
*For correspondence:

megan.a.supple@gmail.com

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 19

Received: 10 September 2017

Accepted: 07 April 2018

Published: 24 April 2018

Reviewing editor: Daniel J

Kliebenstein, University of

California, Davis, United States

Copyright Supple et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Landscape genomic prediction for
restoration of a Eucalyptus foundation
species under climate change
Megan Ann Supple1,2*, Jason G Bragg1,3, Linda M Broadhurst4,
Adrienne B Nicotra1, Margaret Byrne5, Rose L Andrew6, Abigail Widdup1,
Nicola C Aitken1, Justin O Borevitz1,7

1Research School of Biology, The Australian National University, Canberra, Australia;
2Department of Ecology and Evolutionary Biology, University of California, Santa
Cruz, Santa Cruz, United States; 3National Herbarium of New South Wales, The
Royal Botanic Gardens and Domain Trust, Sydney, Australia; 4Centre for Australian
National Biodiversity Research, Commonwealth Scientific and Industrial Research
Organisation (CSIRO), National Research Collections and Facilities, Canberra,
Australia; 5Biodiverstiy and Conservation Science, Department of Biodiversity,
Conservation and Attractions Western Australia, Bentley, Australia; 6School of
Environmental and Rural Science, University of New England, Armidale, Australia;
7Centre of Excellence in Plant Energy Biology, The Australian National University,
Canberra, Australia

Abstract As species face rapid environmental change, we can build resilient populations

through restoration projects that incorporate predicted future climates into seed sourcing

decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in

Australia that is a target for restoration. We examined genomic and phenotypic variation to make

empirical based recommendations for seed sourcing. We examined isolation by distance and

isolation by environment, determining high levels of gene flow extending for 500 km and

correlations with climate and soil variables. Growth experiments revealed extensive phenotypic

variation both within and among sampling sites, but no site-specific differentiation in phenotypic

plasticity. Model predictions suggest that seed can be sourced broadly across the landscape,

providing ample diversity for adaptation to environmental change. Application of our landscape

genomic model to E. melliodora restoration projects can identify genomic variation suitable for

predicted future climates, thereby increasing the long term probability of successful restoration.

DOI: https://doi.org/10.7554/eLife.31835.001

Introduction
Species around the globe face rapidly changing environments, often in combination with habitat loss

and fragmentation. These factors are expected to have a negative impact on biodiversity

(Lindenmayer et al., 2010). Three processes enable species to survive altered conditions: migration,

adaptation, and phenotypic plasticity (Aitken and Whitlock, 2013; Aitken et al., 2008;

Hoffmann et al., 2015; Nicotra et al., 2010). An important conservation strategy is to assist these

natural processes to help build more resilient communities. We can help populations to become bet-

ter adapted to future environmental conditions by assisting migration of gene pools across the land-

scape (Aitken and Whitlock, 2013; Aitken et al., 2008). We can aid populations to survive in situ

by ensuring that sufficient genomic variation exists for adaptation to changing environments
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(Hoffmann et al., 2015). We can enable individuals to respond to a greater range of environments

by conserving existing phenotypic plasticity (Nicotra et al., 2010).

Seed sourcing during landscape restoration provides an ideal opportunity to apply scientific

knowledge to enable these key processes and improve conservation outcomes (Broadhurst et al.,

2008; Prober et al., 2015). For example, seed sources can be selected to restore historical patterns

of gene flow across fragmented landscapes and to incorporate high levels of available genomic

diversity. If plasticity varies among populations, seed can be selected to augment the phenotypic

plasticity of individuals at restoration sites. Seed sources can also be matched with current or pre-

dicted future climates, enabling assisted migration to favorable environments (Aitken and Whitlock,

2013; Williams et al., 2014).

Historically, restoration has often focused on geographically restricted local sources of seed under

the premise that this would improve restoration outcomes by reducing the risk of maladaptation to

local conditions and by preventing outbreeding depression (Broadhurst et al., 2008). However,

there are several potential drawbacks to this narrow local focus. In a fragmented system, narrow

local seed sourcing reduces the number of potential source populations, thereby reducing the pool

of available genetic material. This reduced gene pool may result in inbreeding depression in future

generations, especially if combined with small population size (Broadhurst et al., 2008). Obtaining

seed from a wider geographical area can increase genomic and phenotypic diversity, thereby

increasing the ability of the species to survive in situ (Broadhurst et al., 2008). Additionally, the

focus on maintaining local adaptation assumes a static environment, not the rapidly changing envi-

ronments that occur today. When local conditions change, traits and genes that have conferred an

advantage in the past may not be suitable in future environments. In recent years, climate adjusted

provenancing has been proposed, providing a seed sourcing strategy that focuses on both genetic

diversity and adaptability under predicted future conditions (Byrne et al., 2013; Prober et al.,

2015). This strategic assisted migration of variation across the landscape can aid in the establish-

ment of populations that are more adaptable to future environments (Prober et al., 2015).

To identify an appropriate seed sourcing strategy for a reforestation project, it is useful to charac-

terize genomic variation in the target species with empirical data. These data can be used to infer

eLife digest Yellow box, or Eucalyptus melliodora, is an emblematic Australian tree that is

essential to many native ecosystems. Some of these environments are now critically endangered,

and replanting yellow box trees is one of the first steps to try to restore them.

However, it can be difficult for reforestation practitioners to decide where to collect the seeds

they will use to replant an area. They have to select seeds that carry the genetic information that

gives the trees the best chances of surviving now and in the future. This is a complex task because

climate change creates fast-changing environments.

Here, Supple et al. collect genetic material from 275 E. melliodora trees at 36 different sites.

Genetic analyses show that the yellow box trees from these sites exchange their genetic material

and do not form isolated populations. This means that the seeds do not need to be sourced from

near the reforestation site, but can be collected from areas much further away. This results in higher

quality seeds for reforestation because seeds from more sites will include more genetic diversity.

Supple et al. then use information about the local climate, such as temperature and rain levels, at

the sites where the samples were gathered to create a model that describes the relationship

between genetic, geographical, and environmental factors. This helps identify which sites produce

the seeds that will grow best under particular conditions. In addition, the seedlings from these sites

are grown in the laboratory to see how well they fare in different types of environments. It therefore

becomes possible to match a reforestation site with the seeds that will thrive in the future climate of

the area.

Sharing this knowledge with conservationists will help to guide their replanting strategies for E.

melliodora. The method can also be applied to other plant species and restoration projects, so it

could ultimately shape resilient ecosystems that can cope with climate change.

DOI: https://doi.org/10.7554/eLife.31835.002
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patterns of Isolation By Distance (IBD) and Isolation By Environment (IBE). IBD describes the correla-

tion between genomic distance and geographic distance, which arises when gene flow occurs more

often between populations that are in close geographic proximity. IBE describes the correlation

between genomic distance and environmental distance, while controlling for geographic distance

(Wang and Bradburd, 2014). IBE arises because environmental drivers can influence gene flow, so

that migration rate is effectively modulated by the environment. This means IBE is detectable in

genome-wide variation, and not just at loci mediating adaptation. Landscape genomic models can

be generated that describe the relationship between genetic differentiation and both spatial and

environmental distances (representing IBD and IBE). These predictive models can be used to opti-

mize the genetic material selected for restoration and should improve long term outcomes

(Hoffmann et al., 2015; Williams et al., 2014).

The extent of phenotypic plasticity in potential seed sources can be measured in growth assays of

seedling traits across contrasting environmental conditions. The magnitude of the environmental

response can be compared among maternal lines or populations and may identify populations that

differ in their response to the environment. Such differing responses have been seen in some species

of Eucalyptus (Andrew et al., 2010; Byrne et al., 2013; McLean et al., 2014), which typically have

high levels of within-population genetic variation and moderate-high rates of outcrossing

(Byrne, 2008).

Eucalyptus melliodora (A.Cunn. ex Schauer), commonly called yellow box, is an iconic Australian

tree that is the subject of extensive restoration efforts across its distribution. It is a foundation spe-

cies of a critically endangered ecological community: the White Box–Yellow Box–Blakely’s Red Gum

Grassy Woodland and Derived Native Grassland (Department of Environment and Climate Change

and Water, 2011; Department of the Environment and Heritage, 2006; Threatened Species Sci-

entific Committee, 2006). This woodland community exists in a fragmented landscape, with less

than 5% of its original distribution remaining, mostly in small remnant patches (Department of Envi-

ronment and Climate Change and Water, 2011; Department of the Environment and Heritage,

2006; Threatened Species Scientific Committee, 2006). Efforts to restore this endangered wood-

land community are ongoing and restoration practitioners are seeking scientific recommendations to

improve seed sourcing. Climate change is an important consideration in seed sourcing decisions

because species distribution modelling predicts that most eucalypts will need to shift their distribu-

tions considerably in response (González-Orozco et al., 2016). In particular, ecological niche model-

ling for E. melliodora predicts that by 2090 the species distribution will shift toward the southeast

and suitable areas will decrease by 77% as a result of environmental changes (Broadhurst et al.,

2018).

Here we survey genomic variation in 275 individuals from 36 sites across the present range of E.

melliodora. To help determine an appropriate seed sourcing strategy, we fit the genotypic data to

geographic distance and key environmental variables at the sites of origin. This enables characteriza-

tion of isolation by distance across a broad area, providing an empirical estimate of ‘local’ for com-

parison with current practice for local provenancing. We also identify features of the abiotic

environment that can further explain genomic differentiation after accounting for geographic dis-

tance. Additionally, we examine seedling growth under different simulated climate conditions to test

for variation in growth traits and phenotypic plasticity both within and among sites. Our landscape

genomic model, which can empirically define local provenances and identify variation suitable for

predicted future climates, can help build resilient populations through scientifically based

restoration.

Results

Genotyping by sequencing
We selected leaf material from 39 sites, sampling 3–10 trees per site (Supplementary file 1). For

each sample we Illumina sequenced a Genotyping by Sequencing (GBS) library (Elshire et al., 2011)

and used a reference alignment approach to call genotypes. We conducted a preliminary analysis

based on 123,227 SNPs and removed 69 samples due to greater than 60% missing data. Visual

examination of a cluster dendrogram of genomic distance between samples showed that technical

replicates cluster closely together (Figure 1—figure supplement 1). A preliminary principal
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coordinate analysis (PCoA) identified 19 samples that were strong genomic outliers (Figure 1—fig-

ure supplement 2), likely misidentified samples or recent hybrids. This result is consistent with minor

morphological differences noted in these samples, as well as previous microsatellite work

(Broadhurst et al., 2018). After removal of poor quality and geographic and genomic outlier sam-

ples, we re-ran the genotyping with the remaining 280 samples, resulting in 9,781 SNPs after filter-

ing. A second preliminary PCoA identified an additional five outlier samples that we considered

sufficiently differentiated from the main E. melliodora cluster to merit removal from downstream

analyses (Figure 1—figure supplement 3). We removed these samples and reran the missing data

filter. The final data set included 275 samples from 36 sites (Figure 1A), genotyped at 9,378 physi-

cally distinct SNPs (>300 bp apart).

Genomic analyses
To help determine an appropriate seed sourcing strategy, we examined the effects that geography

and environment have on the distribution of genomic variation across the landscape. The genomic
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Figure 1. Map of sampling sites and PCoA of genomic distance between samples. (A) A map of the geographic locations of the 36 sampling sites in

southeastern Australia. Sampling locations are indicated with dots color coded in a rainbow gradient based on latitude. Black asterisks indicate the six

sites also used for growth chamber experiments. The gray background shading indicates the species distribution polygon. (B) Principal coordinate

analysis of the genomic distance between individual samples. Samples are color coded by site to match the map. The percentage on each axis

indicates how much of the genomic variation between individuals was explained by the axis. Note that PCoA axes 1 and 2 are switched from standard

for easier visualization of the latitudinal gradient. The inset shows the regression of PCoA axis 1 against latitude.

DOI: https://doi.org/10.7554/eLife.31835.003

The following figure supplements are available for figure 1:

Figure supplement 1. Technical replicate dendrogram.

DOI: https://doi.org/10.7554/eLife.31835.004

Figure supplement 2. Species identification PCoA.

DOI: https://doi.org/10.7554/eLife.31835.005

Figure supplement 3. Outlier PCoA.

DOI: https://doi.org/10.7554/eLife.31835.006

Figure supplement 4. Site-level PCoA.

DOI: https://doi.org/10.7554/eLife.31835.007
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analyses focused on the effects on the genome as a whole, rather than individual genes. The study

of individual genes is beyond the scope of the current study.

The PCoA of genomic distance among samples showed continuous variation with little suggestion

of discrete population structure (Figure 1B). This analysis, which was based on genomic data with

no geographic information included, showed that the samples largely formed a single cluster, with

the first PCoA axis correlating with latitude (Figure 1B). Outside of the main cluster, samples from

the northernmost site separated out along the first PCoA axis (vertical axis) and a few samples from

two other sites separated out along the second PCoA axis (horizontal axis). Together, the first two

PCoA axes explained 3.0% of the genomic variation among individuals. The Mantel test, examining

the correlation between geographic and genetic distance matrices, estimated that geographic dis-

tance between samples explained 2.3% of the variation in individual genomic distance, indicating

weak, but statistically significant, isolation by distance (p=0.0001). We summarized genomic diversity

between sampling sites using pairwise Fst. For all comparisons Fst was low (mean Fst = 0.04,

sd = 0.02) (Supplementary file 2). The maximum Fst of 0.10 occurs between sites 3 and 13, which

are separated by over 1200 km. Similar to the individual-level PCoA of genomic distance among

samples (Figure 1B), the site-level PCoA of Fst between sampling sites also corresponded roughly to

latitude (Figure 1—figure supplement 4). In contrast, the first two axes of the PCoA of Fst between

sampling sites explained a higher percentage of variation (37.1%). All sites with more than four indi-

viduals genotyped had similar levels of allelic diversity and expected heterozygosity

(Supplementary file 1). Overall, these results highlight the low level of genetic structure over a large

spatial scale in E. melliodora.

The site-by-site Fst matrix was used to test for geographic and environmental correlations using

generalized dissimilarity modelling (GDM) (Ferrier et al., 2007; Fitzpatrick and Keller, 2015;

Thomassen et al., 2011). Of the 28 environmental variables considered for the model, we removed

12 variables because the single variable model explained less than 5% of the deviance (bioclimatic

variables 2, 5, 6, 9, 10, 14, 17, 19; elevation; water at depth; Prescott Index; and MrVBF). We

removed an additional nine variables due to high correlation and lower explanatory power than

another remaining variable (bioclimatic variables 1, 4, 7, 12, 13, 15, 18; surface nitrogen; and surface

phosphorus) (Supplementary file 3). We ran permutation testing on a model with the remaining

seven variables, along with geographic distance. This highlighted an additional two variables with

low statistical significance and low explanatory power. We removed these two variables (surface

water and bioclimatic variable 8) from the final model. We also removed phosphorus at depth

because, although it explained a substantial amount of genomic variation, the sampled sites were

not well distributed across the range of phosphorus values.

As a result, we included four environmental variables in the final model: isothermality

(bioclimatic variable 3), mean temperature of the coldest quarter (bioclimatic variable 11), precipita-

tion of the wettest quarter (bioclimatic variable 16), and total soil nitrogen at 100–200 cm (nitrogen

at depth) (Figure 2). The correlation coefficients between these variables were all less than 0.13,

with the exception of the precipitation variable, which showed a moderate correlation with isother-

mality (r = 0.53) and nitrogen (r = 0.45) (Supplementary file 3). The GDM model with these four var-

iables plus geographic distance explained 40% of the genetic differentiation (Fst) between sampling

sites. The GDM model showed a positive non-linear relationship between environmental distance

and genomic distance (Figure 2A). Visual examination of the genomic distances predicted from the

model versus the observed values indicated the model had reasonable predictive power

(Figure 2B). To quantify the predictive power of the GDM model, we used a cross validation

approach by generating 1000 models with a random 30% of sampling sites removed. GDM proved

satisfactory at predicting genomic differences between removed sites (cross validation correlation

mean = 0.73, standard deviation = 0.12).

Geographic distance showed a non-linear relationship with genomic distance. The geographic

spline predicted no genomic differentiation until close to 500 km, at which point an increase in geo-

graphic distance predicted an increase in genomic distance (Figure 2C). Randomly subsampling sites

showed that the predicted genomic distance for large geographic distances was quite variable, but

for sites less than 500 km apart, all iterations consistently predicted little genomic differentiation

between sites (Figure 2D).

Of the four environmental variables, nitrogen at depth showed the strongest relationship with

genomic distance, with changes in genomic distance predicted across the range of nitrogen values
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Figure 2. Generalized dissimilarity modelling (GDM) results. (A) Non-linear relationship between environmental distance and genomic distance. Points

are site pairs; the line is the predicted relationship. (B) Relationship between predicted genomic distance and observed genomic distance. Points are

site pairs; the line indicates where observation and prediction match. (C) The geographic spline showing little predicted genomic change between sites

less than 500 km apart and increasing genomic variation as geographic distance increases beyond 500 km. Points are site pairs. (D) Geographic splines

from 100 iterations of sampling 70% of sites. Each grey line is an iteration; the black line is the full model prediction. (E–H) Predicted splines showing

the estimated relationship between genomic distance and the environmental variable: (E) total nitrogen content at 100–200 cm of soil depth, (F) mean

temperature of the coldest quarter, (G) precipitation of the wettest quarter, and (H) isothermality.
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(Figure 2E). Mean temperature of the coldest quarter was the second strongest predictor, showing

changes in genomic distance predicted across the range of temperature values (Figure 2F). Precipi-

tation of the wettest quarter was the third strongest environmental predictor, predicting the largest

change in genomic distance between 250 and 400 mm of precipitation (Figure 2G). Isothermality

(mean diurnal range divided by annual temperature range) was the final predictor, predicting the

most change in genomic distance at higher values (Figure 2H).

To project the final GDM model onto the current environmental landscape, we first delineated

the geographic extent of the analysis by defining an E. melliodora distribution polygon. We then

projected the GDM model onto this region based on the current values of the environmental varia-

bles across the landscape. For visualization, the dimensionality was reduced using principal compo-

nent analysis (PCA) and the first three axes were assigned to RGB colors to represent genomic

composition, with similar color for similar predicted genomic composition. The resulting map parti-

tioned the landscape into a number of regions with different predicted genomic compositions,

including northern coastal, northern inland, and southern regions (Figure 3A). While the biggest dif-

ferences occurred in regions with few sampling sites, the northern and southern sites have distinct

genomic compositions (Figure 3A). These projections highlight where environmental filtering of gen-

otypes may have occurred due to differences in selective pressures.

We compared the GDM model projected onto current conditions to the GDM model projected

onto 2070 climate predictions as an indication of the amount of genomic change required to keep

pace with changes in selective pressures resulting from environmental change (‘genomic vulnerabil-

ity’, (Bay et al., 2018)) (Figure 3B). For the middle north region and the southern areas towards the

coast (red in Figure 3B), the model predicted more intense natural selection in response to climate

change, thus indicating that these areas should be prioritized for assisted migration.

We also used the GDM model to compare the genomic composition under future environmental

conditions at a single location to the genomic composition under current climate conditions across

the landscape. This comparison is useful for identifying optimal seed sources for restoration sites

given climate change scenarios. We demonstrated this utility by selecting two hypothetical reforesta-

tion sites and identifying distinct regions that would provide favorable seed sources for each site

(Figure 4). The analysis for the southern reforestation site identified a large portion of the southern

distribution, centered at the reforestation site. For this site it appears that the selected areas are

largely a result of the pattern of isolation by distance, in particular the lack of genetic differentiation

for long geographical distances. The analysis for the northern reforestation site identified a more lim-

ited range of areas across the landscape, although this could be driven in part by a decreased power

due to lower sampling intensity in the north. Within 500 km of the site, the analysis identified a core

region centered on the reforestation site and small regions along the northern coast. There were a

number of areas within 500 km of the site that were not good matches. In addition, a number of

more distant areas along the southern coast were also identified, indicating these selected areas are

driven more by patterns of isolation by environment than isolation by distance. Overall, the map sug-

gests that there is a lower availability of seed sources to match the northern reforestation site.

These analyses suggest that for seed sourcing in woodland restoration, a model-based approach

incorporating genomic variation, geographic distance, and environmental variables would allow for

more genetic diversity and enable better matching of the selected genotypes to current and pre-

dicted future environmental conditions at the reforestation site.

Growth experiments
We conducted a climate controlled growth experiment to examine phenotypic variation among sam-

pling sites and assay phenotypic plasticity. We grew seedlings from six sites, with six maternal lines

per site, at two different climate regimes (average summer conditions and 5˚C hotter than summer

conditions). We measured variation in three seedling growth traits: seedling height, total leaf length,

and relative height increment. For analysis of seedling height and total leaf length, we analyzed a

total of 291 seedlings (from 32 maternal lines representing six sampling sites) that were determined

to be well established at the five week measurement. For analysis of the relative height increment,

we analyzed a total of 560 seedlings (from all 36 maternal lines) for which we were able to calculate

this metric. There were four seedlings that were outliers for the relative height increment. These out-

liers had little effect on the results of the linear models, so we included them in the final analysis.
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The models for all three response variables showed that all fixed effects (sampling site, maternal

line nested within sampling site, and experimental condition) were statistically significant at the

p=0.05 level (Figure 5 and Supplementary file 4). Experimental condition explained a small per-

centage of the variation (1.2–8.1%), as did sampling site (1.8–17.7%). Maternal line tended to explain

a larger amount of variation (10.6–27.6%). However, most of the variation remained unexplained

(56.6–71.5%) (Figure 5 and Supplementary file 4). None of the three response variables showed

significant variation in phenotypic plasticity across sites (p>0.50 for all maternal line/sampling site by

experimental condition interactions) (Figure 5 and Supplementary file 5).

We then conducted an outdoor drought experiment using a subset of seedlings from the cham-

ber experiment. We analyzed 146 seedlings representing 20 maternal lines from five sampling sites.

These seedlings were grouped into 73 pairs, with one of each pair assigned to each treatment—

well-watered versus drought. We analyzed variation in four response variables: stomatal conduc-

tance, leaf length to width ratio, relative chlorophyll content (SPAD index), and specific leaf area

(SLA, leaf area divided by dry mass).
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Figure 3. Predicted spatial and temporal variation in genomic composition. (A) The spatial distribution of predicted genomic variation based on

projecting the GDM model onto geography and current environmental conditions. Regions with similar colors are predicted to have similar genomic

compositions. (B) The predicted genomic vulnerability based on comparing the GDM model projected onto current environmental conditions with the

GDM model projected onto predicted environmental conditions for 2070. The higher the difference (darker red), the more genomic change required to

track climate between current and future conditions. Black points are sampling sites.
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The drought-treated seedlings had significantly lower stomatal conductance rates than the well-

watered ones, indicating that the seedlings were affected by the watering treatment (p<0.00001)

(Figure 6 and Supplementary file 6). Treatment explained most of the variation in stomatal conduc-

tance (62.3%), while maternal line and sampling site explained only a small amount of variation

(5.8% and 0.9% respectively). For the remaining three response variables (leaf length to width ratio,

SPAD, and SLA), much of the variation was unexplained (40.5%–70%). Treatment was not statistically

significant and explained little to no variation (0.0–4.4%). Sampling site and maternal line were statis-

tically significant in the linear models at the p=0.05 level and explained some variation (6.7–21.2%)

(Figure 6 and Supplementary file 6). Smaller, thicker leaves, and thus lower SLA values, were

expected for drought-treated seedlings and for seedlings grown from seed collected from drier

areas. Consistent with this expectation, the seedlings subjected to drought conditions showed lower

SLA values. However, seedlings from drier sampling sites (D and T3) showed higher SLA values than

more mesic sites (B, G, and 11), contrary to expectation (Figure 6). None of the four response varia-

bles showed significant variation in phenotypic plasticity across sites (p>0.13 for all maternal line/

sampling site by experimental condition interactions) (Figure 6 and Supplementary file 7).

*
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Figure 4. Optimal seed sourcing locations for hypothetical reforestation sites. The predicted genomic similarity of hypothetical reforestation sites

(indicated by white asterisks) to potential seed sourcing locations under a climate change scenario for 2070. Dark blue areas indicate seed sourcing

areas predicted to best match future conditions at the hypothetical reforestation sites; white and light blue areas indicate areas of potential genomic

mismatch.
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Both our climate controlled growth experiment and our outdoor drought experiment found high

levels of phenotypic variation in all measured traits. While most of the variation remained unex-

plained, sampling site explained a small, but statistically significant, amount of the variation. We

determined whether phenotypic divergence between sites could be due to local selection using a

Qst-Fst analysis (Gilbert and Whitlock, 2015; Leinonen et al., 2013). We estimated Qst for each trait

under each experimental condition and compared these values to the genome-wide distribution of

Fst values (Supplementary file 8). Qst and Fst were not significantly different, indicating that pheno-

typic differences between sites could be a result of genetic drift alone. While not statistically signifi-

cant, seedling height did show differences between Qst and Fst in both hot (Qst-Fst = 0.33, p=0.11)

and warm (Qst-Fst = 0.24, p=0.14) chambers. This indicates that local selection could be driving the

divergence in height between sites, but our analysis lacked statistical power due to small sample

sizes.

In addition to measuring growth traits, we also examined the shape of the leaves of seedlings

from the drought experiment. We noted substantial variation in leaf shape, both among sites and
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Figure 5. Variation in seedling growth in chamber experiment. Box plots showing variation between experimental

conditions (left) and sampling sites (center) for three seedling growth traits. Plots showing interactions between

seedling growth traits and experimental conditions (right). Each line represents a maternal line, with color and line

type indicating the sampling site.

DOI: https://doi.org/10.7554/eLife.31835.011

Supple et al. eLife 2018;7:e31835. DOI: https://doi.org/10.7554/eLife.31835 10 of 22

Research article Genomics and Evolutionary Biology Plant Biology

https://doi.org/10.7554/eLife.31835.011
https://doi.org/10.7554/eLife.31835


within sites (Figure 7). The remarkable amount of phenotypic variation in the seedlings is consistent

with the high levels of genomic variation measured.
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Figure 6. Variation in leaf traits in drought experiment. Box plots showing variation between water treatments

(left) and sampling sites (center) for four leaf traits. Plots showing interactions between leaf traits and water

treatments (right). Each line represents a maternal line, with color and line type indicating the sampling site.
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B = ACT

B-3-10 B-5-15 B-7-6 B-8-13

11 = ACT

11-1-6 11-6-10 11-7-11 11-9-9

D = VIC

D-5-1 D-6-9 D-7-1 D-10-8

G = NSW

G-3-10 G-7-5 G-9-5 G-10-10

T3 = NSW

T3-3-9 T3-7-11 T3-8-1 T3-9-7

10 cm

Figure 7. Variation in leaf shape. One representative leaf from each maternal line in the drought experiment. Each row shows a single sampling site,

identified by site ID and state location (ACT = Australian Capital Territory, VIC = Victoria, NSW = New South Wales). Each leaf is identified by its

sampling site, maternal line, and replicate number).
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Discussion
Eucalyptus melliodora is a foundation species in a critically endangered woodland community that

now occupies a fraction of its former distribution and is the subject of restoration projects across its

native range. Our examination of the distribution of genomic and phenotypic variation across the

range of this species provides valuable information for sourcing seed for restoration, including

empirically defining local provenances and matching genotypes to predicted future environmental

conditions.

We found little genomic divergence between sampling sites (mean Fst = 0.04), which is consistent

with microsatellite analysis of this species (Fst = 0.03, (Broadhurst et al., 2018)) and population

genetic analyses of other tree species (E. camaldulensis, Fst = 0.05, 0.08, (Butcher et al., 2009); E.

globulus, Fst = 0.08, (Jones et al., 2002); Corymbia calophylla, Fst = 0.03, (Sampson et al., 2018);

Pinus taeda, Fst = 0.04, (Eckert et al., 2010); Quercus robur, Fst = 0.07, (Vakkari et al., 2006); Quer-

cus engelmannii, Fst = 0.04, (Ortego et al., 2012); Populus tremuloides, Fst = 0.03, (Wyman et al.,

2003)).

Examining the relationship between genomic and geographic distance, we are able to empirically

define ‘local’ in this species to be on the order of 500 km, which is substantially farther than the cur-

rent practice. These results mean restoration projects can and should source seed more broadly

across the landscape, with limited risk of mixing highly evolutionarily diverged material. In a highly

fragmented landscape this will increase the number of favorable source sites, enabling the collection

of higher quality seed with increased genetic diversity (Broadhurst et al., 2008). Incorporating more

naturally occurring genomic variation can increase the adaptive potential of the restored populations

by providing the substrate for adaptation to rapidly changing environmental conditions.

In addition to isolation by distance, our model identified soil nitrogen, temperature of the coldest

quarter, precipitation of the wettest quarter, and isothermality as significant environmental drivers of

genome-wide patterns of variation across the landscape. Of these variables, the climate variables

are predicted to change rapidly over time. Change in soil nitrogen content might occur over longer

time scales, but it is difficult to forecast due to complex biotic feedbacks (Brevik, 2013). This sug-

gests that optimal seed sourcing will need to balance the tracking of rapidly changing climate varia-

bles with the need to account for variables that are more stable due to their dependence on stable

features of geology, topography, or hydrology. The different time scales also highlight the important

concern that key environmental variables may become uncoupled, resulting in less than ideal condi-

tions for this species across the landscape.

Previous niche modelling of E. melliodora examined environmental drivers of the distribution of

the species (Broadhurst et al., 2018). Similar to our analysis, that analysis also found temperature

and precipitation variables to be important, but the exact bioclimatic variables identified did not

overlap. This is not unexpected given that niche modelling identifies drivers that define the environ-

mental tolerance of the species, while the analysis presented here identifies drivers for genomic vari-

ation within the species.

Many studies of within-species genetic variation in trees find temperature and precipitation varia-

bles to be the most important drivers (Aitken et al., 2008); however, the exact variables vary and

other variables are often found to play important roles. A quantitative genetics study of Eucalyptus

delegatensis in Australia found that the variables that contributed most to the adaptive variability of

the species were related to solar radiation (Garnier-Géré and Ades, 2001), which was not assessed

in our study. Additionally, they found that the variability of temperature and rainfall played an impor-

tant role (Garnier-Géré and Ades, 2001). One of our top predictors was isothermality, which is

a composite variable of temperature ranges.

A genetic study of ecologically relevant loci in 13 alpine plant species in the European Alps found

that, after accounting for broad spatial patterns, temperature and/or precipitation variables were

the primary drivers of genetic variation in all but one species (Manel et al., 2012). In contrast, a

genetic study of putatively neutral loci in three tree species in Central America found different driv-

ers in different species (Poelchau and Hamrick, 2012). In one species, an integrated environmental

measure, incorporating temperature and precipitation, was the primary driver; in the second species

the primary driver was geographic distance; in the third species the results were ambiguous

(Poelchau and Hamrick, 2012). This indicates that environmental drivers of within-species genetic

diversity are likely to be somewhat species specific.
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The focus of this study was the whole-genome population structure that reflects historical adapta-

tion, gene flow, and demography. Analyses of individual genes was beyond the scope of this study

due to the low resolution GBS genotyping and the limited extent of linkage disequilibrium in Euca-

lyptus (Silva-Junior and Grattapaglia, 2015; Thumma et al., 2005). However, our results demon-

strate a lack of strong population structure, indicating that using whole genome sequencing to

identify adaptive alleles is feasible in this species. For instance, the Qst-Fst analysis indicates the pos-

sibility of local adaptation for seedling height and a future study could identify the adaptive loci

underlying plant height by targeting sampling sites segregating for this trait. Specific alleles that

potentially confer increased fitness in the face of a rapidly changing climate would be useful targets

for restoration projects.

Our analyses of phenotypic variation found no site-specific variation in phenotypic plasticity that

would enable us to identify provenances better able to cope with rapid environmental change. How-

ever, plasticity is trait-specific, so traits that are hypothesized to be important for establishment and

survival should continue to be investigated because they may provide valuable information for resto-

ration projects. Importantly, our growth experiments support the results of the genomic analyses,

showing the remarkable extent of variation both among sites and within sites, further supporting our

recommendation that seed sources incorporate the high level of variation that occurs naturally in E.

melliodora.

The results of this study are promising for the future of E. melliodora across its native distribution.

We found high genomic and phenotypic diversity within sites, as well as shared across the range.

This naturally occurring variation can provide a basis for adaptation to rapidly changing environ-

ments and it should be incorporated into restoration projects through strategic seed sourcing. It is

important to note that our genomic analyses were based on mature trees that predate extensive

land clearing for agriculture. It remains to be determined whether human modifications of the land-

scape have disrupted the historical patterns of gene flow, resulting in more fragmented and inbred

populations. Genomic analyses of seedlings or saplings at these sites may show different results,

although our phenotypic studies using seedlings produced results concordant with our genomic

analyses.

Our landscape genomic model can guide seed selection by empirically defining local provenances

and identifying variation suitable for predicted future climates. This understanding of the relationship

between environmental and genomic variation can be combined with other types of information,

such as basic biological knowledge of the ecological community and best agronomic practices in res-

toration, to establish foundation species and ecosystems with the highest probability of success in

rapidly changing environments.

Materials and methods

Sample collection
We obtained E. melliodora leaf samples from mature trees at 39 sampling sites—38 sites across the

species’ native range and a single site in Western Australia, well outside the species’ natural distribu-

tion. We collected samples through a community science project described in Broadhurst et al.,

2018 (Supplementary file 1). From each site, a citizen scientist collected leaf samples from up to 30

trees, put the samples in silica gel for drying, and shipped them to CSIRO for processing. In addition

to leaf material, they also collected seeds from the sampled trees when available.

Genotyping by sequencing
We selected 3 to 10 trees per sampling site for sequencing and we processed each of the seven

trees from Western Australia twice, using different leaves from the same tree to serve as technical

replicates. No power analysis was used to determine sample size during the design of the study.

Sample size was determined based on our experience and judgment, with consideration of the avail-

ability of samples. We sequenced these 379 samples using a modified Genotyping-By-Sequencing

(GBS) protocol (Elshire et al., 2011). Briefly, we extracted genomic DNA from approximately 50 mg

of leaf tissue using the Qiagen DNeasy Plant 96 Kit, digested with PstI for genome complexity

reduction, and ligated with a uniquely barcoded sequencing adapter pair. We then individually PCR

amplified each sample to avoid sample bias. We pooled samples in equimolar concentrations and
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extracted library amplicons between 350 and 600 bp from an agarose gel. We sequenced the library

pool on an Illumina HiSeq2500 using a 101 bp paired-end protocol at the Biomolecular Resource

Facility at the Australian National University, generating almost 260 million read pairs.

We checked the quality of the raw sequencing reads with FastQC (v0.10.1, [Andrews, 2012]). We

used AXE (v0.2.6, [Murray and Borevitz, 2017a)) to demultiplex the sequencing reads according to

each sample’s unique combinatorial barcode and were unable to assign 11% of read pairs to a sam-

ple. We used trimit from libqcpp (v0.2.5, [Murray and Borevitz, 2017b]) to clean the reads for each

sample, using default parameters, except q = 20. This involved removing adapter contamination due

to read-through of small fragments (20% of read pairs) and merging overlapping pairs (49% of read

pairs), with both steps using algorithms based on a global alignment of the read pair. We also used

trimit for sliding window quality trimming (11% of reads). We then used a custom script to remove

sequencing reads that did not begin with the expected restriction site sequence (16% of reads). We

aligned sequencing reads to the E. grandis reference genome (v2.0, [Bartholomé et al., 2015;

JGI, 2015; Myburg et al., 2014]), including all nuclear, chloroplast, mitochondrial, and ribosomal

scaffolds, but used only nuclear scaffolds for downstream analyses. We aligned reads using bwa-

mem (v0.7.5a-r405, [Li, 2013]), as paired reads (-p) and treating shorter split hits as secondary align-

ments (-M), with 88% of reads successfully mapped. We used GATK’s HaplotypeCaller in GVCF

mode (v3.6–0-g89b7209, [McKenna et al., 2010]) to call variants for each sample with heterozygos-

ity (-hets) increased to 0.005, indel heterozygosity (-indelHeterozygosity) increased to 0.0005, and

the minimum number of reads sharing the same alignment start (-minReadsPerAlignStart) decreased

to 4.

We used GATK’s GenotypeGVCFs (v3.6–0-g89b7209, [McKenna et al., 2010]) for a preliminary

round of joint genotyping across all samples based on the individual variant calls and again increas-

ing the heterozygosity (-hets) to 0.005 and the indel heterozygosity (-indelHeterozygosity) to 0.0005.

For basic filtering, we used GATK to remove variants that were indels, had no variation relative to

the reference, were non-biallelic SNPs, had QD < 2.0 (‘variant call confidence normalized by depth

of sample reads supporting a variant’), MQ > 40.0 (‘Root Mean Square of the mapping quality of

reads across all samples’), or MQRankSum < -12.5 (‘Rank Sum Test for mapping qualities of REF ver-

sus ALT reads’). We removed samples with more than 60% missing data and SNPs with more than

80% missing data. We examined the genomic distance between samples to verify that technical rep-

licates clustered closely together. We used a preliminary PCoA, based on genomic distance between

samples, to identify outlier samples. We removed outlier samples and poorly sequenced samples

from the dataset for final genotyping and all downstream analyses.

We reran GATK’s joint genotyping on the final sample set. We again used GATK to remove var-

iants that were indels, SNPs with no variation relative to the reference, and non-biallelic SNPs. We

determined final filtering thresholds by examining parameter distributions. A locus was retained for

subsequent analysis if ExcessHet < 13.0 (‘phred-scaled p-value for exact test of excess heterozygos-

ity’), -0.3 < InbreedingCoeff < 0.3 (‘likelihood-based test for the inbreeding among samples’), MQ

> 15.0 (‘Root Mean Square of the mapping quality of reads across all samples’), -10.0 < MQRankSum

< 10.0 (‘Rank Sum Test for mapping qualities of REF versus ALT reads’), and QD > 8.0 (‘variant call

confidence normalized by depth of sample reads supporting a variant’). We ran a second preliminary

PCoA analysis to identify additional outlier samples. Finally, we used VCFtools (v0.1.12b,

[Danecek et al., 2011]) to remove SNPs with greater than 60% missing data and thin the SNPs so

that none were closer than 300 bp.

Genomic analyses
To examine the genomic structure of E. melliodora and how it is influenced by geography, we con-

ducted individual-based analyses. For these analyses, we converted the final genotypic data (a vcf

file) to a sample-by-SNP matrix and imported it into a genind object (R adegenet v2.0.1, [Jom-

bart, 2008]). We calculated the pairwise genomic distances between individuals using a euclidean

distance in dist (R stats v3.1.2, [R Core Team, 2015]). To visualize the genomic distance among sam-

ples, we ran a PCoA using dudi.pco (R ade4 v1.7–4, [Dray and Dufour, 2007]). We plotted the first

two PCoA axes, with samples colored in a rainbow gradient based on sample latitude. We calculated

the linear regression and correlation between latitude and the first PCoA axis using lm (R stats 3.1.2,

[R Core Team, 2015]). We calculated the geographic distance between samples based on their GPS

coordinates using earth.dist (R fossil v0.3.7, [Vavrek, 2011]). We used a mantel test (R vegan v2.4–0,
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[Oksanen et al., 2016]), which examines the correlation between two distance matrices, to quantify

the linear relationship between the genomic distance between individuals and the natural logarithm

of the geographic distance.

We then conducted site-based analyses. To estimate within-site genomic diversity, for each sam-

pling site we calculated the number of alleles and the expected heterozygosity using summary and

Hs (R adegenet v2.0.1, [Jombart, 2008]). We used the sample-by-SNP matrix to calculate pairwise

Fst (Weir and Cockerham, 1984) using pairwise.WCfst (R hierfstat v0.04–22, [Goudet and Jombart,

2015]). We ran a sampling-site level PCoA on the pairwise Fst matrix using dudi.pco (R ade4 v1.7–4,

[Dray and Dufour, 2007]) and calculated the percent of variation explained for each PCoA axis.

To examine the role that environmental factors played in driving the genomic structure across the

landscape, we used Generalized Dissimilarity Modelling (GDM), which uses matrix regression to esti-

mate the non-linear relationship between genomic distance and environmental distance

(Ferrier et al., 2007; Fitzpatrick and Keller, 2015; Thomassen et al., 2011). We then used this

model to predict the distribution of genomic variation across the landscape under current environ-

mental conditions, as well as predicted future conditions.

We obtained environmental data for the GDM from climate, elevation, soil, and landscape raster

layers. Climate variables included 19 bioclimatic variables for the current time period (1960–1990), at

30 arc second resolution (WorldClim, 2016b). Elevation was from a digital elevation model aggre-

gated from 90 m resolution (CGIAR-CSI, 2016). Soil data included available water capacity, total

nitrogen, and total phosphorus sampled at the surface (0–5 cm) and at depth (100–200 cm)

(CSIRO, 2016). Landscape data included the Prescott Index (a measure of water balance) and MrVBF

(a topographic index) (CSIRO, 2016). For future predictions, we used the 19 bioclimatic variables

predicted for 2070 at 30 arc second resolution based on GCM MIROC5 for representative concen-

tration pathway 8.5 (WorldClim, 2016a), which is a greenhouse gas concentration trajectory show-

ing continual increase in emissions over time. We determined the values for each variable at each

sampling site based on GPS coordinates and used those values to calculate the environmental dis-

tances between sites.

To determine the genomic distances between sampling sites for the GDM, we scaled the Fst
matrix to between 0 and 1 by subtracting the minimum value and then dividing by the maximum

value. We generated the GDM model using gdm (R gdm v1.2.3, [Manion et al., 2016]) with the

scaled Fst matrix, geographic distances between sites, and environmental distances for the 28 varia-

bles for the current time period. Initially, we generated a GDM model for each environmental vari-

able separately and excluded variables from further analysis if the deviance explained by the model

was less than 5%. For the remaining variables, we calculated Pearson’s correlation for site values

between pairwise sets of variables. If a pair of variables had a correlation greater than 60%, we

excluded the variable with the lowest explanatory power from subsequent analysis. We conducted

permutation testing using gdm.varImp (R gdm v1.2.3, [Manion et al., 2016]) with 1000 permutations

to determine the explanatory power and statistical significance of the remaining variables and

to excluded additional inconsequential variables. We generated a final GDM model with the remain-

ing environmental variables.

We cross validated the GDM model using a random 70% of the spatial sampling sites as training

data and the remaining 30% of sites as test data and ran 1000 resampled iterations. We used the

GDM models from the training sites to predict the genomic dissimilarity between the test sites and

used Pearson’s correlation to compare the predicted values to the observed values. To test the

robustness of the geographic prediction from the GDM model, we visualized the geographic splines

from 100 of these GDM models.

To project the final GDM model onto the current environmental landscape, we first delineated

the geographic extent of the analysis by defining an E. melliodora distribution polygon. We down-

loaded 14,977 E. melliodora occurrence records from the Atlas of Living Australia (ALA, 2016), of

which we removed 189 because they were well outside the expected distribution or were sparse

records on the distribution margin. We generated the polygon using ahull (R alphahull v2.1,

[Pateiro-López and Rodrı́guez-Casal, 2010]), with alpha = 15 and gBuffer (R rgeos v0.3–21,

[Bivand and Rundel, 2016]), with a 20 km buffer. We then transformed the environmental rasters

based on the model splines (gdm.transform), performed a PCA of the transformed layers (prcomp R

stats v3.1.2, [R Core Team, 2015]), and predicted across space (predict). We visualized the result by

graphing the first three components of a PCA using a red-green-blue plot (Fitzpatrick and Keller,

Supple et al. eLife 2018;7:e31835. DOI: https://doi.org/10.7554/eLife.31835 16 of 22

Research article Genomics and Evolutionary Biology Plant Biology

https://doi.org/10.7554/eLife.31835


2015). We also projected the model onto a predicted future environmental landscape with the same

procedure, except we replaced the current bioclimatic rasters with the future ones for 2070 that

were predicted under a high CO2 emission scenario. We calculated ‘genomic vulnerability’

(Bay et al., 2018), which is the amount genomic change required to track environmental change

over time, using the predict function with time = TRUE.

We examined the implications of the GDM model for seed sourcing decisions by selecting two

hypothetical reforestation sites. We compared predicted future GDM values at these two hypotheti-

cal reforestation sites to current climate GDM values across the landscape of potential seed sources.

This enabled us to generate a map of the predicted genomic similarity of potential seed sources to

the hypothetical reforestation sites under climate change.

Growth experiments
To examine the effect of provenance and environment on phenotype, we conducted experiments in

climate controlled growth chambers under two different climate regimes. No power analysis was

used to determine sample size during the design of the experiment. Sample size was determined

based on our experience and judgment, with consideration of the availability of seed and space in

the growth chambers. We selected six sites (11, B, D, G, T1, T3; asterisks in Figure 1A) and six

maternal lines per site that had sufficient seed. For each of the 36 maternal lines, we grew a mini-

mum of 64 replicate seedlings, with four seeds planted per pot (6.5 cm x 6.5 cm x 20 cm pots with

soil that was 80% Martin’s mix and 20% sand). We germinated seeds in climate controlled chambers

with 12 hr of light at 25˚C and 12 hr of dark at 15˚C. We set lights to mimic summer morning light

(photosynthetic photon flux 370 nm = 82, 400 nm = 83, 420 nm = 78, 450 nm = 37, 530 nm = 31,

620 nm = 72, 660 nm = 28, 735 nm = 34, 850 nm = 89, 6500 K = 94 mmol/m2/s). We watered all

seeds twice daily to keep the soil moist. We culled to one seedling per pot 12–14 days after

planting.

Three weeks after germination, we sorted seedlings into treatment chambers using a randomized

block design based on maternal line. In each of the two climate chambers, we grew eight or nine

replicate seedlings from each maternal line. Climate conditions were determined with SolarCalc

(Spokas and Forcella, 2006) to mimic average summer conditions (sampling site 11) and hotter con-

ditions (5˚C temperature increase; sampling site T3). We ran the experimental conditions for 12–14

weeks and took phenotypic measurements at five time points:1, 2, 3, 5, and 11 weeks after the

experimental treatment began. Measurements included seedling height, number of leaves, and total

leaf length.

For the analysis of seedling height and total leaf length, we used the measurements at five weeks

after the experimental treatment began and used only seedlings that were determined to be well

established at that time. We also calculated a relative height increment for each seedling by deter-

mining the last measurement when the seedling had two or fewer leaves and the first measurement

with eight or more leaves. The relative height increment is the difference between the natural loga-

rithm of the two height measurements, divided by the difference in time.

We investigated phenotypic plasticity by examining interaction plots between maternal line and

experimental condition for three response variables: seedling height, total leaf length, and relative

height increment. We statistically tested for an interaction between sampling site/maternal line and

experimental condition with linear mixed-effect models using lmer (R lme4 v1.1–10, [Bates et al.,

2015]) for each of the three response variables. Due to a lack of power to consider maternal line

nested within sampling site, we ran two models for each response variable—one with maternal line

and one with sampling site. These models included the experimental condition, sampling site or

maternal line, and their interactions as fixed effects. We included germination chamber and block as

random effects. We visually identified four outliers with a relative height increment over 0.035. We

ran the models with and without outliers to determine if they affected the results.

We visualized the distribution of values for the three response variables across the six sampling

sites using box plots. We quantified the distribution of phenotypic variation with linear mixed-effect

models using lmer (R lme4 v1.1–10, [Bates et al., 2015]). For each of the three response variables,

the model included maternal line nested within sampling site and experimental condition as main

effects, with no interaction term, and germination chamber and block as random effects.

After completion of the chamber experiment, we conducted an outdoor covered drought experi-

ment on the 16 week old seedlings. No power analysis was used to determine sample size during
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the design of the experiment. Sample size was determined based on our experience and judgment,

with consideration of the availability of space in the covered growth facility. We selected 160 seed-

lings from five sampling sites, with four maternal lines per site. We paired each seedling with a seed-

ling of similar size from the same maternal line and treatment chamber. We randomly assigned each

seedling of the pair to a different treatment group. We transplanted the seedlings to PVC tubes (9

cm diameter x 50 cm height with sand, perlite, and slow release osmocote) and kept them well

watered for seven weeks, allowing them to acclimate to the outdoor conditions. Then we imposed

two treatments: well-watered and drought. For the well-watered treatment, we watered the seed-

lings to saturation as needed (between three times per week and twice per day, depending on the

weather). For the drought treatment, we watered as necessary to reach (but not exceed) 50%

saturation.

We measured leaf traits on each seedling three weeks after the initiation of treatment. We mea-

sured stomatal conductance with a porometer (SC-1 Leaf Porometer by Decagon Devices) and

determined that water stress was induced in the drought-treated seedlings. We determined the leaf

length to width ratio from a scan of the most recent fully expanded leaf from each seedling using

image analysis software (WD3 WinDIAS Leaf Image Analysis System by Delta-T Devices). This leaf

was initiated prior to the start of treatment, but expanded while under treatment conditions. We

took additional measurements two months after the initiation of treatment. We used a chlorophyll

meter (SPAD – 502 by Konica Minolta) to determine the SPAD index, which measures relative chloro-

phyll content; reduction in SPAD index would indicate detrimental effects of water limitation. We

calculated specific leaf area (SLA, leaf area divided by dry mass) by scanning a single leaf from each

seedling to determine the leaf area (WD3 WinDIAS Leaf Image Analysis System by Delta-T Devices)

and weighing oven dried leaves. For analysis, we excluded data for seedlings that died during the

experiment. We also excluded the experimental treatment partner of any dead seedlings.

We visualized phenotypic plasticity by examining interaction plots between maternal line and

experimental condition for four response variables: stomatal conductance, leaf length to width ratio,

SPAD index, and SLA. We statistically tested for an interaction between sampling site/maternal line

and experimental condition with linear mixed-effect models using lmer (R lme4 v1.1–10,

[Bates et al., 2015]) for each of the four response variables. Due to a lack of power to consider

maternal line nested within sampling site, we ran two models for each response variable—one with

maternal line and one with sampling site. These models included the experimental condition, sam-

pling site or maternal line, and their interactions as fixed effects. We included block and sample pair-

ings as random effects.

We visualized the distribution of values for the four response variables across the five sampling

sites using box plots. We quantified the distribution of phenotypic variation with linear mixed-effect

models using lmer (R lme4 v1.1–10, [Bates et al., 2015]). For each of the four response variables,

the model included maternal line nested within sampling site and experimental condition as main

effects, with no interaction term, and block and sample pairings as random effects. Due to a lack of

power, the p-value for the sampling site term was determined from a model without maternal line.

We examined local adaptation using a Qst-Fst analysis (R QstFstComp v0.2, [Gilbert and Whit-

lock, 2015]) for each phenotypic trait measured under each experimental condition. For each com-

parison, we estimated Qst under the model for offspring related as half-siblings through shared

mothers and compared that value to the distribution of Fst values for the sampling sites included in

the experiment. Statistical significance was determined based on the predicted null distribution of

Qst-Fst using 10,000 simulation replicates.

Data access
GBS sequencing reads are available at the NCBI Sequence Read Archive (SRA) (http://www.ncbi.

nlm.nih.gov/sra) under BioProject PRJNA413429. Growth experiment data and scripts for genomic

and phenotypic analyses are available at https://github.com/LaMariposa/emelliodora (Supple, 2018;

copy archived at https://github.com/elifesciences-publications/emelliodora).
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