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Abstract

This study focuses on floral variation and the breeding system of two species of the

clonal aquatic Nymphoides (Menyanthaceae), in particular, the phenomena of distyly, loss

of sex and homostyly. Distyly is a floral design that promotes efficient pollen transfer

while reducing self-interference and self-pollination. Populations of distylous species

contain two floral morphs that differ in the reciprocal positioning of the sex organs; i.e.

reciprocal herkogamy. Distylous species usually possess a dimorphic incompatibility

system in which only pollination between flowers of different morphs produce seed. There

are, however, atypical features of distyly, which provide excellent examples to study the

maintenance or evolutionary transition of this breeding system. Nymphoides montana is a

perennial clonal aquatic species, native to Australia, found in shallow water on the edges of

wetlands. Selective factors that maintain distyly were sought by examining floral

morphologies, compatibility relationships, morph frequencies and reproductive success in

three N montana populations. In two of these populations the two floral morphs are

present in equal ratios (1:1), and natural pollination resulted in a high level of fruit and seed

set (> 70%). The major morphological and mating features of the distyly in these

populations were the reciprocal positioning of stigmas and anthers in the morphs and the

presence of self- and intramorph incompatibility (0-26% seed set). Crosses between plants

of the opposite morphs produced more than 95% seed set. A wide range of ancillary

dimorphism in pollen, stigma and flower size accompanied the distyly. However, the

reciprocity of anther position and the strength of the incompatibility systems varied

between the floral morphs. Although these atypical features of distyly are usually

implicated in evolutionary transitions to, or from, this breeding system, other lines of

evidence appear to reflect the maintenance of distyly in N montana populations.

During population surveys of distylous Nymphoides montana, one population

appeared to be monomorphic for style length. A severely reduced, or an absence of,

fertility is reported to be a common feature of monomorphic populations, so the

consequences of an absence of a mating partner on sexual and clonal reproduction were

studied for this monomorphic montana population. The monomorphic plants failed to

produce any fruits and seeds following open-pollinations and controlled crosses in a

glasshouse environment, indicating a genetic basis to the sterility of this population. The

result of cross-pollinations between the sterile and conspecific fertile populations showed
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an extreme limitation in the number of compatible mating partners could be responsible for

the sexual sterility. Sterile polyploidy was ruled out as the possible cause of sexual

infertility when both sterile and fertile populations were found to be at the same ploidy

level (6x = 54). Observations of male sterility detected loss of male function following a

failure in the mechanical release of pollen from anthers, together with a low proportion of

pollen viability (0.05%) and a high proportion of malformed pollen (85%). Infertility in

this population was also caused by the loss of female function; there was a very low level of

seed set (< 4%) in the cross-pollination treatments using fertile pollen. A clonal growth

experiment comparing vegetative growth and total plant dry mass between sterile and

fertile plants revealed an association between sexual infertility and enhanced clonal

propagation, indicating once genetic sterility has originated, it could spread into the

population via resource reallocation or antagonistic pleiotropy. Comparisons of genetic and

clonal diversity using ISSR markers between the sterile and fertile populations showed a

strong link between the severely reduced seed production and the failure of sexual

recruitment. Overall, the results suggest that following a severe bottleneck or founder

event, the self-incompatible plants lost their ability to reproduce sexually in the absence of

compatible mates and rely solely on extensive clonal propagation.

In the ecological or geographical margins of the range of distylous taxa, homostyly

may evolve in response to a lack of mates and/or poor pollinator visitation. Evolution of

homostyly is associated with the evolution of self-compatibility and floral adaptation to

autonomous self-pollen deposition (or self-pollination without pollinators). This prediction

was tested by comparing floral traits, seed production without pollinators, pollinator

activity and ploidy level between the homostylous Nymphoides geminata and the distylous

N montana. The homostylous species has smaller flowers with little or no stigma–anther

separation (0.01-0.60 mm) and lower pollen:ovule ratio than the distylous species, and

produces many fruits and seeds autonomously (>70%). The result of floral visitor

observations and open pollinations indicated the ability of homostylous plants to reproduce

successfully despite pollinator scarcity. A study of chromosome number revealed that the

origin of homostyly was not associated with a change in ploidy level. The ability of

homostylous N geminata to persist in temporary habitats with unreliable pollinator service

is associated with the ability of plants to self-pollinate and self-fertilise autonomously.
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Studies of distyly, loss of sex and homostyly in two species of the clonal aquatic

Nymphoides provided an opportunity to answer some questions regarding the observed

variation in floral morphology and reproductive systems. The self-incompatibility and

flowers adapted for cross-pollination should enhance mating between plants of different

genotypes and ensure a high level of genetic variability within populations. If the distylous

plants do not receive enough compatible pollen, the plants can become sterile. In the

absence of sexual reproduction and recruitment, however, clonality allows the sterile

population to persist. Alternatively, in response to the lack of mates or poor pollinator

visitation, seed production can be assured through the development of homostyly and the

ability to self-pollinate and fertilise autonomously. Although, clonality and self-fertility are

believed to decrease genetic variation within populations, these modes of reproduction

could be beneficial to the survival of populations under unfavourable pollination

conditions.
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