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Abstract

Genomic prediction is emerging in a wide range of fields including animal and plant breed-

ing, risk prediction in human precision medicine and forensic. It is desirable to establish a

theoretical framework for genomic prediction accuracy when the reference data consists of

information sources with varying degrees of relationship to the target individuals. A refer-

ence set can contain both close and distant relatives as well as ‘unrelated’ individuals from

the wider population in the genomic prediction. The various sources of information were

modeled as different populations with different effective population sizes (Ne). Both the

effective number of chromosome segments (Me) and Ne are considered to be a function of

the data used for prediction. We validate our theory with analyses of simulated as well as

real data, and illustrate that the variation in genomic relationships with the target is a predic-

tor of the information content of the reference set. With a similar amount of data available for

each source, we show that close relatives can have a substantially larger effect on genomic

prediction accuracy than lesser related individuals. We also illustrate that when prediction

relies on closer relatives, there is less improvement in prediction accuracy with an increase

in training data or marker panel density. We release software that can estimate the expected

prediction accuracy and power when combining different reference sources with various

degrees of relationship to the target, which is useful when planning genomic prediction

(before or after collecting data) in animal, plant and human genetics.

Introduction

Genomic prediction of (additive) genetic effects and phenotypes is emerging in a wide range of

fields including animal and plant breeding, risk prediction in human medicine and forensics[1–

4]. Genomic prediction requires modeling of the association between genome-wide single

nucleotide polymorphisms (SNPs) and phenotypes. The success of genomic prediction is mea-

sured by its accuracy, i.e. how reliable a future phenotype of target individuals can be predicted.

Genomic prediction requires a reference population of individuals having information on

both genotype and phenotype. The accuracy of genomic prediction depends on various

parameters, including sample size of the reference and its genetic structure. An important
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parameter in relation to the latter is the effective size of the population. The effective popula-

tion size is a predictor of the effective number of chromosome segments that are represented

in the population[5–7]. Theoretical predictions have usually considered a homogeneous popu-

lation of individuals that are essentially unrelated. However, in most practical applications, the

reference population used for genomic predictions possibly consists of many sub-groups with

individuals having a variety of relatedness to the target individual, e.g. direct relatives, more

distant relatives, and individuals that are considered unrelated. It is relevant to assess the con-

tribution of these various sources to prediction accuracy before actually conducting an

experiment.

A number of studies have shown that genomic predictions are more accurate if the genomic

relationship between the proband and the reference population is higher, both in humans[8–

11] and in other species[12–14]. Habier et al (2013)[15] distinguished between three types of

information in genomic prediction; linkage disequilibrium, additive-genetic relationships and

co-segregation of QTL predicted from markers genotypes with a pedigree. They argued that it

would be useful to understand how these sources contribute to the accuracy of genomic pre-

dictions, especially when designing reference populations for breeding programs. They show

these contributions via simulated examples but did not provide methods that allow simple pre-

dictions for their contribution to accuracy. Pszczola et al. (2012)[16] showed that the relation-

ship between the reference population and the proband should be maximized to achieve an

optimal design using a simulation study. However, they also did not attempt to derive the

expected prediction accuracy from an optimal design in advance. Hayes et al. (2009)[17]

considered the influence of direct relatives on genomic prediction. They followed the same

approach as the general theory, i.e. by considering the number of independently segregating

chromosome segments within families. They showed the accuracy of genomic prediction from

varying sizes of the first and second degree of relatives, but did not consider the information

from combined sources[18]. It should also be noted that those studies that derived genomic

prediction accuracy from theory using effective number of chromosome segments (Me)[5, 6,

19–21], did not consider the correlation between relatedness at different chromosomes, there-

fore overestimating Me and underestimating whole-genome prediction accuracy[7].

Wientjes et al (2016)[22] proposed a simple selection index approach to combine informa-

tion from different populations. They considered a genetic correlation between genetic effects

expressed in different populations. We propose to use the same approach to combine different

sources of information from different subsets within a population, where the different subsets

have a different degree of relationship with the target individual. To predict the accuracy, we

derive the number of effective chromosome segments from a hypothetical Ne associated with

each subset, and we show that that combining such subsets using selection index theory gives

the same result as using a prediction from an Me derived from the variation in genomic rela-

tionships between the overall reference data and the target. Prediction accuracy is derived

from variation in genomic relationship rather than the variation in genomic relationship as a

deviation for the expected relationship among members of the reference set, as was proposed

by Goddard et al (2011) and also applied by Wientjes et al (2016). This approach leads to a the-

oretical concept useful for assessing the accuracy of genomic predictions in advance, and we

illustrate this with examples based on real data.

Materials and methods

Predicting genomic selection accuracy

The accuracy of genomic breeding values (GBV) or (genomic profile score in the context of

human risk prediction[23]) based on genome-wide SNP genotypes can be predicted from
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theory[5–7, 24], assuming that prediction is based on a reference population with phenotypes

and genotypes for the same genome-wide SNPs that are linked to quantitative trait loci (QTL).

The accuracy depends on i) the proportion of genetic variance at QTL captured by markers

and ii) the accuracy of estimating marker effects. The proportion of genetic variance at QTL

captured by markers (b) depends on linkage disequilibrium (LD) between markers and QTL,

which in turn depends on the number of markers (M) and the number of ‘effective chromo-

some segments’ (Me)[5], that is

b ¼ M=ðMe þMÞ:

Various forms of prediction of Me have been presented[5, 6, 21] that were however incon-

sistent to each other, and without considering the correlation between chromosomes.

Recently, we presented a prediction formula with the form[7]

Me ¼
Nchr

½lnð2NeLþ 1Þ þ 2NeLðlnð2NeLþ 1Þ � 1Þ�=ð4N2
e L2Þ þ ð1=3NeÞ � ðNchr � 1Þ

ð1Þ

where Ne = effective population size; L = average chromosome length; Nchr = number of chro-

mosomes. This formula accounts for mutation, and that without considering mutation should

be referred to Eq (10) in Lee et al. (2017)[7]. If Nchr = 30 and L = 1, Eq (1) can be approximately

simplified as

Me ¼ 2:938 Ne
0:965; and Ne ¼ 0:327 Me

1:036: ð2Þ

The accuracy of the genomic prediction of a phenotype can be written as[5]

ry;ĝ ¼ h � rg;ĝ ¼ h �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bh2

bh2 þMe=N

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bh4

bh2 þMe=N

s

ð3Þ

where ry;ĝ is the correlation coefficient between the true phenotypes (y) and estimated GBV, h2

is the heritability of the trait, and N is the number of phenotypic observations. Other measures

for genomic prediction accuracy, particularly for human risk prediction, such as the area

under the receiver operating characteristic curve (AUC) or odds ratio of case-control status

contrasting the higher or lower risk group are described elsewhere[7].

Me and genomic relationship

After collecting genotypic information of the reference data and the target individual, it is pos-

sible to obtain an empirical Me from a genomic relationship matrix (GRM). The elements in

the GRM are GTj ¼
XM

m¼1

xTmxjm=M where xTm and xjm are the standardised genotype coeffi-

cients (mean 0 and variance 1) for the target individual (T) and jth individual in the reference

data at the mth locus. It is possible to construct a GRM for each locus, and the elements in the

GRM at the mth locus are GTj(m) = xTmxjm. Then, the variance of the mean of GTj(m) across all
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Mi SNPs in a single chromosome is

var
XMi
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GTjðmÞ=Mi
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1
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ð4Þ

where cov(xj(l),xj(m)) = cov(xT(l),xT(m)) = rm,l, which is a correlation between the mth and lth

SNP-genotype, because of var(x) = 1 and mean(x) = 0, i.e. the genotype coefficients are stan-

dardized in the population. The term Me(i) is the effective number of chromosome segments

for the ith chromosome, and it is calculated from the inverse of the average of the squared cor-

relation between the Mi SNPs[6, 7]. When considering multiple chromosomes, the covariance

of the pairwise relationship between two chromosomes is not negligible[7]. Assuming equal

length and number of SNPs for Nchr chromosomes, Me for the whole genome can be derived

from the variance in the relationship across the whole genome as

1

Me
¼ var

XMi

m¼1

GTjðmÞ=Mi

 !

þ
Nchr � 1

3Ne

� �" #

�
1

Nchr
¼ var

XM

m¼1

GTjðmÞ=M

 !

¼ varðGTjÞ ð5Þ

where Nchr is the number of chromosomes. This expression is equivalent to (1) when using

Sved (1971)[25] for deriving the expected squared correlation between genotypes, which is

dependent on Ne. An empirical Me can be derived from the GRM as the variance in relation-

ships between a target individual T and N individuals in the reference population. Goddard

et al. (2011)[5] suggested their theoretical derivation had to assume a homogeneous population

of individuals that are essentially unrelated. However, Eq (4) show that the assumption about

unrelated individuals is not necessary so that any random samples from the population can be

used, irrespective of whether they are highly related or not (see Results).

Effective population size in a reference data set

One of critical parameters to determine the accuracy of genomic prediction is the effective

population size (Ne). It is not very common to represent a reference population by a single

value of Ne when it consists of several cohorts of individuals with different relationships to the

target individual. Wientjes et al. (2016)[22] used a single value for Me representing a reference

set consisting of two populations. Here, we generalized that concept for any number of subsets

of the reference population based on the relationship between Ne, Me and var(GTj), leading to a

certain value for Me and Ne for a reference population consisting of several cohorts. For any

subset of the reference data set, there are realized relationships with the target sample. From

Eq (5), a value of Me, which is the inverse of the variance of the genomic relationships between

the target and the reference sample, can be assigned to the reference data. Then, a single value

of Ne, which is a function of Me from Eqs (1) or (2), can be obtained for the reference data. The

effective population size of the reference set is therefore a parameter specific to the data used
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and it describes genomic diversity of the reference individuals used for prediction of genomic

breeding value relative to the target individual which breeding value is being predicted. This

Ne value can be smaller than the effective size of the population from which the reference indi-

viduals were sampled, but it can also be larger, depending on whether the reference individuals

chosen were closer or more distantly related to the reference set.

Based on this concept of Ne, reflecting information content of the reference sample in rela-

tion to the target sample, we consider three information sources consisting of i) close relatives

of the proband, e.g. Ne = 10, ii) distant relatives or individuals from the local area of the pro-

band, e.g. Ne = 100 and iii) a wider population sample of individuals that are not related to the

proband, e.g. Ne = 1,000.

The GBV can be estimated based on each of these information sources, and the accuracy of

the estimation can be calculated as above, e.g. rg;ĝ ðiÞ from Eq (3) where i represents the ith infor-

mation source. It is also possible to estimate GBV based on combined data of all three informa-

tion sources. Assuming a random sample from the same population for each source, the

accuracy of the GBV based on the combined data set can then be calculated using standard

selection index theory as

rg;ĝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

g0P� 1g
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
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g;ĝ ð1Þ r2
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g;ĝ ð1Þ r2
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5

v
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t

ð6Þ

where g is the vector with covariances between each of the GBV and the true breeding value,

and P is the variance-covariance matrix of the set of GBV. The accuracy of the GBV based on

the combined data set can also be estimated based on the weighted Me from the three informa-

tion sources. Assuming a random sample from the same population for each source, the

weighted Me can be obtained as

MeðweightedÞ ¼
1

XNsub� sample

k¼1

varðGTjÞkpk

¼
1

XNsub� sample

k¼1

pk
MeðkÞ

ð7Þ

where pk is the proportion of the sample size over the total sample for each information source.

The accuracy of the GBV based on the weighted Me is identical with that using standard selec-

tion index theory above (Eq (6)).

Following Wientjes et al. (2016)[22] we can further generalize for a case where genetic cor-

relations among multiple reference populations and those between reference populations and

the target are not one. Eq (6) can be generalized as

rg;ĝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

g0P� 1g
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
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r2
g;ĝ ð1Þ

..

.

r2
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r2
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2
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7
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ð8Þ

where rGk;T is the genetic correlation between the kth reference population and the target set,

and similarly, rGi;j is the genetic correlation between the ith and jth reference population (i =

j = 1 ~ k).
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Eq (8) can be used when multiple reference populations have both quantitative traits and

diseases. If the kth reference population is measured for binary response (disease or disorder),

the reliability term, r2
g;ĝ , in Eq (8) can be replaced with

r2

u;û ¼
h2z2

h2z2 þ ½Kð1 � KÞ�2 �Me=½Pð1 � PÞ � N�

where u is a genetic profile score on the 0,1 disease scale[26, 27], K is the population prevalence

for the disease, P is the proportion of cases in the total sample N of cases and controls, and z is

the density at the threshold on the normal distribution in the liability threshold model.

When the target data set is measured for a binary response (e.g. diseases), the AUC or odds

ratio of case-control status contrasting the higher or lower risk group can be also estimated[7].

These measures for genomic prediction accuracy with multiple heterogeneous reference popu-

lations can be obtained using MTG2, publicly available software (https://sites.google.com/site/

honglee0707/mtg2).

Power of genomic prediction

The power depends on the sample size in the target data set and the overall reliability of the

genomic prediction (Eq (8)).

NCP ¼ NT � r
2

y;ĝ=ð1 � r2

y;ĝ Þ

where NCP is the non-centrality parameters, NT is the sample size in the target data and r2
y;ĝ is

the coefficient of determination of the predictor. Then, the power can be written as

power ¼ 1 � F½F� 1ð1 � a=2Þ �
ffiffiffiffiffiffiffiffiffiffi
NCP
p

� þ F½F� 1ða=2Þ �
ffiffiffiffiffiffiffiffiffiffi
NCP
p

�

where F is the cumulative standard normal function and α is the significance level. When

using the odds ratio of case-control status contrasting the higher or lower risk group, the non-

centrality parameters can be derived as[28]

NCP ¼ lnðORÞ2½NtopPtopð1 � PtopÞPbottomð1 � PbottomÞ�=½Pbottomð1 � PbottomÞ þ ðNtop=NbottomÞPtopð1

� PtopÞ�

where Ntop and Nbottom is the number of individuals in the top and bottom percentile, and Ptop
and Pbottom is the proportion of cases in each group. The power can be estimated as above.

Simulation

In a simulation, a stochastic gene-dropping method [29, 30] was used to simulate 4,000 SNPs

for each of 30 chromosomes, each of length L = 1 Morgan with Ne = 50, 500 and 1000 for 50,

500 and 1000 generations, respectively. Recombination and mutations were modelled accord-

ing to the genetic distance between SNPs and the mutation rate of 1e-08 per site per genera-

tion[31]. In the final generation, we constructed a genomic relationship matrix for a random

set of 3000 individuals. Among the 3000 individuals, we randomly selected 1000 individuals as

target data and 2000 individual as reference data, and estimated variance of the genomic rela-

tionships between the target and reference data to validate Eqs (1), (2), (4) and (5).

Evaluation of the formulas

For each of the three information sources contributing to genomic prediction we varied values

for Ne, sample size in reference data and marker density. We compared the expected accuracy
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of GBV from the sample of Ne = 1000 with predictions that additionally included information

from the sample of Ne = 100 and Ne = 10. The total number in the reference population was

kept equal between the comparisons.

Real data analysis

We used publicly available data from the Framingham heart study (phs000007.v26.p10.c1)

[32]. There were 6950 individuals genotyped for 500,568 SNPs. Stringent quality control for

genotype data and phenotype adjustment for confounders were applied to the data (the details

can be found in Lee et al. (2016)[7]). The quality control included SNP call rate> 0.95, indi-

vidual call rate> 0.95, HWE p-value > 0.0001, MAF > 0.01 and individual population

outliers < 6 SD from the first and second principal components (PC). After QC, 6920 individ-

uals and 389,265 SNPs remained. Among them, 4243 individuals were phenotyped for height

and body mass index (BMI).

We made three different information sources to form the reference data that were tested in

100 replicated analyses (Table 1). Initially, we randomly selected 800 individuals out of 4243

phenotyped individuals as a target data set. For reference data set #1, we selected 50% of indi-

viduals that were highly related (> relatedness of 0.3) to the 800 target individuals (N1 =

617 ± 19). For reference data set #2, we selected 80% of moderately related individuals

(> relatedness of 0.1) of the 800 target individuals (N2 = 1254 ± 30). For reference data set #3,

we took the rest of the individuals that were not selected for reference data set #1 and #2 (N3 =

1572 ± 33). There was no overlap sample between target data set and reference data sets #1, #2

and #3.

Using the real genotype data, the genomic relationships between the reference and target

sample were constructed. Empirical Me was estimated from Eq (5) for reference #1, 2 and 3,

and that for combined data. We took a median rather than mean because the distribution of

variance of the genomic relationship between target and reference sample was skewed. The

correlation between the true phenotypes (that were not used in the analyses) and estimated

GBV in the target data set was estimated for the combined data set, which was used as the

genomic prediction accuracy (ry;ĝ ). Phenotypes were adjusted for birth year, sex, and the first

10 PCs were used to control non-genetic confounding effects, e.g. population stratification.

Results

In the simulation study, as shown in Fig 1A, 1B and 1C, the expected (from Eq (1)) and empir-

ically observed Me from the simulated genotyped data (using Eq (5)) are in good agreement,

however, they are considerably lower than the expectation from the previous formulas[5, 6,

21], which confirms the result from Lee et al. (2017)[7]. It is noted that Eq (5) is still valid in

the subset with a smaller Ne = 50 that has a significant proportion of high related individuals,

Table 1. The sample size (N) and empirically observed Me in each of three different reference data

sets and combined data set in the Framingham data analysis.

Ni (standard deviation) Me (standard deviation)

Reference #1 N1 = 617 (19) 2254 (50)

Reference #2 N2 = 1254 (30) 3989 (104)

Reference #3 N3 = 1572 (33) 28848 (920)

Combined all Nall = 3443 (0) 4836 (106)

The values were averaged over 100 replicates.

https://doi.org/10.1371/journal.pone.0189775.t001
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indicating that the assumption about unrelated individuals (made in Godard et al. (2011)[5])

can be relaxed. It is shown that whether using a high or low effective population size, the mean

and variance of genomic relationships is generally agreed with the expectation from the theory

(S1 Fig and S2 Fig).

In the evaluation of the formulas, we first tested how the prediction accuracy was changed

with varying marker density, using formula (1) and (3) and b = M / (Me + M) (Fig 2). For Ne =

10,000, the accuracy gradually increased with marker density, but the slope became flat when

using the number of SNPs exceeded 100,000 (Fig 2A). For Ne = 1,000, the accuracy did not

increase with marker density as long as the number of SNPs was higher than 50,000 (Fig 2B).

For Ne = 100, there was no improvement of the accuracy if the number of SNPs was more than

10,000 (Fig 2C). This would be expected because the proportion of genetic variance at QTL

captured by markers (b = M / (Me + M) approached one when the number of SNPs (M) was

more than 100,000, 50,000 and 10,000 for Ne = 10,000, 1000 and 100, respectively (Fig 3), as Me

was equal to 21,248, 2,313 and 254 for these three cases.

Next, we quantified the contribution of each information source when varying sample size

in the reference data using formula (1), (3) and (5) (Fig 4). It was assumed that the number of

SNPs was sufficient to capture most of causal variants (e.g. > 50,000). When adding 100 indi-

viduals of Ne = 100 or Ne = 10 to the reference sample with Ne = 1000, the accuracy was slightly

or substantially improved (Fig 4A). The improvement was larger when adding more individu-

als (500) (Fig 4B). Results showed that an information source of a smaller Ne was more im-

portant when the samples sizes of each information source were the same. When the total

number of reference data was increased, the importance of adding an information source of a

smaller Ne was relatively decreased (Fig 4). When heritability was higher, overall accuracy was

increased, and the relative contribution from an information source of a smaller Ne, i.e. the

close relatives, was reduced (Fig 5).

Fig 6 confirms again that the smaller Ne, the better the prediction accuracy when using each

information source separately. However, the sample sizes can be also varied across the infor-

mation sources, as there are generally a lot fewer close relatives than individuals from the

wider population. In Fig 6A, the accuracy at a sample size of 100 for Ne = 10 was 0.73, which

was lower than that of a sample size of 1,000 for Ne = 100 (0.81) or that of a sample size of

20,000 for Ne = 1,000 (0.83). With a higher heritability, the result is similar in that the 20,000

records in the information source of Ne = 1000 gave a better accuracy than the 100 records of

close relatives (Ne = 10).

In real situations, the most common and desirable design may combine all of the informa-

tion sources to maximize the prediction accuracy. We plotted the accuracy using a composite

design consisting of Ne = 1000 + Ne = 100 (N = 500) + Ne = 10 (N = 50), compared to that

using Ne = 1000 (Fig 7). The accuracy for a composite design was substantially increased espe-

cially when the total number of reference sample is low (Fig 7).

Fig 8 illustrates the real data analyses. The median of empirically estimated Me from the

inverse of the variance of the genomic relationship (Eq 5) over 100 replicates was 2254

(SD = 50), 3989 (SD = 104) and 28848 (SD = 920) for reference #1, #2 and #3, respectively

(Table 1). Empirically estimated Me based on the combined data was 4836 (SD = 106) while

expected Me was 5309 (SD = 88), approximately confirming Eq (7). The (small) difference

Fig 1. Expected effective number of chromosome segments (Me) from previous studies in 2009[6],

2011[5] and 2013[21] and from Eq (1) in this study, compared to empirically observed from Me

simulation when varying the number of chromosomes each with 1 Morgan long. Effective population

size was used as Ne = 50 (A), 500 (B) and 1000 (C). This confirms the result from Lee et al. (2017)[7].

https://doi.org/10.1371/journal.pone.0189775.g001
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Fig 2. Accuracy of GBV when varying the number of SNPs for Ne = 10,000 (A), 1000 (B) and 100 (C). The

sample size in the reference data was N = 12,000, 6000 or 3000. The heritability was 0.25.

https://doi.org/10.1371/journal.pone.0189775.g002
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between empirical observation and expectation was probably due to skewed distribution of the

variance of the genomic relationships.

Given Me, N and h2, the expected accuracy agreed well with the observed accuracy when

using Framingham data (Fig 9). The reported heritabilities, h2 = 0.8 [33–35] for height and

h2 = 0.46[36, 37] for BMI, were used. We also quantified the importance of marker density

using the real data. In agreement with Fig 2, the prediction accuracy is not much decreased

even with 50,000 SNPs that were randomly selected from 389,265 SNPs (Fig 10).

Discussion

This work shows a simple approach for modeling genomic prediction in a reference data set

that contained several subpopulations that differ in relatedness to the target set, and by model-

ing these subpopulations as having different effective population size. The model allows assess-

ing the prediction accuracy before actually conducting an experiment so that designing

genomic prediction can be precise and effective in animal, plant and human genetics. For

example, it can address a question how much the prediction accuracy can be increased by add-

ing 10,000 (conventionally) unrelated individuals into the current experiment consisting of

100 relatives in the reference data. The value for Ne in Eq (1) can be approximated based on

prior knowledge of a population, and the relatedness of the sample with the target, possibly

supported by some genotype information that maybe available on cohorts, or samples thereof.

As a reference table, we added approximated value of Ne for structured population of full and

Fig 3. The proportion of genetic variance at QTL captured by markers (b = M / (Me + M) when varying the number of SNPs for Ne = 10,000, 1000 and

100.

https://doi.org/10.1371/journal.pone.0189775.g003
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Fig 4. Accuracy of GBV when adding 100 individuals (N = 100) (A) or 500 individuals (N = 500) (B) of Ne = 100 or Ne = 10

to the reference population of Ne = 1000. The heritability was 0.25.

https://doi.org/10.1371/journal.pone.0189775.g004
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Fig 5. Accuracy of GBV when adding 100 individuals (N = 100) (A) or 500 individuals (N = 500) (B) of Ne = 100 or Ne = 10 to

the reference population of Ne = 1000. The heritability was 0.25. The heritability was 0.75.

https://doi.org/10.1371/journal.pone.0189775.g005
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Fig 6. Accuracy of GBV when using Ne = 1000 only, Ne = 100 only and Ne = 10 only with a heritability of 0.25 (A), and with a

heritability of 0.75 (B). For Ne = 10 only, the accuracy at a sample size of 100 was 0.73 (A) and 0.88 (B). For Ne = 100 only, the

accuracy at a sample size of 1000 was 0.81 (A) and 0.92 (B). For Ne = 1000 only, the accuracy at a sample size of 20,000 was

0.83 (A) and 0.93 (B).

https://doi.org/10.1371/journal.pone.0189775.g006
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Fig 7. Accuracy of GBV when using a composite design, e.g. Ne = 1000 + Ne = 100 (N = 500) + Ne = 10 (N = 50),

compared to Ne = 1000 only with a heritability of 0.25 (A) and with a heritability of 0.75 (B).

https://doi.org/10.1371/journal.pone.0189775.g007
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half sibs (S1 Table and S2 Table). Prediction in advance indeed relies on arbitrary modelling a

number of cohorts, but it would be a useful exercise, as illustrated in the results when consider-

ing marker density and various sizes of the subsets of the training data. The theory is also use-

ful for an animal breeder to predict the value of genotyped animals in an own herd versus

those in a wider references population consisting of a larger number of more distantly related

individuals.

The genotypic and phenotypic information of close and distant relatives of the proband can

be effectively used as a part of the unified reference panel that also include a large number of

individuals that are not related to the predicted subject to improve the accuracy further as illus-

trated in Fig 7. For a random sample from the same homogenous population, e.g. within the

Fig 8. When using Framingham data, empirically estimated Me based on each of the reference data sets and combined data. Empirically estimated

Me based on combined data is approximately agreed with that from theory (Eq 5).

https://doi.org/10.1371/journal.pone.0189775.g008
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same breed or ethnicity, an optimal design should consist of both close and distant relatives

and unrelated individuals, e.g. a composite design, to maximise the prediction accuracy (Fig

7). That is, the composite design takes advantage of effective information from smaller number

of relatives while it also use information from a greater number of unrelated individual.

We showed that the prediction accuracy derived for a population with unrelated individuals

turns out to be higher, compared to previous quantifications that overestimated Me for a larger

number of chromosomes[5, 6, 21, 38]. Using the same theory, we also showed that the infor-

mation from close relatives could increase the accuracy even further, especially for smaller

reference populations (Figs 3–6). It is important to note that the assumption about using unre-

lated individuals in estimating empirical Me from genomic relationship[5] is not strictly

Fig 9. When using Framingham data, observed prediction accuracy and expected prediction accuracy with given Me and N (from Eq (3)) are

agreed well. The reported heritability, h2 = 0.8 [33–35] for height and h2 = 0.46[36, 37] for BMI, were used.

https://doi.org/10.1371/journal.pone.0189775.g009
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necessary and can be relaxed (Eqs (4) and (5)). The theory and empirical observation from

simulation study agreed well (Fig 1) even when using a population with a smaller effective pop-

ulation size (Ne = 50) that consisted of a significant proportion of high relatedness.

Previous studies related to genomic prediction accuracy have suggested that Me can be

derived from the variation in the differences between realized and expected relationships[6,

22], i.e. D = G–A where G is a genomic relationship matrix and A is a numerator relationship

matrix based on pedigree. Those studies validated their results also with simulation. If the indi-

viduals used in the training set have a low expected relationship to the target individuals, then

there is not much difference between the variations in D versus G. However, when some closer

relatives are used, var(G) is larger than var(D) and Me is therefore smaller. Note that non-ran-

dom sampling of individuals used for the training set can cause a difference between the Ne of

the population that was simulated, and the Ne of the data set that was used for prediction.

We have not tested the theory for multi-breed reference populations, i.e. those that are het-

erogeneous in the sense of consisting of populations from different genetic background, i.e.

different breeds or ethnicities, each with different minor allele frequencies, different LD struc-

ture and different effects for causal variants. Wientjes et al. (2016)[22] explicitly addressed the

problem of different effects for causal variants (i.e. genetic correlation less than one) when

combining data from two populations. Individuals from different populations share genomic

relationships that are lower than those among members within each population. Evidence in

literature suggests low prediction accuracies when using information from different breeds or

Fig 10. When using Framingham data, the prediction accuracy is not much decreased even with 50,000 SNPs that were randomly selected from

389,265 SNPs.

https://doi.org/10.1371/journal.pone.0189775.g010
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populations, which could be viewed as predicting from populations with very large Ne. More-

over, we have not considered historical population dynamics such as bottleneck and admix-

ture, but assumed a constant Ne over the historical generations, which leads to simplifications

that make the formulae tractable and easy to derive. Further work is required to extend the the-

ory accounting for admixture populations and historical population dynamics.

We have shown an improved theory for the prediction of the effective number of chromo-

some segments, which is a key parameter in genomic prediction accuracy[7]. The theory

accounts for the correlation between relationships at different chromosomes and as a result

the effective number of chromosome segments is smaller than predicted from previous theory

[5, 6, 21]. As a result, the increase of the genomic prediction accuracy appears to be less reliant

on higher marker density unless Ne is very large (e.g. > 10,000) (Fig 2), compared to what have

been quantified by previous theory[5, 6, 21]. The previous theory overestimates Me (mostly

due to neglecting correlation between chromosomes), therefore underestimates the proportion

of genetic variance at QTL captured by markers. Little improvement of prediction accuracy

with increasing SNP marker density has been empirically observed in a number of studies[39–

41]. This may also have important implication in genomic prediction as to designing marker

density in animal, plant and human genetics.

The ability to quantify the accuracy in relation to various degrees of relationships (e.g. close

relatives, distant relatives, local or extensive population sample) is important for predicting

outcomes of genomic prediction for specific designs. This study has addressed this question,

and the theory has been implemented in MTG2 software (https://sites.google.com/site/

honglee0707/mtg2). Therefore, a user can know the expected prediction accuracy and the

power[26] before designing an experiment of genomic prediction. Our approach can be

applied both before and after collecting the data.
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