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Abstract 

The native budworm Helicoverpa punctigera is an important pest of field crops in 

Australia alongside the cotton bollworm Helicoverpa armigera, and both share a 

number of host plants. H. punctigera moths are known to migrate into cropping 

regions, from inland Queensland, Western Australia and South Australia but multi-

year weather perturbations such as the Millennium drought may have reduced 

migration from drought-stricken areas in inland Queensland. Resistance 

management in Bt cotton may be at risk from reduced migration as migrants dilute 

any resistance genes that might be present in H. punctigera that have been exposed 

to Bt toxins.  In southeast Australia H. punctigera appears to be becoming more 

abundant later in the cotton growing season, and thus, the overwintering ecology 

of H. punctigera needs to be re-examined. 

Laboratory studies were conducted under a range of temperatures and 

photoperiods to determine under what conditions diapause occurs in H. punctigera, 

and to compare the results with similar published studies. At 25°C the least amount 

of diapause was induced at 14L:10D, and the highest percentage of diapause at 

12L:12D. Temperatures of a constant 19°C or cooler produced the highest 

percentages of diapause, even under a summer 14L:10D photoperiod. At 12L:12D 

photoperiod the highest percentages of diapause were induced at temperatures 

below 19°C. Larvae and pupae moved from 25°C to 19°C showed an increase in 

diapause levels while larvae moved from 19°C to 25°C did not. A statistical model 

was created from my data, showing the significant effects of temperature, 

photoperiod, and photoperiod-temperature interaction on diapause induction. 

Field studies were conducted at various sites in the cropping region of Namoi Valley 

in NSW and inland Queensland to study overwintering behaviour of H. punctigera. 

In the Namoi Valley, larvae seeded in emergence cages suffered heavy mortality 

and in only one of the three years was it possible to collect diapausing H. punctigera 

pupae. All pupae extracted from the Namoi Valley field site “Drayton” were in 
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diapause, and pupae exposed to 25°C resumed normal development while those 

exposed to 19°C maintained diapause. 

Field studies in inland Queensland were more successful and emergence timing 

data combined with temperature probe data suggested that winter diapause does 

not occur in inland Queensland on sand dunes with light vegetation, but can occur 

on floodplains with heavy soils and dense vegetation cover. The timing of 

emergence within inland Queensland appeared to coincide with pheromone trap 

catches of H. punctigera in the Namoi Valley, potentially providing evidence that 

some of these inland moths migrate into cropping regions upon emergence in 

spring.  

Temperature probe data in winter and spring were useful in relating field conditions 

to the laboratory studies. Potentially lethally cold temperatures were present in the 

Namoi Valley and lethally hot temperatures could occur in some habitats in inland 

Queensland. Extremes of external temperature were ameliorated by being 10cm 

below the surface, but daily minimum and maximum temperatures were low 

enough to induce diapause in much of the population in the floodplain soils at 

“Monkira” in inland Queensland. 

Preliminary laboratory studies on summer diapause indicated the presence of a 

potential summer diapause in pupae.  In 17-31% of pupae arrested development 

was detected through observation of eyespot movement and the length of pupal 

duration at temperatures of 31-35°C.  A potential reproductive 

diapause/quiescence was also detected in adults exposed to 32°C, defined by a 73% 

failure of females to mate, compared to 21% not mating at 25°C. 

Possible long term changes in the vegetation of inland Queensland, potentially 

affecting the importance of immigration and local overwintering in the dynamics of 

H. punctigera populations in cropping areas, were investigated by examining a 

largely unpublished collection of survey results dating back to the late 1980s. 

Historical subjective scorings of the amount of green host plant vegetation with 

remotely sensed data were correlated against MODIS EVI satellite data using a 
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statistical model. There were large variations in herbaceous vegetation ratings in 

floodplains during the pre-drought period. Major floods and associated rainfall in 

1994 and 2000 have been correlated with high vegetation scores in the floodplains 

and Acacia shrublands, and lower values corresponded with minor floods or no 

floods. Post- drought vegetation scores have not yet reached the same high levels 

as in pre-drought years even though significant flooding occurred in 2010 and 2011. 

Acacia shrublands have had a downward trend in vegetation scores since the 1990s 

and have been relatively low post-drought, with the exception of 2011. Sandy 

desert regions have shown little change in average vegetation scores before and 

after the drought, with lower vegetation cover being reflected by lower vegetation 

ratings even after periods of increased rainfall. Very low vegetation scores are rare 

in the desert, which may reflect the ability of herbaceous vegetation in sandy soils 

to respond to small falls of rain.  Examination of the survey database showed that 

the relative abundances of key host plants of H. punctigera have changed after the 

2000-2009 drought. Overall, the presence of daisies has declined, especially in 

Acacia shrubland regions, and while some other hosts have increased in 

abundance, host plants capable of supporting large numbers of H. punctigera have 

generally declined. In particular, Rhodanthe floribunda, a host capable of 

supporting many larvae, has decreased greatly in Acacia shrublands, floodplains 

and sandy desert habitats.  

The key implications of this work are that the response of H. punctigera to 

autumn/winter temperatures and photoperiods has not changed, but there may be 

a previously undocumented summer diapause/quiescence. Due to the high 

mortality of H. punctigera in Namoi Valley crops, low numbers of pupae overwinter 

in a state of diapause. In inland Queensland, higher numbers of pupae overwinter 

and may or may not be a state of diapause. Analysis of survey data suggests that 

the Millennium Drought has had an effect of the abundance of H. punctigera host 

plants in inland Queensland, reducing the abundance of best host plants. 
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