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ABSTRACT

Thielaviopsis basicola, a filamentous fungus, is a soil-borne plant pathogen belonging to
the teleomorphic genus Ceratocystis (perithecial ascomycete). Different strains are capable
of attacking a wide range of host plants causing black root rot, a seedling disease. Control
strategies based on cultural practices, biocontrol agents, chemical fungicides, and
genetically determined host resistance have not yet solved the issue of the loss of yield of
agricultural crops. The main aim of this project was to investigate the molecular aspects of
host-pathogen interactions, generate new knowledge and make progress towards the
development of new control strategies for black root rot.

For T. basicola to cause black root rot, it germinates in soil forming a germ tube that
elongates to reach the plant roots, attaches to the root surface and penetrates into the root
hairs or epidermal cells. It is possible that signalling mechanisms may be required at
different stages of the infection process for its progress. In vitro pathogenicity and water
agar assays were developed in order to understand and appreciate the ability of T. basicola
to perceive signals and respond by gernlination and/or directed growth towards various
plants and in order to analyse the susceptibility of various plants, in vitro pathogenicity and
water agar assays were developed. The results provided evidence that exudates released by
roots of host and non-host plants were responsible for hyphal directional growth towards
plant roots. There was little evidence to suggest that a host-specific stimulus caused hyphal
directional growth. There was also little evidence to suggest that a correlation existed
between hyphal directional growth towards host plants and disease severity caused by T.
basicola isolates. Isolates that showed a strong hyphal directional growth response towards
a particular susceptible plant did not necessarily cause disease. Strains of T. basicola
isolated from particular hosts may exhibit stronger growth direction and/or pathogenicity
towards other hosts.

Novel molecular tools for T. basicola were developed in order to investigate the molecular
interaction and understand the infection process between T. basicola and cotton. A random
insertional mutagenesis protocol using polyethylene glycol was developed in order to
identify pathogenicity genes. Understanding the control of such genes will ultimately assist
future studies to identify mechanisms of resistance employed by plants and to target
resistance breeding in plants.

Protoplasts of T. basicola were transformed with the plasmid pGpdGFP containing the
bacterial hygromycin phosphotransferase gene (hph) conferring resistance to hygromycin
B. Transformation frequencies of 2.5 hygromycin B-resistant transformants/Jlg of
transforming DNA were obtained in treatments containing 2 x 106 protoplasts. Mitotic
stability analysis revealed that 90.5% of transformants resistant to 100 Jlg/mL of
hygromycin B were mitotically stable.

To identify mutants with altered pathogenicity towards cotton, a rapid in vitro dipping
technique was developed whereby cotton seedlings grown in water agar plates were dipped
in spores of T. basicola transformants. A total of 202 mitotically stable transformants were
screened and five pathogenicity mutants were identified with reduced pathogenicity
towards cotton. This result was further confirmed in an in vitro soil bioassay in which
cotton seedlings were grown in soil infested with spores of T. basicola transformants.
Further pathogenicity tests revealed that the five mutants also demonstrated reduced
aggressiveness to lupin seedlings.
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Phenotypic characterisation revealed that the five mutants were able to grow in liquid
media (potato dextrose broth and Czapek Dox), and on solid media (nutrient and minimal
media). Three of the mutants (P16, P849 and P954) showed reduced melanin production
and two (P737 and P888) showed enhanced melanin production. None of the mutants
showed defects in their ability to germinate and grow towards cotton roots. Endoconidia
and chlamydospore production were similar or higher compared to the wild-type.
Microscopy studies revealed that the chlamydospore nl0rphology of one of the mutants
(P16) differed from the wild-type. All of the mutants showed low or similar tolerance to
osmotic stress to the wild-type when exposed to different concentrations of sodium
chloride. Microscopic studies also revealed that the cotton root lesion caused by the five
mutants after 24 h of inoculation was similar when compared to the wild-type. However,
seven days post-inoculation, the mutants were unable to establish a more durable
biotrophic and necrotrophic phase (expansion of the lesions) compared to the wild-type.

Southern hybridisation analysis confirmed random insertion of one or more copies of the
plasmid pGpdGFP into the genome of each of the five pathogenicity mutants. Attempts to
rescue the integrated plasmid derived from either HpaI-, NheI- or NruI-digested genomic
DNA were unsuccessful. This was most likely due to the large size of the restriction
fragments generated by these enzymes, which did not cut within the plasmid.

Further attempts were performed using XbaI that cuts within the plasmid DNA in order to
rescue the genomic DNA from only one flank of the integration site. This was only
attempted in mutants that were not considered to have tandem copies of the plasmid.
Mutants P849 and P954 did not produce any ampicillin resistant E. coli colonies. This was
possibly due to the disruption of the ampicillin gene resulting from the integration of the
transforming plasmid DNA into the fungal genome. Mutant P737 produced ampicillin
resistant E. coli colonies that were similar to the control uncut plasmid. Further attempts to
rescue the integrated plasmid derived from XbaI-digested genomic DNA fragments excised
from a Southern hybridisation gel were unsuccessful.
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