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A B S T R A C T

Livestock vocalisations have been shown to contain information related to animal welfare and behaviour.
Automated sound detection has the potential to facilitate a continuous acoustic monitoring system, for use in a
range Precision Livestock Farming (PLF) applications. There are few examples of automated livestock vocali-
sation classification algorithms, and we have found none capable of being easily adapted and applied to different
species’ vocalisations. In this work, a multi-purpose livestock vocalisation classification algorithm is presented,
utilising audio-specific feature extraction techniques, and machine learning models. To test the multi-purpose
nature of the algorithm, three separate data sets were created targeting livestock-related vocalisations, namely
sheep, cattle, and Maremma sheepdogs. Audio data was extracted from continuous recordings conducted on-site
at three different operational farming enterprises, reflecting the conditions of real deployment. A comparison of
Mel-Frequency Cepstral Coefficients (MFCCs) and Discrete Wavelet Transform-based (DWT) features was con-
ducted. Classification was determined using a Support Vector Machine (SVM) model. High accuracy was
achieved for all data sets (sheep: 99.29%, cattle: 95.78%, dogs: 99.67%). Classification performance alone was
insufficient to determine the most suitable feature extraction method for each data set. Computational timing
results revealed the DWT-based features to be markedly faster to produce (14.81 – 15.38% decrease in execution
time). The results indicate the development of a highly accurate livestock vocalisation classification algorithm,
which forms the foundation for an automated livestock vocalisation detection system.

1. Introduction

To meet the increasing global demand for livestock products, live-
stock management practices have shifted towards intensive methods
(FAO, 2009). Although output has dramatically increased (Thornton,
2010), it has become more difficult for farmers to observe and monitor
individual animals. In parallel, consumers are demanding more trans-
parency in the welfare, environmental impact, and safety reporting of
the animal products they purchase (Thornton, 2010; Moynagh, 2000;
Grandin, 2014). This poses a dilemma for the modern producer who
needs to find a balance between high production efficiency targets, and
ethical, sustainability, and safety requirements. Precision Livestock
Farming (PLF) aims to address these concerns by facilitating the con-
tinuous, automated monitoring of livestock, and enabling more ap-
propriate and timely interventions. In PLF, the biological responses of
livestock are constantly measured, providing up-to-date information on
‘states’ of interest (e.g. welfare indicators, production targets, etc.).

These systems can be used to alert farmers to critical events on farm, to
aid management decisions, and to augment their existing knowledge.

In practice, PLF systems require state-of-the-art software and hard-
ware systems. To obtain continuous information concerning animal
behaviour, various sensors can be used, such as microphones
(Berckmans, 2014; Chung, 2013; Exadaktylos et al., 2014), cameras
(Sadgrove, 2017), accelerometers (Alvarengaa, 2016; Barwick, 2018;
Barwick, 2018), and Global Positioning System (GPS) satellites (Falzon,
2013). The resulting data streams are analysed to discover dis-
criminatory features pertaining to the target behaviour and are subse-
quently used to train machine learning (ML) models. Well defined
models are capable of automatically predicting the state, condition, or
trait of interest (Berckmans, 2014). An emerging area of PLF research is
concerned with the automated detection and classification of acoustic
events, and how audio signals can be used as an input for PLF systems.

Acoustic monitoring provides an accurate and non-invasive way to
measure the biological responses, and by extension, welfare states of
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livestock (Exadaktylos et al., 2014). Coughs produced by pigs have been
shown to contain information related to respiratory disease (Ferrari,
2008; Van Hirtum and Berckmans, 2004). Based on these findings,
acoustic monitoring has been used extensively to detect and diagnosis
disease in indoor piggeries (Chung, 2013; Jans, 2005; Guarino, 2008;
Chedad, 2001), including the localisation of diseased individuals
(Exadaktylos et al., 2011). Similar work has been conducted with calves
(Vandermeulen, 2016). Feed intake estimation using acoustic analysis
has been widely researched, such as with broiler chickens (Aydin et al.,
2015), including determining short-term feeding behaviour (Aydin and
Berckmans, 2016). In cattle, automated detection and classification of
bite and chew activity has been used as means of feed intake estimation
(Chelotti, 2016; Clapham, 2011; Milone, 2012; Galli, 2006; Ungar and
Rutter, 2006), also providing insight into grazing behaviour
(Andriamasinoro, 2016). Similar automatic recognition of jaw move-
ments in free-ranging cattle, goats and sheep has also been demon-
strated (Navon, 2013). Automated segmentation and classification of
ingestive sounds in sheep has also been achieved (Milone, 2009). Cattle
vocalisation analysis has been used to determine estrus (Chung, 2013;
Lee, 2014), and as a means of welfare assessment, using “murmuring”
during resting and ruminating behaviour as an indicator of “good
welfare” (Meen, 2015). Vocalisation-based welfare monitoring has also
been demonstrated with chickens (Pereira et al., 2011), including
predicting growth (Fontana, et al., 2014). The majority of PLF acoustic
monitoring research has focused on algorithms highly optimised for
specific vocalisation detection, usually in an indoor production en-
vironment. There is an absence of a general purpose, noise-robust vo-
calisation detection algorithm, which can be readily retrained and
adapted to identify different livestock classes.

Numerous audio-specific features have been proposed for use in PLF
vocalisation detection and classification. These include mean maximum
frequency (Meen, 2015), relative sound intensity (Moura, 2008), power
spectra (Chedad, 2001), peak frequency (Fontana, et al., 2014), for-
mant-based (Lee, 2014), energy envelope (Exadaktylos et al., 2011;
Aydin et al., 2015), and Mel-Frequency Cepstral Coefficients (MFCCs)
(Chung, 2013; Chung, 2013; Bishop et al., 2017). In particular, MFCCs
have shown considerable success in a diverse array of applications
(Tiwari, 2010; Sharan and Moir, 2017; Ahmad, 2015), making them a
good starting point for audio-specific feature extraction. The use of a
Fast Fourier Transform (FFT) is central to many audio feature extrac-
tion techniques, including MFCCs (Davis and Mermelstein, 1980). As an
alternative to the FFT, the Discrete Wavelet Transform (DWT) has been
applied to acoustic detection tasks (Abdalla et al., 2013; Rabaoui, 2008;
Ramalingam and Dhanalakshmi, 2014). DWTs have the advantage of
retaining temporal information, in addition to frequency (Olkkonen and
Wavelet, 2011), and have been shown to be noise-robust (Virtanen
et al., 2012). The use of DWTs in PLF audio applications has not been
widely demonstrated (Banakar et al., 2016).

ML models capable of successfully classifying livestock vocalisations
are a key component in developing a livestock vocalisation detection
algorithm. Artificial Neural Networks (ANNs) (Chedad, 2001), Support
Vector Data Descriptions (SVDDs) (Chung, 2013a; b), AdaBoost.M1
(Lee, 2014), and Support Vector Machines (SVMs) (Bishop et al., 2017;
Banakar et al., 2016) have all shown promising results. SVMs excel at
binary classification problems (Bishop et al., 2017), and the combina-
tion of DWT-based features with an SVM model has not been widely
explored in the PLF space (Banakar et al., 2016; Deng, 2010). This is
even more pronounced when surveying multi-purpose vocalisation
detection algorithms, capable of being adapted to different target the
vocalisations of different livestock species.

This work presents a multi-purpose farm animal vocalisation clas-
sification algorithm, which forms the foundation of a future automated
livestock vocalisation detection system (Fig. 1). Classification is de-
termined using a binary C-SVM classification model (Vapnik et al.,
1997). A comparison of MFCC and DWT-based features was conducted,
taking into account both classification and timing performance. The

latter is especially important for end-deployment, where computational
resources may be considerably constrained. The algorithm’s perfor-
mance is tested in three separate vocalisation detection scenarios
(sheep, cattle, and guardian dogs), using data collected from audio
sensor nodes in operational outdoor farm environments at different
locations. Classification performance results demonstrate the develop-
ment of a highly accurate vocalisation detection algorithm (95.78 –
99.67% accuracy), capable of being easily adapted to different livestock
species and deployments.

2. Materials and methods

2.1. Data

2.1.1. Data collection
Continuous field recordings were conducted at three different

Australian livestock enterprises. Each deployment targeted a specific
animal vocalisation: sheep (Ovis aries), cattle (Bos taurus), and

Fig. 1. An overview of the proposed multi-purpose livestock vocalisation de-
tection algorithm. This work focuses on the development of the classification
component.
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Maremma sheepdogs (Canis familiaris). Sheep and cattle were chosen
due to Australia’s large production of these animals (AWI, Australian
Wool Production Forecast Report., 2017; MLA, Australian Cattle
Industry Projections, 2018), while Maremma sheepdogs were selected
due to their wide use as livestock guardians, particularly against wild
dog predation (Smith, 2000). Wildlife Acoustics Song Meter SM3 re-
cording units (Wildlife Acoustics, 2014) (Fig. 2) were used for sheep
and cattle data collection, and a Wildlife Acoustics Song Meter SM2 unit
(Wildlife Acoustics, 2010) was used for the Maremma sheepdogs de-
ployment. Recording units were placed in static, outdoor locations, and
animals were free to move around following natural behaviours: the
distance between the recording units and livestock was not actively
controlled. The recording units were subjected to outdoor weather
conditions, in some cases including rain and high winds. The acoustic
environment on-site was not controlled, in that regular livestock man-
agement practices and routines continued to be carried out. As it was
unknown how far target animals would be from the recording source,
the input level (i.e. gain) was set to ‘auto’ on each unit (24 dB) (Wildlife
Acoustics, 2014). All these factors resulted in a large variation in am-
plitude-based metrics between and within data sets (see Section 2.1.6).

2.1.2. Data extraction
Using Audacity audio editing software (Audacity, 2017), each data

set (Tables 1, 3, and 5) was segmented into 1 h intervals, and converted
to the spectral domain using a Fast Fourier Transform (FFT). The FFT
used a window size of 1024 and applied a Hanning window function,
which was selected for its balanced frequency resolution, side lobe roll-
off rate, and side lobe level reduction (Gaberson, 2006). From the data
produced by the FFT, spectrogram images were produced, and visually
inspected to ascertain the overall level of vocalisations, using Sonic
Visualiser software (Cannam et al., 2010). It was found that vast
amounts of the recordings contained very little activity. The time per-
iods identified by the operator as containing the highest vocalisation
density were selected for individual sound extraction. All data instances
were extracted in single-channel (mono), 16-bit/44.1 KHz quality, in
WAVE format; this differs from the original capture quality. Based on
the observed average duration of vocalisations of each target animal, a
1 s extraction window was used.

To simulate automated segmentation, all data sets contained both
positive and negative instances taken from the same time period. The
positive class was comprised of vocalisations by the target animal. All
vocalisations within an identified high activity period were extracted,
with occurrences determined both aurally and visually (i.e. spectro-
gram) by the operator. All encountered vocalisations were accepted,

regardless of origin (e.g. age or sex of the animal), the number of in-
dividuals simultaneously vocalising, or the type of vocalisation.
Amplitude was not considered when assessing a vocalisation for ex-
traction; all vocalisations which could be aurally identified as the target
species were included. This raises a limitation of the study: only human-
identifiable vocalisations were included, and these were only ascer-
tained through aural and spectrogram inspection. Direct observation of
behaviour would have provided more certainty and evidence of what
sounds were occurring, and their source. The negative class for each
data set was composed of the three most frequently occurring non-vo-
calisation sound types, as determined by the operator. Examples of each
of the negative subclasses were taken from throughout the time period
used, with the number of extractions based on the observed prevalence
of each sound. As with the positive class, overall amplitude was not
taken into account when extracting each instance. As each negative
subclass can contain a broad range of individual sounds, the frequency
distribution of each subclass is not uniform. The “bird” subclass may
include many different species, and types of bird calls. The “noise”
subclass can contain any non-descript audio occurrence, such as human
activity (e.g. speaking, working, etc.), vehicles (e.g. cars, trucks, aero-
planes), and other farm-related sounds. (Figs. 3–5) show examples of
each class / subclass: further examples are given in (Supplementary
6.1). In many cases, individual negative instances contained a sig-
nificant amount of spectral overlap with target vocalisations
(Figs. 3–5).

2.1.3. Sheep
Tables 1 and 2

2.1.4. Cattle
Tables 3 and 4

2.1.5. Dogs
Tables 5 and 6

2.1.6. Audio analysis
Following the creation of each data set, audio analysis was con-

ducted in MATLAB 2017a software (The MathWorks, 2017) to ascertain
the average level and standard deviation of amplitude, noise, and
clipping in each class and subclass. Decibels relative to full-scale (dBFS)
is a unit of measurement for amplitude in digital audio systems, based
on the root mean square (RMS) value of the signal (Table 7). Mean dBFS
was used to define signal power. The signal-to-noise (SNR) ratio was
determined by taking 5 samples of background noise from each time
period used, calculating the SNR as shown in (Table 7), using MA-
TLAB’s ‘snr()’ function, and taking the mean. Clipping was defined as
any 3 consecutive values that contained the maximum value allowed by
the bit-rate (i.e. the highest signed 16-bit value is 32,767). Clip rate
(CR) was expressed as the number of clips divided by the number of
samples (i.e. 44,100 at extraction sample rate) and derived by the
formula in (Table 7).

The results of the analysis are given in (Table 8). Overall, there was
a lot of variation in dBFS, SNR, and CR both between and within each
data set. Standard deviation for all metrics is large, illustrating the di-
versity in amplitude of each class/subclass. In most cases, a higher dBFS
and CR was associated with a more desirable SNR, as extracted samples
are higher in amplitude. In the sheep data set, many animals were in
close proximity to the capture device, resulting in a marked difference
in dBFS, CR and SNR between the positive and negative subclasses: the
difference is less pronounced in the wind subclass. The cattle data set
contained high levels of wind, causing comparatively higher CRs. The
site where this data was collected was also near a major highway, under
a flightpath, and was in constant use by farmers and workers. The gain
settings on the recording device appeared to be too high for the level of
acoustic interference encountered. The dog data set had the lowest
average dBFS and CR, but the least variation between classes/

Fig. 2. Wildlife Acoustics Song Meter SM3 audio recording unit in the field.
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subclasses. The site where dog data was collected had high levels of
insect activity (cicadas), and all sound sources were distant from the
capture device. Average dBFS could have been improved by increasing
the capture device’s gain, to a level more suitable to the low amplitude
sounds encountered. The SNR for the dog class shows a less noisy signal
than its corresponding negative subclasses. When deploying recording
devices in the future, some of the variation in dBFS, SNR, and CR can be
reduced by setting a more appropriate gain level for the acoustic en-
vironment. The gain should be set based on analysis of test recordings,
and ideally, checked and adjusted during the duration of the deploy-
ment.

2.1.7. Automated segmentation
A fully automated vocalisation detection system must be capable of

not only classifying sounds, but also segmenting them from the audio
stream (Fig. 1). The algorithm presented is the classification component
of a proposed system, focusing on using audio-specific feature extrac-
tion and machine learning to classify livestock vocalisations. To test the
classification accuracy of the algorithm, segmentation was performed
manually: this is a limitation of the current design. Future work will
focus on the development of an automated segmentation component.

The goal of automated audio segmentation (AAS) is to find the
boundaries of homogeneous acoustic content in an audio stream

(Castán et al., 2015). By ascertaining the points where the signal sig-
nificantly changes (e.g. temporally or spectrally), individual sounds
(Huang et al., 2013) or portions of audio derived from the same source
(Bhandari et al., 2013), can be identified. A basic livestock vocalisation
AAS component would need to achieve two main goals: identify when
possible sounds of interest occur, and segment individual sounds that
exist close together. Energy-based methods are typically employed to
determine initial segmentation boundaries, by applying a threshold
function to audio windows based on a metric, such as RMS or zero-
crossing rate (Panagiotakis and Tziritas, 2005). This may result in large
section of segmented audio that contain many different sounds in close
proximity. Metric-based methods can be used to locate the acoustic
change points in the signal, the points of most dissimilarity or ‘distance’
(Kemp et al., 2000), most commonly by employing a distance function
to evaluate the correlation between adjacent windows (Rybach et al.,
2009). Demonstrated distance functions include Gish distance (Kemp
et al., 2000), Kullback-Leibler divergence (Virtanen and Helen, 2007),
and Baynesian Information Criterion (BIC) (Ozan et al., 2014).

2.2. Feature extraction

2.2.1. Mel-Frequency Cepstral Coefficients (MFCCs)
The Mel-Scale is designed to mimic human auditory response, being

Fig. 3. Spectrogram examples of each class and subclass for the sheep data set.
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based on the relationship between actual and perceived frequency
(Patel, 2013). A cepstrum provides information about spectral dis-
tribution, envelope, and changes between bands (Sharan and Moir,
2016). This combination makes MFCCs an effective acoustic classifi-
cation feature. The steps required to extract MFCCs from a digital audio
signal are shown in (Fig. 6), and outlined in detail in (Sharan and Moir,
2015). MATLAB 2017a was used to extract MFCCs from each instance.
The parameters used for each data set are given in (Table 9). The low
and high cut-off values were found by conducting a grid search, uti-
lising stratified 10-fold cross-validation (10CV) (see Section 2.3.2), with
accuracy as the performance metric. The search bounds were de-
termined by visual spectrogram inspection of typical vocalisation
ranges (Figs. 3–5). The value of pre-emphasis alpha (Young et al., 2002;
Solera-Urena, 2007), number of channels (Sharan and Moir, 2016),
liftering type (Paliwal, 1999), and liftering value (Young et al., 2002)
were all selected based on review. Using a 1 s window length, and
omitting the 0th coefficient (Zheng et al., 2001), the final feature vector
has a dimensionality of 12.

2.2.2. Discrete Wavelet Transform (DWT)
The DWT (Daubechies, 1992) provides information about both the

spectral and temporal content of a signal (Olkkonen and Wavelet,
2011). The DWT operates by decomposing a discrete signal into two

coefficient sub-bands, detail and approximation, using a particular
wavelet type. The Daubechies wavelets (Daubechies, 1992) are com-
monly used wavelets in acoustic detection (Olkkonen and Wavelet,
2011). The DWT can be performed at different decomposition levels by
successively applying the transform to the approximation sub-band
produced at each level, using a cascading filter bank scheme (Mallat,
1989) (Fig. 7).

MATLAB 2017a was used to implement a Daubechies DWT. Wavelet
type and decomposition level were selected using a parameter grid
search, and performing stratified 10CV on the training set, with accu-
racy as the criterion. The search bounds and selected values are shown
in (Table 10). To reduce the dimensionality of the final feature vector,
the features shown in (Table 11) were extracted from each detail
coefficient sub-band. The last approximation sub-band was omitted, as
it was not found to improve results. The final feature vector had a di-
mensionality of 24.

2.2.3. Timing
It was deemed important to evaluate the timing performance of

each feature extraction technique, as it was highly likely that the end
deployment would benefit from any reduction in computational time,
as this translates to less required resources, and faster operation.
Feature extraction timing experiments were conducted in MATLAB

Fig. 4. Spectrogram examples of each class and subclass for the cattle data set.
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2017a (The MathWorks, 2017) using the ‘timeit()’ function. This
function calls a target function multiple times and returns the median of
the timing results. The positive sheep vocalisation class was used during
testing, with ‘timeit()’ called once for each instance, resulting in 1681
measurements. The system used was a mid-2015 MacBook Pro (Apple.
MacBook Pro, 2015), with a 2.2 GHz Intel Core i7 processor, 16 GB of
1600MHz DDR3 RAM, and a solid state hard drive.

Fig. 5. Spectrogram examples of each class and subclass for the dog data set.

Table 1
Sheep data acquisition information.

Location: Northern New South Wales, Australia

Enterprise: Wool production
Capture Quality: 16-bit/16KHz
Total Hours: 720
Hours Processed 6

Table 2
Sheep vocalisation data set.

Positive Negative Total

Sheep Birds Noise Wind Train Test

1681 579 663 439 3026 336

Table 3
Cattle data acquisition information.

Location Northern New South Wales, Australia
Enterprise Beef production
Capture Quality 32-bit/24KHz
Total Hours 144
Hours Processed 5

Table 4
Cattle vocalisation data set.

Positive Negative Total

Cattle Birds Machines Noise Train Test

1020 340 340 340 1836 204

Table 5
Dog data acquisition information.

Location North Coast New South Wales, Australia
Enterprise Goat meat production
Capture Quality 32-bit/48KHz
Total Hours 284
Hours Processed 2
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2.3. Support vector Machines (SVMs)

SVMs can be defined as supervised, non-probabilistic, binary clas-
sifiers (James, 2014). SVMs operate by creating a separating hyper-
plane, a decision boundary that aims to maximise the division between
classes (Bishop, 2006). The position of the hyperplane is defined by its
margins, delineated by the closest instances to the boundary: the sup-
port vectors (James, 2014). A ‘slack' variable (C) is present in SVMs,
allowing the width of the margins to be adjusted, which provides some
control over the bias-variance trade-off of the model (Hsu et al., 2010).
Kernel functions are commonly employed to allow for non-linear de-
cision boundaries, whilst reducing the higher computational com-
plexity associated with enlarging the feature space (Vapnik et al.,
1997). A Radial Basis Function (RBF) kernel was used during experi-
mentation, due to its purported balanced performance (Hsu et al.,
2010). The RBF kernel has an adjustable gamma (γ) value, allowing
greater flexibility when tuning the model (Hsu et al., 2010). To im-
plement the SVM portion of the algorithm, software was developed in
C++ utilising the LIBSVM library (Chang and Lin, 2011).

2.3.1. Training and testing
To rigorously test an ML model’s classification performance, sepa-

rate training and testing data must be obtained (James, 2014). (Fig. 8)
provides an overview of the process used to test classification perfor-
mance for each data set. Due to the stochastic nature of the data sets,
stratified 10CV was used. A stratified approach was used to ensure that
the distribution of both the positive and negative classes remained

equal when splitting each fold of the data. As each negative subclass
may differ in size, a consistent ratio of each negative subclass is present
in both the training and testing portion. Prior to splitting, all data sets
were shuffled using a predefined input seed, facilitating reproducibility.
For each fold, the data set was split into a training and testing set, with
90% and 10% of the total instances respectively. The test set for each
fold of data is only used to test the performance of the model. The
aggregate results are presented in (Section 3), and individual fold re-
sults are shown in (Supplementary 6.3).

The SVM parameters C and γ were found by conducting a parameter
grid search on the training data portion of each fold (Chang and Lin,
2011). For each increment of log2(C) and log2(γ), 10-fold cross-vali-
dation (10CV) was performed on the training set, with the resulting
accuracy used to rank performance. The results for all folds are pre-
sented in (Supplementary 6.2).

The Clopper-Pearson method (Clopper and Pearson, 1934) was used
to calculate the 99% binomial proportional confidence intervals (CIs)
for each experiment. Using this method, a range of values is obtained
(i.e. the Maximum Likelihood estimate of proportion or accuracy, and
an upper and lower bounds) for which, in 99% of estimated intervals,
the true proportion (accuracy) lies within this range. The Clopper-
Pearson method was also selected due to its suitability in the estimation
of intervals when the proportions are close to either 0 or 1. This facil-
itates a more detailed comparison of feature extraction methods within
each data set, rather than only using average performance metrics. By
comparing the CIs of each method, within each data set, the statistical
significance of the difference between results can be ascertained.

2.3.2. Normalisation
It has been demonstrated by (Hsu et al., 2010) that SVM perfor-

mance can be improved by applying min-max normalisation to training
and testing data as a pre-processing step. Common scaling bounds in-
clude (FAO, 2009) or [−1 – 1] (Hsu et al., 2010). Min-max normal-
isation was applied firstly to the training data, with each feature being
normalised independently: the minimum and maximum values were
subsequently stored to be used for scaling testing data. Min-max nor-
malisation was applied during all experiments, using [−1, 1] scaling
bounds.

3. Results

All results are derived from performing stratified 10CV on each data
set, using both MFCC and DWT-based features. Aggregate performance
metrics for each data set are given in (Table 12). Results for each in-
dividual fold are shown in (Supplementary 6.3). To further compare
feature extraction methods within each data set, binomial proportion
confidence intervals (99%) were derived for classification accuracy,
using the Clopper-Pearson method: these are displayed in (Fig. 9). The

Table 6
Dog vocalisation data set.

Positive Negative Total

Dogs Birds Goats Insects Train Test

1200 538 147 515 2160 240

Table 7
Formulas for dBFS, signal-to-noise ratio (SNR), and clip rate (CR) for a given
signal (X).

Metric Definition

dBFS: ( )dBFS log x20 ( 2 )X N i
n

i10
1

1
2= =

Signal-to-noise
ratio: SNR log10X

PX signal
PX noise10= where P=power of signal

Clip rate: ( )CR 100X
clips

totalsamples= where clip= 3 successive max values

for bit-rate (e.g. 32,767 for 16-bit)

Table 8
dBFS, signal-to-noise (SNR), and clip rate (CR) means, with standard deviation (STD) for each class and subclass. SNR is expressed as decibels (dB), and clip rate as
clips per second (cl/s).

dBFS dBFS STD SNR SNR STD CR CR STD

Sheep Sheep −2.41 dBFS 7.67 dBFS 25.32 dB 17.70 dB 0.462 0.760
Birds −20.89 dBFS 1.31 dBFS −30.03 dB 2.35 dB 0 0
Noise −19.64 dBFS 3.20 dBFS −6.86 dB 6.31 dB 0 0
Wind −12.87 dBFS 5.19 dBFS 18.04 dB 14.31 dB 0.034 0.168

Cattle Cattle −6.10 dBFS 6.85 dBFS 12.97 dB 16.71 dB 0.725 2.472
Birds −7.50 dBFS 6.63 dBFS 9.676 dB 16.43 dB 0.163 0.710
Machines −7.87 dBFS 6.19 dBFS 8.55 dB 15.84 dB 0.066 0.378
Noise −3.30 dBFS 8.55 dBFS 17.21 dB 18.64 dB 1.352 2.349

Dogs Dogs −25.46 dBFS 3.74 dBFS 10.91 dB 11.45 dB 0 0
Birds −29.86 dBFS 5.50 dBFS −0.98 dB 14.81 dB 0 0
Goats −28.67 dBFS 3.87 dBFS −10.55 dB 11.76 dB 0 0
Insects −29.40 dBFS 4.13 dBFS −7.41 dB 12.32 dB 0 0
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computational timing of each feature extraction method was also con-
sidered, with results provided in (Fig. 10).

4. Discussion

As can be seen from Section 3, the proposed algorithm produced
excellent results across all performance metrics (Table 12), for all data
sets, indicating that it is both accurate and flexible. High accuracy was
observed for both the MFCC and DWT-based feature extraction methods
(Table 12). Precision results were comparable to TNR in all data sets
(Table 12), demonstrating that the algorithm has a balanced response to
both vocalisation and non-vocalisation acoustic events. The relatively
high levels of noise present in each data set (Table 8) did not reduce the
performance of the algorithm, demonstrating that it is noise-robust. It is
difficult to compare the obtained results to others in the field, as there
are few examples of automated sheep (Bishop et al., 2017), cattle
(Chung, 2013), or dog vocalisation (Yeo et al., 2012) detection, and no
examples of an algorithm that can be easily applied and retrained to
multiple vocalisation types. It is therefore necessary to compare per-
formance results obtained in other livestock-related acoustic recogni-
tion tasks. This includes the automated detection and classification of
the ingestive sounds of cattle (97.4% (Chelotti, 2016) and 94% (Milone,
2012)), pig coughs (97.8% (Chung, 2013) and 86% (Jans, 2005)), cattle
oestrus (94% (Chung, 2013)), and sheep, cattle and goat jaw move-
ments (94% (Navon, 2013)). For all data sets, the proposed algorithm
achieved comparable (i.e. cattle 95.78%) or higher (i.e. sheep 99.29%
and dogs 99.67%) accuracy, when compared to the aforementioned
examples.

Classification performance results for the sheep data set were very
high, with 98.54% and 99.29% accuracy recorded for MFCC and DWT-
based methods respectively (Table 12). The accuracy obtained for
MFCCs was comparable to previous research (Bishop, et al., 2017)
(99.22%), but the DWT-based features outperformed this work
(99.29%). When compared to MFCCs, the DWT method also showed a
slight advantage in precision (+0.43%) (Table 12), which can be in-
terpreted as an increased ability to predict the positive class (i.e. sheep
vocalisations). Although the DWT-based technique proved superior
(+0.75% accuracy), further examination of the confidence intervals
revels a substantial overlap between results (Fig. 9). There was only
0.9% difference in upper bounds, and a 0.58% difference in lower
bounds, meaning there is no significant statistical difference between
the results of each method. It should be noted that the confidence
bounds for both methods were very small, with −0.62%/+0.48% for
MFCCs, and −0.47%/+ 0.31% for the DWT-based method. (Table 8)

Fig. 6. The steps required to extract MFCCs from a digital audio signal.

Table 9
MFCC parameters for each data set.

Sheep Cattle Dogs

Pre-Emphasis Alpha: 0.97
Window Length: 1 s
Window Function: Hanning
Filter Channels: 20
Liftering Type: Sinusoidal
Liftering Value: 22
Low Cut-Off: 300 Hz 0Hz 250 Hz
High Cut-Off: 5000Hz 1000Hz 2500 Hz

Fig. 7. Cascading filter bank scheme, where ↓2 represents a down-sampling of
2.

Table 10
DWT parameter search bounds, and selected values.

Search Bounds

Parameter Lower Upper Selected

Wavelet type: db2 db14 db8
Decomposition level: 1 8 6

Table 11
Features extracted from each of the DWT detail coefficient (x) sub-bands.

Feature Definition

Non-normalised Shannon entropy (Safty and El-Zonkoly,
2008):

E x xlogx i
n

i i( ) 1
2 2= =

Log energy (Rabaoui, 2008): E xx i
n

i( ) 1
2= =

Mean (Tzanetakis et al., 2002):
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1

1
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Standard deviation (Tyagi and Panigrahi, 2017):
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shows that within the sheep data set, the sheep class had a significantly
higher average dBFS and SNR as compared to the negative subclasses,
which may have had a positive effect on results. The high CR of the
positive class might have been reduced by setting a more appropriate
level of gain on the recording device. The composition of the sheep data
set is suitable for testing some possible deployments, such as an on-
collar device, as vocalisations will be far more likely to be louder than

other sounds when the microphone is closer to the source. Performance
in a more static deployment may require further evaluation using a
more comprehensive data set. It is difficult to make an extensive
comparison of the obtained results to other work in the field, as there
appear to be few examples of automated sheep vocalisation detection in
the literature (Bishop et al., 2017).

For the cattle data set, the MFCC feature extraction method was
clearly superior to the DWT-based method, showing better performance
over all metrics. MFCCs produced higher accuracy (+2.84%), precision
(+1.41%), and F1-score (+0.02%) (Table 12). A comparison of the CIs
for each method (Fig. 9) show no overlap between bounds, therefore it
can be concluded that there is a small, though statistically significant
difference between results. The overall recognition performance for the
cattle data set was high, and was comparable to similar work in de-
termining cattle oestrus via vocalisation detection (Chung, 2013). The
proposed algorithm achieved a slightly lower accuracy of 95.78%
(−1.92%), a better FPR of 3.04% (−1.06%), but an inferior FNR of
5.39% (+3.09%). Despite the algorithm’s high performance, results
from the cattle data set were distinctly lower than those obtained from
the sheep and dog data sets. When comparing the highest result for each
performance metric per data set, the cattle data set recorded 3.51 –
3.89% reduced accuracy, 2.68 – 2.78% diminished precision, 0.03 –
0.04 lower F-1 score, and 0.03 decreased AUC. An analysis of the

Fig. 8. Overview of algorithm training and testing procedure.

Table 12
Aggregate performance results from stratified 10CV on each data set, using both
MFCC and DWT-based features. Bold indicates the highest result for each me-
tric, within each data set.

Sheep Cattle Dogs

MFCC DWT MFCC DWT MFCC DWT

TPR: 97.86 98.93 94.61 90.10 99.58 98.75
FPR: 0.77 0.36 3.04 4.22 0.25 1.08
TNR: 99.23 99.64 96.96 95.78 99.75 98.92
FNR: 2.14 1.07 5.39 9.90 0.42 1.25
ACC: 98.54 99.29 95.78 92.94 99.67 98.83
P: 99.22 99.65 96.97 95.56 99.75 98.92
F1: 0.99 0.99 0.96 0.94 1.00 0.99
AUC: 0.98 1.00 0.97 0.93 1.00 0.99

TPR: True Positive Rate ACC: Accuracy
FPR: False Positive Rate P: Precision
TNR: True Negative Rate F-1: F-1 Score
FNR: False Negative Rate AUC: Area Under Curve

Fig. 9. Binomial proportion confidence intervals (99%), derived using the
Clopper-Pearson method (Clopper and Pearson, 1934).
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calculated CIs also reveals larger overall confidence bounds, as com-
pared to the other data sets, with an average −0.75/+0.72% for
MFCCs, and −1.01/+0.98% for DWT-based features. Based on these
results, it appears that the cattle data set posed a much more challen-
ging acoustic classification problem.

Based on spectrogram observation (e.g. Fig. 4 and Supplementary
6.1.2), there appears to be a higher level of audio frequency collisions
between the positive and negative classes in the cattle data set, as
compared to that of sheep and dogs. Cattle vocalisations typically have
a large low frequency component (Fig. 4). The negative class of the
cattle data set contained many instances of overhead planes and passing
vehicles, both of which produce significant low frequency activity
(Fig. 4). It is hypothesised that the algorithm had slight trouble dif-
ferentiating between these similar types of sounds. The cattle data set
had high rates of clipping in all classes (Table 8), and it is possible this
contributed to the reduced classification performance. The gain setting
on the recording device appears to have been set too high for the
acoustic environment. The cattle data set contained a negative subclass
(noise) that had a higher dBFS, SNR, and CR compared to the positive
vocalisation class (Table 8): this may also have had a negative effect on
performance. It can be difficult for an algorithm to discern between
sounds with similar envelope or frequency composition, as was shown
in similar work in the automatic recognition of jaw movements in
cattle, goats and sheep (Navon, 2013). The SVM model applied equal
misclassification costs to both the positive and negative classes. This
cost could be altered to favour a lower FPR or FNR, depending on
nature of the deployment. Overall, results for the cattle data set were
high (> 95% accuracy), but further work is required to identify and
explain the deviation of results from the other data sets.

The algorithm performed very well on the dog data set, with high
accuracy obtained for both MFCCs (99.67%) and DWT-based features
(98.83%) (Table 12). Accuracy results were markedly higher than those
reported for other dog vocalisation detection problems (Yeo et al.,
2012), but it is difficult to make comparisons as the problems are in-
herently different. Precision results were also high for both methods
(MFCCs: 99.67%, DWT: 98.92%) (Table 12), demonstrating that the
algorithm is good at detecting the positive (dog vocalisation) class. The
dog data set had the lowest average dBFS, SNR, and CR (Table 8). This

is expected when sounds have originated far from the capture device
but could have been improved by setting a more appropriate level of
gain on the recording unit. These results are encouraging for a static
vocalisation detection deployment, where distance from source may be
significant and variable. It may be beneficial to expand the goat ne-
gative subclass, due to the relatively low number of instances (Table 6),
and the frequency overlap observed in spectrogram images (Fig. 5,
Supplementary 6.1.3). Although MFCCs recorded better results in all
performance metrics, an investigation of the CIs shows a large amount
of overlap between CI bounds (Fig. 9). From this, it can be surmised
that there is no significant statistical difference between the results for
each feature extraction method, for the dog data set.

It is difficult to compare the feature extraction techniques based on
classification performance alone. As has been shown, there is significant
overlap between the CIs for each method in the sheep and dog data sets
(Fig. 9). Whilst the higher results obtained in the cattle set for MFCCs
were statistically significant, it was only a marginal difference. The
results from the preliminary timing tests provide clearer distinction
between the two compared methods. The DWT-based features were
markedly faster to produce than the MFCCs, with an almost 1ms dif-
ference between the median, minimum, and first and third quartile
extraction times (Fig. 10). This equates to a 14.81 – 15.38% decrease in
execution time. The difference in maximum execution time was even
more pronounced, with an over 2ms (27.26%) discrepancy between the
MFCC and DWT-based methods. This shows that the DWT-based feature
extraction technique is both computationally faster, and more con-
sistent in terms of processing time when compared to MFCCs. It must be
noted that the timing comparison of these two techniques was per-
formed in MATLAB 2017a, using a relatively high-powered laptop. In
order to target low-powered and embedded systems, minimisation of
the algorithm's computational requirements would become more cri-
tical, as these systems are usually constrained by low CPU speeds and
RAM capacities. Under these conditions, it would be ideal to perform
comparisons with significantly less overhead (e.g. by using C or C++
modules executed directly on target hardware).

There were some limitations with the methodology of this study. In
order to focus on a performance comparison between the presented
feature extraction methods, and on the applicability of an SVM to li-
vestock vocalisation classification, audio segmentation was performed
manually. To simulate automated segmentation, all identified instances
within a specified time period were extracted (see Section 2.1), leading
to a large variation in dBFS, SNR, and CR both between and within data
sets (Table 8). As animal behaviour was not directly observed, identi-
fication of target vocalisations was done aurally and by spectrogram
inspection, which may lead to instances being missed, incorrect label-
ling of sounds, and introduction of selection bias. Future audio data
collection should include visual recording, or direct observation of
animal behaviour, in order to confirm when vocalisation have occurred.
As hundreds of hours of recordings were collected (720 h for the sheep
data set alone), it was infeasible to manually process all the data. As
only a few hours of data, identified as containing high-levels of voca-
lisation activity, were used to produce each data set, there may be some
selection bias present. The time-consuming nature of manual segmen-
tation only further reinforces the need for an automated livestock vo-
calisation detection algorithm capable of segmenting and classifying
sounds, and which can be easily retrained to target different animals.
The proposed algorithm is capable of accurately classifying livestock
vocalisations but would require an automated segmentation component
in order to function as a livestock detection algorithm in a real-world
deployment. Future research will focus on the development of this
component, using a combination of an energy-based method for de-
termining initial segmentation boundaries, and a metric-based method
for acoustic change point detection, in order to segment sounds that
occur in close proximity. The performance of the presented classifica-
tion algorithm can then be re-evaluated when combined with auto-
mated segmentation.

Fig. 10. Computational timing results (ms), for MFCC and DWT-based feature
extraction techniques, calculated on a mid-2015 MacBook Pro (Apple. MacBook
Pro (15-inch, Mid, 2015).
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The high classification results obtained must be interpreted in the
context of the study. The classification models were trained and tested
using data from the same acoustic environments, captured during the
same deployments. This represents the ‘ideal’ conditions for the model,
in terms of similarities in the soundscape. This study did not test gen-
eralisation to other farms and deployments, so does not fully address
the suitability and adaptability of the algorithm to ‘real-world’ sce-
narios. It is expected that classification performance will be reduced
when testing with sounds captured from new locations, but the level of
reduction is yet to be ascertained. The results presented are very en-
couraging, but further work is needed to test and develop an algorithm
truly capable of accurately detecting livestock vocalisations across
different locations.

5. Conclusion

A multipurpose livestock vocalisation classification algorithm was
developed using a combination of an SVM ML model, and either MFCC
or DWT-based feature extraction. Performance of the algorithm was
evaluated using 3 different data sets, each targeting a different animal
(i.e. sheep, cattle, dogs), and under different acoustic conditions
(Table 8). Data was manually extracted from audio acquired from fully
operational outdoor farm environments. MFCC and DWT-based feature
extraction techniques were compared, using both classification and
computational timing results. 10CV was used to train and test an SVM
model, using a grid search for hyperparameter selection (Fig. 8). High
classification performance was observed across all 3 data sets, using
both feature extraction methods (Table 12, Fig. 9). For the sheep data
set, the DWT-based method achieved higher performance metrics, but
an analysis of the CI's revealed no statistical difference between each
method (Fig. 9). The cattle data set recorded relatively lower overall
performance than the sheep and dog data sets, suggesting that it posed a
more challenging acoustic classification problem. MFCCs obtained
higher classification performance for the dog data set (Table 12), but as
with the sheep data set, the CI's showed no statistical difference be-
tween each method (Fig. 9). The results for the computational timing
required for each method were clearer, with the DWT-based method
proving to be faster and with much less variation in timing (Fig. 10).

The high classification performance achieved paves the way for
further development of an automated livestock vocalisation detection
algorithm. A limitation of the proposed algorithm was the manual
segmentation and extraction of sound instances. Future work will focus
on the development of an automated segmentation component which
can be used in conjunction with the presented algorithm to facilitate
further testing of classification performance. This includes testing the
model and algorithm in other acoustic environments, with an emphasis
on developing a model capable of generalising to different deployment.
Once this ‘offline’ capacity has been achieved, then the algorithm can
be extended to real-time applications, with simulation testing on target
hardware (Stover, 2017), using either static nodes or on-animal devices.
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