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Abstract

Most research on auditory localization has been conducted with listeners

motionless. Nine experiments were conducted to investigate whether and how

head motion assists sound localization. In three preliminary experiments, fairly

unconstrained responding was made possible by using a partial spherical screen

to obscure sources in the left lateral horizontal plane (HP) and the upper-left

lateral vertical plane (LVP). The signal was 2-kHz low-pass noise, which thus

offered no high-frequency pinna-based spectral cues. As expected, listeners were

unable to localize the low-pass noise if they remained motionless throughout the

duration of the signal. With a 3-s signal, it was observed that listeners achieved

much greater accuracy in terms of front-back discrimination and elevation

judgement, if they were permitted to move naturally or if they employed head

rotation, about a vertical axis. Following these preliminary experiments, the test

equipment was upgraded, so that all regions of auditory space were equally likely

to contain sound sources. A fourth experiment, employing these conditions, used

sources throughout the left LVP and left HP, and showed that natural head



movement, and 45° of head rotation, during a 3-s signal, produced significantly

more accurate responding in terms of front-back discrimination, elevation

judgement and horizontal judgement, compared with motionless listening. With a

0.5-s signal, rotation of the head produced a virtual elimination of front-back

confusion, while natural movement was no different to motionless listening. The

fifth experiment tested front-back discrimination of 2-s signals with small

amounts of head movement. Results showed that head rotation of as little as 8°

substantially reduced front-back confusion for 2-kHz low-pass noise and a 500

Hz pure tone. The sixth experiment revealed that head rotation allowed much

greater accuracy in elevation judgements of low-pass and broadband noise

sources in the upper median vertical plane. Disruption of puma cues prevented

listeners from localizing the broadband signals while motionless, but with

rotation, localization was proficient. In the seventh experiment, listeners were

tested with sources positioned throughout the MVP and left LVP. This revealed

that head rotation assists localization of sources more greatly in the front MW

than for other regions. The eighth experiment employed a guided rotation

procedure to allow some control over the velocity of the head rotation. This

revealed that the faster a listener rotates the head the greater the ability to

distinguish between front and back positions. Front-back errors were seen to be

virtually eliminated with signals of as little as 150 ms in duration. The ninth

experiment employing the same procedure showed that elevation judgement was

assisted with signals of as little as 200 ms. Some remarks are made, in
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conclusion, about the functions and bases for sound localization in everyday

listening conditions.
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