
Chapter 1

Introduction

1.1 Frontier Functions and Efficiency Measurement
Neoclassical microeconomic theory specifies that a production function represents the

maximum output attainable from particular quantities of inputs, given the level of

technology; a cost function represents the minimum costs, given input prices and

outputs; a profit function represents maximal profits, given input and output prices;

and so on. However, empirical microeconomic analyses until the last three decades

have been dominated by ordinary least-squares (OLS) regression and its variants,

which obtain a line of best fit through the sample data rather than over the data, in the

case of a production or profit function, or under the data, in the case of a cost

function. In recent years, a body of literature has developed on the estimation of

frontier functions (using either econometric or mathematical programming methods)

which are more consistent with the definitions of the functions involved.

The two primary benefits of estimating frontier functions, rather than average

functions, are that: (a) estimation of an average function provides a picture of the

shape of the technology for an average firm, whereas the estimation of a frontier

function reflects the technology of the best-performing firms and hence reflects the

technology they are using, and (b) the frontier function represents a benchmark against

which the efficiency of firms within the industry can be measured. It is this second use

of frontiers which has provided the greatest impetus for the estimation of frontier

functions in recent years.

This thesis is concerned with the estimation of frontier functions using econometric

methods. This involves the estimation of econometric models known as stochastic

frontier functions. The purpose of the thesis is to make a contribution to the

specification, estimation (in particular, the computation), application and testing of

stochastic frontier models. Thus this thesis may be roughly divided into four parts

under these headings. Chapters 3 and 4 deal with the specification of two new

stochastic frontiers for panel data, one dealing with time-varying inefficiency effects
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and another with the incorporation of factors that may influence the values of the

inefficiency effects. Chapters 5 and 6 present detailed applications of the second

frontier model to panel data on Indian agriculture and Australian electricity generation.

The estimation of stochastic frontiers is dealt with in Chapters 7 and 8, where the

issues of computation and finite-sample properties are considered. Chapter 8 also

considers the finite-sample performance of a number of tests of hypotheses that are

regularly conducted in stochastic frontier analyses. Chapter 9 presents a summary of

the major findings and suggestions for further research.

1.2 Outline of the Thesis
This thesis describes a research program which involves a collection of smaller

research projects which are closely related in that they all involve the specification

and/or estimation of stochastic frontier production functions. Each chapter, with the

exception of Chapters 1 and 9, are closely associated with a particular research paper.

At the time of submission of this thesis, papers from five chapters have been published

or have been accepted for publication, while a further two papers have been submitted

for publication. Furthermore, it should be noted that three of these papers were co-

authored with my supervisor, Dr George Battese, while I was the sole author on the

remaining four papers. I now briefly describe the contents of each chapter in turn.'

Chapter 2 contains a review of recent developments in frontier modelling and

efficiency measurement. The estimation of frontier production, cost and profit

functions is discussed, along with technical, allocative, scale and overall efficiency

measures relative to the estimated frontiers. The two primary methods of frontier

estimation, econometric methods and mathematical programming, are discussed and

compared. A survey of recent applications of frontier methods in agriculture is also

provided. Much of this chapter arises from an invited paper which was presented to

the 39th Annual Conference of the Australian Agricultural Economics Society. A

revised version of this invited paper, Coelli (1995a), has been accepted for publication

in the Australian Journal of Agricultural Economics.

In constructing this thesis from a series of research papers, a large amount of repetitive material was
removed from each of the original papers prior to inclusion in the thesis. It was not possible,
however, to remove all repetitive material without seriously affecting the flow of some sections.
Hence I apologise in advance for those small amounts of repetitive material that remain.
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Chapter 3 describes the specification of a stochastic frontier production function for

panel data in which the technical inefficiency effects are specified to be the product of a

deterministic exponential function of time and time-invariant inefficiency effects

associated with different firms in the panel. This model is introduced to address

deficiencies of time-invariant technical inefficiency effects assumed in earlier panel data

specifications. An empirical application is presented using a small data set involving

Indian paddy farmers. Much of the work in Chapter 3 has been published in the

Journal of Productivity Analysis paper, Battese and Coelli (1992).

In Chapter 4 a stochastic frontier production model is specified for panel data in which

the technical inefficiency effects are permitted to be a function of firm-specific variables

and time. This is an extension of the cross-sectional models, proposed by Kumbhakar,

Ghosh and McGuckin (1991) and Reifschneider and Stevenson (1991), to

accommodate panel data and hence time-varying inefficiency effects. The model is

illustrated using the same data used in the empirical application in Chapter 3. The

empirical application in Chapter 4 considers the age and education of the farmers as

possible factors influencing the levels of technical inefficiency effects. The work in this

chapter is closely related to the paper, Battese and Coelli (1995), which appears in

Empirical Economics.

Chapter 5 involves an additional application of the method proposed in Chapter 4.

This application involves the full set of panel data obtained from the Village Level

Studies (VLS) conducted by the International Crops Research Institute for the Semi-

Arid Tropics (ICRISAT) in India. This data set involves over 30 sample farmers from

each of three Indian villages, observed over a ten-year period. In this study, farmer

age and education, along with farm size, are considered as possible factors influencing

the technical inefficiency effects of the farmers. Much of this work is also discussed in

the paper, Coelli and Battese (1994), which has been revised and recently submitted

for publication in the Australian Journal of Agricultural Economics.

Chapter 6 contains a third application of the model specified in Chapter 4. The

application involves ten years of annual data on 13 coal-fired electric power plants

from three Australian States: New South Wales, Victoria and Western Australia. In

this application, capacity factor, unit size, plant vintage and coal quality are considered
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as possible factors influencing plant inefficiency. The work in this chapter is

summarised in Coelli (1995b), a report to the Australian Electricity Supply Industry

Research Board (AESIRB). This report has also been submitted for publication in

Energy Economics.

Chapter 7 involves a description of the computer program, FRONTIER Version 4.1,

which has been written to estimate the models outlined in Chapters 3 and 4. This

program can also be used to estimate a number of other model specifications, including

cross-sectional models and cost functions. This program is presently in use in over 240

institutions around the world. The paper, Coelli (1992), published in Economics

Letters, describes Version 2.0 of the program, which was written to estimate the model

specified in Chapter 3.

The finite-sample properties of estimators for parameters of a stochastic frontier

production function are investigated in Chapter 8. The relative performance of the

maximum-likelihood (ML) and corrected ordinary least-squares (COLS) estimators are

investigated, together with five alternative test statistics, using Monte Carlo methods.

The analysis is limited to the cross-sectional stochastic production frontier, in which

the technical inefficiency effects have half-normal distribution. This specification has

been the most commonly assumed frontier model in empirical applications to date.

Much of the work in this chapter is included in the paper, Coelli (1995c), which

appears in the Journal of Productivity Analysis.

The fmal chapter provides a brief summary of the main results of the thesis, and also

suggests some areas of research which are worthy of further attention.
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Chapter 2

Literature Review

2.1 Introduction

This chapter surveys recent developments in the estimation of frontier functions and

the measurement of efficiency. Frontier production, cost and profit functions are

discussed, along with the construction of technical, allocative, scale and overall

efficiency measures relative to the corresponding frontiers. The two primary

approaches to the estimation of frontier functions, econometric methods and

mathematical programming, are discussed and compared. A survey of recent

applications of frontier methods in agriculture is also provided, along with some

discussion of the potential applicability of these methods in agricultural economics.

We begin this section with clarifications of the definitions of the terms, efficiency and

productivity. These terms have been used regularly in the Australian media over the

last ten years by a variety of commentators. It is unfortunate that they have often been

used interchangeably, although they are not precisely the same things. To illustrate the

distinction between the two terms, it is useful to picture a production frontier which

defines the current state of technology in an industry. Firms in that industry would

presently be operating either on that frontier, if they are perfectly efficient, or below

the frontier if they are not fully efficient. Productivity improvements can be achieved

in one of two ways. One can either improve the state of the technology, for example

by inventing new ploughs, pesticides, rotation plans, etc. This is commonly referred to

as technical change and can be represented by an upward shift in the production

frontier. Alternatively one can implement procedures, such as improved farmer

education, to ensure farmers use the existing technology more efficiently. This would

be represented by the firms operating more closely to the existing frontier. It is thus

evident that productivity growth may be achieved through either technical progress or

efficiency improvement, and that the policies required to address these two issues are

likely to be quite different. This thesis concentrates upon the issue of efficiency
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measurement. Issues relating to the measurement of technical change and overall

productivity growth are not considered in detail.

If all that is required is a measure of efficiency, some people may ask: "why bother

with fancy frontier estimators?" For example, in the case of agricultural production,

what is wrong with using tonnes of wheat per hectare or litres of milk per cow as

measures of farmer efficiency? Measures such as tonnes per hectare have a serious

deficiency, in that they only consider the land input and ignore all other inputs, such as

labour, machinery, fuel, fertiliser, pesticide, etc. The use of this measure in the

formulation of management and policy advice is likely to result in excessive use of

those inputs which are not included in the efficiency measure. Similar problems occur

when other simple measures of efficiency, such as output per unit labour and output

per unit of capital, are used.

A variety of efficiency measures have been proposed which are able to accommodate

more than one factor of production. The primary purpose of Chapter 2 is to outline

some of these measures and to discuss how they may be calculated relative to an

efficient technology, which is generally represented by some form of frontier function.

A key part of this exposition is a discussion of the two primary methods of frontier

estimation, namely stochastic frontiers and data envelopment analysis (DEA), which

involve econometric methods and mathematical programming, respectively. The

discussion also considers multiple-output technologies and ways of accounting for a

variety of behavioural objectives, such as cost minimisation and profit maximisation,

through the estimation of cost and profit frontiers.

The plan of the chapter is as follows. Section 2.2 provides a brief history of modern

efficiency measurement, beginning with the seminal paper by Farrell (1957). Recent

developments in frontier modelling and efficiency measurement in the econometric and

mathematical programming fields, are described in Sections 2.3 and 2.4, respectively.

Section 2.5 provides a brief review of some frontiers applications in the agricultural

economics literature, and the final section concludes and discusses some potential

applications to Australian agriculture.

6



2.2 Early Literature

The following discussion of literature on frontier modelling and efficiency

measurement is neither exhaustive nor rigorous. The purpose of this chapter is to

provide an introduction to the field and a summary of the major concepts and results,

which is not burdened by excessive notation and technical detail. More detailed

reviews include: FOrsund, Lovell and Schmidt (1980), Schmidt (1986), Bauer (1990),

Seiford and Thrall (1990), Lovell (1993), Greene (1993) and Ali and Seiford (1993).

This discussion of the recent history of efficiency measurement begins with Farrell

(1957) who drew upon the work of Debreu (1951) and Koopmans (1951) to define a

simple measure of firm efficiency involving multiple inputs. Farrell (1957) proposed

that the efficiency of a firm consists of two components: technical efficiency, which

reflects the ability of a firm to obtain maximal output from a given set of inputs, and

allocative efficiency, which reflects the ability of a firm to use the inputs in optimal

proportions, given their respective prices. These two measures are then combined to

provide a measure of total economic efficiency!

Farrell illustrated his ideas using a simple example involving firms which use two inputs

(xi and x2) to produce a single output (y), under an assumption of constant returns to

scale. 2 Knowledge of the unit isoquant associated with fully efficient firms,3

represented by SS' in Figure 2.1, permits the measurement of technical efficiency. If a

given firm uses quantities of inputs, defined by the point P, to produce a unit of output,

the technical efficiency of that firm is defined to be the ratio, 0Q/OP, which is the

proportional reduction in all inputs that could theoretically be achieved without any

reduction in output. Note that the point Q is technically efficient because it lies on the

unit isoquant.

1 Some of Farrell' s terms differ from those which are used here. He used the term price efficiency
instead of allocative efficiency and the term overall efficiency instead of economic efficiency. The
terminology used in this thesis conforms with that which has been used most often in recent literature.
2 Farrell also discussed the extension of his method to accommodate more than two inputs, multiple
outputs, and non-constant returns to scale.
3 The production function of fully efficient firms is not known in practice, and thus must be estimated
from observations on a sample of firms in the industry concerned. The selection of an appropriate
method of estimation is the subject of considerable discussion later in this chapter.
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Figure 2.1

Technical and Allocative Efficiencies

X2/Y
S     

A'

If the input price ratio, represented by the line AA' in Figure 2.1, is also known,

allocative efficiency may also be defined. The allocative efficiency of the firm

operating at P is defined to be the ratio, OR/0Q, since the distance RQ represents the

reduction in production costs that would occur if production were to occur at the

allocatively (and technically) efficient point Q', instead of at the technically efficient,

but allocatively inefficient, point Q. The total economic efficiency is defined to be the

ratio, OR/OP, where the distance RP can also be interpreted in terms of a cost

reduction. Note that the product of the technical and allocative efficiencies provides

the overall efficiency, (0Q/OP)(0R/OQ)=(OR/OP), and all three measures are

bounded by zero and one.

These efficiency measures assume that the production function of the fully efficient

firms is known. In practice this is not the case and the efficient isoquant must be

estimated from sample data. Farrell (1957) suggested the use of either (a) a non-

parametric, piecewise-linear convex isoquant constructed such that no observed point

lies to the left or below it (see Figure 2.2), or (b) a parametric function, such as the

Cobb-Douglas form, fitted to the data so that no observed point lies to the left or

below it. Farrell provided an illustration of his methods using agricultural data for the

48 continental States of the USA.

8



Figure 2.2

Piecewise-linear Convex Isoquant

The work of Farrell was subsequently adjusted and extended by several other authors.

Aigner and Chu (1968) considered the estimation of a parametric frontier production

function in input/output space. They specified a Cobb-Douglas production function (in

log form) for a sample of N firms as

ln(Yi) = F(xi ;13) - Ui	, i=1,2,...,N,	 (2.1)

where Yi is the output of the i-th firm; xi is Kx 1 vector of input quantities used by the

i-th firm; F(.) denotes a suitable functional form (in this case the Cobb-Douglas in

logarithmic form); 0 is a vector of unknown parameters to be estimated; and Ui is a non-

negative variable representing inefficiency in production.4 The 0-parameters of the
N	

ifrontier function were estimated using linear programming, where 1 U i is minimised,
i=1

subject to the constraints that U i>0, i=1,2,...,N.5

The ratio of observed output of the i-th firm, relative to the potential output defined by

the estimated frontier, given the input vector x i, can be used as an estimate of the

technical efficiency of the i-th firm:

TEi = Yi/exp[F(xi ;1)] = exp(-U1).	 (2.2)

4 Note that Aigner and Chu (1968) used different notation to that used here.
5 Aigner and Chu (1968) also suggested the use of quadratic programming methods.
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This is an output-orientated measure of technical efficiency as opposed to the input-

oriented measure discussed above. It indicates the magnitude of the output of the i-th

firm relative to the output that could be produced by a fully-efficient firm using the

same input vector. The output- and input-orientated measures provide equivalent

measures of technical efficiency when constant returns to scale exist, but are unequal

when increasing or decreasing returns to scale are present (Fare and Lovell, 1978).

Afriat (1972) specified a model similar to that defined by equation (2.1), except that

the Ui were assumed to have a gamma distribution and the parameters of the model

were estimated using the maximum-likelihood (ML) method. Richmond (1974) noted

that the parameters of Afriat's model could also be estimated using a method that has

become known as corrected ordinary least-squares (COLS). The ordinary least-

squares (OLS) method provides unbiased estimators of the slope parameters, but the

OLS estimator for the intercept parameter has a negative bias. Hence Richmond

(1974) suggested that the intercept be adjusted up using the sample moments of the

error distribution, obtained from the OLS residuals. Schmidt (1976) added to the

discussion on ML frontiers by observing that the linear and quadratic programming

methods, proposed by Aigner and Chu (1968), yield ML estimates if the Ui were

assumed to be distributed as exponential or half-normal random variables, respectively.

The two primary criticisms of the above deterministic6 frontier models are: (i) that no

standard errors or tests of hypotheses based upon traditional asymptotic theory are

available because the range of the dependent variable is dependent upon the parameters

to be estimated (see Schmidt 1976); and (ii) no account is taken of the possible

influence of measurement errors and other noise upon the shape and positioning of the

frontier, since all deviations from the frontier are assumed to be the result of technical

inefficiency. This latter point implies that the estimation of deterministic production

frontiers may be quite sensitive to the influence of outliers. To address this issue,

Timmer (1971) took up the suggestion of Aigner and Chu (1968) of permitting a

percentage of observations to lie above the estimated frontier. This was done by re-

estimating the frontier using a reduced sample. What Timmer (1971) called the

6 The term deterministic is used for the frontier because the (logarithm of) production is bounded
above by a deterministic function of the input values. Thus the parametric form for the production
frontier has a one-sided error term. The work of Aigner and Chu (1968), Afriat (1972) and Schmidt
(1976) are examples of deterministic frontier models.
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probabilistic frontier approach has not been widely followed because of the arbitrary

nature of the selection of a percentage of observations to omit. An alternative

approach to the solution of the 'noise' problem has, however, been widely adopted.

This approach is the subject of the following section on stochastic frontiers.

2.3 Stochastic Frontiers

2.3.1 Stochastic Frontier Production Functions

Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977)

independently proposed the stochastic frontier production function, defined by

ln(Y i) = F(xj .,13) + V i - U i 	, i=1,2,...,N,	 (2.3)

where V i is a symmetric error term (having zero mean and constant variance) which

accounts for statistical noise in production. This noise is generally assumed to

comprise measurement error in production and the combined influence of other

variables unaccounted for in the model. Aigner, Lovell and Schmidt (1977) assumed

that V i has normal distribution and U i had either half-normal or exponential

distribution, whereas Meeusen and van den Broeck (1977) assumed that Ui had only

exponential distribution. In both of these papers it was suggested that the parameters

of this model be estimated by the ML method.

This model specification was referred to as a stochastic frontier because the (logarithm

of) production is bounded from above by the stochastic term, F(xi;(3)+Vi. This

stochastic frontier not only accounted for noise in production, but also permitted the

estimation of standard errors and tests of hypotheses, which were not possible with the

earlier deterministic models because of the violation of the above mentioned ML

regularity condition.'

The stochastic frontier is not, however, without problems. The main criticism is that

there is no a priori justification for the selection of any particular distributional form

for the U i. The specification of more general distributional forms, such as the

truncated-normal (Stevenson 1980) and the two-parameter gamma (Greene 1990), has

Greene (1980a) observed that a particular class of distributions could be assumed for the U i which
would circumvent these regularity problems. The noise criticism, however, would still remain.
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partially alleviated this problem, but the resulting efficiency measures may still be

sensitive to distributional assumptions.

2.3.2 Estimation Methods

Stochastic frontier production functions can be estimated using either the ML method

or using a variant of the COLS method suggested by Richmond (1974). The COLS

approach could be preferred because it is not as computationally demanding as ML

which requires numerical solution of the likelihood function. This distinction,

however, has lessened over the past five years with the availability of software such as

the LIMDEP econometrics package (Greene 1992) and the FRONTIER program

(Coelli 1992, 1994), both of which automate the ML method.

The ML estimator is asymptotically more efficient than the COLS estimator, but the

properties of the two estimators in finite samples cannot be analytically determined.

The finite-sample properties of the half-normal frontier model are investigated using

Monte Carlo methods by Olsen, Schmidt and Waldman (1980). No significant

differences in the efficiencies of the two estimators are observed but it is suggested that

the COLS estimator may be preferred in sample sizes smaller than 400. A more recent

study by Coelli (1995c), involving substantially more replications, finds the ML

estimator to significantly outperform the COLS estimator when the contribution of the

variance of the inefficiency error to the sum of the two error variances is large. 8 Given

this result and the availability of automated ML routines, the ML estimator should be

used in preference to the COLS estimator whenever possible.

2.3.3 Alternative Functional Forms

The Cobb-Douglas functional form has been most commonly used in the empirical

estimation of frontier models. Its simplicity is a most attractive feature. A logarithmic

transformation provides a model which is linear in the logarithms of the inputs and

hence easily lends itself to econometric estimation. This simplicity, however, is

associated with a number of restrictive properties. Most notably, that the returns-to-

8 Coelli (1995c) considered 11 different values of the proportion of error variance due to the
inefficiency error (denoted by r) ranging from 0.0 to 1.0, in steps of 0.1, for sample sizes of N=50,
100, 400, and 800. Of these 44 cases, 14 show the mean squared error of ML to be significantly
smaller (at the 1% level) than that of COLS, while in only one case (r.0.1, N=50) did the converse
occur. This analysis is discussed in detail in Chapter 8.
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scale parameter has the same value across all firms in the sample, and the elasticities of

substitution are equal to one.

A variety of alternative functional forms have also been used in the frontier literature.

The two most popular forms are the translog (e.g., Greene 1980b) and the Zellner and

Revankar (1969) generalised production function (e.g., FOrsund and Hjalmarsson 1979

and Kumbhakar, Ghosh and McGuckin 1991). The Zellner-Revankar form removes

the returns-to-scale restrictions, while the translog form imposes no restrictions upon

the returns-to-scale or substitution possibilities, but multicollinearity is likely to be a

problem and the degrees of freedom for the errors are significantly reduced. These

problems can be avoided by jointly estimating the translog production function with the

first-order conditions for profit maximisation, as suggested by Greene (1980b). This

systems approach, however, will increase the complexity of the estimation process.

2.3.4 Dual Forms of the Technology

The discussion above concentrates upon the direct estimation of frontier production

functions using single-equation methods. The three main reasons for the consideration

of alternative dual forms of the production technology, such as the cost or profit

function, are to: (a) reflect alternative behavioural objectives (such as cost

minimisation); (b) account for multiple outputs; and (c) simultaneously predict both

technical and allocative efficiency.

The direct estimation of a production function produces biased and inconsistent

estimators of the parameters if the standard behavioural objectives of either profit

maximisation or cost minimisation apply. This is because the input levels are not

independent of the error term and hence simultaneous equation bias results. Direct

estimation of the production function is justified if it is appropriate to assume either:

(a) that the input levels are fixed and that the managers of the firms are attempting to

maximise output given the input quantities; or (b) that the managers are selecting the

levels of the inputs and the output to maximise expected (rather than actual) profits, as

discussed in Zellner, Kmenta and Drêze (1966).

Given that both output prices and output quantities are rarely known with certainty

when farmers make production decisions (such as to plant additional wheat or to buy
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additional sheep), the assumption of expected (rather than actual) profit maximisation

is the assumption which is most commonly made in production studies involving

agriculture. However, in some instances the assumption of a cost minimisation

objective may be more appropriate. For example, consider the case of dairy farms

which are contracted to produce particular levels of output in a given year. In such

cases it may be more appropriate to estimate a stochastic cost frontier of the form:

ln(Ci) = C(yi ,wi ;oc) + Vi + Ui	, i=1,2,...,N,	 (2.4)

where Ci is the observed cost for the i-th firm;

C(.) is a suitable functional form for the cost function;

w, is a vector of (exogenous) input prices for the i-th firm;

a is a vector of unknown parameters to be estimated;

Ui is a non-negative random variable reflecting cost inefficiency (which is often

assumed to have half-normal distribution); and

and all other variables are as defined above.

The parameters of this model can be estimated using standard econometric methods

since the yi and w, are assumed to be exogenously determined. Schmidt and Lovell

(1979) specify a Cobb-Douglas technology for steam-electric generating plants and

show how the cost function can be estimated in a similar manner to the estimation of

stochastic production frontiers using ML or COLS estimation. They also suggest the

use of a ML systems estimator involving the cost function and K-1 factor demand

equations, which provide more efficient estimators than the single-equation estimators.

This systems approach also has the advantage of explicitly accounting for allocative

inefficiency, which is reflected in the error terms on the factor demand equations

(which represent violations of the first-order conditions for cost minimisation).

The cost-frontier approach appears to be a significant improvement in that it accounts

for exogenous output and endogenous inputs, permits the measurement of technical

and allocative inefficiency, and can be extended to account for multiple outputs.

However, it suffers from two serious drawbacks. First, the cost-frontier approach

requires data on input prices which vary among firms. In many cases, firms in an

14



industry either face the same prices, or, if they do not face the same prices, it is difficult

to collect the relevant data on the prices.

Second, the approach of Schmidt and Lovell (1979) to systems estimation and the

measurement of technical and allocative efficiencies is limited to the use of self-dual

functional forms, such as the Cobb-Douglas. The specification of more flexible

functional forms, which are not self-dual, such as the translog form (see Greene

1980b), results in a number of problems. The main problem is associated with

selecting an appropriate way to represent the link between the allocative inefficiency

errors in the input demand equations, and the allocative inefficiency error which

appears in the cost function. To date, no one has solved this problem to the

satisfaction of the majority, and debate continues as to how to best address these issues

[see Bauer (1990) and Greene (1993) for further discussion and references]. My

advice to applied economists is to avoid flexible systems estimators. If one of the

existing approaches is applied [e.g., Greene (1980b) or Ferrier and Lovell (1990)] then

criticism from some quarter is likely and, furthermore, estimation problems often arise

when one tries to numerically maximise the rather complicated likelihood functions that

are involved. The best approach to take (given that the cost minimising assumption is

appropriate and suitable price data are available) is to estimate a cost function using

the single equation ML method (which is automated in LIMDEP and FRONTIER) and

use the method proposed by Kopp and Diewert (1982), and refined by Zeischang

(1983), to decompose the cost efficiencies into their technical and allocative

components. If the Cobb-Douglas functional form is considered appropriate, then the

procedures involved simplify to those which are outlined in Schmidt and Lovell

(1979).9

This section focuses upon cost functions because cost minimisation is the assumption

that is most often made in the dual frontier literature. Profit maximisation has also

been considered by a number of authors, and may be considered to be the more

appropriate assumption in many Australian agricultural industries. Examples of

frontier studies which assume profit maximisation include Ali and Flinn (1989) and

9 A recent paper by Kumbhakar (1996) has, for the case of a translog cost function, successfully
derived an exact relationship between allocative efficiency in the share equations and the cost
function. An application of this model is yet to be attempted.
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Kumbhakar, Ghosh and McGuckin (1991). Ali and Flinn (1989) consider a single-

equation profit frontier which is estimated using the same methods as appropriate for

production frontiers, whereas Kumbhakar, Ghosh and McGuckin (1991), specify a ML

systems estimator under the assumption of profit maximisation.

2.3.5 Panel Data

The previous discussion assumes that data on N firms, observed at one point in time,

are available for use in the estimation of the frontier function. If data on N firms are

observed in each of T different time periods, then this is what is known as panel data.

Panel data have many potential advantages over a single cross-section of data for the

estimation of frontier functions. It increases the precision of estimation of the

parameters; provides consistent estimators of firm efficiencies (given sufficiently large

T); removes the necessity to make specific distributional assumptions regarding the Ui;

does not require that the inefficiency effects are independent of the explanatory

variables; and permits the simultaneous investigation of both technical change and

technical efficiency change over time.

Pitt and Lee (1981) specified a panel data version of the Aigner, Lovell and Schmidt

(1977) half-normal model:

ln(Y it) = F(X it;13) + VA - Uit	 , i=1,2,...,N; t=1,2,...,T, 	 (2.5)

where Yit is the output of the i-th firm in the t-th time period; and the other variables

are similarly defined. Pitt and Lee (1981) specify a variety of models involving

different assumptions about the random errors, Vit, and the technical inefficiency

effects, Uit. If the Vit are assumed to be i.i.d. N(0,av2), independent of the Uit , which

in turn are assumed to be i.i.d. half-normal, then the panel data model (2.5) is not

essentially different from the cross-sectional model. Pitt and Lee (1981) also

considered a model in which the inefficiency effects are constant through time:

ln(Y it) = F(xit,(3) + \Tit - Ui	, i=1,2,...,N; t=1,2,...,T.	 (2.6)

Battese and Coelli (1988) extended this latter model to permit the U i to have the more

general truncated normal distribution, proposed by Stevenson (1980), and also derived

panel data generalisations of the predictor for the technical inefficiency effects given by
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Jondrow et al (1982). Battese, Coelli and Colby (1989) further extended the model to

account for unbalanced panel data. These last three models have the advantage of

providing consistent estimators of the U i , as T becomes large. However, as T becomes

large the assumption that the technical inefficiency effects, U it , are time-invariant is

more difficult to justify. One would expect managers to learn from previous

experience.

Kumbhakar (1990) suggested a stochastic frontier for panel data in which the

inefficiency effects are permitted to vary systematically with time. His model is similar

to equation (2.5) with the U it assumed to have structure defined by

Uit = 1+exp(bt+ct2)r i Ui	 (2.7)

where U i is assumed to have half-normal distribution and b and c are parameters to be

estimated. Kumbhakar (1990) suggested that the parameters of the model be

estimated using the ML method but no empirical application has yet been attempted.

Battese and Coelli (1992) (see Chapter 3) suggested an alternative to the Kumbhakar

(1990) model, in which the Uit are assumed to be the product of an exponential

function of time, involving only one parameter, and a time-invariant technical

inefficiency effect, as follows:

U it = exp[-11(t-T)] }U 1 	(2.8)

where U i is assumed to have truncated normal distribution and ri is a parameter to be

estimated. The model is illustrated in an application involving data on Indian paddy

farmers. The ML estimation method and efficiency calculations have been automated

in the FRONTIER program (see Coelli 1994 and Chapter 7). One advantage of these

latter two model specifications is that the inclusion of a time trend into the production

function F(.) permits the estimation of both technical change and changes in the

technical inefficiencies over time.'°

Schmidt and Sickles (1984) noted that when panel data are available there is no need

to specify an explicit distribution for the inefficiency effects. They suggested

estimating a model, in which the technical inefficiency effects are time-invariant, using

1° It should be kept in mind, however, that the identification of these two effects hinges upon the
distributional assumptions made regarding the U. If the 11i are not stochastic, then the two effects can
not be individually identified.
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the traditional fixed effects (dummy variables) approach or error-components

estimation, depending upon what assumptions are judged appropriate regarding the

independence of the inefficiencies and the explanatory variables." The firm intercepts

are then adjusted so that all firm effects are zero or negative, so that measures of the

efficiencies of the firms can be obtained. One criticism that can be levelled at this

approach, and all other COLS-type methods, is that the average firms are having the

greatest influence upon the shape of the estimated frontier, while ML estimation of

stochastic frontiers allows the more efficient firms to have a greater influence upon the

shape of the estimated frontier.

The approach of Schmidt and Sickles (1984) was extended by Cornwell, Schmidt and

Sickles (1990) and Lee and Schmidt (1993) to account for time-varying technical

inefficiencies. Both papers suggested models for temporal variations which are more

flexible than the formulations defined in equations (2.7) and (2.8). However, it should

be stressed that both approaches rely upon the estimation of an average function and

the use of a COLS-type intercept adjustment to identify the location of the frontier in

each year.

2.3.6 Determinants of Inefficiency

A number of empirical studies (e.g., Pitt and Lee 1981 and Kalirajan 1981) have

investigated the determinants of technical inefficiency variation among firms in an

industry by regressing the predicted technical inefficiency effects, obtained from an

estimated stochastic frontier, upon a vector of firm-specific factors, such as firm size,

age and education of manager, etc. in a second-stage regression. There is, however, a

significant problem with this two-stage approach. In the first stage, the inefficiency

effects are assumed to be independently and identically distributed, while in the second

stage they are assumed to be a function of a number of firm-specific factors which

implies that they are not identically distributed.

Recent papers by Kumbhakar, Ghosh and McGuckin (1991) and Reifschneider and

Stevenson (1991) noted this inconsistency and specify stochastic frontier models in

11 The fixed-effects approach permits the explanatory variables and inefficiency effects to be correlated
while the error-components method assumes independence, as does the ML estimation of the
stochastic frontier models, associated with equations (2.5) and (2.6).
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which the inefficiency effects are made an explicit function of the firm-specific factors,

and all parameters are estimated in a single-stage ML procedure. Battese and Coelli

(1995) extend this approach to accommodate panel data, which permits the

simultaneous investigation of both the determinants of technical inefficiencies, along

with the degree of technical efficiency change and technical change over time. This

model is discussed in detail in Chapter 4.

2.4 Data Envelopment Analysis

It is evident from the discussion in Section 2.3 that stochastic frontier methods have

developed a great deal over the past two decades. During this period, a separate

literature on the non-parametric mathematical programming approach to frontier

estimation, known as data envelopment analysis (DEA), has also been developing,

almost independently of the stochastic frontier literature.

Only a small percentage of agricultural frontier applications have used the DEA

approach to frontier estimation. This is, in one sense, surprising, given the popularity

of mathematical programming methods in other areas of agricultural economics

research during the 1960s and 70s. However, DEA has a very large following in other

professions, especially in management science, and in applications to service industries

where there are multiple outputs, such as banking, health, telecommunications and

electricity distribution. The DEA approach suffers from the same criticism as the

deterministic methods discussed in Section 2.2, in that it takes no account of the

possible influence of measurement error and other noise in the data. On the other

hand, it has the advantage of removing the necessity to make arbitrary assumptions

regarding the functional form of the frontier and the distributional form of the

inefficiency effects.

The review of DEA models presented here is brief, with relatively little technical detail.

More detailed reviews of the methodology are presented by Seiford and Thrall (1990)

and Ali and Seiford (1993).

The piecewise-linear convex hull approach to frontier estimation proposed by Farrell

(1957) was considered by only a handful of papers (e.g., Sietz 1971) until Charnes,

Cooper and Rhodes (1978) reformulated the approach into a mathematical
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programming problem and coined the term data envelopment analysis (DEA). There

has since been a large number of papers which have extended and applied the DEA

methodology.

Charnes, Cooper and Rhodes (1978) proposed a model which had an input orientation

and assumed constant returns to scale (CRS). Subsequent papers have considered

alternative sets of assumptions, such as Banker, Charnes and Cooper (1984) which

proposed a variable returns-to-scale (VRS) model. The following discussion of DEA

begins with a description of the input-orientated CRS model in Section 2.4.1, because

this model was the first DEA model to be widely used in empirical applications.

2.4.1 The Constant Returns-to-scale (CRS) Model

We begin by defining some notation. Assume there are data on K inputs and M

outputs for each of N firms. For the i-th firm these are represented by the vectors, xi

and yi, respectively. The KxN input matrix, X, and the MxN output matrix, Y,

represent the data for all N firms. The purpose of DEA is to construct a non-

parametric envelopment frontier over the data points such that all observed points lie

on or below the production frontier. For the simple example of an industry where one

output is produced using two inputs, it can be visualised as a number of intersecting

planes forming a tight fitting cover over a scatter of points in three-dimensional space.

Given the CRS assumption, this can also be represented by a unit isoquant in

input/input space (see Figure 2.2 above).

The best way to introduce DEA is via the ratio form. For each firm we would like to

obtain a measure of the ratio of all outputs over all inputs, such as u'y i/v'xi , where u is

an Mx 1 vector of output weights and v is a Kx 1 vector of input weights. To select

optimal weights we specify the mathematical programming problem:

max,, ,, (u'yi/v'xi),

st	 u'yi/Vx; � 1, j=1,2,...,N,

u, v � O.	 (2.9)

This involves finding values for the vectors u and v, such that the efficiency measure of

the i-th firm is maximised, subject to the constraint that all efficiency measures must be
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less than or equal to one. One problem with this particular ratio formulation is that it

has an infinite number of solutions. 12 To avoid this one can impose the constraint, v'xi

= 1, which provides:

MaXg,v Of yi),

st	 v'xi = 1,

lily; - v'xi � 0, j=1,2,...,N,

ii, v � 0,	 (2.10)

where the notational change from u and v to t and v reflects the transformation. This

form is known as the multiplier form of the linear programming problem.

Using the duality properties in linear programming, one can derive an equivalent

envelopment form of this problem:

mine,, 0,

st	 -yi + YA, � 0,

()xi - XX � 0,

X _�. 0,	 (2.11)

where 0 is a scalar and X is an Nxl vector of constants. This envelopment form

involves fewer constraints than the multiplier form, and hence is generally the preferred

form to solve." The value of 0 obtained is the efficiency score for the i-th firm. It will

satisfy, 0 .� 1, with a value of 1 indicating a point on the frontier and hence a

technically efficient firm, according to the Farrell (1957) definition. Note that the

linear programming problem must be solved N times, once for each firm in the sample.

A value of 0 is then obtained for each firm.

The piecewise-linear form of the non-parametric frontier in DEA can cause a few

difficulties in efficiency measurement. The problem arises because of the sections of

12 That is, if (u*,v*) is a solution, then (au*,av*) is another solution, etc.
13The forms defined by equations (2.9) and (2.10) are introduced for expository purposes. They are
not used again in the remainder of this paper. These forms are, however, used in a number of
empirical studies. The u and v weights may be interpreted as vectors of normalised shadow prices.
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the piecewise-linear frontier which run parallel to the axes (see Figure 2.2 above)

which do not occur in most parametric frontiers (see Figure 2.1 above). Figure 2.3 is

useful to illustrate the problem. The firms using input combinations at points C and D,

are the two efficient firms which define the frontier. Firms A and B are inefficient

firms. The Farrell (1957) measure of technical efficiency gives the efficiency of firms A

and B as OA'/OA and OB'/OB, respectively. However, it is questionable as to

whether the point A' is an efficient point since one could reduce the amount of input x2

used (by the amount CA') and still produce the same output. This is generally referred

to as input slack. 14 Once one considers a multiple-output situation, the diagrams are

no longer as simple and the possibility of the related concept of output slack also

occurs. Thus it could be argued that both the Farrell measure of technical efficiency

(0) and any non-zero input or output slacks should be reported to provide an accurate

indication of technical efficiency of a firm in a DEA analysis.° Note that for the i-th

firm the output slacks will be equal to zero only if YX-y i=0, while the input slacks will

be equal to zero only if 0x i-XX=0 (for the given optimal values of 0 and X).

In Figure 2.3 the input slack associated with the point A' is CA' of input x 2 . In cases

when there are more inputs and outputs than considered in this simple example, the

identification of the nearest efficient frontier point (such as C), and hence the

subsequent calculation of slacks, is not a trivial task. Some authors (see Ali and

Seiford 1993) have suggested the solution of a second-stage linear programming

problem to identify the nearest efficient frontier point, where 'nearest' is defined in

terms of the minimum sum of slacks required to move from an inefficient frontier point

(such as A' in Figure 2.3) to an efficient frontier point (such as point C). This second-

stage linear programming problem may be defined by:

14 Some authors use the term input excess.
15 Koopman's (1951) definition of technical efficiency was stricter than that of Farrell (1957). The
former is equivalent to stating that a firm is only technically efficient if it operates on the frontier and
furthermore that all associated slacks are zero.
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Figure 2.3

Efficiency Measurement and Input Slacks

mink,os,is	 - K1'IS),

St	 -yi + YX - OS = 0,

Oxi - XX - IS = 0,

X 0, OS ?0, IS � 0,	 (2.12)

where OS is an Mx 1 vector of output slacks, IS is a Kx 1 vector of input slacks, and

M1 and K1 are Mx 1 and Kx 1 vectors of ones, respectively. Note that in this second-

stage linear program, 9 is not a variable because its value is taken from the first-stage

results. Furthermore, note that this second-stage linear program must also be solved

for each of the N firms involved.16

One major problem associated with the above second-stage approach is that it is not

invariant to units of measurement. The alteration of the units of measurement, say for

a fertiliser input from kilograms to tonnes (while leaving other units of measurement

unchanged), could result in the identification of different "nearest" efficient boundary

points and hence different slack measures!' As a result of this problem, many studies

16 Some of the models which have appeared in the literature have used a single-stage linear program,
involving the use of an infinitesimal, to solve this two-stage problem. It has been argued that the two-
stage method should be preferred, since "attempts to solve these non-Archimedean models as a single
linear program with an explicit numerical value for the infinitesimal frequently creates computational
inaccuracies and leads to erroneous results" (Ali and Sieford 1993).
17Charnes, et al. (1987) suggest a units-invariant model where the unit worth of a slack is made
inversely proportional to the quantity of that input or output used by the i-th firm. This does solve the
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simply solve the first-stage linear program for the values of the Farrell technical

efficiency measures (9) for each firm and ignore the slacks completely. We believe the

best approach is to use this first-stage linear program which does not explicitly account

for slacks (e.g., equation 2.11), and then report both 0 and the residual slacks. This

approach has two advantages over the two-stage approach. It involves less

programming and it also avoids the units-of-measurement problem."

2.4.2 The Variable Returns-to-scale (VRS) Model

Given that many industries are not perfectly competitive, the CRS assumption is often

not appropriate. Banker, Charnes and Cooper (1984) suggested an extension of the

CRS DEA model to account for variable returns-to-scale (VRS) situations. The CRS

linear programming problem can be easily modified to account for VRS by adding the

convexity constraint, N1'X=1, to equation (2.11) to provide:

mine)  0,

st -yi + YX _� 0,

Oxi - XX 0,

NVX=1

X 0, (2.13)

where N1 is an Nxl vector of ones. This approach forms a convex hull of intersecting

planes which envelope the data points more tightly than the CRS conical hull and thus

provides technical efficiency scores which are less than or equal to those obtained

using the CRS model.

A number of DEA applications in recent years have obtained technical efficiency

estimates relative to both CRS and VRS models, with any differences between the two

sets of technical efficiency estimates subsequently interpreted as scale efficiency

measures. An illustration of this approach is provided in Fare, Grosskopf and Pasurka

(1989).

immediate problem, but creates another, in that there is no obvious reason for the slacks to be
weighted in this way.
18 Note that the technical efficiency measures obtained from this approach will be identical to those
obtained from the two-stage approach. The slack measures, however, may differ slightly.
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2.4.3 Output-oriented Models

In the preceding input-orientated models, discussed in Sections 2.4.1 and 2.4.2, the

method sought to identify technical inefficiency as a proportional reduction in input

usage. This corresponds to Farrell's input-based measure of technical inefficiency. As

discussed in Section 2.3, it is also possible to measure technical inefficiency as a

proportional increase in output production. The two measures provide the same value

under CRS but are unequal when VRS applies. Given that linear programming cannot

suffer from such statistical problems as simultaneous equation bias, the choice of an

appropriate orientation is not as crucial in DEA as it is in econometric estimation.

Analysts in many studies have tended to select input-orientated models because many

firms have particular orders to fill and hence the input quantities appear to be the

primary decision variables, although this argument may not be as strong in agriculture

as it is in manufacturing and service industries.

The output-orientated models are very similar to their input-orientated counterparts.

Consider the example of the following output-orientated, VRS model:

maxi a, (1),

st	 -(1)yi + YA, � 0,

- XX � 0,

N1%-=-1

?0, (2.14)

where (1:, is the proportional increase in outputs that could be achieved by the i-th firm

with input quantities held fixed. An output-orientated CRS model is defined in a

similar way, but is not presented here for brevity.

One point that should be made is that the output- and input-orientated models will

yield exactly the same estimated frontier and therefore, by definition, identify the same

set of firms as being efficient. The efficiency measures associated with the inefficient

firms may, however, differ between the two methods. The two types of measures may

be illustrated using the simple example, depicted in Figure 2.4, where output (y) is on

the vertical axis and input (x) on the horizontal axis, and the production frontier is
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Figure 2.4

Output- and Input-based Efficiency Measures

depicted by PP'. For the inefficient firm, operating at A, the distance AB is associated

with input-based technical inefficiency, while AC is associated with output-based

technical inefficiency.

2.4.4 Other Variants and Extensions

Possible extensions to the above models include: replacement of the piecewise-linear

frontier with a piecewise log-linear or piecewise Cobb-Douglas frontier (Charnes, et

al., 1982, 1983); incorporation of a cost minimisation behavioural objective19 (e.g.,

Ferrier and Lovell, 1990; and Chavas and Aliber, 1993); consideration of a stochastic

element into the DEA (Sengupta, 1990); inclusion of categorical and environmental

variables in the analysis (Banker and Morey, 1986a,b); and use of panel data and the

Malmquist index approach to investigate technical change and technical efficiency

change (Fare, et al., 1994). For a more complete list of possible extensions and

variants, the reader is advised to consult Seiford and Thrall (1990) and Ali and Seiford

(1993).

19 The construction of both DEA production and cost frontiers will permit the measurement of
technical and economic efficiencies, and hence the calculation of allocative efficiencies as well.
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2.5 Applications to Agriculture

The purpose of this section is to identify a few studies which illustrate the application

of various frontier techniques to agriculture. This does not involve a comprehensive

survey of frontier applications to agriculture. This has already been partially completed

by the survey of applications of parametric production frontiers to agricultural

industries by Battese (1992) and the survey of applications of frontier methods to

developing country agriculture by Bravo-Ureta and Pinheiro (1993).

There appear to be only a few applications of frontier models to Australian agriculture.

Battese and Corra (1977) estimated both deterministic and stochastic frontiers for

farms involved in broadacre agriculture in Eastern Australia. Battese and Coelli (1988)

applied a stochastic frontier model for panel data, which assumed time-invariant

inefficiency effects, in the analysis of three years of data of sample dairy farms in NSW

and Victoria.

There have been a vast number of applications of frontier methodologies to agricultural

data in other countries around the world. A selection of studies from the last 12 years

are listed in Table 2.1, ordered by year of publication, along with brief descriptions of

the industries analysed and the methods used. This list is designed to indicate the

breadth of analyses that have been conducted. It is by no means an exhaustive list.20

Of the 40 papers listed in Table 2.1, only three involve DEA (non-parametric linear

programming) while the remainder involve the construction of a variety of parametric

frontiers. 21 Of the latter, seven papers have estimated deterministic frontiers; 26 have

estimated stochastic frontiers; and four have estimated both deterministic and

stochastic frontiers. The deterministic frontiers are those discussed in Section 2.2,

which specify a parametric structure and assume that all deviations from the frontier

are due to inefficiency. The majority of applications of the deterministic frontiers are

limited to the first half of Table 2.1. The lack of recent applications of deterministic

frontier models is most likely a consequence of people becoming more aware of the

20 Entries in Table 2.1 are derived from the survey papers by Battese (1992) and Bravo-Ureta and
Pinheiro (1993) and a recent search conducted by the author.
21 The high percentage of parametric papers in Table 2.1 could be partly a consequence of the journals
searched, but I believe it is an accurate depiction of the dominance of parametric methods in the
agricultural economics literature.
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Table 2.1

Applications of Frontier Models to Agriculture, 1985-1996

Authors Year Industry Methodology
Belbase and Grabowski 1985 Nepalese farms deterministic
Dawson 1985 Farms in North West England deterministic
Fare, Grabowski and 1985 Filipino farms DEA

Grosskopf
Rawlins 1985 Jamaican farms stochastic
Ray 1985 Indian farms DEA
Bravo-Ureta 1986 New England (US) dairy farms deterministic
Huang, Tang and Bagi 1986 Indian farms stochastic profit frontier
Kalirajan and Shand 1986 Malay rice farms stochastic
Phillips and Marble 1986 Guatemalan maize farms stochastic
Taylor and Shonkwiler 1986 Brazilian farms deterministic and stochastic
Taylor, Drummond and 1986 Brazilian farms deterministic

Gomes
Aly, et al. 1987 Illinios (US) grain farms deterministic
Ekanayake 1987 Sri Lankan rice farms deterministic and stochastic
Ekanayake and Jayasuriya 1987 Sri Lankan rice farms deterministic and stochastic
Tauer and Belbase 1987 New York (US) dairy farms deterministic
Battese and Coelli 1988 NSW and Victorian dairy

farms
stochastic panel

Ali and Flinn 1989 Punjab (Pakistan) rice farms stochastic profit frontier
Bailey, et al. 1989 Ecuadorian dairy farms stochastic
Battese, Coelli and Colby 1989 Indian farms stochastic panel
Dawson and Lingard 1989 Filipino rice farms stochastic
Kalirajan 1989 Filipino rice farms stochastic
Kalirajan and Shand 1989 Indian rice farms stochastic panel
Kumbhakar, Biswas and 1989 Utah (US) dairy farms stochastic system

Bailey
Ali and Chaudry 1990 Punjab (Pakistan) farms deterministic
Bravo-Ureta and Rieger 1990 North Eastern US dairy farms deterministic and stochastic
Bravo-Ureta and Rieger 1991 North Eastern US dairy farms stochastic
Dawson, Lingard and 1991 Filipino rice farms stochastic

Woodford
Kalirajan 1991 Filipino rice farms stochastic panel
Kumbhakar, Ghosh and 1991 US dairy farms stochastic system

McGuckin
Squires and Tabor 1991 Indonesian farms stochastic
Battese and Coelli 1992 Indian paddy farms stochastic panel
Battese and Tessema 1993 Indian farms stochastic panel
Battese, Malik and Broca 1993 Pakistani Wheat farms stochastic panel
Chavas and Aliber 1993 Wisconsin (US) farms DEA
Tran, Coelli and Fleming 1993 Vietnamese rubber farms stochastic panel
Bravo-Ureta and Evenson 1994 Peasant farms in Paraguay stochastic
Kumbhakar 1994 Farms in West Bengal (India) stochastic system
Battese and Coelli 1995 Indian paddy farms stochastic panel
Battese, Malik and Gill 1996 Pakistani wheat farmers stochastic panel
Gimbol, Battese and
Flemin

1996 Papua New Guinea cocoa
roducers

stochastic
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deficiencies of deterministic frontiers and the advantages of stochastic frontiers. Lovell

(1993, p.21) explained his objection to deterministic frontiers by noting that the

approach "combines the bad features of the econometric and programming approaches

to frontier construction: it is deterministic and parametric". That is, deterministic

frontiers may be criticised for not accounting for measurement error and other noise,

and also for imposing a particular functional form upon the technology.

The stochastic frontier model has been, by far, the most popular, with 30 of the 40

papers in Table 2.1 involving applications of this model. The majority of these studies

have involved the estimation of a single-equation production function using cross-

sectional data. Exceptions to this are noted in the table, with ten papers considering

panel data models; two estimating a profit frontier; and three estimating a system of

equations involving a production function and input demand equations derived from

the first-order conditions for profit maximisation. A large number of different

agricultural industries are mentioned in Table 2.1. The most common frontier

applications appear to be rice production, with 11 papers, and the dairy industry, with

seven papers. The attention that rice has received is most likely a consequence of its

vital importance to the food supplies of so many developing countries, while the

attention given to dairy industries is more probably a consequence of recent debate

surrounding the high degree of regulation that they attract in many developed

countries. Other industries mentioned in Table 2.1 include cocoa, maize, rubber and

wheat. However, the largest group of studies involve multi-product farming with 15

analyses of this type listed in Table 2.1. Applications from a total of 16 different

countries are listed, ranging from developed countries, such as the USA, England and

Australia, to small developing countries, such as Guatemala, Paraguay and Nepal. A

researcher who wishes to conduct a frontier study of a particular agricultural

enterprise, should be able to identify at least a few papers from the above list, which

would be relevant to the application involved.

2.6 Conclusions

The main conclusion of this chapter is that none of the proposed methods of measuring

efficiency relative to an estimated frontier is perfect. However, they all provide

substantially better measures of efficiency than simple partial measures, such as output
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per unit of labour or land. Given these qualifications, one frequently asked question is:

"Which method of frontier estimation - stochastic frontier or DEA - should one use?"

The answer to this question often depends upon the application being considered. If

one is using farm-level data where measurement error, omitted variables (e.g., data on

an input is not available or not suitably measured), weather, etc., are likely to play a

significant role, then the assumption that all deviations from the frontier are due to

inefficiency, which is made in DEA applications, may be a brave assumption. Hence

the stochastic frontier method is recommended for use in most agricultural

applications. This method also has the added advantage of permitting the conduct of

statistical tests of hypotheses regarding the production structure and the degree of

inefficiency. This advice, however, should not be viewed as an absolute rule. In some

cases, where the above mentioned factors are not likely to have great influence (e.g.,

poultry and pig farming, abattoirs and grain silos) DEA could also be used.

Furthermore, in instances where production involves more than one product, and the

construction of an aggregate measure of output is difficult, DEA may be more

attractive than estimating a multi-product cost or profit frontier, especially if price data

are difficult to obtain.

As with all forms of empirical modelling, a frontier study can suffer from a variety of

possible pitfalls. A few which warrant a mention include: the possibility that omitted

or poorly measured inputs may influence technical efficiency measures; the possibility

that unaccounted for environmental factors, such as soil quality or topography, may

also influence technical efficiency measures; the possibility that poorly measured price

variables (e.g., transport costs not properly accounted for) may influence allocative

efficiency measures; and lastly, the use of data from a single season to measure

efficiency may result in some farmers being labelled as inefficient, because of low

stocking rates, when over a longer time frame they may be shown to be more efficient

because of their more conservative approach. This last issue, points toward an

interesting area of possible research. Many past analyses of farm efficiency have only

involved efficiency measures derived using data for a single season. The development

of a methodology to suitably account for the issues of risk aversion and multi-season

efficiency would be a valuable contribution to the frontier literature.

30



There are a variety of agricultural policy issues which could be investigated using

frontier methods. For example: identifying the influence of pollution controls upon

efficiency in feedlots, abattoirs and irrigated farms; measuring the effect of salinity and

soil degradation upon farm efficiency; measuring the influence of farm size upon

efficiency; and investigating the effect of recent reforms upon various agricultural

sectors, such as the dairy industry, using "before" and "after" data. The method could

also be used to determine the extent to which the utilisation of agricultural extension

advice may improve farmer efficiency.

Australian agriculture is faced with declining world commodity prices, increased

competition from both subsidised and non-subsidised overseas industries, and declining

expenditure on agricultural research. A suitable rate of productivity growth is required

in order to remain competitive. However, to attain this without continuing to rely

upon significant advances in technology from agricultural research, the agricultural

sectors must be encouraged to use the existing technology more efficiently. Frontier

functions and efficiency measurement can assist in this endeavour.

Frontier applications to agriculture need not be limited to the analysis of farms.

Abattoirs, livestock-selling centres, grain silos, road freight, rail, ports, etc., could also

be considered. There is no necessity to avoid analysing (private or public) multi-

product service industries because they do not slot easily into a traditional production

model. The DEA literature abounds with applications to a variety of such service

industries, including hospitals, schools, electricity distributors, etc. [see Lovell (1993)

for a more complete list and references]. These analyses can provide valuable insights

into how analyses of agricultural service industries could be conducted.
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Chapter 3

A Stochastic Frontier Production Function with
Time-Varying Inefficiency Effects

3.1 Introduction

It is noted in Chapter 2 that the use of panel data can result in a variety of benefits for

the estimation of stochastic frontier models. When panel data are available, one may

be able to achieve: increased degrees of freedom for efficient estimation of parameters;

consistent estimators of firm efficiencies (given sufficiently large T); removal of the

necessity to make specific distributional assumptions regarding the Ui ; relaxation of the

assumption that the inefficiency effects are independent of the explanatory variables;

and the simultaneous investigation of both technical change and technical inefficiency

change over time.

Many early panel data stochastic frontier models, such as those proposed by Pitt and

Lee (1981), Battese and Coelli (1988) and Battese, Coelli and Colby (1989), assume

that the inefficiency effects are constant through time for each firm in the sample. This

has the advantage of permitting the derivation of consistent estimators of the

inefficiencies of each firm, as T becomes large.' However, as T increases, the

assumption that technical inefficiency effects are time-invariant is more difficult to

justify, because it is likely that managers learn from their previous experience.

In this chapter we attempt to address the above criticism by suggesting a stochastic

frontier model for panel data in which the inefficiency effects are permitted to vary

systematically with time. A review of the relevant stochastic frontier literature is

provided in Section 2.3.5 of Chapter 2. In the remainder of this chapter we present

our model specification in Section 3.2; illustrate the model using an empirical

application to data on Indian paddy farmers in Section 3.3; and provide some

concluding comments in Section 3.4. Algebraic derivations of the logarithm of the

1 Traditional estimators of technical efficiencies for individual firms in cross-sectional analyses (see
Jondrow et al., 1982) are not consistent estimators because they rely upon information from a single
time-series observation for each firm.
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likelihood function, the first partial derivatives of this function, and expressions for

predictors for the technical inefficiencies of individual firms are collected in Appendix

1.

3.2 Model Specification

We consider a stochastic frontier production function with a simple exponential

specification of time-varying technical inefficiency effects which incorporates

unbalanced panel data associated with observations on a sample of N firms over T time

periods. The model is defined by

Yit = f(Xit;13)eXP(V it Uit)	 (3.1)

and

Uit =	 = { exp[-ii(t-T)] Ui	,t E 15(i); i = 1,2,...,N;	 (3.2)

where Yit represents the production for the i-th firm at the t-th period of observation;

f(x it ,P) is a suitable function of a vector, x it , of factor inputs (and firm-

specific variables), associated with the production of the i-th firm in the

t-th period of observation, and a vector, 13, of unknown parameters;

the Vits are assumed to be independent and identically distributed N(0, 6v2)

random errors;

the Uis are assumed to be independent and identically distributed non-negative

truncations of the 1\1(11,a2) distribution;

ri is an unknown scalar parameter; and

IV represents the set of Ti time periods among the T periods involved for

which observations for the i-th firm are obtained.2

This model is such that the non-negative technical inefficiency effects, Uit, decrease,

remain constant or increase as t increases, if ri > 0, rl = 0 or ri < 0, respectively. The

case in which 11 is positive is likely to be appropriate when firms tend to improve their

level of technical efficiency over time. Further, if the T-th time period is observed for

2 If the i-th firm is observed in all the T time periods involved, then t3(i) = { 1,2,...,T}. However, if the
i-th firm was continuously involved in production, but observations were only obtained at discrete
intervals, then 15(i) would consist of a subset of the integers, 1,2,...,T, representing the periods of
observations involved.
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the i-th firm then Un-, = Ili , i = 1,2,...,N. Thus the parameters, t and (32 , define the

statistical properties of the technical inefficiency effects associated with the last period

of the panel. The model assumed for the technical inefficiency effects, Ui, is that which

was originally proposed by Stevenson (1980) and is a generalisation of the half-normal

distribution which has been frequently applied in empirical studies.

The exponential specification of the behaviour of the technical inefficiency effects over

time [equation (3.2)] is a rigid parameterisation in that the technical inefficiency effects

must either decrease at a decreasing rate (II > 0), increase at a decreasing rate (ri < 0)

or remain constant (T1 = 0). In order to permit greater flexibility in the nature of

technical efficiency, a two-parameter specification could be required. An alternative

two-parameter specification, is defined by,

'nit = 1 + ri i (t-T) + r12(t-T)2,

where m and 112 are unknown parameters. This model permits technical inefficiency

effects to be convex or concave, but the time-invariant model is the special case in

which ri i = 112 = 0.

As noted in Chapter 2, Kumbhakar (1990) was the first to specify a stochastic frontier

for panel data in which the inefficiency effects are permitted to vary systematically with

time. His model is similar to equation (3.1) with the Uit assumed to be defined by

Uit = [1+exp(bt+ct2)]-'U;

where the Uis are assumed to have half-normal distribution and b and c are parameters

to be estimated. Kumbhakar (1990) suggested that the model be estimated using ML

estimation but no empirical application has yet been attempted.

The deterministic component of the Kumbhakar (1990) specification could take values

between zero and one and could be monotone decreasing (or increasing) or convex (or

concave) depending on the values of the parameters, b and c. Although the more

general model of Kumbhakar (1990) does permit a wider variety of temporal patterns,

it would be more difficult to estimate than the simpler exponential model of equation

(3.2).
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(3.4)

(3.5)

Given the model, defined by equations (3.1) and (3.2), it can be shown [see Appendix

1] that the minimum-mean-squared-error predictor of the technical efficiency of the i-

th firm at the t-th time period, TE it = exp(-Uit), is

i 1– (Dirlit c5 : – (11:: / (5: )1 1 exp [–rlitP: ± 1 TIST : 2t ]E[exP(–U i )IEE. i =1	 1– ((-11: / a: )

where E i represents the (Tixl) vector of Eats associated with the time periods observed

for the i-th firm, where Eit = Vit - Utt;

.	 11022v – "r1EicT2
Pl – +TN&

.2	 (52a2

(51 — c l +rNic)-2

where ri i represents the (T ixl) vector of Airs associated with the time periods observed

for the i-th firm; and (1)(.) represents the distribution function for the standard normal

random variable.

We also observe that if the stochastic frontier production function in equation (3.1) is

of Cobb-Douglas or transcendental logarithmic type, then E it is a linear function of the

vector, 13.

The result of equation (3.3) yields the special cases given in the literature. Although

Jondrow, et A. (1982) only derived E[U i lV1-U1], the more appropriate result for the

case when the dependent variable is the logarithm of output and the analysis involves

cross-sectional data, E[exp(-Ui)IVi-Ui], is obtained from equations (3.3)-(3.5) by

substituting Tl it = 1 = Il i and i_t = 0. The special cases given in Battese and Coelli

(1988) and Battese, Coelli and Colby (1989) are obtained by substituting ri i'm = T and

lli'lli = Ti , respectively, where hit = 1 (i.e., ri = 0) in both cases.

The mean technical efficiency of firms at the t-th time period,

TEt = E[exp(-ritUt)], where ra t = exp[-11(t-11)],

obtained by straightforward integration with the density function of Il i , is

(3.3)
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If the firm effects are time invariant, then the mean technical efficiency of firms in the

industry is obtained from equation (3.6) by substitution of iv = 1. This gives the result

presented in equation (8) of Battese and Coelli (1988).

Alternatively, the mean technical efficiency for period t could be estimated using the

average of the predicted technical efficiencies for the firms observed in period t. These

are the measures presently reported by the FRONTIER computer program.

Operational predictors for equations (3.3) and (3.6) are obtained by substituting the

relevant parameters by their maximum-likelihood estimators. The maximum-likelihood

estimates for the parameters of the model and the predictors for the technical

efficiencies of firms can be approximated by the use of the computer program,

FRONTIER.' The likelihood function for the sample observations is presented in

Appendix 1 in terms of the parameterisation of the model, suggested by Battese and

Corra (1977), which involves the variance parameters as2=av2+a2 and y=a2/as2 . This

parameterisation has advantages in the ML estimation of the parameters. The

FRONTIER computer program searches over the parameter space for a suitable

starting value for y, which is bounded by 0 and 1. For more on the FRONTIER

program see Chapter 7.

3.3 Empirical Example

Battese, Coelli and Colby (1989) used a set of panel data on 38 farmers from an Indian

village to estimate the parameters of a stochastic frontier production function for which

the technical inefficiency effects of individual farmers were assumed to be time

invariant. We consider a subset of these data for those farmers, who had access to

irrigation and grew paddy, to estimate a stochastic frontier production frontier with

time-varying inefficiency effects, as specified by equations (3.1) and (3.2) in Section

3.2. The data were collected by the International Crops Research Institute for the

Semi-Arid Tropics (ICRISAT) from farmers in the village of Aurepalle. We consider

the data for fifteen farmers who engaged in growing paddy (irrigated rice) for between

3 This model is referred to as Model 1 in the description of the FRONTIER program in Chapter 7.

(3.6)
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four and ten years during the period, 1975-76 through 1984-85. Nine of the fifteen

farmers were observed for all the ten years involved. A total of 129 observations were

used and so 21 observations were missing from the panel.4

The stochastic frontier production function for the panel data on the paddy farmers in

Aurepalle which we estimate is defined by

log(Yit) = 13o + P i log(Land it) + 132(ILit/Landit) + 13log(Labourit)

+ 13410g(Bullockit) + 1351og(Costs it) + Vit - Utt	 (3.7)

where the subscripts i and t refer to the i-th farmer and the t-th observation,

respectively;

Y represents the total value of output (in Rupees) from paddy and any other

crops which might be grown;5

Land represents the total area (in hectares) of irrigated and unirrigated land,

denoted by IL and UL, respectively;

Labour represents the total number of hours of human labour (in male equivalent

hours)6 for family members and hired labourers;

Bullock represents the total number of hours of bullock labour for owned or

hired bullocks (in pairs);

Costs represents the total value of other input costs involved (fertiliser, manure,

pesticides, machinery, etc.); and

Vit and Uit are the random variables whose distributional properties are defined in

Section 3.2.

A summary of the data on the different variables in the stochastic frontier production

function is given in Table 3.1. It is noted that about 30 per cent of the total land

operated by the paddy farmers in Aurepalle was irrigated. Thus the farmers involved

4 All model specifications in this thesis permit unbalanced panel data. This is believed to be very
important in frontier analysis, since the enforced exclusion of some observations because they are not
observed in all time periods may result in the introduction of serious sample-selection biases.
5 Because the output variable in the stochastic frontier production function is value of total output, the
measures of technical efficiencies obtained below will, in fact, be measures of the total economic
efficiencies of the farmers. Hence the Uits are hereafter referred to as "inefficiency effects" rather than
technical inefficiency effects.
6 Labor hours were converted to male equivalent units according to the rule that female and child
hours were considered equivalent to 0.75 and 0.50 male hours, respectively. These ratios were
obtained from ICRISAT.
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Table 3.1

Summary Statistics for Variables in the Stochastic Frontier Production Function

for Paddy Farmers in Aurepalle

Variable Sample Standard Minimum Maximum
Mean Deviation Value Value

Value of Output 6939 4802 36 18094
(Rupees)

Total Land
(hectares)

6.70 4.24 0.30 20.97

Irrigated Land
(hectares)

1.99 1.47 0.00 7.09

Human Labour
(hours)

4126 2947 92 6205

Bullock Labour
(hours)

900.4 678.2 56.0 4316.0

Other Input Costs 1273 1131 0.7 6205
(Ru ees)

were generally also engaged in dryland farming. The minimum value of irrigated land

was zero because not all the farmers involved grew paddy in all the years involved.

The production function, defined by equation (3.7), is related to the function which

was estimated in Battese, Coelli and Colby (1989, p.333), but family and hired labour

are aggregated (i.e., added).' The justification for the functional form considered in

Battese, Coelli and Colby (1989) is based on the work of Bardhan (1973) and

Deolalikar and Vijverberg (1983) with Indian data on hired and family labour and

irrigated and unirrigated land. The production function of equation (3.7) is a linearised

version of that which was directly estimated in Battese, Coelli and Colby (1989)8 [cf.

the model in Defourny, Lovell and N'gbo (1990)].

The hypothesis that family and hired labour were equally productive was tested and accepted in
Battese, Coelli and Colby (1989). Hence only total labour hours is considered in this empirical study.
8 The deterministic component of the stochastic frontier production function estimated in Battese,
Coelli and Colby (1989), considering only the land variable (consisting of a weighted average of
unirrigated land and irrigated land), is defined by,

Y = ao[a iUL + (1-a1)Th]a.
This model is expressed in terms of Land = UL + IL and IL/Land, as follows

Y = aoxa 1 l3(Land) 13 [1 + (b 1 - 1)(IL/Land)1 13 , where b 1 = (1-a1)/ai
By taking logarithms of both sides and considering only the first term of the infinite-series expansion
of the function we obtain

log Y = constant + j3 log(Land) + a (IL/Land), where a =13(b1-1).
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The data, consisting of 129 observations for each variable, collected from 15 paddy

farmers in Aurepalle over the ten-year period, 1975-76 to 1984-85, were collected by

the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) as

part of its Village Level Studies, see Binswanger and Jodha (1978).

The original values of output and input costs used in Battese, Coelli and Colby (1989)

are deflated by a price index for the analyses in this paper. The price index used was

constructed using data, supplied by ICRISAT, on prices and quantities of crops grown

in Aurepalle.

The stochastic frontier model, defined by equation (3.7), contains six (3-parameters and

the four additional parameters associated with the distributions of the Vic and Uir

random variables. Maximum-likelihood estimates for these parameters were obtained

by using the computer program, FRONTIER. The frontier function (3.7) is estimated

for five basic models:

Model 1.0 involves all parameters being estimated;

Model 1.1 assumes that p. = 0;

Model 1.2 assumes that r1= 0;

Model 1.3 assumes that p, = = 0; and

Model 1.4 assumes that y = p. = = 0.9

Model 1.0 is the stochastic frontier production function (3.7) in which the inefficiency

effects, Ujt, have the time-varying structure defined in Section 3.2 (i.e., r1 is an

unknown parameter and the U is of equation (3.2) are non-negative truncations of the

N(1.t, a2) distribution). Model 1.1 is the special case of Model 1.0 in which the Uis

have half-normal distribution (i.e., kt, is assumed to be zero). Model 1.2 is the time-

invariant model considered by Battese, Coelli and Colby (1989). Model 1.3 is the

time-invariant model in which the inefficiency effects, U 1 , have half-normal distribution.

Finally, Model 1.4 is the traditional average response function in which the paddy

9 We note that if the restriction, 7= 0, is true then the Uit are not stochastic and so t and rl are not
identifiable. We will list all three parameters in the restriction, however, to remind the reader that
when the inefficiency effects are not present, then the model involves three less parameters.
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farmers are assumed to be fully technically efficient (i.e., the inefficiency effects, Uit,

are absent from the model).

Maximum-likelihood estimates for the parameters of these five models are presented in

Table 3.2. Tests of hypotheses involving the parameters of the distributions of the

inefficiency effects, Uh, are obtained by using the generalised likelihood-ratio statistic.

Several hypotheses are considered for different distributional assumptions and the

relevant statistics are presented in Table 3.3.

The generalised likelihood-ratio test statistic is calculated as

= -2 flog[L(H0)]-1og[L(H 1 )] }

where L(Ho) and L(H 1 ) represent the likelihood function under the null hypothesis, Ho,

and the alternative hypothesis, H 1 , respectively. In most situations this statistic has

asymptotic chi-square distribution with degrees of freedom equal to the difference in

the number of parameters in H 1 and Ho, if Ho is true.

This statistic does not, however, have a chi-square distribution when one or more of

the restrictions involves a one-sided alternative. Thus when the null hypothesis

involves y=0, the alternative hypothesis can only involve positive values of y (recalling

that it is the ratio of two variances). As discussed in Chapter 8, Coelli (1995c) notes

that the distribution of any likelihood-ratio statistic involving the y-parameter has

distribution which is a mixture of chi-square distributions. The 5% critical value for

the null hypothesis of y=0, when U i is assumed to have a half-normal distribution, is

shown to be 2.71.

In cases involving more than one parameter restriction the calculation of the

appropriate critical value for the mixed chi-square distribution is a very complicated

exercise. For example, a test of the null hypothesis, Ho: 'y=p,=Ti=0, versus the

alternative hypothesis, H 1 : y>0 and ([1,,r1) free, involves a mixture of equality and

inequality restrictions. To avoid the difficulty of deriving the appropriate distribution

in such cases, one can utilise Table 1 in Kodde and Palm (1986) which lists lower and

upper bounds for the appropriate critical value, when a mixture of equality and
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Table 3.2

Maximum-likelihood Estimates for Parameters of Stochastic Frontier Production

Functions for Aurepalle Paddy Farmers

Variance Parameters:
a52

7

11

71

Log-likelihood Function

Model Model Model Model Model
1.0 1.1 1.2 1.3 1.4

3.74 3.86 3.90 3.87 3.71

(0.96)* (0.94) (0.73) (0.68) (0.66)

0.61 0.63 0.63 0.63 0.62

(0.23) (0.20) (0.15) (0.15) (0.15)

0.81 1.05 0.90 0.89 0.80

(0.43) (0.33) (0.30) (0.29) (0.27)

0.76 0.74 0.74 0.74 0.74

(0.21) (0.18) (0.15) (0.14) (0.14)

-0.45 -0.43 -0.44 -0.44 -0.43

(0.16) (0.11) (0.11) (0.11) (0.12)

0.079 0.058 0.052 0.052 0.053

(0.048) (0.038) (0.042) (0.042) (0.043)

0.129 0.104 0.136 0.142 0.135

(0.048) (0.010) (0.040) (0.028) (0.019)

0.22 0.056 0.11 0.14 0

(0.21) (0.012) (0.26) (0.17)

-0.8 0 -0.07 0

(1.8) (0.43)

0.27 0.138 0 0

(0.97) (0.047)

-40.79 -40.80 -50.41 -50.42 -50.81

Variable	 Parameter

Constant

log(Land)
	

Pt

IL/Land
	

132

log(Labour)
	

133

log(Bullocks)
	

134

log(Costs)
	

135

* The estimated standard errors for the parameter estimators are presented below the corresponding
estimates to two significant digits. The parameter estimates are given correct to the number of digits
behind the decimal place in the estimated standard errors.
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Table 3.3

Tests of Hypotheses for Parameters of the Distribution of the Inefficiency Effects

Assumptions Null Hypothesis
	

Test Statistic
	

Critical
	

Decision
Ho	 X,

	 Value

7 = 11 =11 = 0 20.04 5.14-7.05 Reject Ho

p. = ii = 0 19.26 5.99 Reject Ho

i = 0 0.02 3.84 Accept Ho

11 = 0 19.24 3.84 Reject Ho

y = i =0 20.02 5.14 Reject Ho

11 = 0 19.24 3.84 Reject Ho

Model 1.0

Model 1.0

Model 1.0

Model 1.0

Model 1.1

Model 1.1

inequality restrictions are involved. This is the reason a range of values are reported in

the critical value column in Table 3.3 for the test of the null hypothesis, Ho: yli=r1=0.

Given the specifications of the stochastic frontier with time-varying inefficiency effects

(Model 1.0), it is evident that the traditional average production function is not an

adequate representation of the data (i.e., the null hypothesis, Ho: y = p. = ii = 0, is

rejected). 1 ° Further, the hypotheses that time-invariant models for inefficiency effects

apply are also rejected (i.e., both Ho: p. = ri = 0 and Ho: ii = 0 would be rejected).

However, the hypothesis that the half-normal distribution is an adequate representation

for the distribution of the inefficiency effects in the last period of the panel is not

rejected using these data. Given the specifications of the time-varying inefficiency

effects, for which the half-normal distribution is appropriate to define the distribution

of the inefficiency effects in the last period of the panel, the hypothesis that the yearly

inefficiency effects are, in fact, time invariant is also rejected by the data.

On the basis of these results it is evident that the hypothesis of time-invariant

inefficiency effects for paddy farmers in Aurepalle would be rejected. Given the

specifications of Model 1.1 (involving the half-normal distribution), the efficiencies of

the individual paddy farmers are calculated using the predictor, defined by equation

(3.3). The values obtained, are presented in Table 3.4.

10 Unless otherwise stated, all tests of hypotheses conducted in this thesis assume a 5% level of
significance.
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Table 3.4

Predicted Efficiencies of Paddy Farmers in Aurepalle

for the years, 1975-76 through 1984-85

Farmer
Number 

75-76 76-77 77-78 78-79 79-80 80-81 81-82 82-83 83-84 84-85

1 .861 .878 .892 .905 .916 .927 .936 .944 .951 .957
2 .841 .859 .876 .891 .904 .915 .926 .935 .943 .950

3 .569 .611 .651 .687 .721 .752 -* -

4 .549 .593 .633 .671 .706 .738 .767 .794 .818 .839

5 .711 .743 .771 .797 .820 .841 .860 .876 .891 .904

6 .798 .821 .842 .860 .877 .891 .905 .916 .926 .935

7 .576 .618 .657 .693 .726 .756 .784 .808 .831 -

8 .776 .801 .823 .862 .878 .893 .906 .917 .927
9 .575 .617 .656 .692 .725 .756 .783 .808 .830 .850
10 .862 .878 .892 .905 .917 .927 .936 .944 .951 .957
11 .778 .803 .825 .846 .864 .880 .894 .907 .918 .928

12 .712 .743 .771 .797 .820 .841 .860 .876 .891 .904

13 .641 .678 .712 .743 .772 .798 .821

14 .789 .813 .834 .853

15 .908 .919 .929 .938

mean .711 .745 .772 .793 .820 .838 .867 .886 .899 .917

In years when particular farmers were not observed, no values of technical efficiencies are
calculated.

The efficiencies range between 0.549 and 0.862 in 1975-76 and, between 0.839 and

0.957 in 1984-85. Because the estimate for the parameter, TI, is positive (r = 0.138)

the inefficiency effects decrease over time, according to the assumed exponential

model, defined by equation (3.2). As a consequence, the efficiencies of the paddy

farmers increase over time, as indicated in Table 3.4. These predicted efficiencies of

the 15 paddy farmers are graphed against year of observation in Figure 3.1. These

data indicate that there exist considerable variation in the efficiencies of the paddy

farmers, particularly at the beginning of the sample period. Given the assumption that

the inefficiency effects change exponentially over time, it is expected that the predicted

efficiencies converge over a period of generally decreasing levels of inefficiency.
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The above results are, however, based on the stochastic frontier production function

(3.7), which assumes that the parameters are time invariant. In particular, the presence

of technical progress is not accounted for in the model. Given that year of observation

is included as an additional explanatory variable, then the maximum-likelihood

estimates for the parameters of the stochastic frontier production function are

presented in Table 3.5 in the column labelled, Model 2.0. Also presented in Table 3.5

are the parameter estimates for the corresponding traditional response function in

which the inefficiency effects, U it, are absent from the model.
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Table 3.5

Maximum-likelihood Estimates for Parameters of Production Functions Which

Account for Technical Change

Variable	 Parameter Model 2.0 Model 2.1

Constant	 130	 2.80	 2.73

(1.75)*	 (0.63)

log(Land)	 pl	 0.50	 0.51

(0.37)	 (0.13)

IL/Land	 02	 0.53	 0.50

(0.43)	 (0.26)

log(Labour)	 P3	 0.91	 0.91

(0.32)	 (0.14)

log(Bullocks)	 134	 -0.489	 -0.48

(0.098)	 (0.11)

log(Costs)	 f35	 0.051	 0.048

(0.040)	 (0.040)

Year	 136	 0.050	 0.054

(0.019)	 (0.011)

Variance Parameters
2 0.130	 0.113

(0.084)	 (0.029)

0.21	 0

(0.44)

-0.69

(0.98)

0.11

(0.65)

Log-likelihood Function	 -38.504	 -38.719

* The estimated standard errors for the parameter estimators are
presented below the corresponding estimates to two significant digits.

45



The generalised likelihood-ratio test of the null hypotheses that the inefficiency effects

are absent from the stochastic frontier model (i.e., Ho: r[t=r1=0) yields a test statistic,

X=0.43, which is highly insignificant. Thus the inclusion of the year of observation in

the model (i.e., Hicksian neutral technical change), leads to the conclusion that the

stochastic frontier production function is not significantly different from the traditional

average response model."

This estimated response function, Model 2.1 of Table 3.5, is such that the returns-to-

scale parameter is estimated by 0.990 which is not significantly different from one,

because the estimated standard error of the estimator is 0.065. Thus the null

hypothesis of constant returns to scale for the paddy farmers would not be rejected

using these data.

The coefficient of the ratio of irrigated land to total land operated, IL/Land, is

significantly different from zero. Using the estimates for the elasticity of land and the

coefficient of the land ratio, one hectare of irrigated land is estimated to be equivalent

to about 1.98 hectares of unirrigated land for Aurepalle farmers who grow paddy and

other crops. The calculations involved here are: 	 = 0.512, f3 21 = 131(bl –1) = 0.501

implies ; 1 = 1.98, where 1; 1 is the value of one hectare of irrigated land in terms of

unirrigated land for farmers who grow paddy and other crops. This estimate compares

with the estimate of 3.50 hectares obtained by Battese, Coelli and Colby (1989) using

data on all 38 farmers in Aurepalle. The smaller value obtained using only data on

paddy farmers is probably due to the smaller number of unirrigated hectares in this

study than in the earlier study involving all farmers in the village.

The estimated elasticity for bullock labour on paddy farms is negative. This result was

also observed in Saini (1979) and Battese, Coelli and Colby (1989). A plausible

argument for this result is that paddy farmers may use bullocks more in years of poor

11 Some authors have recently questioned whether it is possible to identify both technical change and
technical inefficiency change in the stochastic frontier. Although we do not have a formal theoretical
proof of the identification of the parameters associated with these two trends, we make the following
two observations. First, if these parameters are not identified then the 1.1 parameter in Stevenson's
(1980) truncated normal model is also not identifiable (i.e., discernible from 13o). Second, in
estimating the above models, involving both time trends, we considered a number of different sets of
starting values ranging from the technical change parameter (13 6) having all weight to the technical
inefficiency change parameter (II) having all weight. In all cases the computer program converged to
the same set of parameter estimates.
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production (associated with low rainfall) for the purpose of weed control, levy bank

maintenance, etc., which are difficult to conduct in years of higher rainfall and higher

output. Hence, the bullock-labour variable may be acting as an inverse proxy for

rainfall.

The coefficient, 0.054, of the variable, year of observation, in the estimated response

function, given by Model 2.1 in Table 3.5, is statistically significant and it implies that

the value of output (in real terms) is estimated to have increased by about 5.4% over

the ten-year period for the paddy farmers in Aurepalle.

3.4 Conclusions

The empirical application of the stochastic frontier production function model with

time-varying technical inefficiency effects, defined by equations (3.1) and (3.2), in the

analysis of data from paddy farmers in an Indian village, reveals that the efficiencies of

the farmers were not time invariant when year of observation was excluded from the

stochastic frontier. However, the inclusion of year of observation in the frontier model

led to the finding that the corresponding technical inefficiency effects were time

invariant. In addition, the stochastic frontier was not significantly different from the

traditional average response function. This implies that, given the state of technology

among paddy farmers in the Indian village involved, technical inefficiency is not an

issue of significance provided technical change is accounted for in the empirical

analysis. However, in other empirical applications of the time-varying model which

have been conducted [see Battese and Tessema (1992)], the inclusion of time-varying

parameters in the stochastic frontier has not necessarily resulted in time-invariant

inefficiency effects or the conclusion that the inefficiency effects do not exist.

The stochastic frontier production function estimated in Section 3.3 does not involve

farmer-specific variables. To the extent that farmer- (and farm-) specific variables

influence the level of the technical inefficiency effects, the empirical analysis presented

in Section 3.3 does not appropriately predict the overall efficiencies of the paddy

farmers. More detailed modelling of the variables influencing production and the

statistical distribution of the random variables involved will lead to improved analysis
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of production and better policy decisions concerning productive activity. The

following chapter introduces a model which attempts to address this issue.
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