF = ∂MF +
[
A�M , F

]
= dA(DM A),

However, the holotypical derivative of, for example, F (0,2) gives

DαF
(0,2) = ∂ADαA = �α

μFμ,

and this is known as the Atiyah constraint.

2.5 Derivatives of H

It is of use to compute derivatives of H with respect to parameters. First define a gauge
covariant derivative of B via

DaB = ∂a B − α�

4
Tr (Aa dA), (2.16)

With this choice, we have a gauge transformation law for DaB that is parallel to the
gauge transformation (2.8) for B:


DaB = DaB + α�

4

(
Tr (Y Da A)+Ua

)
. (2.17)

The second and third derivatives are defined to transform in a natural way inherited
from that of DaB

DaDbB = ∂aDbB − α�

4
Tr (DbAdAa),

DcDaDbB = ∂cDaDbB − α�

4
Tr

(
DbDa A dA�c

)
.

(2.18)

A gauge-invariant quantity Ba is the formed from DaB

Ba = DaB + α�

4
Tr (ADa A)− dba, (2.19)

with dba an exact form. The exact form comes from the fact the physical quantity is
dB, and so in writing Ba there is a corresponding ambiguity. It is a simple exercise to
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note that ∂aH is given by the expression

∂aH = dBa − α�

2
Tr (Da A F). (2.20)

In terms of holomorphic parameters, we introduce the holotypical derivative and find

DαH
p,q = ∂Bp−1,q

α + ∂Bp,q−1
α − α�

2
Tr

(
DαA F p,q−1). (2.21)

The second derivative is given by

∂b∂aH = −α�

2
Tr

(
(dADb A)Da A + FDbDa A

)
+ dBba, (2.22)

where Bba = ∂bBa and in terms of the B-field

Bba =
(
DbDaB − α�

4
Tr

(
(DbDa A)A

))
.

Despite appearances the right-hand side is symmetric in a, b after one uses that

D[bDa]B = −α�

4
Tr dAFba

α�

4
d Tr [Aa, A

�
b]A. (2.23)

and so

∂b∂aH = −α�

4
Tr

(
(dADbA)Da A + (dADa A)DbA + F{Da, Db}A

)

+ d

(
D(bDa)B − α�

4
Tr

(
(D(bDa)A)A

))
.

(2.24)

The third derivative of H is given by

∂c∂b∂aH = −α�

2
Tr

(
{DcA, DbA}Da A + (dADcDb A)Da A + (dADb A)DcDa A

+ (dADc A)DbDa A
)

+ dBcba . (2.25)

where Bcba = ∂c∂bBa and in terms of the B-field:

dBcba =
(
DcDbDaB − α�

4
Tr

(
(DcDbDa A) A + (DbDa A) (DcA)

))
.

For similar reasons to the second derivative above, this is actually symmetric in a, b, c,
but not made manifest in this expression for compactness.
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2.6 Derivatives of dcω

The derivative of dcω in (2.10) with respect to parameters is

∂α (d
cω) = 2i�α

m∂mω + Jm∂m∂αωm − 2i
(
d�α

m)
ωm − (dJm)∂αωm . (2.26)

We can evaluate (2.26) for a given complex structure, denoted |y0 in the corresponding
complex coordinates of X:

∂α (d
cω)|y0 = 2i�α

μ(∂μω − ∂ωμ)+ i(∂ − ∂)∂αω − 2i∂
(
Dαω

0,2
)

For a given complex structure, we project onto holomorphic type then we need to use
holotypical derivatives. Two cases we will need and then projecting onto (0, 3) and
(1, 2) components

(
∂αd

cω
) |0,3y0 = −i∂Dαω

0,2,
(
∂αd

cω
) |1,2y0 = 2i�α

μ(∂μω − ∂ωμ)− i∂ Dαω
0,2 − i∂ Dαω

1,1.
(2.27)

The second derivative of dcω, given by differentiating (2.26) and then evaluated on a
fixed complex structure, is

(
∂α∂βd

cω
) |y0 = 2i

(
�αβ

μ
)
(∂μω)+ 2i�α

μ∂μ(∂βω)

+ 2i�β
μ∂μ(∂αω)− 2i

(
∂�αβ

μ
)
ωμ

+ i(∂ − ∂)ω,αβ − 2i
(
∂�α

μ
)
ωμ,β − 2i

(
∂�β

μ
)
ωμ,α.

We will have need for the (0, 3)-component:

(
∂α∂βd

cω
)
|0,3y0 = 2i(�α

μ�β
ν +�β

μ�α
ν)∂μω

0,1
ν − i∂(ω,αβ)

0,2. (2.28)

2.7 Supersymmetry relations

One can apply these results to compute how the supersymmetry condition dcω = H
relates the variations of fields. The parameter space coordinates are corrected at order
α� . Differentiating with respect to these corrected coordinates, Eq. (2.9) gives rise to
relations between first-order deformations of fields:

B2,0
α = ∂β1,0, Dαω

2,0 = 0,

B0,2
α + iDαω

0,2 = ∂κ0,1α ,

B1,1
α − iDαω

1,1 = 0,

2i�α
μ

(
∂μω − ∂ωμ

) + α�

2
Tr (DαAF) = ∂

(
B1,1
α + iDαω

1,1 − ∂κ0,1α

)
.

(2.29)
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where γ 1,1
α is d-closed (1, 1)-form, and k0,1α and l0,1α are some (0, 1)-forms. As dis-

cussed in [5] in α� -perturbation theory, B0,2
α = Dαω

0,2 = O(α� ) when appropriately
gauge fixed.

The heterotic structure are holomorphic functions of parameters. This can be com-
pactly stated as

�α
ν∂ν = 0, DαA = 0, B1,1

α + iDαω
1,1 = 0. (2.30)

3 The matter field metric

In this section we dimensionally reduce the Yang–Mills term in (2.1) to obtain the
metric for the matter fields. Our task divides into two steps. First, determine how Ae8

decomposes under e8 ⊕ e8 ⊃ g⊕ h, using this to form a KK ansatz. For simplicity we
will suppress writing the second e8 sector. Second, use this to dimensionally reduce the
d = 10 action thereby getting an effective field theory metric and Yukawa couplings
for the matter fields and construct the Kähler potential.

3.1 Decomposing A under g ⊕ h ⊂ e8

The branching rule for g ⊕ h ⊂ e8 is

ade8 = (1, adh)⊕ (adg, 1)⊕i (Ri , ri )⊕ (Ri , ri ). (3.1)

where ad denotes the relevant adjoint representation. The matter fields transform in
representations of g ⊕ h. We denote these representations by ri for h and Ri of g,
respectively. Denote dimensions in the obvious way dim ri = ri and dim Ri = Ri .
We have allowed for a sum over all the relevant representations ri and Ri , including,
for example, pseudo-real representations. For simplicity we will often suppress the
sum and write a single matter field representations of g ⊕ h and its conjugate. The
generalisation is obvious.

The matrix presentation of the adjoint of e8 is complicated. For the moment let us
suppose we can write the generator in simplified form as

Te8 =
(
Th 0
0 Tg

)
. (3.2)

We do this as a toy model to illustrate the key points of the calculation, and at the end
of the day our results will not depend on this presentation.

The background gauge field is

Ae8 = Ah ⊕ Bg,
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On the effective field theory of heterotic vacua 1047

where Ah = Am(x)dxm is the h gauge field and we take it to have legs purely along
the CYM; Bg = Be(X)dXe is the R3,1 spacetime gauge field valued in g. When there
is no ambiguity we will drop the g, h subscripts. We indicate this combined Lorentz
and gauge structure schematically in matrix notation

Ae8 =
(
Ah 0
0 Bg

)
= Amdx

m + BedX
e.

Note that having off-diagonal terms turned on in the background would amount to
Higgsing gauge group, which we do not want for the discussion in this paper.

A fluctuation of Ae8 is of the form

δAe8 = δA(adh,1) ⊕i δA(ri ,R j )
⊕ j δA(r j ,R j ) ⊕ δA(1,adg)

=
(
δAh 


� δBg

)
, 
r×R = (


1 · · · 
R
)
, �R×r =

⎛
⎜⎝
�1

...

�R

⎞
⎟⎠ ,

(3.3)

where again we have used matrix notation to indicate the structure. This gives us an
intuition for understanding the transformation properties under a h ⊕ g rotation:

δAe8 → δAe8 + [Te8, δAe8]

= δAe8 +
( [Th, δAh] Th
−
 Tg

Tg� −� Th [Tg, δBg].

)
(3.4)

We see that fields transform under g ⊕ h as:

1. δAh transforms as (1, adh), and δBg transforms as (adg, 1);
2. 
 is in the (R, r) and is a r×Rmatrix. Column vectors are in the fundamental; row

vectors the antifundamental. For example, 
1, . . . , 
R are each column vectors
transforming in the r of h.

3. � is in the (R, r) and is a R × r matrix with �1, . . . , �R row vectors and so in
the r of h.

4. To preserve the structure g ⊕ h, δAh has legs only on the CYM, while δBg has
legs only in R3,1.

The reality condition is δA†
e8 = − δAe8 which implies

δA†
h = − δAh, 
† = −�, δB†

g = − δBg.

Decomposing this condition according to the holomorphic type of X we have:

δAh = δA − δA†, 
 = φ − ψ†, � = ψ − φ†,
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where

φ = 
0,1, ψ = �0,1,

while the (1, 0)-components are fixed by reality: 
1,0 = −ψ†, �1,0 = −φ†.4

The e8 field strength is

Fe8 = dAe8 + A2
e8
.

Its background value decomposes according to its orientation of legs:

Fe8e f dX
e dy f = dBg + B2

g,

Fe8mn dx
m dxn = dAh + A2

h,

Fe8me dx
m dXe = (

∂mBg e − ∂e Ahm + AhmBg e − Bg e Ahm
)
dxm dXe = 0.

(3.5)

Under Ae8 → Ae8 + δAe8 ,

δFe8 = dAe8
δAe8

=
(

dA(δAh) d
+ Ah
+
Bg

d� +�Ah + Bg� dBg(δBg)

)
.

(3.6)

Consider δFe8 oriented along X. At this point we drop the h, g subscripts on A, B.
Then, the equations of motion require Fe8 be (1, 1) implying any (0, 2)-component
must satisfy,

δF0,2
e8

∣∣
X

=
(
∂A(δA) ∂φ + Aφ
∂ψ + ψA 0

)
=

(
δyα� μ

α F 0,1
hμ 0

0 0

)
.

The off-diagonal terms tell us the fields φ,ψ are holomorphic sections of E. We will
occasionally introduce index to make manifest the fact that φ is in the (R, r) of g⊕ h

by writing φi M where i, j̄ = 1, . . . , r for representations r of h; M, N = 1, . . . , R
for representations R of g. Then, for example,

∂AφM = ∂φM + (Aφ)M = 0 −→ φM ∈ H1(X,Er),

∂AψN = ∂ψN + (ψA)N = 0 −→ ψN ∈ H1(X,Er).
(3.7)

We have introduced the ∂-cohomology group H1(X,Er), with forms valued in the h-
subbundle ofEwhose fibres are the representation r of h. The r index i, j̄ is implicitly
summed.

4 Itmaybeuseful to define �̄a
μ given by �̄a

μ = (�a
μ̄
)∗ so thata is a real index and
a

1,0 = −ψ∗ a = − �̄a
1,0.
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On the effective field theory of heterotic vacua 1049

We could also study the equations of motion for δAe8 d
†
A(dAδAe8) = 0. Choosing

the gauge d†AδAe8 = 0 we see �AδAe8 = 0. For example, on the φ matter field this
gives

(
∂A∂

†
A + ∂

†
A∂A

)
φ = 0.

This has solution if φ is harmonic element of H1(X,Er). This is slightly stronger than
the cohomology relation (3.7).

Expand the fields φ and ψ in a harmonic basis for H1(X,Er) and H1(X,Er),
respectively:

φ =
∑
ξ

φξ C
ξ ∈ (r, R), ψ =

∑
τ

ψτ D
τ ∈ (r, R), (3.8)

where φξ ∈ H1(X,Er) and ψτ ∈ H1(X,Er) are harmonic forms

φξ = φξ μ̄ dx
μ̄ ∈ r, ψτ = ψτ μ̄ dx

μ̄ ∈ r, (3.9)

while Cξ and Dτ are valued in R and R, respectively.
For example, consider the standard embedding. Then, E3 = T1,0

X and φξ ∈
H1(X,T1,0

X ); E3 = T0,1
X with the ψτ ∈ H1(X,T0,1

X ). Cξ and Dτ are in the
R = 27 and R = 27.

We need to satisfy the reality condition 
† = −�, which forces φ† = −ψ and so
in terms of the (φξ , ψτ ) basis:


 =
∑
ξ

φξ C
ξ −

∑
τ

ψτ D
τ , � =

∑
τ

ψτ D
τ −

∑

ξ

φξ C
ξ . (3.10)

We denote conjugation through the barring of the indices. For example, φξ = (φξ )
†

is a (1, 0)-form valued in r of h and Cξ = (Cξ )† is in the R of g.

3.2 The matter field metric from reducing Yang-Mills, LF

The spirit of KK reduction is to promote the coefficients to spacetime fields: Y α(X),
Cξ (X), Dτ (X), and integrate over the six-dimensional manifold to get an effective
four-dimensional theory. With the conventions of [5], the d = 10 e8 Yang–Mills field
contribution to the d = 4 effective field theory is:

LF = − α�

4V

∫

X
d6x

√
g Tr |δFe8 |2, |F |2 = 1

2
FMN F

MN . (3.11)
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We dimensionally reduce, doing a background field expansion. A small fluctuation of
the field strength is given by (3.6), and so

Tr |δFe8 |2 = Tr (dA(δA) � dA(δA))+ Tr (dA+B
 � dA+B�)

+ Tr (dA+B� � dA+B
)+ Tr (dBδB � dBδB) ,
(3.12)

The first term involves just the bundle moduli, contributing to the moduli metric
considered in [5]; the middle two terms involve the matter fields and the last term
gives rise to the kinetic term for the d = 4 spacetime gauge field. The terms involving
the matter fields are:

dA+B
 = (∂e
+
Be) dX
e + (∂M
N + AM
N ) dx

MdxN

= D̂e
 dXe + dA
,

dA+B� = D̂e� dXe + dA�,

(3.13)

where D̂e is the spacetime g-covariant derivative and dA the h-covariant deriva-
tive. Hence, using Tr |δF |2 = 1

2 Tr δFMN δFMN = 2 Tr δFeμδFeμ, where
Tr (δFeμδFeμ) = Tr (δFeν̄ δFeν̄ ), and ignoring the moduli fields for the moment,
we find the kinetic terms for the matter fields come from middle two terms in (3.12)
and are

Tr |δFe8 |2 = −2 Tr
(
D̂e
μ̄ D̂e
† μ̄

)
− 2 Tr

(
D̂e�μ̄ D̂e�† μ̄

)
. (3.14)

We have used the reality condition 
† = −�. The matter fields have a KK ansatz,
given by (3.10), which when substituted into each of the above terms gives

d6xg
1
2 Tr

(
D̂e
μ̄ D̂e
† μ̄

)
=

(
D̂eC

ξ N (X)φ i
ξ μ̄(x)

) (
D̂eCη M (X)φ μ̄j̄

η (x)
)
δi j̄ δMN (� 1)

=
(
D̂eC

η M (X)
) (

D̂eCξ N (X)
) (

φ i
ξ (x) � φ

j̄
η (x)

)
δi j̄ δMN ,

d6xg
1
2 Tr

(
D̂e�μ̄ D̂e�† μ̄

)
=

(
D̂eD

σ M (X)ψ j̄
σ μ̄(x)

) (
D̂eDτ N (X)

)
ψ
μ̄i
τ (x)δi j̄ δMN (� 1)

=
(
D̂eD

τM (X)
) (

D̂eDσN (X)
) (

ψ j̄
σ (x) � ψ

i
τ (x)

)
δi j̄ δMN ,

(3.15)

where indices for the representation R and r are explicit. The trace projects onto
invariants constructed by the Krönecker delta functions δi j̄ and δMN . In the following
we will suppress the indices and delta symbols where confusion will not arise.

Substituting (3.14) and (3.15) intoLF in (3.11), reintroducing the moduli contribu-
tion, calculated in [5], we find a kinetic term for both the matter fields and the moduli
fields:

LF = −2Gαβ∂eY
α ∂eY β − 2Gξη D̂eC

ξ D̂eCη − 2Gστ D̂eD
τ D̂eDσ , (3.16)
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from which we may identify the moduli space metric and matter field metric

ds2 = 2Gαβdy
α dyβ + 2Gξη dC

ξdCη + 2Gστ dD
σ dDτ , (3.17)

where we denote the coordinates of the moduli space M by yα, yβ , and without
wanting to clutter formulae, denote the coordinates of the matter fields by Cξ , Dσ—
any ambiguitywith their correspondingfieldswill always bemade explicit. Themoduli
fields have the metric computed in [5], given in (5.2). The matter fields also have a
metric

Gξη = − α�

4V

∫

X
φη � φξ , Gστ = − α�

4V

∫

X
ψσ � ψτ . (3.18)

There is no trace as the integrands are written in the form r · r . Although we have
indicated the result for a single representation r and r , the result generalises to a sum
over representations of h.

For any two-formF there is a relationω�F = 1
2Fω2.Using this andωμν̄ = −igμν̄

we find

φη � φξ = −iω � φiξ φ
j̄
η δi j̄ = − i

2
ω2 Tr (φξ φη),

ψσ � ψτ = −iω � ψj̄
σ ψ

i
τ δi j̄ = − i

2
ω2 Tr (ψσ ψτ ).

(3.19)

We introduce the trace over r indices in order to be able to write φx , ψσ in any order.
The matter field metrics are then expressible in a way closely resembling the moduli
metric

Gξη = iα�

8V

∫

X
ω2 Tr φξ φη, φξ ∈ H1(X,Er),

Gτσ = iα�

8V

∫

X
ω2 Tr ψσ ψτ , ψσ ∈ H1(X,Er).

(3.20)

4 Fermions and Yukawa couplings

The fermionic couplings of interest to heterotic geometry derive from the kinetic term
for the gaugino. We compute the quadratic and cubic fluctuation terms. The former
are mass terms for the gauginos, which we show all vanish consistent with the vacuum
being supersymmetric. The latter are the Yukawa couplings between two gauginos
and a gauge boson.

In “Appendix B” all spinor conventions we used are explained. We also give a
summary of results in spinors in d = 4, 6, 10 relevant to this section. We also derive
some expressions for bilinears relevant to the dimensional reduction.
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4.1 Fermion zero modes on R3,1 × X

4.1.1 so(3, 1)⊕ su(3) spinors

The gaugino is a Majorana–Weyl spinor ε which has zero modes on R3,1 × X. The
Lorentz algebra is so(3, 1)⊕ so(6) ⊂ so(9, 1) under which ε is

ε = ζ ′ ⊗ λ′ ⊕ ζ ⊗ λ ∼=
(
ζ ′
0

)
⊗ λ′ +

(
0
ζ

)
⊗ λ,

where λ and λ′ are in the 4 and 4′ of so(6); ζ and ζ ′ are in the 2 and 2′ of so(3, 1).
Where possible we use the 2-component Weyl notation for ζ, ζ ′ and always leave the
so(6) spinor indices implicit. We write⊕ in this context to reflect the embedding of 2-
component spinors into a 4-component notation as shown by the second equality. The
barring of 2-component spinors, and dotting the spinor index, comes with complex

conjugation (ζ a)∗ = ζ
ȧ
as described in appendix. The fermions ζ, ζ ′ are Grassmann

odd and under complex conjugation are interchanged without paying the price of a
sign.

The Majorana condition implies ζ ⊗λ are determined in terms of ζ ′ ⊗λ′. With our
conventions this means

ζ
ȧ ⊗ λ = ζ

′ȧ ⊗ λ′c, (4.1)

where λ′c denotes taking the so(6) Majorana conjugate. The Majorana–Weyl spinor
ε can now be written solely in terms of say ζ ′, λ′:

ε =
(
ζ ′
a

0

)
⊗ λ′ +

(
0

ζ
′ȧ

)
⊗ λ′c. (4.2)

The presence of N = 1 spacetime supersymmetry means there is a globally well-
defined spinor on X. This implies the existence of an su(3)-structure on X. Under
so(6) → su(3) the spinors λ, λ′ decompose according to the branching rule 4 = 3⊕1,
and 4′ = 3 ⊕ 1, which we write as

λ = λ3 ⊕ λ+, λ′ = λ3 ⊕ λ−.

The spinors λ+, λ− are the nowhere vanishing su(3) invariant spinors. As established
in appendix, we can express λ3, λ3 in terms of λ± and gamma matrices

λ3 = �μγ
μλ−, λ3 = �′̄

μγ
μ̄λ+, (4.3)
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where {γ μ, γ ν̄} = gμν̄ and �μ,�
′̄
μ are components of 1-forms on X. Appendix

details the construction of the su(3) bilinears:

λ
†
+γ μγ ν̄λ+ = gμν̄, λ

†
−γ ν̄γ μλ− = gμν̄, (4.4)

and

�μνρ = −e−iφ ||�|| λ†−γμνρλ+, �μνρ = eiφ ||�|| λ†+γμνρλ−, (4.5)

where φ accounts for a relative phase difference between λ− and �. Under the gauge
symmetry � → μ�, the fermions λ± transform as a phase:

λ± → e±iξ/2λ±, μ = |μ|eiξ .

The bilinears above respect this gauge symmetry.
Given (4.3), the action of Majorana conjugation is

λc± = −iλ∓, λc
3

= i�′†
μγ

μλ−, λc3 = i�†
μ̄γ

μ̄λ+. (4.6)

4.1.2 Kaluza Klein ansatz

ε is in the adjoint of e8. Consequently, it decomposes under g ⊕ h ⊂ e8 and the
expectation from supersymmetry is that we find a natural pairing between fluctuations
of the gauge field and the fermions. As the background is bosonic, all fermionic fields
are fluctuations; we aim to study the effective field theory of those fluctuations that are
massless. The massless fluctuations are zero modes of an appropriate Dirac operator.

The gaugino and gauge field have decomposition under so(3, 1)⊕su(3) ⊂ so(9, 1)

ε : 16 = (
2 ⊗ 1 ⊕ 2′ ⊗ 1

) ⊕ (2 ⊗ 3)⊕ (
2′ ⊗ 3

)
,

A : 10 = 4 ⊕ 3 ⊕ 3,
(4.7)

and for the gauge algebra e8 ⊃ g ⊕ h:

ade8 = (1, adh)⊕ (adg, 1)⊕i (Ri , ri )⊕i (Ri , ri ).

We organise our study of the zero modes according to their representations under
so(3, 1)⊕su(3) and the gauge algebra g⊕h. We continue the mnemonic of indicating
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the gauge structure through block matrices

δA = δA(adg,1) ⊕i δA(Ri ,ri ) ⊕ j δA(R j ,r j )
⊕ δA(1,adh)

=
(

δAadh ⊕ jδA(R j ,r j )

⊕iδA(Ri ,ri ) δAadg

)
=

(
δA − δA† 


� δB

)
,

ε = ε(adg,1) ⊕i ε(Ri ,r j ) ⊕ j ε(R j ,r j )
⊕ ε(1,adh)

=
(

(ζ ′ ⊗ λ′ ⊕ ζ ′c ⊗ λ′c)(1,adh) ⊕ j (ζ
′ ⊗ λ′ ⊕ ζ ′c ⊗ λ′c)(R j ,r j )

⊕i (ζ
′ ⊗ λ′ ⊕ ζ ′c ⊗ λ′c)(Ri ,ri ) (ζ ′ ⊗ λ′ ⊕ ζ ′c ⊗ λ′c)(adg,1)

)
.

(4.8)

In the second line we have indicated the representations of the individual components
of the gaugino by a subscript, and these are regarded as independent field fluctuations.
We will now drop the sum over representations ⊕i in order to simplify notation and
as the generalisation to include a sum over representations is obvious.

We classify the zero modes by the symmetries under su(3)-structure and g ⊕ h.
The first type of zero modes is su(3)-structure singlets and transforms in the (adg, 1)
with KK ansatz

δAe8 e dX
e =

(
0 0
0 δBedXe

)
,

ε(adg,1) =
(
0 0
0 ζadg

)
⊗ λ− ⊕

(
0 0
0 iζ adg

)
⊗ λ+,

(4.9)

where we use the first line of (B.36).
The second type of zero modes transforms as 3 under su(3)-structure and as

(1, adh) ⊕ (R, r) ⊕ (R, r) under g ⊕ h. There is a natural pairing between δA0,1
e8

and ζ ′ ⊗λ3. Using the KK ansatz (3.3), (3.10) for bosons there is a corresponding KK
ansatz for the spinors:

δA0,1
e8

=
(
Y α DαAμ̄ C ξ φξ μ̄

ψτ μ̄ Dτ 0

)
dx μ̄,

ζ ′ ⊗ λ3 =
(Yα DαAμ̄ Cξ φξ μ̄

Dτ ψτ μ̄ 0

)
⊗ γ μ̄λ+,

(4.10)

where the matrices in the last line are related to the �′̄
μ in (4.3). We have denoted the

anticommuting R3,1 spinors by calligraphic letters Yα , Cξ and Dτ ; superpartners to
Y α,Cξ , Dτ . Cξ and Dτ are in the R and R of g, while Yα are neutral.

The spinor in the 3 of su(3)-structure is determined by Majorana conjugation ζ
ȧ ⊗

λ3 = ζ
′†ȧ ⊗ λc

3
, expressed through (4.1) and (4.6):
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δA1,0
e8

= −
(
δyα DαA† Dτ ψτ μ

Cξ φξ μ 0

)
dxμ,

ζ ⊗ λ3 = i

(
Y α DαA†

μ Dτ
ψτ μ

Cη φημ 0

)
⊗ γ μλ−.

(4.11)

Altogether, the Majorana–Weyl spinor is given by substituting the above two expres-
sions into the first line of (B.37) and combining with (4.9) giving

ε =
(
0 0
0 ζadg

)
⊗ λ− ⊕

(
0 0
0 iζ adg

)
⊗ λ+

+
(Yα DαAμ̄ Cξ φξ μ̄

Dτ ψτ μ̄ 0

)
⊗ γ μ̄λ+ ⊕ i

(
Y α DαA†

μ Dτ
ψτ μ

Cη φημ 0

)
⊗ γ μλ−.

(4.12)

The ⊕ reflects the embedding of the 2-component Weyl spinors into a 4-component
notation used in (B.36), (B.37).

4.2 Dimensional reduction of Tr ε �M DMε

The ten-dimensional kinetic term for the gaugino is now dimensionally reduced, with
action:

Lε = α�

4V

∫

X
d6xg

1
2 i Tr

(
ε �M DMε

)
. (4.13)

The quadratic fluctuations give the kinetic terms as well as any mass terms; the cubic
fluctuations give Yukawa interactions.

We split the bilinear into two terms

Tr
(
ε �M DMε

)
= Tr

(
ε �M ∂Mε

)
+ Tr

(
ε �M [AM , ε]

)
, (4.14)

where ε = ε† �0 is the Dirac conjugate. �M are the d = 10 gamma matrices, given
as

�e = γ e ⊗ γ (6), �μ = 1 ⊗ γ μ,

as described in appendix. Here μ is a holomorphic index along X.
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4.2.1 Quadratic couplings

As the background is bosonic, we take A to be the background gauge field

A =
(A − A† 0

0 BedXe

)
. (4.15)

We start with the derivative operator

i Tr ε �M ∂Mε = i Tr
(
ε �e ∂eε

) + i Tr
(
ε �m ∂mε

)
.

The first term Tr (ε �e ∂eε) is computed using (4.2) and the third lines of (B.36),
(B.37),

d6xg
1
2 i Tr

(
ε �e ∂eε

)
= −2i d6xg

1
2 Tr g

(
ζ

′
adg σ

e ∂e ζ
′
adg

)

+
(
Y β σ e ∂e Yα

)
ω2 Tr h(DαADβA†)

+
(
Cξ σ e ∂e Cη

)
ω2 Tr h(φξφη)+

(
Dσ

σ e ∂e Dτ
)
ω2(ψτψσ ).

(4.16)

Spinor and representation indices are contracted in the natural way.
The second term Tr (ε �m ∂mε) follows from the fourth lines of (B.36), (B.37)

together with the relation in (A.5):

d6xg
1
2 i Tr

(
ε �m∂mε

) = −i(YαYβ)� Tr
(
(DαA) (∂ DβA)

) e−iφ

||�||
+ i(YαYβ)� Tr

(
(DαA†) (∂ DβA†)

) eiφ

||�||
− i(CξDτ )�

(
ψτ (∂ φξ )+ (∂ ψτ ) φξ

) e−iφ

||�||
+ i(CξDτ

)�
(
(∂φ

†
ξ
)ψ

†
τ + φ

†
ξ
(∂ψ

†
τ )

) eiφ

||�|| .
(4.17)

Next we compute the reduction of

i Tr
(
ε �M [AM , ε]

)
= i Tr

(
ε �e [Ae, ε]

) + Tr
(
ε �m [Am, ε]

)
. (4.18)

The first terms follows the calculation of (4.17) after using (4.15) and Tr Be = 0
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d6xg
1
2 i Tr

(
ε �e [Ae, ε]

)
= −2i d6xg

1
2 Tr g

(
ζ

′
adg σ

e [Be, ζ
′
adg ]

)

+
(
Cξ σ e Be Cη

)
ω2 Tr h(φξφη)+

(
Dσ

σ e Be Dτ
)
ω2(ψτψσ ).

(4.19)

The second term Tr ε �m [Am, ε] mirrors the calculation of (4.20), using the back-
ground (4.15)

d6xg
1
2 i Tr

(
ε �m [Am , ε]

) = −i(YαYβ)� Tr
(
(DαA) {A,DβA}

) e−iφ

||�||
+ i(YαYβ)� Tr

(
(DαA†) {A†,DβA†}

) eiφ

||�||
− 2i(CξDτ )�

(
ψτ Aφξ

) e−iφ

||�|| + 2i(CξDτ
)�

(
φ
†
ξ
A† ψ

†
τ

) eiφ

||�|| .
(4.20)

We now put the terms together. The /D4 term comes from adding (4.17) and (4.19):

α�

4V

∫

X
d6xg

1
2 i Tr

(
ε /D4 ε

) = − iα�

2
Tr g

(
ζ

′
adg σ

e D̂e ζ
′
adg

)
− 2Gαβ iY β σ e ∂e Yα

− 2Gξτ i Cξ σ e D̂e Cη − 2Gτσ iDσ
σ e D̂e Dτ .

(4.21)

where D̂e is a spacetime covariant derivative appropriate to whatever representation
if it acts on

D̂eζg = ∂eζg + [Be, ζg], D̂eCξ = ∂eCξ + Cξ Be, D̂e Dτ = ∂eDτ + Be Dτ .

The matter and moduli fields have kinetic terms with non-trivial metrics:

Gαβ = iα�

8V

∫

X
ω2 Tr hDαADβA†,

Gτσ = iα�

8V

∫

X
ω2 ψτ ψσ , Gξη = iα�

8V

∫

X
ω2 Tr g φξ φη .

(4.22)

The fermions have identical metrics to their bosonic superpartners. The bundle moduli
appear with a metric that coincides with that derived by Kobayashi and Itoh [19,20].

The mass terms come from adding together (4.17) and (4.20). We normalise the
mass term to be compatible with the convention in [31]:

α�

4V

∫

X
d6xg

1
2 i Tr

(
ε �mDm ε

) = − eK/2mαβ (YαYβ)− 2eK/2mξτ (CξDτ )+c.c.

(4.23)
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where K is the Kähler potential, which on our background evaluates to be eK/2 =
(2

√
2V ||�||)−1/2. The mass terms are

mαβ = iα� e−iφ

√
2

∫

X
� Tr h

(
DαA (∂ADβA)

)
,

mξτ = iα� e−iφ

2
√
2

∫

X
�

(
ψτ (∂A φτ )+ (∂Aψτ ) φτ )

)
.

(4.24)

The last term is normalised with a factor of 2 as the two indices are distinguished. As
before, we do not write the trace, understanding the indices contracted in the natural
way.

Recall that the equations of motion are

∂A(DαA) = �α
μFμ, ∂Aφξ = 0, ∂Aψτ = 0. (4.25)

Substituting this in we find

mαβ = − iα� e−iφ

4V ||�||
∫

X
��β

μ Tr h
(
DαA Fμ

)
,

mξτ = 0.

(4.26)

The vanishing ofmαβ is guaranteed when ∂(DαA) = 0, that is for bundle or Hermitian
moduli. For complex structure parameters, if one can find a basis for parameters in
which ∂(DαA) = 0 for complex structure moduli, so that �α

μFμ = 0, then this is
also satisfied. If this is not possible, we exploit the last line of the supersymmetry
relation (2.29)

iα�

4

∫

X
��β

μ Tr h
(
DαA Fμ

)
=

∫

X
��α

μ�β
ν(∂μω

0,1
ν − ∂νω

0,1
μ )

=
∫

X

(
�α

μ�β
ν�1,0

μν

)
∂ω

= −ie−K2aαβ
γ

∫

X
χγ ∂ω

= 0.

(4.27)

We have used some results familiar from special geometry, see [21], which apply in
this general heterotic context. They are:

(
�α

μ�β
ν�1,0

μν

)
= (Dαχβ)

1,2 = −ieK2aαβ
γ χγ , Dαχβ = ∂αχβ + (∂αK2)χβ,

123



On the effective field theory of heterotic vacua 1059

Here Dαχβ is covariant with respect to gauge transformations χα → μχα . Also,

aαβγ = −
∫
��α

μ�β
ν�γ

ρ �μνρ, aαβ
γ = aαβγG0

γ γ , G0 αβ = −
∫
χαχβ∫
��

.

and

K2 = − log
(
i
∫
��

)

In special geometry aαβγ is a Yukawa coupling for 273 fields, playing the role of
an intersection quantity relating derivatives of χα to χγ . G0 the metric on complex
structures, used to raise and lower indices. The same relation applies in heterotic
geometry with the understanding that the complex structures may be reduced by the
Atiyah constraint. Consequently, we see that the Atiyah condition gives mαβ = 0.

4.2.2 Cubic fluctuations and Yukawa couplings

We now compute the cubic order fluctuations to get the Yukawa couplings. The cal-
culation proceeds in a similar fashion to the above. The cubic interaction only comes
from:

Tr
(
ε �M [δAM , ε]

)
. (4.28)

The fluctuations only occur on the internal space δAM�
M = δAm�

m . The gauge
structure of δA is specified in (4.8). The calculation is a simple generalisation of the
result (4.20) using the fourth line of (B.37).

d6xg
1
2 i Tr

(
ε �m[δAm, ε]

) = −i(YαY βYγ )� Tr
(
(DαA) {DβA,DγA}

) e−iφ

||�||
− 2i

(
CξY αDτ + CξYαDτ + CξYαDτ

)
� Tr (ψτ DαAφξ )

e−iφ

||�||
− i Tr g(DτDσDρ)� Tr

(
ψτ {ψσ ,ψρ}

) e−iφ

||�||
− i Tr g(CξCηCπ )� Tr

(
φξ {φη, φπ }

) e−iφ

||�|| + c.c.

(4.29)

In the last two lines, we use the appropriate symmetric invariants to construct R3

and R
3
.
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Putting it together, normalising to agree with [31], we find

α�

4V

∫

X
d6xg

1
2 i Tr

(
ε �M [δAM , ε]

)
= −4eK/2Yξατ

(CξY αDτ + CξYαDτ + CξYαDτ
)

− 2eK/2Yξηπ (CξCηCπ )− 2eK/2Yρστ (Dρ
DσDτ )− 2eK/2Yαβγ

(
Y α Y β Yγ

)
+ c.c.,

(4.30)

where c.c denotes the complex conjugate and the Yukawa couplings are given by

Yξατ = iα� e−iφ

2
√
2

∫

X
�Tr

(
ψτ DαAφξ

)
,

Yαβγ = iα� e−iφ

2
√
2

∫

X
�Tr

(
(DαA){DβA,DπA}),

Yξηπ = iα� e−iφ

2
√
2

∫

X
�Tr

(
φξ {φη, φπ }), Yτσρ = iα� e−iφ

2
√
2

∫

X
�Tr

(
ψτ {ψσ ,ψρ}

)
(4.31)

The result is straightforwardly extended to vacua with more complicated branching
rules involving multiple representations⊕pR p. More Yukawa couplings appear—one
for each invariant computed via the trace—but the integrand is of the same form as
above.

The 13 coupling vanishes classically. To see this, write δA to second order in
deformations

δA = δyαDαA + δyαδyβDαDβA + · · · .

Note that DαDβA = DβDαA and so the second term is appropriately symmetric in
indices α, β. A standard deformation theory argument related to the Kuranishi map
implies the second-order deformation is unobstructed provided

∂A(DαDβA)+ {DαA,DβA} = 0.

Substituting into (5.4) one finds Yαβγ = 0, when �α
μFμ = 0. When �α �= 0,

that is complex structure is varying, the coupling still vanishes with exactly the same
argument as for the singlet mass term in (4.27).

The coupling Yξατ also vanishes by demanding that φξ , equivalently, ψτ , remain
solutions of the equation of motion under a bundle deformation A → A + δyαDαA:
∂A+δAφξ = ∂A+δAψτ = 0. Hence, the singlet couplings vanish.

Yξατ = Yαβγ = 0.
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5 The final result: moduli, matter metrics and Yukawa couplings

The effective field theory has N = 1 supersymmetry, with a gravity multiplet and a
gauge symmetry g. The N = 1 chiral multiplets consist of 5

• g-neutral scalar fields Y α and fermions Yα corresponding to moduli;
• g-charged bosons Cξ and fermions Cξ in the R of g;
• g-charged bosons Dρ and fermions Dρ in the R of g;

The final result is expressed as a Lagrangianwith normalisation conventionsmatch-
ing [31]

L = −2Gξη∂eY
α ∂eY η − 2Gξη D̂eC

ξ D̂eCη

− 2Gστ D̂eD
τ D̂eDσ − iα�

2
Tr g

(
ζ

′
adg σ

e D̂e ζ
′
adg

)

− 2Gαβ iY β σ e ∂e Yα − 2Gξτ i Cξ σ e D̂e Cη − 2Gτσ iDσ
σ e D̂e Dτ

−
(
eK/2mαβ (YαYβ)2eK/2mξτ (CξDτ )+ c.c.

)

−
(
4eK/2Yξατ (CξY αDτ + CξYαDτ + CξYαDτ )

+ 2eK/2Yξηπ (CξCηCπ )+ 2eK/2Yρστ (Dρ
DσDτ )

+ 2eK/2Yαβγ

(Y α Y β Yγ
) + c.c.

)
.

(5.1)

The kinetic terms for fields contain metrics. The metric for fermions and bosons are
identical, consistent with supersymmetry. The moduli metric, derived in [5], is:

ds2 = 2Gαβ dy
α ⊗ dyβ,

Gαβ = 1

4V

∫
�α

μ � �β
ν gμν̄ + 1

4V

∫
Zα � Zβ +

+ α�

4V

∫
Tr

(
DαA � Dβ A

)
− α�

4V

∫
Tr

(
Dα� � Dβ�

†
)
.

(5.2)

The metric terms for the fermionic superpartners to moduli Yα are fixed by supersym-
metry from the bosonic result. The matter field metrics are given in (3.20),

Gξη = iα�

8V

∫

X
ω2 Tr φξ φη, φξ ∈ H1(X,Er),

Gτσ = iα�

8V

∫

X
ω2 Tr ψσ ψτ , ψσ ∈ H1(X,Er).

(5.3)

The mass terms written in (4.24) vanish mαβ = mξτ = 0.

5 We do not consider the universal multiplet, the d = 4 dilaton and B-field, which decouples.
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The Yukawa nonzero couplings in (4.31) are

Yξηπ = iα� e−iφ

2
√
2

∫

X
�Tr

(
φξ {φη, φπ }),

Yτσρ = iα� e−iφ

2
√
2

∫

X
�Tr

(
ψτ {ψσ ,ψρ}

)
.

(5.4)

6 The superpotential and Kähler potential

The effective field theory has N = 1 supersymmetry in R3,1, and so the couplings
ought to be derivable from a superpotential and Kähler potential. The Kähler potential
for themodulimetric couplingswas proposed in [5], and checked against a dimensional
reduction of the α� -corrected supergravity action. It is

Kmoduli = − log

(
4

3

∫
ω3

)
− log

(
i
∫
��

)
. (6.1)

in which ω is the Hermitian form of X. The α� -corrections preserved the form of the
special geometry Kähler potential, and the second term remains classical.

The Kähler potential for the matter field metric is trivial and given by

Kmatter = GξηC
ξ MCηN δMN + Gρτ δMN DτMDρN , (6.2)

where a, b = 1, . . . , R label the R representation and the trace is taken with respect
to the delta function.

The F-term couplings for the d = 4 chiral multiplets are described by a superpo-
tential. In the language of d = 4 effective field theory, this superpotential takes the
general form

W(Y α,Cξ , Dτ ) = 1

3
Yξηπ TrCξCηCπ + 1

3
Yρτσ Tr D

ρDτDσ + · · · , (6.3)

where the Tr projects onto the appropriate R-invariant and we are to view these as
chiralmultiplets in N = 1d = 4 superspace in the usualway. The omitted terms are the
quartic and higher-order couplings and non-perturbative corrections. It is important
that W gives no singlet couplings, and this means all parameter derivatives of W
vanish.

We would like to study a superpotential in a similar vein to the Kähler potential
proposal (6.1). As ten-dimensional fields Ae8 and H depend on both parameters and
matter fields. The fields dcω and� are valued onX and depend only on moduli fields.
The spirit of the dimensional reduction is to promote the parameters to d = 4 fields.

123



On the effective field theory of heterotic vacua 1063

In this vein define a superpotential 6

W(Y α,Cξ , Dτ ) = −i
√
2e−iφ

∫
�

(
H − dcω

)
, (6.4)

in which the fields are regarded as functionals of the d = 4 chiral multiplets. The
couplings in the effective field theory are specified by differentiatingW and evaluating
the integral after fixing the parameters y = y0.

The rules for differentiating fields in the expressions for K and W with respect
to parameters have been described in [5], which is complicated by virtue of h gauge
transformations being parameter- and coordinate-dependent. These transformations
are, however, independent of matter fields, and so the rule for matter field differentia-
tion is simple

∂ξ Ae8 = ∂Ae8

∂Cξ
= φξ .

It is important that we have written the ten-dimensional e8 gauge field Ae8 , and not Ah,
as this is the functional of the matter fields—Cξ , Dτ—as illustrated in, for example,
(3.3) and (3.10). The integrand inW is a functional of the ten-dimensional H so that it
depends on matter fields. The rule is to differentiate as noted above and then evaluate
the integral on the fields’ vacuum expectation values (VEV). Note that it is the VEV
of H that satisfies dcω = H , and the matter fields VEVs vanish Cξ = Dτ = 0.

For example, the tadpole matter and moduli couplings for a vacuum at the point
y = y0 are

(∂ξW)|y=y0 ∼
∫
�∂ξH |y=y0 ∼

∫
�Tr Fφξ |y=y0 = 0,

(∂αW)|y=y0 ∼
∫ (

(χα − kα�)(H − dcω)+�
(
∂(B0,2

α + iDαω
0,2)

) )
|y=y0 = 0.

(6.5)

where we use ∂αH in (2.20) and ∂αdcω in (2.26), and we evaluate them on some fixed
y = y0.

As an ansatz W must satisfy a number of tests: it must be a section of a line
bundle over the moduli space; any derivative with respect to parameters must vanish
viz. ∂α∂β∂γ · · ·W = 0; be a holomorphic function of chiral fields; tadpole and mass
terms for the matter fields must vanish; capture the F-term couplings derived through
dimensional reduction in this paper. The expression (6.4) passes these tests. 7

W is a section of the line bundle transforming under the gauge symmetry � →
μ(y)� as W → μW where μ(y) is a holomorphic function of parameters. This is

6 The form of this integrand is due to Xenia de la Ossa who suggested to me in private conversation.
7 In the literature a different ansatz is proposed for the superpotential: W̃ = ∫

�(H + idω). After careful
calculation one can check ∂αW̃ = ∂α∂βW̃ = ∂α∂β∂γ W̃ = 0, and so there are no 1, 12, 13 couplings. To
what extent this reproduces singlet couplings to higher order is an interesting question.
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necessary in order to consistently couple to gravity [22]. This fixes the integrand to be
proportional to �.

The supersymmetry relation H = dcω holds for all y0 ∈ M. Hence, derivatives of
it vanish:8

∂α1 · · · ∂αn (H − dcω)|y=y0 = 0, ∂β1
· · · ∂βn (H − dcω)|y=y0 = 0, (6.6)

where yα1 , . . . , yαn are any collection of parameters and we evaluate on a super-
symmetric vacuum, denoted by y = y0. It then follows that any derivative of the
superpotential with respect to parameters vanishes. This is what is used in (6.5) to
show that all tadpole terms vanish. The argument clearly extends to higher order.
Consider the kth derivative

(
∂α1 · · · ∂αkW

)
|y=y0 =

∫ (
(∂α1 · · · ∂αk�) (H − dcω)+

+ k∂{α2 · · · ∂αk�∂α1}(H − dcω)+ · · ·
)
|y=y0 = 0.

This vanishes on any supersymmetric background:W is independent of moduli fields,
and soW does not give rise to any singlet couplings in agreement with the dimensional
reduction.

An analogous argument, together with � being holomorphic, shows that despite
neither H nor dcω being holomorphic, W is a holomorphic function of fields. For
example, the first-order derivative is

∂α
1

�0

∫ (
�(H − dcω)

)
= 1

�0

∫
∂
(
�(B0,2

α − iDαω
0,2)

)
|y=y0 = 0.

Using (6.6) all higher-order antiholomorphic derivatives of �(H − dcω) vanish. It is
also the case that (∂ξ )

nW = 0 for all n ≥ 1. So,W is a holomorphic function of chiral
fields.

The expression for the masses can be written as derivatives of W

mαβ = ∂α∂βW = 0, mξτ = ∂ξ ∂τW = 0, (6.7)

where for the second term we use that dcω,� do not depend on Cξ , Dτ , while ∂ξ ∂τH
is given by (2.22) with Da A → ∂ξ A = φξ . As A depends linearly on the matter fields,
all second derivatives vanish.

8 Many examples of relations involving complex structure do not hold for all y0 ∈ M. A simple example
is dJ . Although for any fixed complex structure dJ |y=y0 = 0, differentiating we get something nonzero
∂αdJ = ∂�α |y=y0 �= 0.
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The Yukawa couplingsY are also all derived fromW. Using (2.25), we find agree-
ment with the functional forms in (4.31), of which the non-vanishing terms are

Yξηπ = 1

2
∂ξ ∂η∂πW, Yστρ = 1

2
∂ξ ∂α∂τW. (6.8)

Even though the singlet couplings vanish, one can check that their functional form is
correctly derivable from W. The fact of 1/2 is in order to agree with the convention
given in [31]. It is satisfying that the superpotential consistently captures the cou-
plings derived in the dimensional reduction, both involving moduli and matter fields.
Furthermore, it manifestly does not give rise to any singlet couplings.

7 Outlook

We have calculated the effective field theory of heterotic vacua of the form R3,1 × X
at large radius, correct to order α� . The field theory is specified by a Kähler potential
and superpotential. Supersymmetry forbidsW from being corrected perturbatively in
α� , but is in general corrected non-perturbatively in α� . For E obtained by deforming
TX, some of these non-perturbative corrections have been computed as functions of
moduli using linear sigma models, see, for example, [23–27]. One can now use the
results obtained here and those in [5] to determine the normalised quantum corrected
Yukawa couplings, in examples that may be of phenomenological interest, see, for
example, [28]. Although the Kähler potential is corrected perturbatively in α� , it was
conjectured in [5] that the form of the Kähler potential does not change to all orders
in perturbation theory, and that the α� -corrections are contained within the Hermitian
form ω. This conjecture is consistent with the work in [6,7], and it would be very
interesting to prove this conjecture, at least to second order in α� .

Although we have derived this result using a single pair of matter fields, the result
clearly generalises to a sum over representations ⊕pR p ⊕p R p. The main burden of
the generalisation is to evaluate the trace using the appropriate branching rules.

Many questions arise. For example, are there any special geometry type relations
between K and W? Finding a prepotential analogous to special geometry looks dif-
ficult, partly because it involved analysis related on the geometry of the standard
embedding and Calabi–Yau manifold’s. Nonetheless, it is likelyK andW are related.

It would be interesting to compute the field theory couplings in specific examples.
For E attained by deforming TX one might be able to compare with the linear sigma
model parameter space studied in say [24,29,30] and study the quantum corrections

to the 273 and 27
3
couplings using the correctly normalised fields. We showed using

deformation theory arguments that the 13 coupling vanishes classically. A pressing
question is to what extent these couplings vanish exactly. Any non-vanishing would
imply the vacuum does not exist, and thereby shrink the moduli space of heterotic
vacua quantum mechanically.
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A Hodge theory on real and complex manifolds

We establish some notation and results for forms on real and complex manifolds to be
used in the text. Coordinates for R3,1 are denoted Xe, while real coordinates on X are
denoted by xm . Complex coordinates are denoted xμ, x ν̄ .

We need to write coordinate expressions for forms more than metrics, and so our
convention is to omit the wedge symbol ∧ except where confusion may arise. We
write metrics as ds2 = gmndxm ⊗ dxn , only occasionally omitting the ⊗ only where
confusion will not arise.

A.1 Real manifolds

The volume form on a n-dimensional Riemannian manifold is

d6xg
1
2 = �1 =

√
g

n! εm1...mn dx
m1 . . . dxmn , g = | det gmn|. (A.1)

where ε12···n = ε12···n = 1 is the permutation symbol. The determinant of the metric
is

g = 1

n!ε
p1···pnεq1···qn gp1q1 · · · gpnqn .

If ω is a top-form, then

d6xg
1
2

√
g

n! εm1...mnωm1...mn = 1

n!ωm1...mndx
1 . . . dxn .

The Hodge dual of a p-form Ap is

�Ap =
√
g

p!(n − p)!ε
m1...mp

n1...nn−p Am1...mpdx
n1 . . . dxnn−p .
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The inner product of two p-forms is then

Ap ∧ � Bp = d6xg
1
2

(
1

p! Am1...mp B
m1...mp

)
.

A.2 Complex manifolds

On a complex manifold the metric is Hermitian

ds2 = 2gμν̄ dx
μ ⊗ dx ν̄

with det(gmn)=g. In addition to the Hodge dual �, which contracts a (p, q) with a
(q, p) form, on a complex manifold we can define a � which contracts a pair of
(p, q)-forms, and so forming an inner product. If α, β are two (p, q)-forms, then it is
defined as

α � β := 1

p!q! αμ1···μp ν̄1···ν̄qβμ1···μp ν̄1···ν̄q (�1) = α � (β)∗. (A.2)

It has a complex volume form, which is nowhere vanishing and globally well defined:

� = 1

3!�μνρdx
μdxνdxρ, ||�||2 = 1

3!�μνρ�
μνρ

,

where ||�|| is a coordinate scalar, and so a constant for a fixed manifold, but depends
on parameters, denoted y. We can write

�μνρ = f (x, y)εμνρ, ε123 = 1, (A.3)

where eμνρ is the permutation symbol and f (x, y) is a holomorphic function of coor-
dinates and parameters. εμνρ is not a tensor and consequently f transforms like g1/4

under holomorphisms (holomorphic diffeomorphisms): if x ′ = x ′(x), then f (x) trans-
forms f ′(x) = (det j) f (x), where jμν = ∂x ′μ

∂xν . It satisfies the relation

| f |2 = g1/2||�||2, (A.4)

The complex volume form � transform like sections of a complex line bundle on M.
Under a gauge transformation � → μ� with μ ∈ C∗, we have ||�||2 → |μ|2||�||2
while g is invariant. It is sometimes convenient to isolate the phases of f and μ:

f = | f |eiζ , μ = |μ|eiξ ,

If A, B,C are (0, 1)-forms, then

Aμ̄ Bν̄ Cρ �
μ̄ν̄ρ � 1 = i� ABC, ABC = 1

||�||2 Aμ̄ Bν̄ Cρ �
μ̄ν̄ρ �. (A.5)
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where we have the compatibility relation

i��

||�||2 = 1

3! ω
3 = d6xg

1
2 .

It is also useful to note

�� = i�, ��� = ||�||2 � 1 = i��.

In coordinates

� 1 =
√
g

(3!)2 iεμ1μ2μ3εν̄1ν̄2ν̄3dx
μ1dxμ2dxμ3dx ν̄1dx ν̄2dx ν̄3 . (A.6)

B Spinors

We establish some conventions and results for spinors in d = 4, d = 6 and d = 10.
We define the Pauli matrices as

σ 1 =
(
0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
, (B.1)

and we denote 1n the n × n identity matrix. We also define

σ 0 =
(−1 0

0 −1

)
.

We denote σ e f = 1
2 (σ

eσ f − σ f σ e). A similar definition applies for the gamma
matrices.

B.1 Spinors in flat space

B.1.1 so(9, 1)

The Dirac representation of so(9, 1) is 32-dimensional. We denote the 32-dimensional
so(9, 1) gammamatrices�M and chirality operator� = ∏9

M=0 �
M . The Dirac spinor

decomposes into twoMajorana–Weyl representations 32 = 16⊕16′. Our notationwill
be that primed representations are negative chirality spinors; unprimed representations
are positive chirality spinors.

Let ε be Weyl spinor that is of positive chirality �ε = ± ε. As (�M )∗ and −(�M )∗
both satisfy the same Lorentz algebra as �M , there are two similarity transformations
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On the effective field theory of heterotic vacua 1069

preserving the Lorentz algebra

B(1)�
M B−1

(1) = (�M )∗, B(2)�
M B−1

(2) = −(�M )∗, (B.2)

under which the spinor transforms to ε → Biε. Hence, ε∗ and Biε transform in the
same way under Lorentz transformations, and we can define Majorana conjugation to
be

εc = B−1
(i) ε

∗,

and the Majorana condition is ε = εc. Applying Majorana conjugation twice gives
a consistency condition B∗

i Bi = 1, no sum on the i , which must be satisfied. For
so(9, 1) it is possible to find both B(1) and B(2) satisfying (B.2) that also satisfy the
consistency condition; this is not true for so(3, 1) and so(6). In the text we utilise B(2),
which, with our choice of basis, gives a manifestly consistent Majorana condition for
so(3, 1)⊕ so(6).

We utilise the convention of complex conjugation of a pair of spinors interchanging
their order without introducing a sign.

B.1.2 so(3, 1)

We work with mostly positive signature. A basis of Dirac gamma matrices are

γ e =
(

0 σ e

−σ e 0

)
, (B.3)

where σ e = (σ 0, σ 1, σ 2, σ 3) with σ 0 = −12, and the remaining matrices are the
Pauli matrices (B.1). The conjugate matrices σ 0 = (σ 0,−σ 1,−σ 2,−σ 3). γ 0 is anti-
Hermitian (γ 0)2 = −14, while γ 1, . . . , γ 3 are all Hermitian. Complex conjugation
is the same as transpose: (σ e)∗ = (σ e)t . We denote γ e f = 1

2 (γ
eγ f − γ f γ e).

The chirality matrix is

γ (4) = −iγ 0 · · · γ 3 =
(−12 0

0 12

)
.

The Majorana conjugate of a Dirac spinor � is

�c = B−1
4 �∗, B4 =

(
0 −ε
ε 0

)
, (B.4)

where ε = iσ 2. It can be checked that B4γ
eB−1

4 = (γ e)∗ and that B4B∗
4 = 1 so that

(�c)c = �.
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The 4 of so(3, 1) admits a pair of Weyl representations

4 = 2 ⊕ 2′, � =
(
0
ζ

)
+

(
ζ ′
0

)
.

of positive and negative chirality, respectively, and in the second equality, expressed
as spinors in the basis (B.3). This is sometimes denoted � = ζ ⊕ ζ ′.

Where possible, we adopt the 2-component spinor notation, see, for example, [31,
32]. The indices on Weyl spinors are denoted by ȧ and a. The rule for raising and
lowering is through the ε permutation symbol where ε12 = ε21 = 1 and ε21 = ε12 =
−1:

ζ ′a = εabζ ′
b, ζ ′

a = εabζ
′b,

ζ
ȧ = εȧḃζ ḃ, ζ ȧ = εȧḃζ

ḃ
.

(B.5)

Complex conjugation exchanges dots on indices (ζ a)∗ = ζ
ȧ
, (εab)∗ = εȧḃ, etc. These

spinors are assigned the Grassmann odd property and so anticommute. However,
when complex conjugating a pair of spinors, the order is interchanged without a sign:
(ζaζ

′
b)

∗ = ζ
′
ḃζ ȧ .

The indices on σ e and σ e are related

σ e
aȧ = εabσ

f ḃbεȧḃ,

and the index structure on � is

� =
(
ζ ′
a

ζ
ȧ

)
. (B.6)

When indices are not written there is an implicit contraction through the ε symbol.
For example,

ζ ζ ′ = ζ aζ ′
a = εabζbζ

′
a = −εabζ ′

aζb = ζ ′bζb = ζ ′ζ. (B.7)

Analogous conventions exist for dotted indices, given by complex conjugating the
above equation. Some useful spinor relations to be used inside actions are:

ζ ′σ e∂eζ = ζσ e∂eζ
′, (−iζ ′σ e∂eζ )

∗ = −iζσ e∂eζ
′ = −iζ

′
σ e∂eζ. (B.8)

The Dirac conjugate of a Dirac spinor is

� = �†γ 0.
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A slight abuse of notation: the bar on a Dirac spinor denotes the Dirac conjugate, while
the bar on a Weyl spinor denotes a dotted index.

The kinetic term for the Dirac spinor in terms of Weyl spinors (B.6)

i�γ e∂e� = iζ
′
σ e∂eζ

′ + iζσ e∂eζ
′
. (B.9)

A Lorentz transformation on a Dirac spinor is δ� = �e f γ
e f , with �e f = −� f e

and in the basis (B.3) becomes an action on Weyl spinors

(
δζ ′

a

δζ
ȧ

)
= �e f

(−(σ eσ f )a
b 0

0 −(σ eσ f )ȧ ḃ

) (
ζ ′
b

ζ
ḃ

)
, (B.10)

from which we identify the transformation properties of ζ ′
a and ζ

ȧ
, and identify these

with the 2′ and 2 of so(3, 1), respectively.
The Majorana conjugate is

� =
(
ζ ′
a

ζ
ȧ

)
�c = B−1�∗ =

(
ζa

ζ
′ȧ

)
(B.11)

and as expected � and �c have the same index structure, with Majorana conjugation
swapping the prime, reflecting the fact they transform in the same way under Lorentz
transformations. Notice that complex conjugation of a Weyl spinor does not by itself
give anotherWeyl spinor. For example, ζa transforms as the2′ but ζ ȧ does not transform
as a 2, as can be seen by conjugating the top line of (B.10) and comparing with the
second line. Instead, one is to complex conjugate and contract with ε: (εabζb)∗ =
εȧḃζ ḃ transforms in the 2.

In this basis, a Majorana spinor satisfies ζa = ζ ′
a . We will not impose this and

choose to work in the Weyl basis.

B.1.3 so(6)

Wedescribe so(6) spinors first in flat space, before coupling them to a curvedmanifold
with su(3)-structure in the next section.

A Dirac spinor decomposes into a pair of Weyl representations

8 = 4 ⊕ 4′.

A basis compatible with this is

γ 1 = σ 1 ⊗ σ 3 ⊗ σ 3, γ 2 = σ 2 ⊗ σ 3 ⊗ σ 3, γ 3 = 12 ⊗ σ 1 ⊗ σ 3,

γ 4 = 12 ⊗ σ 2 ⊗ σ 3, γ 5 = 12 ⊗ 12 ⊗ σ 1, γ 6 = 12 ⊗ 12 ⊗ σ 2. (B.12)
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The chirality operator is

γ (6) = iγ 1 . . . γ 6 = σ 3 ⊗ σ 3 ⊗ σ 3. (B.13)

We define raising and lowering operators, introducing holomorphic and antiholomor-
phic indices

γ μ = 1

2
(γ 2μ−1 + iγ 2μ), γ μ̄ = 1

2
(γ 2μ̄−1 − iγ 2μ̄).

These are real (γ μ)∗ = γ μ, related by (γ μ)† = γ μ̄ and satisfy {γ μ, γ ν̄} = δμν̄ . In
this basis only so(2)⊕ so(2)⊕ so(2) ⊂ is manifestly preserved.

The conjugation matrix B6 satisfies

B6γ
mB−1

6 = −(γm)∗,

and in this basis is the product of all imaginary matrices so that

B6 = γ 2γ 4γ 6 = σ 2 ⊗ −iσ 1 ⊗ σ 2 = i
3∏

μ=1

(γ μ − γ μ̄), (B.14)

which satisfies B−1
6 =B∗

6= − B6 and so an so(6) spinor λ satisfies (λc)c = λ. In the
second equality, we have written B6 in terms of raising and lowering operators. The
conjugation matrix changes chirality B6γ

μ
±=γ μ∓ B6.

B.2 Spinors on R3,1 × X

In discussing R3,1 × X, we take the 32-dimensional gamma matrices to decompose

�e = γ e ⊗ γ 6, �m = 1 ⊗ γm,

whereγ e are four-dimensionalmatrices in (B.3) andγm are the 8-dimensionalmatrices
in (B.12). The chirality matrix is

� =
∏
M

�M = γ (4) ⊗ γ (6).

The complex conjugation matrix

B = B4 ⊗ B6, (B.15)
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where B4 is in (B.4) and B6 is in (B.14). B is imaginary, unitary and anti-Hermitian
B† = B−1 = −B and satisfies the property that

B�M B−1 = −(�M )∗.

The Majorana conjugate of a spinor ε in the 32 is εc = B−1ε∗. Expand ε in terms of
so(3, 1)⊕ so(6) spinors

ε = ζ ⊗ λ⊕ ζ ′ ⊗ λ′ ∼=
(
0

ζ
ȧ

)
⊗ λ+

(
ζ ′
a

0

)
⊗ λ′,

where λ and λ′ are in the 4 and 4′, respectively, while ζ and ζ ′ are in the 2 and 2′,
respectively. In the second line we have written this in terms of the four-dimensional
so(3, 1) spinors, with their spinor indices explicit; we will always leave the so(6)
spinor indices implicit.

The Majorana condition εc = ε is simplified by using (B.11),

(
0

ζ
ȧ

)
⊗ λ =

(
0

ζ
′ȧ

)
⊗ λ′c,

(
ζ ′
a

0

)
⊗ λ′ =

(
ζa

0

)
⊗ λc. (B.16)

It is sometimes more convenient to write this simply as

ζ
ȧ ⊗ λ = ζ

′ȧ ⊗ λ′c. (B.17)

The Majorana–Weyl spinor ε can now be written solely in terms of, for example,
ζ ′, λ′:

ε =
(

0

ζ
′ȧ

)
⊗ λ′c +

(
ζ ′
a

0

)
⊗ λ′,

B.3 Spinors on a complex manifold X with su(3)-structure

The manifold X is endowed with an su(3)-structure meaning that there is a glob-
ally well-defined non-vanishing spinor implying a reduction of the structure group
so(6) → su(3) under which

4 = 3 ⊕ 1, 4′ = 3 ⊕ 1, (B.18)

and the spinors decompose, respectively, as

λ = λ3 ⊕ λ+, λ′ = λ3 ⊕ λ−.
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The spinors λ+, λ− are the su(3) invariant spinors that are nowhere vanishing on the
manifold X that define the su(3)-structure.

With respect to the basis (B.12), the raising and lowering matrices γ μ+ and γ ν̄−
are real and related by Hermitian conjugation (γ

μ
+ )† = γ

μ̄
− . This reality property

is consequence of our choice of basis, and any physical result will not depend on
this choice. Care must be taken when interpreting the holomorphy of indices, and
where any ambiguity may arise, we will keep the ± subscript. Nonetheless, at the end
of a calculation we will be able to interpret the indices in terms of holomorphic or
antiholomorphic indices of T1,0

X ⊕ T0,1
X .

The matrices satisfy an algebra

{γ μ, γ ν̄} = gμν̄,

where μ, ν̄ are coordinate indices and the right-hand side is the inverse metric.9

Majorana conjugation is defined using a covariant version of B in (B.14). On an
su(3) manifold, B is a coordinate scalar, gauge invariant, and satisfies the property
that

BγmB−1 = −(γm)∗, B∗B = 1, B† = B−1.

This fixes

B = ig1/4
(
1

3!εμνργ
μνρ
+ + 1

2
εμνργ

μ
+γ

νρ
− − 1

2
εμνργ

μν
+ γ

ρ
− − 1

3!εμνργ
μνρ
−

)
(B.19)

This is the main example where confusion can arise in holomorphy of indices, and so
we use the ± subscript for clarity.

We build spinor representations by lowering and raising operators. Denote the
lowest weight state λ−, satisfying γ μ̄λ− = 0. We define the remaining spinors as
follows:

λ− 1,

λ3 := �μγ
μλ− 3,

λ3 := 1

2
�μνγ

μνλ− 3,

λ+ := 1

3!�+εμνργ μνρλ− 1.

(B.20)

where γ μν = 1
2 (γ

μγ ν − γ νγ μ) and γ μνρ = 1
3! (γ

μγ νγ ρ − γ μγ ργ ν + · · · ). Note
that γ μνλ− = γ μγ νλ−. Here εμνρ is the permutation symbol with ε123 = 1 and �+
is a tensor density to be fixed.

9 We can phrase this in terms of tangent space indices, and then use the vielbein to go to coordinate indices,
but for succinctness have skipped this step.
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To identify �+ we study its transformation properties under symmetries of the
moduli space and under holomorphisms. First note that �+ transforms like g1/4

under holomorphisms. Hence, �+ ∝ g1/4 up to a parameter-dependent coordinate
scalar. Second, recall the gauge symmetry � → μ� where μ = |μ|eiξ ∈ C∗.
Under this symmetry the fermions λ± are charged transforming under theU (1) ⊂ C∗
as10

λ± → λ±eiξ/2, (B.21)

and so �+ transforms as �+ → �+eiξ . Hence, �+ ∝ ( f
√
g)/| f |, now fixed up

to a gauge-neutral coordinate scalar. If we demand that λ†+λ+ = λ
†
−λ− this fixes the

constant to be a phase and we can write the final result as

�+ = eiφ
f

||�|| , (B.22)

for some phase eiφ . There are three phases of interest:ψ± = arg λ± and ζ the phase of
f = | f |eiζ . The gauge symmetry eliminates one of these degrees of freedom, and we
can form two gauge-invariant combinations φ = ψ+ − ψ− − ζ and � = ψ+ + ψ−.

Using one of these global symmetries we could choose φ = 0, which in the gauge
where ζ = 0 amounts to fixing the relative phases of λ± equal.

We state the final result as

λ+ = eiφ

||�||
1

3!�μνργ
μνρλ−, (B.23)

The norms λ†±λ± are gauge-invariant coordinate scalars, and so we are free to fix them
to be unity

λ
†
±λ± = 1. (B.24)

We note that λ3 can be written as

λ3 = �′̄
μγ

μ̄λ+, �′̄
μ = e−iφ

2||�||�μνρ�
νρ, �μν = eiφ

||�||�μν
ρ�′

ρ. (B.25)

10 This charge assignment is determined by studying the Kähler transformations of the Kähler potential.

K = − log
(
i
∫
��

)
− log

(4
3

∫
ω3

)
.

under � → μ�. As described in [31], in order to couple d = 4 chiral fields to gravity preserving N = 1
supersymmetry theR3,1 fermionsmust transform,which in order for the so(9, 1) fermions to remain neutral,
implies the transformation law (B.21).
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By studying λ†+λ+ in two different ways we identify

�μνρ = −e−iφ ||�|| λ†−γμνρλ+, �μνρ = eiφ ||�|| λ†+γμνρλ−, (B.26)

as well as

λ
†
+γ μγ ν̄λ+ = gμν̄, λ

†
−γ ν̄γ μλ− = gμν̄ . (B.27)

The norms of spinors are then

λ
†
3λ3 = �μ�

μ, λ
†
3
λ3 = �′̄

μ�
μ̄ = 1

2
�μν�

μν. (B.28)

It is useful to tabulate Majorana conjugates of spinors λc = B−1λ∗ = (Bλ)∗:

λc− = −ig1/4�∗−1+ λ∗+ = −iλ+,
λc+ = −ig−1/4�∗+λ∗− = −iλ−,
λc
3

= ig−1/4�∗+�′∗
μγ

μλ∗− = i�′∗
μγ

μλ−,

λc3 = ig1/4�∗−1+ �∗̄
μγ

μ̄λ∗+ = i�∗̄
μγ

μ̄λ+,

(B.29)

and

(λc
3
)† = −i�′

μ̄λ
†
−γ μ̄, (λc3)

† = −i�μλ
†
+γ μ. (B.30)

Finally, given a derivative operator Dν̄ , which in the text becomes a covariant derivative
with respect to the bundle symmetries, we will need the following bilinear

(
λc
3

)†
γ ν̄Dν̄λ3 = ieiφ

(
�′̄
μDν̄�

′
ρ

) �μνρ

||�|| , (λc3)
†γ νDνλ3

= −ie−iφ
(
�μDν�ρ

) �μνρ

||�|| . (B.31)

B.4 Spinors charged under gauge symmetries

Sometimes the spinors carry additional structure, for example being charged in a
representation of g ⊕ h. In that case complex conjugation is promoted to Hermitian
conjugation.

Consider first ζ, ζ ′; these spinorsmaybe charged in a representation ofg. In comput-
ing a Majorana conjugate, the complex conjugate in (B.11) is promoted to Hermitian
conjugate on the gauge structure. It is normally easy to do this with the spinor indices
explicit; Majorana conjugation does not transpose the spinor structure.

As a way of illustration, there are three relevant cases to the text. The first are when
ζ, ζ ′ are singlets under adg, in which Majorana conjugation is unchanged from the
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previous subsection. The second case, ζ is in a representation R, denoted ζ ′
R′ , and

Hermitian conjugation acts as (ζ aR)
† ∼= ζ

ȧ
R. The third case is when ζ

′ is in the adjoint
of g, in which it is anti-Hermitian (ζ aadg)

† = −ζ ȧadg . The Majorana conjugates of the
last two cases are explicitly:

(
ζ ′
R′ a
0

)c

= B−1
4

(
(ζ ′

R′ a)
†

0

)
=

(
0

ζ
′ȧ
R′

)
,

(
ζ ′
adg a

0

)c

= −
(

0

ζ
′ȧ

)
. (B.32)

The Majorana condition (B.17) implies that if ζ ′ is in the R, then ζ is in the R. Of
course, if the representation is real, then R = R in the above.

Similar comments apply when λ, λ′ carry representations of h. Only λ3 and λ3 turn
out to carry non-trivial representations of h, and this is through the object�μ and�′̄

μ

in (B.20) and (B.25). The singlets λ± are always gauge singlets. The generalisation
of (B.29) is

λc± = −iλ∓, λc
3

= i�′†
μγ

μλ−, λc3 = i�†
μ̄γ

μ̄λ+, (B.33)

where�μ is charged in a representation and�
†
μ̄ is the appropriateHermitian conjugate.

Putting this into (B.17) determines ζ ⊗ λ in terms of ζ ′ ⊗ λ′:

ζ
ȧ ⊗ λ+ = −iζ

′ȧ † ⊗ λ+, ζ
ȧ ⊗�μγ

μλ− = iζ
′ȧ † ⊗�′†

μγ
μλ−. (B.34)

B.5 Some useful spinor bilinears

We express the Majorana–Weyl spinor ε in terms of ζ ′, λ′ and list some bilinears
relevant to the main text.

ε =
(

0

ζ
′ȧ

)
⊗ λ′c +

(
ζ ′
a

0

)
⊗ λ′,

ε = (
ζ ′† a 0

) ⊗ (λ′c)† +
(
0 ζ

′†
ȧ

)
⊗ λ′†,

ε ε = 0

ε �e∂eε =
(
ζ ′† a σ e

aḃ
∂e ζ

′ḃ)
(λ′c)†λ′c +

(
ζ

′†
ȧ σ

e ȧb ∂e ζ
′
b

)
λ′†λ′,

ε �m∂mε = (ζ ′† aζ ′
a)(λ

′c †γm∂mλ
′)+ (ζ

′†
ȧ ζ

′ȧ
)(λ′†γm∂mλ

′c).

(B.35)

We have left the four-dimensional spinor indices for clarity, but will now drop them
in spinor contractions, using convention (B.7).

We can now evaluate these relations for some specific examples relevant to the text
when the spinors are charged in representations of g ⊕ h:
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1. ζ ′ ⊗ λ′ ∈ (adg, 1) of g⊕ h. Use (ζ ′a)† = −ζ ′ȧ
, its Majorana conjugate (B.32), as

well as λ′ = λ− and λ′c = −iλ+:

ε =
(
ζ ′
a

0

)
⊗ λ− + i

(
0

ζ
′ȧ

)
⊗ λ+,

ε = −
(
0 ζ

′
ȧ

)
⊗ λ

†
− + i

(
ζ ′a 0

) ⊗ λ
†
+,

i ε �e∂eε = −2i
(
ζ

′
σ e ∂e ζ

′) λ†−λ−,

iε �m∂mε = 0,

(B.36)

where in the last line λ†+γ μλ− = 0. In the third line we understand this will appear

integrated and so use integration by parts ζ
′
σ e ∂e ζ

′ = ζ ′ σ e ∂e ζ
′
.

2. ζ ′ ⊗ λ3 ∈ (Ri , ri ) of g ⊕ h.
In the text this bilinear the constituents are a sum over representations, ε = ⊕iεi

where εi ∈ (Ri , r i ) and the trace projects onto the natural invariants. There are
nonzero invariants as the trace derives from the ade8 which is real. For example, if
(Ri , ri ) is complex representation, then the sum ⊕i contains both (Ri , ri ) and its
conjugate representation (Ri , ri ), with the trace constructing the natural invariant.

εi =
(
ζ ′
Ri

0

)
⊗�′

r i μ̄γ
μ̄λ+ + i

(
0

ζ
′
Ri

)
⊗�′†

r i μγ
μλ−

ε j =
(
0 ζ

′
R j

)
⊗ (�′†

r j μλ
†
+γ μ)− i

(
ζ ′

R j
0
)

⊗ (�′
r j μ̄λ

†
−γ μ̄),

i Tr
(
ε j�

e∂eεi

)
= i Tr g

(
ζ

′
R j
σ e ∂e ζ

′
Ri

)
Tr h

(
�′†

r j μ�
′
r i ν̄

)
gμν̄

+ i Tr g
(
ζ ′
R j
σ e ∂e ζ

′
Ri

)
Tr h

(
�′†

r i μ�
′
r j ν̄ ) g

μν̄,

i Tr
(
ε j�

m∂mεi

)
= −e−iφ Tr g(ζ

′
R j
ζ

′
Ri
)Tr h

(
�′†

r j μ∂ν�
′†
r i ρ

) �
μνρ

||�||
− eiφ Tr g

(
ζ ′
R j
ζ ′
Ri

)
Tr h

(
�′

r j μ̄∂ν̄�
′
r i ρ

) �μ̄ν̄ρ

||�|| .

i Tr
(
ε j�

m[δAm , εi ]
)

= −e−iφ Tr g(ζ
′
R j
δ
"ζ

′
Ri
)Tr h

(
�′†

r j μ[δ"A†
ν,�

′†
r i ρ ]

) �
μνρ

||�||
− eiφ Tr g

(
ζ ′
R j
δ
"ζ ′

Ri

)
Tr h

(
�′

r j μ̄[δ"Aν̄ , �′
r i ρ ]

) �μ̄ν̄ρ

||�|| .

(B.37)

Tr g and Tr h descend from the trace over e8. They are understood to mean to
contract the R and r indices in the appropriate way in order to get an invariant;
if none exists, then the trace vanishes. We use (B.31) in the last two lines. We
have written δAμ̄ = δ
"δ"Aμ̄ to represent a generalised variation of the e8
gauge field. In the text this includes moduli and matter fields e.g. δ
"δ"Aμ̄ =
Y αDαAμ̄ + Cξφξ μ̄ + Dτψτ μ̄.
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C Some representation theory

Consider some Lie algebra e and for this subsection only denote a = 1, . . . , dim e.
We choose A to be anti-Hermitian A† = −A. In terms of adjoint generators T a :

A = AaT a, (Aa)∗ = Aa, [T a]† = −T a .

Anti-Hermitian matrices for the fundamental and antifundamental satisfy

[T a, T b] = f abcT c, [(T ∗)a, (T ∗)b] = f abc(T ∗)c, ( f abc)∗ = f abc.

We identify

TR = (T a
R )

∗.

Let χ be in the fundamental and � in the antifundamental. The covariant derivatives
are

dAχ = dχ + Aχ, dAψ
t = dψ t + ψ t A.

Decompose into type:

A = A0,1 + A1,0 = (
Aa
0,1 + Aa

1,0

)
T a .

For Aa to be a real form, we require

(
Aa
0,1

)∗ = Aa
1,0,

(
Aa
1,0

)∗ = Aa
0,1. (C.1)

This is consistent with A†
0,1 = −A1,0 and A†

1,0 = −A0,1.
As in the paper we define

A = A − A†,

where

A := A0,1, A† := −A1,0.

Now define the components of A and A†:

A = AaT a, A† = (A†)aT a . (C.2)

The conjugation property of Aa is:

(Aa)∗ = (
Aa
0,1

)∗ = Aa
1,0 = −(A†)a . (C.3)
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