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ABSTRACT

Over the last few decades, quantum machine learning has emerged as a groundbreaking discipline. Exploiting the peculiarities
of quantum computation for machine learning tasks offers promising advantages. Quantum-inspired machine learning, which is
a branch of quantum machine learning, has revealed how relevant benefits for machine learning problems can be obtained using
quantum-inspired features even without employing quantum computers. In the recent past, experiments have demonstrated
how to design an algorithm for binary classification inspired by the method of quantum state discrimination, which exhibits high
performance with respect to several standard classifiers. However, a generalization of this quantum-inspired binary classifier to
a multi-class scenario proved to be a nontrivial task. Typically, a simple solution in machine learning decomposes multi-class
classification into a combinatorial number of binary classifications, with a concomitant increase in computational resources.
In this study, we introduce a quantum-inspired classifier that avoids this problem. Inspired by quantum state discrimination,
our classifier performs multi-class classification directly without using binary classifiers. We first compared the performance
of the quantum-inspired multi-class classifier with eleven standard classifiers. The comparison revealed a surprisingly good
performance of the quantum-inspired classifier. Comparing these results with those obtained using the decomposition in binary
classifiers shows that our method improves the accuracy and reduces the time complexity. Therefore, the quantum-inspired
machine learning algorithm proposed in this work serves as an effective and efficient framework for multi-class classification.
Finally, although these advantages can be attained without employing any quantum component in the hardware, we discuss
how it is possible to implement the model in quantum hardware.

Introduction
Quantum technologies offer exciting opportunities for improving various data analysis solutions, such as pattern recognition and
machine learning. The application of quantum computing methods to such problems has opened a novel research field, known
as quantum machine learning. The results obtained thus far are promising, thereby illustrating the potential advantages in
solving several problems that are challenging for computers built with purely classical components1–10. However, building the
fault-tolerant quantum hardware required for the reliable implementation of such quantum algorithms remains a technological
hurdle. Nevertheless, merely simulating quantum theory-based algorithms with classical hardware can achieve promising
results, because the theory provides new perspectives for information processing tasks. We refer to the algorithms that use the
mathematical formalism of quantum theory but are intended to be executed on a classical device as quantum-inspired (QI)
algorithms1. The immediate availability of classical computers for QI algorithms has introduced several applications in solving
industry-relevant problems related to chemistry, optimization, and finance 11–17.

The idea of developing an algorithm based on the mathematical structure of quantum mechanics can also be applied for
solving machine-learning problems18–27. One of the most important applications of machine learning is supervised classification.
Supervised classification trains a model from a labeled dataset so that the model can predict the labels of unseen objects in such
a manner that the agreement between the new labelling and the existing pattern of the training dataset is maximized. Quantum
measurement theory is an intriguing characteristic of quantum theory that can have significant impact on classification. In brief,
according to theory, quantum measurement can discriminate not only orthogonal states, such as 0 and 1 in the classical case, but
also non-orthogonal states with a non-zero success probability28 through positive operator-valued measurement (POVM)29, 30.

1In contrast, quantum algorithms are intended to be executed on quantum devices.
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This implies that quantum theory provides a richer data representation because a single qubit can represent an arbitrary number
of data points, whereas a classical bit can only represent two. This is a direct consequence of the geometry of the quantum states,
which is mathematically defined in Hilbert space. Alternatively, by choosing Hilbert space as the feature space of classical data,
the mathematical structure of the quantum measurement theory can be exploited. The probability of successfully discriminating
different data mapped to a Hilbert space can be maximized by determining the optimal measurement using the well-developed
theory of quantum state discrimination (QSD)31, 32. In the case of two quantum states (or two-element POVM), the optimal
measurement can be derived analytically, and it is known as Helstrom measurement28. A quantum-inspired binary classifier
based on the Helstrom measurement, called the Helstrom quantum classifier (HQC), was introduced in Refs. 20, 33. Previous
studies compared HQC with other standard binary classifiers on a classical computer and demonstrated that HQC achieved
good classification accuracy on average. Furthermore, it was also empirically shown that the accuracy can be improved by using
multiple copies of the quantum states to encode classical data, although a theoretical proof was not provided. One of the main
drawbacks of the HQC is that it is restricted to binary problems. Consequently, for general multi-class classification problems,
the One-vs-One (OvO) or One-vs-Rest (OvR) comparison strategies must be utilized. However, these approaches increase the
computational complexity of the entire classification process because they require binary classification to be repeated l(l−1)/2
and l times, respectively, for an l-class dataset. In contrast, classical machine learning algorithms can intrinsically perform
multi-class classification. For example, this can be done by evaluating the classification score associated with each class as a
probability and assigning the test data to a class with the highest probability (i.e., argmax). Consequently, the generalization of
previous QI binary models to intrinsically multi-class classifiers must be addressed.

In this study, we propose a QI algorithm that directly performs l-class classification using l-element POVM that is
optimized based on the QSD theory. We performed numerical experiments to compare our QI algorithm with other standard
classical machine learning algorithms, both parametric and non-parametric, with 11 benchmarking datasets. The experiments
confirmed our algorithm’s excellent performance 2. Furthermore, our algorithm was compared with the OvO and OvR strategies
constructed with HQC regarding the classification accuracy and time complexity. The results reveal that, for all datasets, our
algorithm achieved a higher classification accuracy than the HQC-based approaches. Therefore, our algorithm improves both,
the time complexity and classification accuracy of the previous QI classifier. Similar to the observations regarding the HQC
classifier in previous studies, we provide empirical evidence that using multiple copies of a quantum state that encodes classical
information can improve the classification accuracy of our QI multi-class classifier at the cost of increased runtimes.

Our findings pave a way for the near-term application of quantum technology because they demonstrate the computational
advantage of QI algorithms even in the absence of quantum computing hardware. Finally, considering the era of full-fledged
quantum computing, we outline the implementation of our algorithm on a quantum circuit. The fact that our algorithm uses the
formalism of quantum theory, renders it naturally implementable on actual quantum hardware. We discuss the advantages of
this implementation in terms of both the computational power and memory use.

The remainder of this paper is organized as follows. In the Results section, we first introduce in detail the general concept
of a quantum classifier in the standard supervised scenario, focusing on the crucial notion of quantum centroid. Following that,
we introduce the concept of a multi-class quantum-inspired classifier. Subsequently, we present the experimental results of the
comparison between the multi-class QI classifier with i) 11 standard classifiers and ii) a binary QI classifier, using the OvO and
OvR strategies. Finally, in that section, we discuss a possible implementation of the multi-class quantum-inspired classifier
on a real near-term quantum computer. The Discussion section provides a detailed analysis of the results obtained, whereas
the Methods section formally describes the theoretical framework of the model. Therein, we detail the technicalities of the
experimental setup, highlighting the impact of our findings, limitations of the model, and potential future developments. The
paper also includes a Supplementary Information section with useful technical remarks that make the paper more self-contained
and a complete set of the experimental data.

Results
We first describe the task of multi-class classification and introduce the basic notations used in the definition of our learning
problem. A training dataset can be represented by a set of patterns, as follows:

Str := {(~x1,λ1), . . . (~xm,λm)}.

where ~x j ∈ Cd is a d-dimensional feature vector and λ j ∈ L := {0, . . . , `} ∀ j ∈ {1, . . . ,m} is the corresponding class label.
Given a class label i ∈ L, the set S i

tr of all object vectors whose associated class label is i can be defined as follows:

S i
tr = {~x j ∈Str : λ j = i}.

2The comparison of our distance-based classifier with some of the standard classical machine learning algorithms cannot be termed entirely fair. It should
only be compared with other distance-based classifiers. However, analyzing its global performance is interesting; therefore, we decided to include the results
here.
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The cardinality of S i
tr is denoted as |S i

tr|. Consequently, ∑
`
i=1 |S i

tr|= m. Given the aforementioned training dataset, the task of
supervised classification is to infer a function from the training dataset, Str, using a classifier to maximize the accuracy of the
class label assignment for an unseen (i.e., unlabeled) object vector~x.

More formally, a multi-class classifier can be constructed as follows. First, we find a map that associates with any feature
vector~x, a sequence of l-numbers in the unit real-interval [0,1]⊂ R

f : Cd → [0,1]`.

The ith component of f (~x) is denoted by f (~x)i, which can be considered the classification score for the given data to be assigned
a label i. We further constrain the score function, f (~x), to a probability vector by imposing ∑

`
i=1 f (~x)i = 1. Hence, f (~x)i can be

interpreted as the probability of feature vector~x belonging to the ith labeled class.
The classifier by f (or simply the f -classifier) is the map

Cl f : Cd 7→ L

that assigns any feature vector~x ∈ Cd , the class label associated with the highest value of f (~x)i with 1≤ i≤ `. In other words,

Cl f (~x) = argmax
i
{ f (~x)i : 1≤ i≤ `}.

It should be noted that there can be multiple solutions for the maximum value of f (~x). Accordingly, our definition of the
multi-class classifier is:

Cl f (~x) := min
{

i ∈ L : f (~x)i = max
k
{ f (~x)k , 1≤ k ≤ `}

}
. (1)

Quantum Centroid
The QI classifier construction defined in Eq. (1) involves the evaluation of f (~x) based on the mathematical formalism of the
quantum theory. To utilize the quantum theory, we first need to represent each feature vector~x as a quantum state, which is
mathematically described by the density operator, ρ~x. Various quantum feature mapping techniques for transforming classical
information contained in the original feature vector into a quantum state have been proposed in previous studies4, 7, 34, 35, and
our current study employs the two encoding methods presented in Ref. 22 (see Supplementary Information section).

Given quantum encoding~x 7→ ρ~x, a quantum pattern is any pair (ρ~x j ,λ j). A quantum training dataset is defined as the set of
all quantum patterns as follows: SQtr =

{
(ρ~x1 ,λ1), . . . ,(ρ~xm ,λm)

}
. For class label i ∈ L, we can define set S i

Qtr as the set of all
object quantum states ρ~x j associated with the set S i

tr of all vectors in the ith class as

S i
Qtr = {ρ~x j : ~x j ∈S i

tr}. (2)

We now define the quantum centroid, which is a primary component of the classifier. Geometrically, the centroid is the
arithmetic mean of all vectors under consideration. Similarly, a quantum centroid for class i is defined as the uniformly weighted
convex sum of all density operators in the class, as follows:

ρ(i) =
1
|S i

Qtr|
∑

~x j∈S i
tr

ρ~x j , (3)

where |S i
Qtr| is the cardinality of S i

Qtr (which is equivalent to |S i
tr|, i.e., the cardinality of S i

tr). Thus, ` class labels have a
one-to-one correspondence with set {ρ(1), . . . ,ρ(`)} for all quantum centroids.

We encode the classical vector into multiple copies of a density operator as ρ~x, that is,~x 7→ ρ
⊗n
~x , to generalize the notion of

a quantum centroid as follows:

ρ
(n)
(i) =

1
|S i

Qtr|
∑

~x j∈S i
tr

ρ
⊗n
~x j

. (4)

The motivation to use multiple copies (i.e., tensor product) of a density matrix is supported by kernel theory, which suggests
that the classification of a non-linear dataset can be performed with a separating hyperplane in a higher-dimensional feature
space4, 7, 34, 36. However, the number of copies must be carefully chosen because increasing the dimension of the feature space
does not always monotonically increase the classification accuracy37. Furthermore, introducing additional copies increases the
computation time, thereby demanding that the user tune n to find the appropriate tradeoff between the runtime and classification
accuracy. Hereafter, we use the term tensor copy to indicate the density operator created by using multiple copies of a density
operator.
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PGM Classifier
Given that the training information is encoded as quantum centroids, one can apply measurement techniques developed in the
context of QSD to construct the score function, f . In brief, QSD describes the distinguishability of different states of a quantum
system32, 38; therefore, it is expected to provide the correct ingredients for differentiating quantum centroids.

For multiclass classification, we are interested in minimum-error discrimination and employ the pretty good measurement
(PGM) formalism39, 40. PGM is a protocol for systematically finding a POVM so that an arbitrary number of unknown quantum
states can be discriminated with high success probabilities. Although optimality of the PGM is not guaranteed in general, it is
the optimal measurement in several cases, such as with geometrically uniform states32, 41. The success probability PPGM is
related to the optimal success probability, POPT , as P2

OPT ≤ PPGM ≤ POPT
42, 43. The mathematical formulation of PGM is briefly

summarized in the Methods section.
Given an ensemble R = {(pi,ρ

(n)
(i) ), . . . ,(pl ,ρ

(n)
(l) )}, where pi is the ratio between the cardinality of the training dataset in

class i and the entire training dataset, a set of measurement operators {Fi} can be constructed to perform PGM on this ensemble,
as explained in the Methods section. Then, for target (unseen) quantum data ρ

(n)
~x , the PGM classifier is defined as

Cl f (~x) := min
i
{i ∈ L : pitr(Fiρ

(n)
~x ) = max

k
{pktr(Fkρ

(n)
~x ),1≤ k ≤ `}}. (5)

The overall classification process for an unknown object is illustrated in Figure 1.

(a) (b)

Figure 1. Illustration of the QI classification procedure. (a) Construction of quantum centroids using the feature map. The
three classes of objects (classical data) are represented as three different types of geometric figures (red balls, blue triangles,
and red pentagons). Under the action of the encoding map (blue arrows), the different classes are transformed into quantum
states (centroids), in the form of density operators. In principle, the number of classes and the number of elements in each class
can be arbitrary. (b) An unknown object is compared with the quantum centroids. Classification is performed using the PGM
classifier: an unknown object (represented by a blue question mark) is identified by a red pentagon.

Application of the QSD procedure to the classification problem reveals the following observation: the higher the probability
of success of the QSD between quantum centroids, the better the classification accuracy. Consequently, for the binary case, the
accuracy of the QI classifier can be expected to be improved by increasing the Helstrom bound. The numerical experiments
performed in Refs. 20 empirically demonstrated that the Helstrom bound can be improved by increasing n, namely, the number
of tensor copies. We derived the relationship between the Helstrom bound and the number of tensor products in Theorem
1 given in the Supplementary Information section to rigorously prove the empirical evidence. Motivated by this result, we
investigated the effect of using multiple copies of a density matrix in the PGM classifier (i.e., n >1). The bound for the success
probability of the PGM classifier is defined as follows:

PGMb(R,n) =
`

∑
i=1

pitr(Fiρ
(n)
(i) ). (6)

In the following subsection, we show through numerical experiments that empirical evidence that increasing n can improve the
PGM bound, and hence the classification accuracy. However, deriving the general relationship between the PGM bound (PGMb)
and the number of tensor products (n) in the PGM classifier will be taken up as a future study.
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Experimental Results

We performed numerical experiments to compare the PGM classifier with other standard multi-class classifiers, and the OvO
and OvR strategies with the Helstrom classifier. The standard classifiers for comparison were chosen from the scikit-learn
package with default settings. The classification tasks for the following canonical datasets were implemented in the experiments:
analcatdata-dmft, balance-scale, car, cleveland-nominal, cloud, confidence, ecoli, haberman, iris, led7, and new-thyroid. The
scores used were balanced accuracy, weighted f1, weighted precision, and weighted recall. The main manuscript only reports
balanced accuracy as a representative metric, whereas the other scores are presented in the Supplementary Information section.
The number of test data points was 0.2 times the number of training data points. The values used for tensor copies (n) were
1, 2, and 3. The hypertuning parameters are the choice of the feature map between stereographic encoding and amplitude
encodings20, 21 (see Supplementary Information section) and the scaling factor of the feature values of the original data. The
latter is used from a previous result in Ref21, which demonstrated that the choice of a homogeneous scaling factor of the feature
vectors can affect the accuracy of the classification. The balanced accuracy obtained for each classifier applied to each dataset
is depicted as a heatmap in Fig. 2. The average balanced accuracy for each classifier for all datasets presented in Table 1
reveals that the PGM classifier outperforms all classifiers under consideration, except for the multi-layer perceptron. Among
the distance-based classifiers, the PGM classifier achieved the best accuracy.

Figure 2. Heatmap of the values of each classifier applied to each dataset.
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Classifier Average Balanced Accuracy
Multi Layer Perceptron 0.679±0.276
PGM 0.675±0.238
Nearest Neighbors 0.657±0.238
Random Forest 0.646±0.231
Nearest Centroid 0.633±0.227
HQC OvR 0.621±0.208
HQC OvO 0.614±0.225
Logistic Regression 0.606±0.24
Quadratic Discriminant Analysis 0.6±0.294
Linear Discriminant Analysis 0.589±0.243
Gaussian Naive Bayes 0.586±0.269
Extra Tree 0.463±0.226
Bernoulli Naive Bayes 0.329±0.153
Dummy Classifier 0.255±0.1

Table 1. Average value of Balanced Accuracy for each classifier over all datasets.

Furthermore, the biclustering heatmap depicted in Fig. 3, which compares classifiers for each dataset shows that the
average winning ratio (the ratio of the number of datasets for which one classifier outperforms the other) of the PGM classifier
outperforms those of all other classifiers. The average winning ratio presented in Table 2 supports this assumption.

Figure 3. Percentage of datasets for which the balanced accuracy of classifier A (in the column) outperforms that of classifier
B (in the row). Darker (lighter) color indicates higher (lower) percentage.

Table 3 presents a comparison of the balanced accuracy and average runtime of the PGM classifier, which is a direct
multiclass classifier, with the OvO and OvR strategies based on the HQC from Refs. 20, 33. The results revealed that the PGM
classifier outperformed both OvO and OvR with HQC in terms of both accuracy and runtime. The balanced accuracies of the
PGM, OvO, and OvR Helstrom classifiers averaged over all datasets were 0.675±0.238, 0.614±0.225, and 0.612±0.208,
respectively.

The PGM classifier performed similarly well in terms of the other statistical metrics (i.e., weighted f1, weighted precision,
and weighted recall), whose values are given in the Supplementary Information section. Finally, Fig. 4 demonstrates that the
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Classifier Average winning ratio (%)
PGM 67.32
Multi Layer Perceptron 66.01
Logistic Regression 65.36
Linear Discriminant Analysis 64.71
Nearest Centroid 64.71
HQC OvR 64.05
Quadratic Discriminant Analysis 58.82
Nearest Neighbors 58.17
HQC OvO 54.9
Gaussian Naive Bayes 49.02
Random Forest 43.79
Extra Tree 23.53
Bernoulli Naive Bayes 20.26
Dummy Classifier 7.84

Table 2. Average winning ratio of balanced accuracy for each classifier over all datasets.

Balanced Accuracy Mean Runtime(s)
Dataset \ Classifier OvR OvO PGM OvR OvO PGM
Analcatdata_dmft 0.224±0.045 0.232±0.041 0.232±0.038 221.2 472.3 64.4

Balance-scale 0.681±0.048 0.739±0.070 0.924±0.051 99.2 99.5 46.2
Car 0.706±0.046 0.768±0.014 0.793±0.011 2497.9 3477.9 756.9

Cleveland-nominal 0.466±0.061 0.348±0.069 0.319±0.057 2391.2 4823 417.4
Cloud 0.283±0.106 0.283±0.076 0.383±0.094 1437.1 2257 229.7

Confidence 0.778±0.082 0.750±0.041 0.750±0.041 31.6 88.6 13.6
Ecoli 0.805±0.065 0.760±0.057 0.779±0.045 2437.1 4955.1 460.1

Haberman 0.595±0.050 0.500±0.000 0.702±0.033 11.2 13.2 13.8
Iris 0.933±0.057 0.967±0.033 0.967±0.042 49.2 53.1 30

Led7 0.728±0.024 0.712±0.028 0.713±0.024 28931 113356.1 6259.8
New-thyroid 0.635±0.131 0.690±0.123 0.867±0.049 129.8 145 60.6

Table 3. Comparison of balanced accuracy between HQC OvO, HQC OvR, and PGM

classification performance of balanced accuracy, weighted f1, weighted precision, and weighted recall with the number of
tensor copies, n. Without loss of generality, the benchmark evaluation was performed with four representative datasets: New
Thyroid, Iris, Analcatdata, and Confidence. It was observed for all datasets that increasing n improves all quantifiers of the
classification performance. Furthermore, it is noteworthy that the PGM bound monotonically increased with n for all datasets
tested here, up to n = 5.

Extension to the quantum circuit model
Although the QI algorithm developed in this study can be immediately applied to real-world problems using classical computers,
it is important to discuss the prospects of employing quantum computers because quantum hardware is improving progressively.
Because our algorithm is based on the mathematical formalism of quantum mechanics, all steps described in the previous
section can be implemented on a quantum circuit in principle. Here, we briefly outline the implementation of our algorithm on
quantum hardware.

Universal quantum computation allows the preparation of an arbitrary quantum state; hence, quantum-encoding maps are
feasible in principle. The quantum centroid, ρ

(n)
(i) , can be constructed by classically sampling tensor products of ρ~x j from n.

By definition, storing such quantum information requires only n quantum systems, whereas the classical memory increases
exponentially with n. Thus, the implementation has an exponential memory advantage at this point. It should be noted that
the quantum encoding step often requires deep quantum circuits35, 44, 45; hence, fault tolerance is required. The second step
involves the implementation of QSD between an unknown encoded state regarding quantum centroids. The PGM technique is
based on POVM, which can be implemented on a quantum circuit using Neumark’s theorem46, 47. In this case, the number
of ancilla qubits onto which the projective measurement is performed, increases logarithmically with the number of POVM
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Figure 4. The plots demonstrate the improvement in metrics: balanced accuracy, weighted f1-score, weighted precision,
weighted recall, and PGM bound, with an increasing number of tensor copies, n, of the original data.

elements, which equals the number of classes, `. Although Ref.47 presented a basic quantum circuit structure for implementing
an arbitrary POVM, determining the exact circuit parameters for a POVM remains a challenge.

Discussion
The development of full-fledged quantum computation remains a long-term prospect; therefore, QI algorithms implemented on
classical computers are a promising approach to enhance existing machine learning methods. Previous QI classifiers were able
to perform only binary classification, thereby posing challenges for general multi-class datasets. Our QI algorithm for direct
multi-class classification is based on the theory of QSD, which provides a systematic approach to find suboptimal measurements
for discriminating multiple quantum states. In our algorithm, training data of class i are encoded as a density matrix that must
be discriminated from other density matrix representations of the training data in different classes.

We conducted numerical experiments to compare our algorithm with existing standard classifiers, both classical and
quantum-inspired, using 11 benchmarking datasets. The experimental results revealed an improvement in classification
accuracy in most cases. Our algorithm, when compared with the OvO and OvR strategies with a QI binary classifier known as
the Helstrom quantum classifier, not only provided higher classification accuracy but also reduced runtime. This is owing to the
ability of our algorithm to directly perform multi-class classification. Furthermore, we showed that classification accuracy can
be further improved by increasing the number of copies of the density matrix that represents a classical feature vector.

The experimental results are remarkable because they illustrate the potential advantage of using the mathematics of quantum
theory while constructing a machine learning model, even if all hardware components are classical. This raises intriguing
questions regarding the development of algorithms for classification and pattern recognition.

Finally, we highlight that the use of quantum computers is a natural attempt to further improve our QI algorithm. We
provided empirical evidence that increasing the number of copies of a quantum system used in the construction of a quantum
centroid improves classification accuracy. However, such an approach exponentially increases the computational resources
such as runtime and memory. Although it is possible to exploit quantum computers to implement the PGM classifier, as briefly
explained in the previous section, finding an efficient approach to identify quantum circuit parameters that implement the
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POVM desired for a given dataset remains to be investigated. The time complexity of the quantum PGM classifier needs to be
evaluated in future study for comparison with classical runtime. Another important future research direction is to rigorously
prove the relationship between the PGM bound, which determines the classification accuracy, and the number of copies of the
quantum-encoded data.

Findings, limitations, and potential future developments
As discussed in the Introduction section, QI machine learning is an extremely interesting branch of quantum machine learning
because it offers relevant benefits, without the involvement of quantum computers. In particular, as shown in20, it is possible
to design an algorithm inspired by QSD that exhibits excellent performance when applied to a binary classification context.
However, extending this model to multi-class classification problems is challenging. Herein, we introduce a model inspired
by QSD. The model can perform multi-class classification without using a combinatorial strategy. The comparison of the
model with 11 standard classifiers revealed that it performs well not only in terms of the accuracy of the classification but
also regarding other relevant statistical metrics (weighted f1, weighted precision, and weighted recall; see Supplementary
Information section for details). In particular, the average value of the balanced accuracy obtained by our model outperforms all
the other standard classifiers (except multi layer perceptron; see Table 1), and it is the best in terms of the average winning ratio
(see Table 2). Furthermore, our method can perform an accurate multi-class classification by avoiding any type of OvO or OvR
procedures. Comparison of our new QI multi-class classifier with the OvO and OvR, reveals that the former outperforms the
latter, not only in terms of accuracy but also time complexity. A detailed comparison is presented in Table 3. Thus, our new
classifier is more accurate and efficient. This represents a promising improvement with respect to the actual state-of-the-art,
thereby paving the way for several potential practical applications. A comparison of our algorithm with 11 standard classifiers
yielded promising results. However, further improvements to our technique should incorporate state-of-the-art technologies.
To this end, we discussed the possibility of moving from QI to real quantum machine learning by extending our model to
a real quantum circuit model by employing Neumark’s theorem. In future, we will present a prototypical example of an
application of our multi-class classifier on a test set by using a quantum circuit, and additionally provide a simulation using
the IBM-Q platform, demonstrating that the classification results are not significantly affected by different types of noise. A
limitation of this approach is that, in principle, Neumark’s theorem only allows the design of a quantum circuit capable of
performing the test part of a QI algorithm. The training step, which is the most time-consuming, was still computed using a
classical computer. Therefore, further investigation is required for full implementation on a quantum computer because the
expression of the quantum algorithm that can implement the training part of the classifier is absent. In addition, the tensor
copies strategy described above is particularly burdensome for classical computers, and an optimal strategy to compute it
using a quantum computer for realizing the aims of the algorithms is also absent. To this end, our future efforts will include
designing a quantum circuit capable of performing the training step, including tensor copies, and evaluating the cost of the
process compared with other standard classifiers. Moreover, our future research will include the application of our algorithm to
real datasets in different practical contexts and explore several potential high-impact applications. In particular, we will focus
on bioimaging applications that have already been considered in recent studies22, 33. Finally, another limitation of the model is
that the choice of the particular encoding (feature map) used in the QI model is given by hypertuning that is manifestly dataset
dependent (see Supplementary Information section). Therefore, future investigation will additionally address finding an a-priori
optimal encoding that simultaneously maximizes the accuracy and efficiency of the classification.

Methods
Pretty Good Measurement
Given an ensemble of possible quantum states with their respective a-priori probabilities,

R = {(p1,ρ1), · · · ,(p`,ρ`)}, (7)

no known analytical description exists for the exact optimal measurement for discriminating the states in R. However, the
so-called PGM30–32 performs well in several situations. The average state of R is given by:

σ =
`

∑
i=1

piρi

and for any i : 1≤ i≤ `, operators
Ei = (σq)1/2piρi(σq)1/2,

where σq is the pseudoinverse (or Moore-Penrose inverse) of σ . For any i with 1≤ i≤ `, we define operators

Fi = Ei +
1
`

Pker(σ), (8)
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where Pker(σ) denotes the projection associated with the subspace spanned by the kernel σ . It was found that the map

F : {1,2, · · · , `} →B(Cn)+

is a measurement because ∑
`
i=1 Ei = Pim(σ). The map F , called the PGM48, is sub-optimal 49 because

P2
OPT ≤ PPGM ≤ POPT ,

where PPGM is the success probability of PGM and POPT is the optimal success probability. Furthermore, if tr(PKer(σ)) = 0, we
can replace Fi with Ei in the above equation.

Statistical metrics
The statistical metrics analyzed in this study to evaluate the classification follow the standard nomenclature in machine learning.
The metrics are defined as follows:

Balanced accuracy =
T PR+T NR

2
, weighted-f1 =

2T P
2T P+FP+FN

,

weighted-precision =
T P

T P+FP
, weighted-recall =

T P
T P+FN

,

where T PR is the true positive rate, T NR is the true negative rate, FPR is the false positive rate, and FNR is the false negative
rate of the classification. In the main manuscript, we only report the balanced accuracy, whereas the remaining metrics are
reported in the Supplementary Information section.

Experiments
All datasets used in the numerical experiments can be downloaded from the UCI machine learning repository at https://
archive.ics.uci.edu/ml/index.ph or from GitHub repository at https://github.com/EpistasisLab/
pmlb. Information regarding the datasets is summarized in Table 4. The amount of training data, m, was chosen to be
approximately 80% of the total number of objects, M.

Name M d l
Analcatdata-dmft 797 4 6

Balance-scale 625 4 3
Car 1728 6 4

Cleveland-nominal 303 7 5
Cloud 108 7 4

Confidence 72 3 6
Ecoli 327 7 5

Haberman 306 3 2
Iris 150 4 3

Led7 3200 7 10
New-thyroid 215 5 3

Table 4. Details of datasets used in this study. Here, M denotes the number of objects, d denotes the number of features, and l
denotes the number of classes.

A comparison with the existing classifiers was performed using the scikit-learn package. For the QI classifiers (i.e., PGM,
HQC OvO, and HQC OvR), the hypertuning parameters were the number of copies (n) ranging from 1 to 3, rescaling factor
ranging from 0.1 to 3 with step of 0.1, and the encoding method was chosen from stereographic or amplitude (see Supplementary
Information section). For all datasets, setting n = 3 yielded the highest classification accuracy. Owing to the increase in runtime,
we did not increase n beyond 3. To test the classification performance with respect to n, we increased n up to 5 for the selected
dataset. In this experiment, we used amplitude encoding and rescaling factor of 1, indicating that the data were not rescaled.
Finally, all experiments were performed on a 3.6 GHz 10-Core i9 Intel processor and 64 GB RAM.
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Supplementary Information

0.1 Quantum feature maps
As discussed above, an essential process of our algorithm is to encode the features of objects to be classified into quantum
states. There are infinite options to map an object vector to a density matrix. Different encodings have have been considered
in previous studies22. In particular, the data in this study were obtained by applying hypertuning between the following two
feature maps (i.e., encodings).

Amplitude encoding:
For each vector~x =

(
x1, . . . ,xd

)
∈ Rd , let ~x′ = ( x1√

∑
d
i=1(x

i)2+1
, . . . , xd√

∑
d
i=1(x

i)2+1
, 1√

∑
d
i=1(x

i)2+1
). The amplitude encoding is a

map, Rd 3~x 7→ ρ~x = x̃†x̃.

Stereographic encoding:
For each vector ~x =

(
x1, . . . ,xd

)
∈ Rd , consider the vector ~x′ ∈ Rd+1 given by ~x′ = α(2x1, . . . ,2xd ,∑d

i=1(x
i)2− 1), with

α = 1
∑

d
i=1(x

i)2+1
. The stereographic encoding is the map Rd 3~x 7→ ρ~x =~x′

†~x′.

In both cases, ρ~x is (d +1)-dimensional pure state. Here, ρ~x is the object quantum state associated with the object vector,~x.
It should be noted that the protocols for the application of the QI algorithms discussed here (HQC and PGM classifiers) also

include hypertuning over a rescaling factor. Formally, each component xi of a given vector~x is replaced with xi +δ , where δ is
a real number called the rescaling factor. In21 we showed that rescaling the features of all the objects of a given dataset before
encoding can improve the accuracy of the classification.

0.2 Helstrom bound and tensor copies
In this Appendix, we provide a proof of Theorem 1. In particular, we demonstrate that the Helstrom bound calculated for two
quantum centroids increases whenever the centroids are calculated over datasets in which each element is obtained by a tensor
copy of itself.

Theorem 1 Consider a dataset partitioned into two classes, which are labeled by numbers 1 and 2. Consider extracting a
training set for each class and providing a given quantum encoding to each vector of each class. Let us denote by Si

Qtr the set of
the encoded vectors ρ~x j belonging to the ith class of the training dataset (with i ∈ {0,1}).

Following Eq. (3), the quantum centroids ρ1 and ρ2 for the two classes of the training set are calculated, where n is
computed for ρ1 as the cardinality of class 1 of the training set, and similarly for ρ2. Formally, ρ1 =

1
|S1

Qtr |
∑ j ρ~x j , where ρ~x j

is an arbitrarily encoded vector of class 1 of the quantum training set. Similarly, the centroid, ρ2, of the second class of
the quantum training dataset can be calculated. Furthermore, ρ

(n)
i the centroid of class i is obtained by making n-tensor

copies of each vector of the quantum training dataset of class i, that is, ρ
(n)
i = 1

|S1
Qtr |

∑ j ρ~x j ⊗·· ·⊗ρ~x j . Following its standard

formulation50 the Helstrom bound for ρ1 and ρ2 is given by

Hb(ρ1,ρ2) =
1
2
(1+T(p1ρ1, p2ρ2)), (S1)

where T denotes the trace distance induced by the trace norm, T(σ ,τ) = 1
2
Tr[
√

(σ − τ)†(σ − τ)].
We prove that, for any k ∈ N+

Hb(ρ
(k)
(1) , ρ

(k)
(2))≤ Hb(ρ

(k+1)
(1) , ρ

(k+1)
(2) ).

Proof:
To prove Theorem 1, it suffices to show that:

T(ρ
(k)
(1) , ρ

(k)
(2))≤ T(ρ

(k+1)
(1) , ρ

(k+1)
(2) ).

Consider the Hilbert space H =H1⊗H2, where: H1 =Cd and H2 =⊗kCd . Let Tr1 be a partial trace of the first component
of H , that is, H1.

14/22



By using the definition of the quantum centroid ( Eq. (3)) and the linearity of the partial trace operator,

Tr1(ρ
(k+1)
1 ) = Tr1

 1
|S 1

Qtr|
∑

~x j∈S 1
tr

⊗(k+1)
ρ~x j


=

1
|S 1

Qtr|
∑

~x j∈S 1
tr

Tr1

(
⊗(k+1)

ρ~x j

)
=

1
|S 1

Qtr|
∑

~x j∈S 1
tr

⊗(k)
ρ~x j

= ρ
(k)
1 (S2)

The above list of equations can be physically interpreted as follows. Given a product state of k+1 components, tracing out
the first system will not alter the remaining k states. Similarly,

Tr1(ρ
(k+1)
2 ) =

1
|S 2

Qtr|
∑

~x j∈S 2
tr

⊗(k)
ρ~x j = ρ

(k)
2 . (S3)

The trace distance satisfies the contractivity property under the action of complete trace preservation of positive maps (i.e.,
trace-preserving quantum operators, see51). Because Tr1 is a trace-preserving quantum operation,

T
(
Tr1

(
ρ
(k+1)
1

)
, Tr1

(
ρ
(k+1)
2

))
≤ T

(
ρ
(k+1)
1 , ρ

(k+1)
2

)
. (S4)

Thus, by Eqs. (S2), (S3), and (S4), we can conclude that

T(ρ
(k)
1 , ρ

(k)
2 )≤ T(ρ

(k+1)
1 , ρ

(k+1)
2 ).

We recall that this theorem has a relevant impact regarding classification. Thus, making the tensor product of each quantum
encoded vector of the initial datasets increases the probability of distinguishing the two quantum centroids of each class (with a
natural benefit on the accuracy of the classification).

We empirically demonstrate that this argument can also be extended to the n-ary PGM classifier. Equation 6 represents the
PGM-bound. We simulated (with Wolfram Mathematica) a random three-class dataset and applied the PGM protocol with the
original dataset before and after using a new dataset created by making a tensor copy of each element with itself. Finally, we
calculated the difference between the value of the PGM-bound with respect to the original dataset (PGMb(1)) and the tensor
copy dataset (PGMb(2)). We repeated the procedure for 104 random datasets and observed that PGMb(2)−PGMb

(1) > 0 always, as
depicted in Supplementary Fig.1(a).

The same simulation has been repeated comparing PGMb
(3) with PGMb

(2) (Supplementary Fig.1(b)), PGMb(4) with PGMb
(3)

(Supplementary Fig.1(c)), and PGMb
(5) with PGMb

(4) (Supplementary Fig.1(d)), thereby confirming that PGMb(i+1)−PGMb
(i) > 0

in all the cases.

Other statistical metrics
The main manuscript focuses on reporting the metric, balanced accuracy, while comparing the performances of different
classifiers. In this section, other metrics, such as weighted f1, weighted precision, and weighted recall are discussed.

By referring to the standard nomenclature in machine learning, we briefly recall the expressions of the statistical metrics
cited above. The metric, balanced accuracy is defined as T PR+T NR

2 (where T PR is the true positive rate of a classification, T NR
is the true negative rate, FPR is the false positive rate, and FNR is the false negative rate). The metric, weighted f1 is defined
as 2T P

2T P+FP+FN (where T P, FP, and FN denote the number of true-positive, false-positive, and false-negative occurrences,
respectively). Furthermore, weighted precision is defined as T P

T P+FP , and weighted recall as T P
T P+FN . For each statistical metric,

we present the following data.

1. A heatmap of the values of the statistical metric after the application of all the classifiers for each dataset

2. A biclustering heatmap, wherein we indicate the average winning percentage of each classifier against the other, when
calculated over all the datasets

3. The rank of the performances of the classifiers obtained by the data given in item 1
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SUPPLEMENTARY FIG. 1. Three random datasets under consideration. Each dataset contains two objects, where each
object contains two features. We calculated the different values of PGMb with number of copies as 1 (no copies), 2, 3, 4, and 5.
Finally, we calculated the difference between the values of PGMb for i and i+1 number of copies. We performed the same
calculation for 104 different random datasets. The plots reveal that, for all the 4∗104 cases, PGM(i+1)

b −PGMib > 0, i.e., the value
of PGMb increases by increasing the number of copies.

4. The rank of the performances of the classifiers obtained by the data given in item 3.

The following classifiers were considered: PGM classifier, HQC OvO, HQC OvR, linear discriminant analysis, quadratic
discriminant analysis, dummy classifier (with strategy "prior"), nearest neighbors, nearest centroid, logistic regression, multi
layer perceptron, Bernoulli naive Bayes, Gaussian naive Bayes, random forest, and extra tree.

A comparison with the existing classifiers was performed using the scikit-learn package. For the QI classifiers (i.e., PGM,
HQC OvO, and HQC OvR), the hypertuning parameters were the number of copies (n) ranging from 1 to 3, rescaling factor
was from 0.1 to 3 with step 0.1, and the encoding method was either stereographic or amplitude. For all datasets, setting n = 3
yielded the highest classification accuracy. Owing to the increase in runtime, n was not increased beyond 3.

Note that the full data that contain the values of all statistical quantities after the application of all classifiers on all datasets
and their respective run times are provided in the supplementary file.
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SUPPLEMENTARY TABLE 1. Weighted f1 averaged over all datasets

Rank Classifier Average weighted f1
1) Multi Layer Perceptron 0.726 ± 0.245
2) Nearest Neighbors 0.724 ± 0.226
3) Random Forest 0.708 ± 0.236
4) Logistic Regression 0.683 ± 0.227
5) PGM 0.683 ± 0.234
6) Linear Discriminant Analysis 0.681 ± 0.225
7) HQCOvR 0.669 ± 0.24
8) Gaussian Naive Bayes 0.656 ± 0.273
9) Nearest Centroid 0.652 ± 0.227
10) HQCOvO 0.641 ± 0.252
11) Quadratic Discriminant Analysis 0.599 ± 0.327
12) Extra Tree 0.548 ± 0.262
13) Bernoulli Naive Bayes 0.377 ± 0.241
14) Dummy Classifier 0.352 ± 0.18

Weighted f1

SUPPLEMENTARY FIG. 2. Weighted f1 for all datasets
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SUPPLEMENTARY FIG. 3. One-to-one winning ratio for weighted f1 among all classifiers

SUPPLEMENTARY TABLE 2. Average winning ratio for weighted f1 (%)

Classifier Average winning ratio (%)
Multi Layer Perceptron 75.16
Linear Discriminant Analysis 65.36
HQCOvR 63.4
Logistic Regression 62.75
Nearest Neighbors 60.13
PGM 58.17
Gaussian Naive Bayes 53.59
Quadratic Discriminant Analysis 52.29
Random Forest 52.29
Nearest Centroid 49.67
HQCOvO 48.37
Extra Tree 24.84
Bernoulli Naive Bayes 16.34
Dummy Classifier 16.34
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SUPPLEMENTARY TABLE 3. Weighted precision averaged over all datasets

Rank Classifier Average weighted precision
1) Nearest Neighbors 0.741 ± 0.218
2) Multi Layer Perceptron 0.719 ± 0.246
3) HQCOvR 0.71 ± 0.219
4) Random Forest 0.708 ± 0.232
5) PGM 0.7 ± 0.245
6) Nearest Centroid 0.696 ± 0.218
7) Logistic Regression 0.69 ± 0.238
8) Linear Discriminant Analysis 0.686 ± 0.233
9) Gaussian Naive Bayes 0.676 ± 0.277
10) HQCOvO 0.67 ± 0.246
11) Quadratic Discriminant Analysis 0.627 ± 0.32
12) Extra Tree 0.513 ± 0.277
13) Dummy Classifier 0.336 ± 0.177
14) Bernoulli Naive Bayes 0.329 ± 0.242

Weighted precision

SUPPLEMENTARY FIG. 4. Weighted precision for all datasets
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SUPPLEMENTARY FIG. 5. One-to-one winning ratio for weighted precision among all classifiers

SUPPLEMENTARY TABLE 4. Average winning ratio for weighted precision (%)

Classifier Average winning ratio (%)
Nearest Neighbors 68.63
Multi Layer Perceptron 67.32
Linear Discriminant Analysis 63.4
HQCOvR 62.75
Logistic Regression 61.44
Nearest Centroid 59.48
PGM 58.82
HQCOvO 55.56
Quadratic Discriminant Analysis 54.9
Gaussian Naive Bayes 52.29
Random Forest 50.98
Extra Tree 24.18
Bernoulli Naive Bayes 11.11
Dummy Classifier 10.46
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Weighted recall

SUPPLEMENTARY TABLE 5. Weighted recall averaged over all datasets

Rank Classifier Average weighted precision
1) Multi Layer Perceptron 0.749 ± 0.232
2) Nearest Neighbors 0.735 ± 0.221
3) Random Forest 0.721 ± 0.233
4) Logistic Regression 0.705 ± 0.218
5) Linear Discriminant Analysis 0.701 ± 0.221
6) PGM 0.698 ± 0.221
7) HQCOvR 0.691 ± 0.218
8) HQCOvO 0.68 ± 0.221
9) Gaussian Naive Bayes 0.671 ± 0.27
10) Nearest Centroid 0.651 ± 0.216
11) Extra Tree 0.622 ± 0.237
12) Quadratic Discriminant Analysis 0.609 ± 0.32
13) Bernoulli Naive Bayes 0.48 ± 0.216
14) Dummy Classifier 0.419 ± 0.221

SUPPLEMENTARY FIG. 6. Weighted recall for all datasets
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SUPPLEMENTARY FIG. 7. One-to-one winning ratio for the weighted recall among all classifiers

SUPPLEMENTARY TABLE 6. Average winning ratio for weighted recall (%)

Classifier Average winning ratio
Multi Layer Perceptron 70.59
Logistic Regression 66.01
Linear Discriminant Analysis 64.71
PGM 56.86
HQCOvR 55.56
HQCOvO 54.9
Nearest Neighbors 52.29
Quadratic Discriminant Analysis 50.33
Random Forest 49.67
Gaussian Naive Bayes 49.02
Nearest Centroid 42.48
Extra Tree 39.22
Bernoulli Naive Bayes 29.41
Dummy Classifier 20.92
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