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The sensitivity and the frequency bandwidth of third-generation gravitational-wave detectors are such
that the Newtonian noise (NN) signals produced by atmospheric turbulence could become relevant.
We build models for atmospheric NN that take into account finite correlation times and inhomogeneity
along the vertical direction, and are therefore accurate enough to represent a reliable reference tool for
evaluating this kind of noise. We compute the NN spectral density from our models and compare it with the
expected sensitivity curve of the Einstein Telescope (ET) with the xylophone design. The noise signal
decays exponentially for small values of the frequency and the detector’s depth, followed by a power law
for large values of the parameters. We find that, when the detector is built at the Earth’s surface, the NN
contribution in the low-frequency band is above the ET sensitivity curve for strong wind. Building the
detector underground is sufficient to push the noise signal under the ET sensitivity curve, but the decrement
is close to marginal for strong wind. In light of the slow decay with depth of the NN, building the detector
underground could be only partially effective as passive noise mitigation.
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I. INTRODUCTION

The first direct observation of gravitational waves
(GW) performed in the last years by the LIGO-Virgo
Collaboration [1–10] represents a milestone for fundamen-
tal physics and astrophysics. The direct detection of the
GW signals generated by coalescing objects like neutron-
star or black-hole binaries has not only provided a striking
confirmation of Einstein’s General Relativity in the strong-
field regime, but has also started the new era of multi-
messenger astrophysics. The international network of
second-generation GW detectors has been further enhanced
with the joining of the KAGRA detector in 2020 [11–13].
The currently operating GW detectors use extremely
sensitive Michelson interferometers and have a sensitivity
band ranging from 10 Hz to 10 kHz.
Third-generation GW detectors like the Einstein

Telescope (ET) [14] and Cosmic Explorer (CE) [15]
have been proposed to fully open the emerging field
of GW astrophysics and cosmology [16,17]. Their goal
is to improve the sensitivity by a factor of 10 and the
former is expected to push the observation band down to

2–3 Hz [18]. These improvements are motivated by
numerous scientific reasons [17]. Black-hole mergers could
be observed at higher redshift and mass; the inspiral phase
could be detected earlier allowing for a better multimes-
senger investigation of the source; possible quantum
gravity effects, e.g., quantum hair(s) for black holes, could
be detected in the ringdown phase. These are just a few
examples of the scientific relevance of third-generation GW
detectors.
Improvements in sensitivity and frequency bandwidth

pose formidable challenges due to the impact of various
noise sources. This is not only because the enhancement of
the sensitivity of a factor of 10 may push the latter down
close to the noise floor, but also because we need better
modeling of noise in the lowest part of the frequency band.
In fact, at few Hz, the major limitations are expected to
come from the gravitational fluctuations, also called gravi-
tational gradient noise or Newtonian noise (NN) [19,20].
NN has two main contributions coming from seismic fields
and atmospheric perturbations. While detailed estimations
of seismic NN have been performed—also by modeling
seismic sources (for a comprehensive review, see, e.g.,
Ref. [19] and references therein)—atmospheric NN is
instead poorly understood. Our understanding of the
atmospheric contribution to the NN in GW detectors
has, until now, been essentially based on the works of
Saulson [21] and Creighton [22] (see also Ref. [23] for an
analysis of the contributions coming from pressure
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fluctuations produced in turbulent flow and Ref. [24] for an
analysis of acoustic NN). Saulson considered the effect of
acoustic pressure waves. Conversely, Creighton investi-
gated the contributions to NN of temperature perturbations,
transient atmospheric shocks and sound waves generated
by colliding objects. This lack of interest in the atmospheric
contributions to the NN is motivated by the fact that
estimations predicting NN in the 10 Hz region are several
orders of magnitudes below the sensitivity curve of second-
generation GW interferometers [19].
The situation changes drastically when one considers

third-generation GW detectors. In this case, the NN
prediction derived from modeling wind-advected temper-
ature fluctuations, which are the dominant sources of
atmospheric density fluctuations, cannot be extended below
10 Hz without modifying the models [22]. This is because
the two basic assumptions adopted in [19,21,22] for the
estimation of NN generated by temperature fluctuations,
namely, the quasistatic approximation and the homogeneity
and isotropy hypothesis, are expected to fail in that
frequency band.
A second crucial issue is that ET is planned to be built

underground. Although it is generally qualitatively true that
underground construction of the interferometers will re-
present passive mitigation of both seismic and atmospheric
NN, quantitative results for the dependence of the noise
level on the detector depth are not presently available.
Again, this is because atmospheric NNmodeling in the past
was oriented towards second-generation GW-detectors, i.e.,
detectors built on the Earth’s surface.
The main purpose of this paper is to improve the

modeling of NN generated by wind-advected temperature
fluctuations, to make it a reliable reference tool for the
evaluation of NN for third-generation GW detectors. This is
going to be a necessary ingredient not only for a general
preliminary estimation of the noise, but also for the
successive, detailed evaluation of NN by numerical sim-
ulation of atmospheric flows in realistic conditions. This is
mainly because current atmospheric codes have a grid scale
that is typically well above that of the fluctuations expected
to contribute to NN.
We will improve the quasistatic and homogeneous

models of [22] by working in two different directions.
First, we will go beyond the former approximation by
building models in which the NN generated by the decay of
the vortices is taken into account. Second, we will fully take
into account the fact that atmospheric turbulence is strongly
inhomogeneous along the vertical direction, and therefore
it cannot be modeled a priori within a homogeneous-
isotropic (HI) turbulence framework. We will find that,
whenever vortex time-decay dominates over the wind-
advection component, the NN power spectra are charac-
terized by a power-law behavior. This result is only weakly
dependent on the specific form of the time correlations
of the turbulence, except for its scaling properties. This is

fully expected given the multiscale behavior of turbulent
phenomena. On the other hand, the power-law regime of
NN spectra has not been previously found in HI models of
frozen turbulence [22], and its possible impact on GW
detectors was therefore completely overlooked.
We will then apply the results of our models to assess

the impact of temperature-fluctuations-induced NN on the
planned ET detector. For this purpose, we will compare the
numerical NN power spectrum obtained from our models
with the expected sensitivity curve of the ET with the
xylophone design (ET-D configuration). We will also dis-
cuss the dependence of the power spectrum on the physical
parameters of our model, putting a particular emphasis on
the dependence on the detector depth r0. In the frequency
range of interest, we will find that the noise, as a function of
r0, decays exponentially for small values of this parameter.
A 1=r20 scaling sets in at relatively large values of r0. This
scaling behavior turns out to be generally true whenever the
effect of wind advection is negligible and r0 is large. This
implies that building the detector underground could not
provide sufficient passive mitigation of atmospheric NN.
The structure of the paper is as follows. In Sec. II we

discuss in general terms the modeling of NN from atmos-
pheric temperature fluctuations beyond the quasi-static
approximation. In Sec. III we briefly discuss the main
features of turbulence in the planetary boundary layer (PBL).
We model the NN generated by wind-advected HI turbu-
lence in Sec. IV. In Sec. V we build a realistic model
for NN generated by turbulence in the PBL. In Sec. VI we
present the power spectra derived from our models, for
selected values of the parameters, compare them with the
ET-D sensitivity curve and discuss our results. In Sec. VII
we draw our conclusions. We leave technical details to the
Appendixes. Additionally, for readability convenience, we
provide a summary of the symbols mainly used throughout
the present work and their meaning in Table I.

II. ATMOSPHERIC NOISE FROM
TEMPERATURE FLUCTUATION

Density perturbations δρðr; tÞ in the air caused by
temperature fluctuations δTðr; tÞ≡ T̃ðr; tÞ are a major
source of atmospheric NN for GW detectors. The heat
in the atmosphere generates convective turbulence, mixing
pockets of cold and warm air at all length scales down to
the millimeter. Indicating with T̄ and ρ̄ the mean temper-
ature and density of air, respectively, from the ideal gas law
at constant temperature we get δρðr; tÞ ¼ −ðρ̄=T̄ÞT̃ðr; tÞ.
Density perturbations generated by temperature fluctua-
tions are typically several orders of magnitude larger than
those generated by pressure perturbations, which disperse
in the atmosphere in the form of infrasound waves. The
gravitational acceleration perturbation δaðr0; tÞ produced
on the test mass of the detector located at r0 at time t is
given by
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δaðr0; tÞ ¼ −α
Z

dV
T̃ðr; tÞ
jr − r0j3

ðr − r0Þ; ð1Þ

where α ¼ Gρ̄=T̄ is the conversion factor from temperature
to acceleration fluctuations in the detector. The acceleration
fluctuation given by Eq. (1) must then be projected onto the
detector-arm direction in order to obtain the strain.
Physically, the time variation of the acceleration δaðr0; tÞ

is the result of two different effects: the decay of vortices
and their transport by the wind with average velocity U
past the detector. The approach adopted in [19,22], which
approximates turbulence as a frozen field, is based on the
hypothesis that the vortex decay timescale (identified with
the eddy turnover time) is much larger than the typical time
spent by the vortex in the vicinity of the detector [22].
In this approximation, the main contribution to Eq. (1) is
due to the effect of frozen temperature fluctuations trans-
ported by the wind near the detector. As explained in the
introduction, it is commonly believed that this approxima-
tion breaks down at timescales larger than 10 s [19,22].
However, this is a rather intricate point, which deserves to
be carefully analyzed. Indeed, the frozen turbulence limit
has to be defined in terms of both the decay time of
temperature correlations in the reference frame of the wind
and the effective time the turbulent structure is perturbing
the detector. Wewill discuss this issue in detail in Sec. IVA.
Direct calculation of the acceleration fluctuation from

the temperature field using Eq. (1) is hopeless. The best we

can do is to characterize the gravity gradient Newtonian
noise with its spectral density (power spectrum) Sgðω; r0Þ

Sgðω; r0Þ ¼
Z

d3xd3x0Gkðx; r0ÞGkðx0; r0ÞCT
ωðx;x0Þ; ð2Þ

where

CT
ωðx;x0Þ ¼

Z
dtCTðx;x0; tÞeiωt;

≡
Z

dthT̃ðx; tÞT̃ðx0; 0Þieiωt; ð3Þ

and Gkðx; r0Þ is the spatial Green’s function. In the
previous equations hT̃ðx; tÞT̃ðx0; 0Þi is the autocorrelation
of the temperature fluctuation field at two different points
and at two different times. The stationarity of the random
process implies this autocorrelation to be a function of the
time difference. The specific form of the Green’s function
Gkðx; r0Þ, which we report in Appendix A, depends on
both the geometry of the problem and the coordinate
choice. The geometry of the system and the set of
coordinates used to perform the calculations are sketched
in Fig. 1.

III. TURBULENCE IN THE PLANETARY
BOUNDARY LAYER

Atmospheric turbulence is concentrated in the lowest
portion of the troposphere, a region called the planetary
boundary layer (PBL) [25]. The structure of the PBL is
strongly dependent on the orography, the wind and weather
conditions, and the hour in the day.
Let us consider the structure of the PBL on a typical

sunny day—which means that the layer is unstably
stratified—in the presence of strong wind. Under these
conditions, the atmospheric turbulence contribution to NN

FIG. 1. Schematic representation of the geometry of the system
adopted to compute the Green’s functions. The system of
cylindrical coordinates ðx⊥;φ; x3Þ is highlighted, whileUx3

refers
to the direction of the wind, parallel to the Earth’s surface. The
dotted blue arrow is the projection of the wind onto the plane of
the test mass, while ψ is the angle between the detector arm,
which is taken along x1, and the wind direction.

TABLE I. List of symbols used throughout the present work.

Symbol Description

ρ̄ Mean air density
T̄ Mean temperature density
T� Amplitude of temperature fluctuations
α ¼ Gρ̄=T̄ Conversion factor from temperature to

acceleration fluctuations
xref3

Reference height
U Mean wind speed
Ux3 Wind speed at height x3
Uref Wind speed at xref3

u� Friction velocity
z0 Roughness parameter
r0 Detector depth
ψ Angle between the detector arm and the wind

speed
E Energy loss rate of turbulent structures
ET Energy loss rate of temperature fluctuations
ν Air kinematic viscosity
τk Eddy turnover time
f Frequency
ω ¼ 2πf Angular frequency
kω ¼ E−1=2ω3=2 Characteristic wave number of vortices with

eddy turnover time ω−1

ω̂ ¼ ωz0=u� Dimensionless angular frequency
r̂0 ¼ r0=z0 Dimensionless detector depth
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is expected to be the maximum. For simplicity we consider
the case of a horizontally uniform PBL developing over a
plain region, and assume stationarity over the timescales
of interest.
The PBL can be subdivided into a surface layer in which

mechanical stresses, originating from the wind interaction
with the Earth’s surface, dominate the dynamics, and a
convection layer in which stratification is dominant.
A sketch of the PBL structure is shown in Fig. 2. In the
surface layer, the mean wind speed U ¼ Ux3 is charac-
terized by a logarithmic vertical profile [26]

Ux3 ≃
u�
κ
lnðx3=z0Þ; ð4Þ

where κ ¼ 0.4 is a universal constant called the von
Karman constant, u� is the so-called friction velocity,
which gives the velocity scale of the profile, and z0 is
an experimental parameter giving the dependence of the
profile on the roughness of the terrain. In the case of a
smooth surface z0 ≃ 0.1ν=u�, where ν is the viscosity of the
fluid. For Eq. (4) to be valid, it is necessary that x3 ≫ z0.
Values of the roughness length z0 for different types of
terrain are listed in Table II.
The friction velocity u� gives the amplitude of the

turbulent velocity fluctuations u in the surface layer. A
similar parameter T� can be introduced, giving the ampli-
tude of the temperature fluctuations. Both u� and T� are
constant in the surface layer. To characterize the strength of
the wind, we shall use the mean wind speed at a reference
height xref3 ¼ 10 m: Uref ≡U10m.
At height x3, turbulent eddies are expected to be at most

∼x3 in size, although they tend to be more elongated in the
direction of the mean flow than in the vertical and spanwise
directions. Similar considerations are valid for temperature
fluctuations. This identifies a characteristic timescale of
fluctuations in the surface layer

τðx3Þ ∼ x3=u�: ð5Þ

We can compare the timescale τðx3Þ with the timescale of
convection τconvðx3Þ∼ ½T̄x3=ðgT�Þ�1=2, where g¼9.81m=s2

is the gravitational acceleration. The transition from the
surface layer to the convection-dominated part of the PBL
takes place for τðx3Þ ∼ τconvðx3Þ, which defines (minus) the
Obukhov length [28]

LO ¼ T̄u2�
κgT�

: ð6Þ

For T̄¼300K, T� ¼1K, Uref ¼ 20 m=s, and z0 ¼ 0.05 m,
corresponding to u� ≃ 1.5 m=s, we get LO ≃ 170 m.
For x3 > LO the mean velocity and temperature profiles

become almost constant (more precisely, the mean temper-
ature in the convection layer relaxes onto the adiabatic
profile), and turbulence consists of thermal plumes whose
dynamics is determined by the convection time τconvðLOÞ.
We can determine the amplitude of the velocity and

temperature fluctuations in the convective layer by requir-
ing that, in stationary conditions, the turbulent heat flux is
independent of the height, ux3 T̃x3 ∼ constant, where ux3 and
T̃x3 are the typical velocity and temperature fluctuations
at height x3. From ux3 ∼ x3=τconvðLOÞ, we then get, for
x3 > LO,

ux3 ∼
u�x3
LO

; T̃x3 ∼
T�LO

x3
: ð7Þ

Thermal plumes accelerate as they rise in the convective
layer, and temperature gradients concurrently diminish.
The rise of the thermal plumes stops at the top of the
convective layer, at a typical height x3 ¼ 1 ÷ 2 km, in the
entrainment layer, where stratification becomes strongly
stable.

A. Turbulence microstructure

Turbulent structures at scale LO or higher are expected
to generate a contribution to the noise spectrum at frequen-
cies much below those of interest for GW detectors.
The most significant contribution is likely to come from
fluctuations close to the Earth’s surface, and from small
turbulent structures originating—through the Kolmogorov
cascade—from larger eddies higher in the boundary layer.
The statistical properties of turbulence can be quantified
in terms of correlation functions for velocity fluctuations

TABLE II. Schematics of terrain types and z0 values [27].

z0 (m) Terrain surface characteristics

1.0 City
0.8 Forest
0.2 Bushes
0.05 Farmland (open appearance)
0.008 Mown grass
0.005 Bare soil (smooth)
0.0003 Sand surfaces (smooth)

FIG. 2. Portrait (not on scale) of the PBL structure. Vertical
dashed lines indicate the zeros of the curves for turbulent velocity
fluctuations u and temperature fluctuations T̃.
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Cðx;x0; tÞ and those for temperature fluctuationsCTðx;x0; tÞ
appearing in Eq. (2). In HI turbulence, the spatial dependence
of Cðx;x0; tÞ and CTðx;x0; tÞ is on x − x0 only, so that we
haveCðx;x0;tÞ¼CHIðx−x0;tÞ,CTðx;x0;tÞ¼CHI;Tðx−x0;tÞ.
Hence, turbulent fluctuations can be described in terms of
one-time wave vector spectra CHI

k ¼ R
d3xCHIðx; 0Þe−ik·x

and CHI;T
k ¼ R

d3xCHI;Tðx; 0Þe−ik·x. At sufficiently small
scales, in the so-called inertial range, turbulent fluctuations
obey the Kolmogorov scaling [29]

CHI
k ∼ E2=3k−11=3; ð8Þ

CHI;T
k ∼

ET

E1=3 k
−11=3: ð9Þ

The dimensional constants E and ET in Eqs. (8) and (9) give
the speed with which turbulent fluctuations at a given scale
are converted to smaller-scale turbulent fluctuations.
Viscous forces become dominant at sufficiently small
scales, and this determines the size ηK of the smallest
eddies (Kolmogorov scale):

ηK ∼ E−1=4ν3=4; ð10Þ

where ν ≃ 0.15 cm2=s is the kinematic viscosity of air.
IfL is the characteristic size of the largest eddies in the flow
(the so-called integral scale of vortices), and uL and T̃L
are their characteristic velocity and temperature scales
respectively,

E ∼ u3L=L; ET ∼ uLT̃2
L=L; ð11Þ

and Eqs. (8) and (9) will apply provided that kL ≫ 1. For
uL ∼ u� ¼ 1.5 m=s and 0.1 m < L < LO ¼ 170 m, we
would have 0.02 m2=s3 < E < 3.4 m2=s3, corresponding
to values of the Kolmogorov length ηK below the
millimeter.
To any given scale l we can associate a characteristic

velocity scale Δlu ∼ juðxþ lÞ − uðxÞj ∼ ðk3CHI
k Þ−1=2

k∼l−1 .
From Eq. (8), then, we can define an eddy turnover time

τk ∼
�

l
Δlu

�
l¼k−1

∼ E−1=3k−2=3; ð12Þ

which gives the typical lifetime of turbulent structures
of size k−1.
One may expect that at height x3 in the PBL, turbulent

microstructure at scale k−1 ≪ x3 could be considered,
using HI turbulence concepts, as originating from eddies
of size L ∼ x3 and velocity scale ux3 .
Indeed, things are more complicated, at least in the

surface layer, because structures with kx3 ≫ 1 could be
part of cascades originating from structures of size L ∼ x03
at height x03 > x3. The problem is less serious in the

convective layer, where thermal plumes continuously carry
smaller eddies upwards and prevent the simultaneous
presence of multiple cascades at any given height. We
shall deal with this issue by representing turbulence as a
superposition of contributions from horizontal layers of
different thickness, in which turbulence is approximated as
homogeneous and isotropic.

IV. NEWTONIAN NOISE FROM HOMOGENEOUS
ISOTROPIC TURBULENCE

The simplest model of NN production by atmospheric
temperature fluctuations we can devise is realized by
treating the PBL as an infinite layer of HI turbulence.
The correlation function CTðx;x0; tÞ has a rather intricate
structure in which space and time dependence are inter-
twined. Performing a successful analysis of CTðx;x0; tÞ
heavily relies on the possibility of introducing some kind
of factorization between its space and time dependence.
The space dependence of the correlation function
CTðx;x0; tÞ in Eq. (2) is determined by the spectrum
CHI;T
k in Eq. (9). The time structure of CTðx;x0; tÞ is more

complex. Equation (12) tells us that there is a multiplicity of
decay times associated with the different spatial scales in
the problem. The situation is complicated by the so-called
Taylor sweep, which consists of turbulent structures being
transported by both the mean wind and larger turbulent
structures, while being stretched and deformed into
smaller-scale turbulent structures.
The analysis of the problem is facilitated by the ordering

U > u which allows us, in the first approximation, to
neglect the contribution of larger eddies to the transport
of eddies at any given scale. A similar approach has been
used in the design of some turbulent closures [30]. In this
approximation, it is possible to eliminate the effect of
the Taylor sweep by shifting to the reference frame of the
mean wind,

hT̃ðx; tÞT̃ð0; 0Þi ¼ hT̃ðx − Ut; tÞT̃ð0; 0ÞiU; ð13Þ

where hT̃ðx; tÞT̃ð0; 0ÞiU can be expressed, using Eq. (9), as
a superposition of Fourier modes, each decaying at the
timescale fixed by Eq. (12):

hT̃ðx; tÞT̃ð0; 0ÞiU
¼ ET

E2=3

Z
d3k
ð2πÞ3

dω
2π

k−11=3hðτkωÞeiðk·x−ωtÞ: ð14Þ

We assume the function h to be symmetric, normalized
to 1, and going to zero for large values of the argument.
Equation (14) tells us that, in Fourier space, the correlations
for temperature fluctuations can be expressed as the
product of hðτkωÞ times a function of k. We substitute
now Eqs. (13) and (14) into Eq. (2), and obtain after simple
algebra,
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Sg ¼
ET

E2=3

Z
d3k
ð2πÞ3 k

−13=3jGkðr0Þj2h½τkðω − k · UÞ�: ð15Þ

The Green’s function Gkðr0Þ has been computed in
Appendix A. For the case of HI turbulence, it reads [see
Eq. (A3)]

jGkðr0Þj2 ¼
�
2πα cosϕ

k

�
2

e−2k⊥r0 ; ð16Þ

where, we recall, k⊥ ≡ ðk1; k2; 0Þ, cosϕ ¼ k1=k⊥, r0 is the
depth of the detector, and α ¼ Gρ̄=T̄ is the conversion
factor from temperature to acceleration fluctuations [see
Eq. (1)]. In Sec. VI we will use Eq. (15), together with the
Green’s function (16), as the starting point for the numeri-
cal computation of the spectral density for NN generated
by HI turbulence.
We note the small-k divergence of the integrand in

Eq. (15), which requires the function h to decay sufficiently
fast for large values of the argument.
The fast decay of the frequency spectrum h reflects the

character of the time decorrelation process as the result
of the continuous stretching and scrambling of turbulent
structures by the turbulent flow. This is to be opposed to the
case of thermal fluctuations, where a microscopic mecha-
nism (molecular motion) is at play, causing the correlation
function CðtÞ to be not differentiable at t ¼ 0, and the
associated spectrum to decay like ω−2 at large ω. We can
verify that, with such a slow decay of frequency spectrum,
the integral in Eq. (15) would be logarithmic divergent at
small k.
Similar difficulties in following a Langevin-equation-

based approach in turbulence have been discussed in [31],
concerning subgrid modeling for large-eddy simulations of
wall flows.

A. Frozen turbulence limit

An important limit of Eq. (15), which has been explored
in [22], is that of frozen turbulence, in which the time decay
of correlations in the reference frame of the wind is slow
and the time decorrelation of CHI;Tðx; tÞ is only a conse-
quence of the Doppler shift induced by the mean wind. The
frozen turbulence limit is realized by approximating the
function h in Eq. (15) with a Dirac delta, which requires
the width of h, seen as a function of k, to be much smaller
than both U=ω and the width of jGkðr0Þj2. Inspection of
Eqs. (15) and (16) gives us the condition

τω=U ≫ maxðr0=U;ω−1Þ; ð17Þ

which means that the structures contributing to the noise
must have an eddy turnover time significantly longer than
both the inverse of the frequency and the transit time over a
distance r0. The second condition is especially interesting:
r0=U represents the effective time the turbulent structure is

effectively seen by the detector, and Eq. (17) tells us that,
for a frozen turbulence hypothesis to be satisfied, the depth
at which the detector is situated must not be too large. In
frozen turbulence conditions, Eq. (15) takes the form

Sftg ¼ ET

E1=3

Z
d3k
ð2πÞ2 k

−11=3jGkðr0Þj2δðω − k · UÞ: ð18Þ

Combining Eqs. (16) and (18) produces the general
expression

Sftg ¼ Ŝftg ðψ ;ωr0=UÞ α
2ETU8=3

E1=3ω11=3 ; ð19Þ

where Ŝftg is dimensionless, and ψ is the angle between
U and the detector arm (see Fig. 1). The ratio ET=E1=3 in
the formula coincides with the parameter c2T in [22],
giving ET=E1=3 ¼ 0.2 K2 m−2=3.
The integral in Eq. (18) can be computed analytically.

The details of the calculations are described in Appendix B,
and the final result is a combination of hypergeometric
functions [see Eq. (B6)].
The small frequency regime of the spectrum can be

directly inferred from Eq. (19). As discussed in
Appendix C, Ŝftg has as a finite limit Sftg ðψ ; 0Þ ¼ Sftg ðψÞ,
which implies a power-law scaling in ω for the dimensional
spectrum Sftg [this can also be verified by taking the limit of
the exact expression (B6)].
The regime ωr0=U ≫ 1 is analyzed in Appendix C and

gives us the exponential behavior

Sftg ∼
ETα

2U8=3 cos2 ψ

E1=3ω11=3

�
U
ωr0

�1
2

exp

�
−
2ωr0
U

�
: ð20Þ

It is quite interesting to compare our Eq. (20) with the
results of Ref. [22], where also the NN generated by HI
turbulence in the frozen limit has been analyzed. We see
that the exponential behavior of the noise spectrum as a
function of ω and r0 found in Ref. [22] holds only for
frequencies ω much higher than U=r0.

B. Weak wind regime

The weak wind regime is realized for ωτω=U ≪ 1, which
corresponds to approximating h½τkðω − k · UÞ� ≃ hðωτkÞ in
Eq. (15). The analysis in Appendix C produces, in this case,
the power-law behaviors

Swwg ∼
ETα

2

E2=3 ×

�
k−16=3ω r−20 ; kωr0 ≫ 1;

k−10=3ω ; kωr0 ≪ 1;
ð21Þ

where
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kω ¼ E−1=2ω3=2 ð22Þ

is the inverse size of vortices with eddy turnover time ω−1.

V. NEWTONIAN NOISE FROM TURBULENCE
IN THE PBL

In this section, we go beyond the isotropic and homo-
geneous approximation for turbulence by building a
more realistic model, in which the vertical structure of
the PBL is fully taken into account. Conversely, we
continue to assume homogeneous correlations horizontally.
Following an approach described in [32], we model
turbulence in the PBL as a superposition of HI turbulence
contributions in horizontal layers ½0; x̄3�, where x̄3 ranges
from a minimum height x3;min ∼ z0—marking the transition
to the region where turbulence is strongly affected by the
roughness geometry—to a maximum height LPBL identi-
fying the top of the PBL. As a rule of thumb, one usually
sets x3;min ¼ 10z0 [26]. The latter choice, however, could
cut potentially important contributions from vortices at
the lower end of the logarithmic region. In our model,
therefore, we choose a value in between, x3;min ¼ ez0,

1

to identify the smallest integral-scale temperature fluctua-
tions contributing to the noise. These temperature fluctua-
tions have amplitude T� and eddy turnover time
τx−1

3;min
∼ x3;min=u�. Thus, a smaller x3;min will correspond

to a stronger high-frequency contribution to the noise.
Indeed, we will show in Sec. VI that the specific choice of
x3;min in terms of z0 only alters the high-frequency portion
of the spectral density, which is, however, always below
the sensitivity curve of ET for reasonable values of the
parameters (see bottom panel of Fig. 8).
The contributions to the temperature fluctuation T̃ðx; tÞ

from layers with x̄3 ≥ x3, T̃ðx; tjx̄3Þ, are assumed uncorre-
lated. The spectrum in each layer can be assumed to obey
Kolmogorov scaling only for kx̄3 ≫ 1. We must thus
extend Eqs. (9) and (12) to integral scales kx̄3 ≤ 1. The
simplest possibility is to assume a sharp transition into the
Kolmogorov scaling regime exactly at kx̄3 ¼ 1, i.e., to set

CHI;T
k ðx̄3Þ ∼

T̃x̄3 x̄
3
3

max ð1; ðkx̄3Þ11=3Þ
; ð23Þ

τkðx̄3Þ ∼
x̄3

ux̄3 max ð1; ðkx̄3Þ2=3Þ
; ð24Þ

where Eq. (11) has been used.
For simplicity, the effect of the Taylor sweep in each

layer is approximated with that of a constant wind Ux̄3 .

The temperature correlation resulting from the superposi-
tion of the contributions in Eq. (23) is in the form

CT
k⊥;ωðx3; x03Þ ¼

Z
LPBL

maxðx3;x03Þ

dx̄3
x̄3

Z
d3k
2π

CHI;T
k ðx̄3Þ

× h½τkðx̄3Þðω − k · Ux̄3Þ�eik3·ðx3−x
0
3
Þ: ð25Þ

As in the case of Eq. (15), the spectrum h is evaluated at
the Doppler-shifted frequency ω − k · Ux̄3, generated by
expressing correlations in the reference frame of the wind
in the layer x̄3. Note the factor x̄−13 in the integral, which
guarantees that all layers have equal weight.
We substitute Eq. (25) together with Eqs. (23) and (24)

and the propagator (A5) calculated in Appendix A into
Eq. (2) and obtain, after straightforward algebra,

Sg ¼
α2

π

Z
LPBL

x3;min

dx̄3

Z þ∞

0

dk
Z

1

0

dp
pffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − p2
p

×
x̄33T̃

2
x̄3Aðk; x̄3ÞBðk; x̄3Þe−2kpr0
Ux̄3 max½1; ðkx̄3Þ13=3�

; ð26Þ

where p ¼ k⊥=k, and

A ¼
Z

2π

0

dϕ cos2 ϕh½τkðx̄3Þðω − k · Ux̄3Þ�; ð27Þ

B ¼ k2
Z

x̄3

0

dx3dx03e
ik3ðx3−x03Þ−k⊥ðx3þx0

3
Þ

¼ 1þ e−2k⊥x3 − 2e−k⊥x3 cosðk3x̄3Þ: ð28Þ

In Sec. VI we will use Eq. (26) as a starting point for
the numerical computation of the spectral density for NN
generated by turbulence in the PBL. We note the scaling
T̃2
x̄3=Ux̄3 ∝ x̄−33 for x̄3 > LO in Eq. (26), which descends

from Eq. (7). This suggests that the dominant contribution
to Sg comes from the surface layer, where T̃2

x̄3=Ux̄3 ¼
T2�=u�. Numerical analysis confirms this indication. This
prompts us to replace LPBL → LO in Eq. (26), thus
approximating the noise production in the PBL with the
contribution in the surface layer.
To analyze the contribution to the noise in the surface

layer, it is convenient to shift to the so-called wall units [26],
which we identify with a hat:

ω̂ ¼ ωz0
u�

; r̂0 ¼
r0
z0
; L̂O ¼ LO

z0
: ð29Þ

Note from Table II, that for reasonable values of r0 and z0,
we have always r̂0 ≫ 1. In terms of wall units, Eq. (26) can
be written in the form

1The choice is arbitrary, but it allows a smooth transition, in
the vertical wind speed profile, from a linear behavior in the
roughness layer,Ux3 ∝ x3=x3;min, to the logarithmic profile above
Ux3 ∝ ln ðex3=x3;minÞ.
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Sg ¼
α2T2�z30
u�

Ŝgðω̂; r̂0; L̂OÞ; ð30Þ

with Ŝg dimensionless.

A. Limit behaviors

The asymptotic analysis in Appendix E tells us that, in the
two limits of small and large ω̂, the dominant contribution to
Ŝg comes from turbulent structures in the integral range
(kx̄3 < 1) and in the inertial range (kx̄3 > 1), respectively.
This is associated with the observation that the large ω
contribution to Sg is increasingly concentrated at smaller x̄3.
The mechanism for the separation between small and

large frequency behavior can be understood by considering
that the frequency ω selects, as dominant contributors to Sg,
turbulent structures with size k−1ω , such that either the eddy
turnover time τk or the transit time ðkUx̄3Þ−1 is ∼ω−1.
A maximum frequency for the production of integral range
vortices of size k−1ω is then identified by kωz0 ∼ 1, as smaller
integral-scale vortices would have to reside inside the
roughness of the terrain.
The different scaling of the contributions to Sg from

integral and inertial range turbulent structures is associated
with a transition from a small to a large frequency behavior
that is characterized by an increase in the decay rate with
frequency. Indeed, the asymptotic analysis in Appendix E
gives us, for ω−1 shorter than the eddy turnover time of
integral scale vortices at height z0,

Ŝg ∼ ω̂−8r̂−20 ; minðω̂; r̂0Þ ≫ 1; ð31Þ

which is Eq. (E5). This equation tells us that we will always
have a 1=r20 behavior of Sg at large frequencies and for large
values of r0.
For small ω̂, instead, we have two possible behaviors

depending on the magnitude of r̂0 [see Eq. (E7)]:

Ŝg ∼
� x̂33;max; 1 ≫ ω̂r̂0

r̂−20 x̂53;max; ω̂r̂0 ≫ 1 ≫ ω̂;
ð32Þ

where

x̂3;max ¼ minðω̂−1; L̂OÞ; ð33Þ

and where the ratio r0=u� in ω̂r̂0 ¼ ωr0=u� is the eddy
turnover time of integral scale vortices at height r0. Thus, at
small frequencies, power-law decay in r0 of the noise
spectrum will ensue for r0 ∼ u�=ω, which is the size (and
the height) of integral scale vortices with eddy turnover
time ω−1. As already remarked, for reasonable values of r0
and z0, we always have r̂0 ≫ 1, which is why we have
chosen to disregard the range ω̂ ≫ 1 ≫ r̂0 in Eq. (31) in the
first place. Notice, moreover, that the 1=r20 behavior arises

also in the weak-wind regime of the HI approximation [see
Eq. (21)]. As we show in Appendix F, this is a general
behavior arising whenever the effect of eddy decay domi-
nates over wind advection and r0 is large.

VI. RESULTS

In this section we numerically compute and analyze the
behavior of the power spectra obtained from Eq. (2) for
the three different cases discussed in this paper: (a) HI
turbulence in the frozen limit, (b) HI turbulence with
finite correlation time, and (c) turbulence in a horizontally
homogeneous PBL. Specifically, for case (a), we use the
expression (18), while for cases (b) and (c), as starting
points for the numerical computation of the power spectra,
we use the more general Eqs. (15) and (26), respectively.
The extended set of data presented and related to this
work are available online [33]. Moreover, we compare
the resulting spectra with the ET-D sensitivity curve, to
investigate the possible impact of atmospheric NN on
next-generation GW detector measurements. Note that
the ET-D sensitivity curve is expressed in terms of the
strain power spectrum Sh, which is related to the accel-
eration power spectrum Sg in Eq. (2) by the relation

Sh ¼ 4
Sg

ω4L2
arm

; ð34Þ

where Larm is the length of the detector arm, while the
factor of 4 takes into account the number of test masses in
the detector. Indeed, one can assume that the NN contri-
butions on each test mass are uncorrelated, since those
arising from correlated signals between two or more test
masses are expected to be negligible [19,22]. We rescale the
modeled spectra according to Eq. (34).

A. HI turbulence: Frozen limit

In the frozen limit, the frequency spectrum of the
temperature fluctuations [function h in Eq. (15)], is simply
a Dirac delta [see Eq. (18)]. This allows us to use the
analytic expression for the integral (18) in terms of a sum of
hypergeometric functions provided in Eq. (B6). The noise
curves obtained in this limit, for fixed r0 and varyingU, are
shown in the upper panel of Fig. 3 and compared with the
sensitivity curve of ET-D. We also show the variation of the
strain spectrum at the fixed pivotal value of the frequency
of 2 Hz, as a function of the depth r0 (bottom panel of
Fig. 3). For all the curves in Fig. 3, we have set the
coefficient c2T ¼ ET=E1=3 in Eq. (18) equal to its value
in [22], c2T ¼ 0.2 K2 m−2=3. Here, and in the following
cases (HI turbulence with finite correlation time, and
inhomogeneous turbulence), we have set ψ ¼ 0, which
corresponds to wind blowing parallel to the detector arm
[see subsection (c) for a discussion of the dependence of the
spectra on ψ].
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As already discussed below Eq. (20), the NN is expo-
nentially suppressed for both large frequencies and large
detector depths. In particular, it is worth noting that the
noise curve is below the ET sensitivity curve for r0 ≳ 30 m
and for frequencies f ≳ 5 Hz, where f ¼ ω=ð2πÞ.
Moreover, the larger the wind speed, the larger the noise
amplitude, as explicitly shown in Fig. 3. The bottom panel
of Fig. 3 also shows that, for f ¼ 2 Hz, if r0 ≲ 5 m and
U ≥ 10 m=s, the NN spectrum is comparable or above the
sensitivity of ET-D. The same happens if r0 ≲ 20 m and
U ≃ 30 m=s. The frequency range considered in the plot is
not wide enough to visualize the power-law behavior
predicted by Eq. (B6) in the ω ≪ U=r0 limit. We have
verified that the latter arises at very small frequencies
f ≪ 1 Hz, for the values of U and r0 considered here.
Alternatively, very large valuesU or very small values of r0
would be required. If the interferometer is built under-
ground, however, r0 is at least ∼1 m; on the other hand,
winds stronger than 30 m=s are very unlikely.

B. HI turbulence: Finite correlation time

To go beyond the frozen turbulence approximation, an
explicit form of the function h in Eq. (15) must be selected.

However, such a choice is not straightforward. In fact, the
functional dependence of h on the physical parameters
relies on the underlying dynamics of the turbulent struc-
tures, whose detailed knowledge is still missing. A rea-
sonable and likewise simple form for the temporal
correlation spectrum in Eq. (15), which satisfies the
conditions given in Sec. IV, is a Gaussian function

h½τkðω − k · UÞ� ¼ e−τ
2
kðω−k⊥U cosðϕ−ψÞÞ2 : ð35Þ

We have verified that other choices of h, such as that of a
top-hat function, do not produce significantly different
results. Using Eq. (35), the integral (15) has no closed-form
solution, thus the noise spectra must be computed via
numerical integration.
The integrand in Eq. (15) as well as in Eq. (26) is

concentrated in a tiny section of the integration domain,
whose shape is highly dependent on the parameters
involved. This makes numerical integration by quadratures
cumbersome. The integrals have thus been computed using
the VEGAS algorithm [34], which exploits a Monte Carlo
technique with importance sampling and is ideally suited
for multidimensional integrals. It should be pointed out
that, with this approach, the numerical estimation is highly
computational consuming (∼3 core hour for a single value
of Sh). Therefore, the integrals have been computed by
using the HYDRA framework [35], which is designed to
perform data analysis and numerical integration tasks on
massively parallel platforms, commonly used in the high-
energy, particle physics community. Using this tool, we
carried out the integrals in Eqs. (15) and (26) obtaining our
results with a subpercent precision in a reasonable amount
of time.
We have repeated the analysis in Fig. 3, for different

values of U and r0, and of the new parameter E, which sets
the scale of the eddy turnover time τk [see Eq. (12)]. We
have considered values of E in the range 0.01 m2=s3 ≲
E ≲ 1 m2=s3 [see discussion following Eq. (11)]. For
consistency with the frozen turbulence case, we have taken
ET ¼ c2TE

1=3, with c2T ¼ 0.2 K2m−2=3. As in the previous
subsection, we limited our analysis to the case ψ ¼ 0.
The results are shown in Fig. 4. The curves are quite

similar to those in Fig. 3. In general, the noise still decays
for large detector depths and large frequencies, while it
increases with the wind speed and with E. The latter reflects
the increase in the amplitude of the temperature fluctua-
tions with ET ¼ c2TE

1=3, which implies, through Eq. (12),
an increase of the characteristic frequency of the fluctua-
tions as well. However, a new feature, not present in the
frozen regime, is observed in both panels, namely, a
transition to a power-law regime in f and r0 if f is very
large, U is very small or r0 very large [see Eq. (21)]. At
intermediate values of the parameters (take, for instance,
the curve with U ¼ 5 m=s, E ¼ 0.1 m2=s3 in the top panel
of Fig. 4), the noise curves show a transition from

FIG. 3. HI turbulence—frozen limit. Top panel: noise spectra as
functions of the frequency f ¼ ω=ð2πÞ at fixed detector depth r0
and with varying wind speed U. Bottom panel: strain spectrum
for f ¼ 2 Hz as a function of the detector depth r0 for selected
values of the wind speed U. In all cases we have taken ψ ¼ 0.
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exponential (at low frequencies) to power-law (at large
frequencies) behavior. As expected, the noise curves show
a weak dependence on E as long as the dominant con-
tribution to the noise comes from wind transport rather
than from vortex decay. This occurs for U ≳ 10 m=s. This
feature makes the noise curves for HI turbulence with
Gaussian time correlation and those obtained in the frozen
approximation comparable in the parameter region of
interest, i.e., that in which the noise curves are close to
the ET-D sensitivity curve. Indeed, it can be seen that, in
this exponentially damped regime, the NN from turbulence
with finite correlation time and frozen turbulence have
roughly the same impact on the GW detector. On the
contrary, the frequency at which the transition between the
two regimes (exponential damping and power-law scaling)
occurs, strongly depends on the value of E. In particular, we
see that the power-law behavior shifts to larger frequencies
for smaller E.
Inspection of Fig. 4 also shows that going beyond the

frozen approximation changes only slightly the impact of
both the wind speed U and the depth r0 on power spectrum
noise curves at small frequencies. The differences between

the noise curves for HI turbulence with Gaussian time
correlation and those for frozen turbulence are quite small.
At a fixed wind speed of 10 m=s, for instance, both curves
cuts the ET-D sensitivity curve at r0 ≈ 4–5 m.

C. Inhomogeneous turbulence

The noise spectrum is now described by Eq. (26). We
have proceeded as in the (b) case, and assumed Gaussian
time correlations, as described in Eq. (35). The noise
spectrum has been evaluated from Eq. (26), as a function
of the experimentally accessible quantities Uref , z0 and T�.
The quantity T�, which gives the scale of the temperature
fluctuations, enters the expression for Sg (26) as a scale
factor and has been fixed at the reference value T� ¼ 1 K.
For z0 we have taken values corresponding to situations
ranging from that of bare soil to that of a forest or a city
district, as described in Table II. As in the previous HI
turbulence cases, we have set ψ ¼ 0.
The noise amplitude increases with the wind speed Uref

and, for small frequencies, with the roughness length z0.
This is not surprising, considering that the turbulence
intensity, parametrized by u�, is proportional to Uref and
it increases with z0 through Eq. (4). In the high-frequency
region, instead, in correspondence with the onset of the
power-law behavior, the noise curves are characterized byffiffiffiffiffi
Sh

p
scaling as z−3=20 , as predicted by Eqs. (31) and (30).

We also recall that a significant contribution to high
frequencies fluctuations is produced in the region near
the ground, where the parameter x3;min ∼ z0 plays the role
of a cutoff [see Eq. (26)]; we will return to this point at the
end of the section. We note that, since T� is the same in all
curves, the increase in the noise amplitude with Uref and z0
is a consequence of the increase of the characteristic
frequency of the fluctuations only.
The curves in the top panel of Fig. 5, like those in the top

panel of Fig. 4, are characterized by a transition from an
exponential to a power-law behavior at sufficiently small
values of Uref and z0. A transition to a power law, this time
for r0, is observed also in the bottom panel of Fig. 5,
analogous to the one observed in Fig. 4. The crossover point
in r0 shifts to the right for large values of Uref and z0, which
is consistent with the predictions in the asymptotic large ω
and smallω limits provided by Eqs. (31) and (32). This is not
surprising, since Uref plays in the inhomogeneous model the
same role played by U in the HI model. For very small
frequencies, moreover, the spectra are characterized by
another power-law scaling, which however can be observed
only for f ≲ 2 Hz and for large values of Uref .
Another interesting feature is the scaling with the

parameter z0, describing the roughness of the terrain.
Indeed, the spectra scale as ∼z−30 for ω ≫ u�=z0 while,
for ω ≪ u�=z0, they first increase with z0 and then they
become almost independent of this quantity [see Eqs. (31)
and (32)]. Similarly to what happens with the parameter E

FIG. 4. HI turbulence—finite correlation time. Top panel: noise
spectra as a function of the frequency f for r0 ¼ 5 m and ψ ¼ 0
and for selected values of the parameters in the HI approximation
with Gaussian time correlations. Bottom panel: noise spectra as a
function of the detector depth r0 for f ¼ 2 Hz and ψ ¼ 0 and for
selected values of the parameters in the HI approximation with
Gaussian time correlations.
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in the HI case, the weak dependence of the noise curves on
the parameter z0 is a characteristic of the regime where
wind transport dominates over vortex decay. Again, this is a
nice feature, allowing for easy comparison of the curves
for inhomogeneous and homogeneous turbulence in the
regions where they are close to the ET-D sensitivity curve.
The last interesting point is the dependence of the spectra

on ψ . Indeed, in some regimes [see, e.g., Eq. (20)], the
spectra could depend strongly on this parameter. Anyway,
we expect Sh to be the maximum for ψ ¼ 0. Indeed, in
Fig. 6, we show that, for reasonable values of the
parameters, Sh varies at most by a factor ∼2.
On a semi-quantitative level, the results of the inhomo-

geneous model confirm those obtained in the HI one (both
in the general case and in the frozen approximation limit).
Indeed, for fixed values of the parameters (either U or r0),
the noise spectra in the three cases have comparable orders
of magnitude, at least in the regions close to the sensitivity
curve of ET-D. When the detector is located near the
Earth’s surface, the power spectrum curves cut the ET-D
sensitivity and are well above it in the frequency region
2–10 Hz. On the other hand, in the frequency band

considered here, the noise curves go below the sensitivity
curve only when the detector is located at least 50 m
underground (see top panel of Fig. 7). We see, however,
that for large values of Uref , i.e., Uref ∼ 30 m=s, the noise
curve is only a factor ∼5 below the ET-D sensitivity curve,
which is a worryingly close range, considering the fact that
our models are providing only order of magnitude esti-
mates. The situation is confirmed if we go to greater depths.
Consistently with the general scaling r−10 of

ffiffiffiffiffi
Sh

p
derived in

FIG. 5. Inhomogeneous turbulence. Top panel: noise spectra as
a function of the frequency f for r0 ¼ 5 m and ψ ¼ 0 and for
selected values of the parameters in the surface-layer model with
Gaussian time correlations. Bottom panel: noise spectra as a
function of the detector depth r0 for f ¼ 2 Hz and ψ ¼ 0 and for
selected values of the parameters in the surface-layer model with
Gaussian time correlations.

FIG. 6. Noise spectra as a function of ψ in the three cases of
HI turbulence—frozen case (a); HI turbulence—finite corre-
lation time (b) and inhomogeneous turbulence (c), at varying U
(upper two panels) and Uref (lowest panel). We fixed the values
of the other parameters to: f ¼ 2 Hz, r0 ¼ 5 m, E ¼ 0.1 m2=s3,
and z0 ¼ 0.1 m.
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Appendix F, the noise spectra are only a factor of ∼10–20
below the sensitivity curve, for r0 ∼ 100–200 m, respec-
tively, (see bottom panel of Fig. 7).

D. Wave vector cutoffs and finite-size effects

For all the calculations in the present section, we have
adopted a maximum wave vector kmax equal to the inverse
of the Kolmogorov scale η−1K defined in Eq. (10), and we
have set the parameter x3;min ¼ ez0 as the lower bound of
integration in Eq. (26). In the inhomogeneous turbulence
case of Eq. (26), we have carried out the integral over x̄3 up
to a reference height LPBL ¼ 2 km, but the contribution at
x̄3 > LO turned out to be negligible.
The dependence of Sh on the parameters kmax and x3;min

is rather different. In the top panel of Fig. 8, we show the
effect of lowering the cutoff kmax on the noise spectrum. We
limit our analysis to the inhomogeneous turbulence case,
setting, as usual, r0 ¼ 5 m as a reference depth at which
the noise is expected to be above the sensitivity threshold
for the ET detector. We see that, when k−1max approaches
the meter range, the high-frequency portion of the noise
spectrum is increasingly damped. Inspection of the top

panel of Fig. 8 indicates that noise-damping occurs above
the kink, signaling the transition from an exponential
behavior dominated by wind transport to a power-law
behavior dominated by eddy decay. However, for suffi-
ciently small kmax, i.e., 2πk−1max ∼ 1–2 m, this transition
does not occur in the frequency band considered here, and
only exponentially damped “frozenlike” contributions are
present. This is because vortices of this size have a very
long decay time [see Eq. (12)] compared to the advection
time of the wind.
A similar situation occurs, as illustrated in the bottom

panel of Fig. 8, varying x3;min. In this case, the high-
frequency portion of the noise spectrum is increasingly
damped as x3;min gets larger. The result is consistent with
the observation in Sec. VA that the contribution to the high-
frequency portion of the NN spectrum is produced pri-
marily by temperature fluctuations near the ground.
The present analysis tells us that numerical simulation of

the atmospheric flow, say, by large-eddy simulation [36],
would allow direct evaluation of the NN only for frequen-
cies below a maximum that is an increasing function of
kmax and x−13;min. Frequencies above this maximum would
require some kind of parametrization.

FIG. 8. Inhomogeneous turbulence. Top panel: dependence of
the noise spectrum on the wave vector cutoff kmax. Bottom panel:
dependence on the minimum height x3;min of the vortices
contributing to the noise. Values of the parameters in the two
cases: r0 ¼ 5 m, z0 ¼ 0.1 m, Uref ¼ 10 m=s, and ψ ¼ 0.

FIG. 7. Top panel: Noise spectra for the inhomogeneous model
as a function of the frequency f for r0 ¼ 50 m and for selected
values of Uref . Bottom panel: Noise spectra for the inhomo-
geneous model as functions of the frequency for selected values
of r0 and Uref ¼ 30 m=s. We fixed the values of the other
parameters to z0 ¼ 0.1 m and ψ ¼ 0.
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VII. CONCLUSIONS

In this paper, we have built models for the NN
generated by atmospheric turbulence, which represent a
reliable tool for the assessment of the impact of atmos-
pheric noise on third-generation GW detectors. This has
been done by improving previous models for temperature-
fluctuation induced atmospheric NN. Owing to their basic
assumptions (frozen in time, HI turbulence) the latter are
not reliable enough in the frequency bandwidth and for the
sensitivity levels of third generation GW detectors. This
improvement has been made possible by building both
models for HI turbulence with finite correlation time for
temperature fluctuations and models which also take into
account the strong inhomogeneity of turbulence along the
vertical direction.
We have also computed the spectral density of the NN

for the three classes of models as a function of the
characteristic physical parameters, and compared it with
the sensitivity curve of the ET detector in the xylophone
configuration. The NN signal shows two kinds of regimes,
one in which it behaves exponentially and the other in
which it shows a power-law behavior. The first appears to
be the signature of the dominance of wind transport and the
exponential dependence on the depth of the detector, of the
Green’s function connecting temperature fluctuations and
NN. Since in a wind-dominated regime, this dependence is
weighed by a characteristic scale which is the ratio of the
wind velocity and the frequency, the result is an exponential
scaling of the NN with both the depth of the detector
and the frequency. Whenever we depart from this regime
(either because eddy decay becomes an important factor,
or because the depth of the detector is large), the NN
dependence on the wind velocity, frequency and detector
depth is a power law. While the power spectra scale with
the velocity and the frequency with a power-law which is
model dependent, the exponent characterizing the r0
scaling is fixed at −2 by the properties of the gravitational
propagator. Departures from exponential behavior occur for
high frequencies, or very small frequencies, the latter being
out of the regime of interest for ET anyway. Moreover, in
the regions of interest for ET, the NN power spectra show a
very weak dependence on the parameters of the models,
apart from the wind speed U and the depth r0. Taken
together, these two facts explain why the models of HI
frozen turbulence used to date worked well in the assess-
ment of the impact of atmospheric NN for second-
generation GW detectors [19,22].
We have then compared the NN power spectrum

calculated with our models with the sensitivity curve of
ET. We have found that the atmospheric NN contribution is
above the sensitivity curve in the low-frequency band when
the detector is placed on the surface and/or when the wind
speed is relatively large. Thus, our main result is that NN
generated by atmospheric turbulence represents an impor-
tant source of noise for third-generation GW detectors,

which therefore must be taken into consideration and
accurately analyzed, e.g., using numerical simulations.
This is of paramount importance, especially if the detector
has to be built on the Earth’s surface.
On the other hand, we have also found that passive

mitigation of atmospheric NN is only partially effective.
Although placing the detector underground suppresses the
atmospheric NN contribution, the rather weak, 1=r0, decay
of the noise signal implies that even an underground
construction at great depth may not be enough to suppress
the noise completely. Even at r0 ∼ 200 m, the noise ampli-
tude curve, despite being always below the sensitivity curve
of ET, remains close to it in the low-frequency region. On the
other hand, our modeling of turbulence provides only order
of magnitude predictions. An inaccuracy of an order of
magnitude in our estimates of the power spectrum should
therefore be taken into account. Considering this fact and
the proximity of the noise amplitude to the sensitivity of
the detector, at least in strong wind situations (∼30 m=s)
(see Fig. 7), numerical simulations of the atmospheric flow
(taking into account the orography in the detector region)
and on-site measurements are advisable.
In this regard, we expect our results to be relevant for any

evaluation of NN by numerical simulation of the atmos-
pheric flow, as atmospheric codes (such as, e.g., large-eddy
simulations [36]) have a grid scale that is typically above
that of fluctuations contributing to the NN.
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APPENDIX A: GREEN’S FUNCTION
EVALUATION

To compute the Fourier transform of the gravitational
propagator, we consider the detector at depth r0 below the
Earth’s surface, which will be considered as a flat infinite
plane. We first choose a Cartesian system of coordinates x1,
x2 and x3, with origin at the test mass of the detector, and
with x1 laying along the detector arm, while x3 will be
along the vertical.
Computations can be more easily performed by adopting

the cylindrical system of coordinates x¼ðx⊥;φ;x3Þ, where
φ is the azimuthal angle, while x⊥ ¼ ðx21 þ x22Þ1=2 refers to
the direction perpendicular to x3 (see Fig. 1). Moreover, we
will make use of the following expressions

Gðx; r0Þ ¼ −α∂x1Hðx; r0Þ; ðA1aÞ

Hðx; r0Þ ¼
θðx3 − r0Þ
ðx2⊥ þ x23Þ1=2

: ðA1bÞ
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The Fourier transform of Eq. (A1b) then reads

Hkðr0Þ ¼
Z

∞

r0

dx3

Z þ∞

0

dx⊥x⊥
Z

2π

0

dφ

×
exp ½−iðk3x3 þ k⊥x⊥ cosφÞ�

ðx2⊥ þ x23Þ1=2
; ðA2Þ

where k ¼ ðk⊥; k3Þ and k⊥ ≡ ðk1; k2Þ.
When dealing with HI turbulence, correlations have to be

computed in the whole three-dimensional Fourier space.
Equation (A1a) and (A2) together yield

Gkðr0Þ ¼ −
2πα cosϕ
k⊥ þ ik3

e−ðk⊥þik3Þr0 ; ðA3Þ

where we have defined cosϕ ¼ k1=k⊥.
In more realistic cases, things have to be treated more

carefully, as we might have inhomogeneities along one or
more axes. In inhomogeneous turbulence, for instance, we
have inhomogeneities along the x3 axis due to the inho-
mogeneous wind profile. Since correlations on the plane
orthogonal to x3 are assumed to be homogeneous in our
model (see Sec. V), the Green’s function will be simply
given by the x⊥ and φ integrals in Eq. (A2), which yield

Gk⊥ðx3; r0Þ ¼ −2πiαθðx3 − r0Þ cosϕe−k⊥x3 : ðA4Þ
Finally, since the effects of turbulence along the vertical

will be integrated from the Earth’s surface up to infinity,
we simply have to translate the origin of the system of
coordinates along the x3 axis by r0. In other words, we
simply shift x3 → x3 þ r0, which yields

Gk⊥ðx3; r0Þ ¼ −2πiα cosϕe−k⊥x3e−k⊥r0 : ðA5Þ

APPENDIX B: ANALYTIC FORM OF THE
SPECTRUM FOR HOMOGENEOUS ISOTROPIC

NN IN THE FROZEN APPROXIMATION

In this appendix, we derive the analytic results for the
spectrum (18) for HI turbulence in the frozen approxima-
tion. We start from Eq. (18)

Sftg ¼ ET

E1=3

Z
d3k
ð2πÞ2 k

−11=3jGkðr0Þj2δðω − k · UÞ: ðB1Þ

To compute the integral, first, we choose the geometry
illustrated in Fig. 1, and we adopt a Cartesian set of
coordinates in the integrated variable k. Moreover, we
choose the wind speed to be parallel to the Earth’s surface.
This simplifies the calculations since

k · U ¼ k⊥U cosðϕ − ψÞ; ðB2Þ

where U is the wind speed and k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
. To get rid

of the angle ψ in the Dirac delta, we rotate the reference
frame around the k3-axis by an angle ψ and we write
cosϕ ¼ k1=k⊥. Then, using Eq. (A3) we get

Sftg ¼ ET

ð2πÞ2E1=3

Z
∞

0

d3kk−11=3jGkj2δðω − k1UÞ

¼ α2
ET

E1=3

Z
∞

−∞
dk1

Z
∞

−∞
dk2

Z
∞

−∞
dk3

× k−17=3k−2⊥ ðk21cos2ψ þ k22sin
2ψÞ

× δðω − k1UÞe−2k⊥r0 : ðB3Þ

The integral over k3 can be easily done and yields

Z
∞

−∞

dk3
k17=3

¼ ffiffiffi
π

p Γð7=3Þ
Γð17=6Þ k

−14=3
⊥ : ðB4Þ

The integral over k1 is instead trivial using the delta
function, which simply sets k1 ¼ ω=U.
The last integration in k2 can be solved changing the

integration variable, mapping k2 → ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðUk2=ωÞ2

p
.

With this substitution, the integral becomes

Sftg ¼ 2C
Z

∞

1

dξ
ξffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 − 1
p

×
cos2 ψ þ ðξ2 − 1Þ sin2 ψ

ξ20=3
e−2ωr0ξ=U; ðB5Þ

where C¼α2ET
ffiffiffi
π

p
Γð7=3Þ=ðE1=3Γð17=6ÞÞU8=3ω−11=3. The

integral can be done analytically and gives a combination of
hypergeometric functions

Sftg ¼ 2Ccos2ψ
� ffiffiffi

π
p

Γð17
6
Þ1F2ð− 7

3
;− 11

6
; 1
2
; x2Þ

2Γð10
3
Þ þ 32xΓ

�
−
17

3

��
22=3x14=31F2

�
1

2
;
10

3
;
23

6
; x2

�

−
26180

ffiffiffi
π

p
1F2ð− 11

6
;− 4

3
; 3
2
; x2Þ

6561Γð17
6
Þ

��
þ 2Csin2ψ

� ffiffiffi
π

p
Γð11

6
Þ1F2ð− 7

3
;− 5

6
; 1
2
; x2Þ

4Γð10
3
Þ þ 8xΓ

�
−
11

3

�

×
�
22=3x8=31F2

�
−
1

2
;
7

3
;
17

6
; x2

�
−
55

ffiffiffi
π

p
1F2ð− 11

6
;− 1

3
; 3
2
; x2Þ

243Γð17
6
Þ

��
; ðB6Þ

where, for convenience, we defined x≡ r0ω=U.
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APPENDIX C: ASYMPTOTIC RESULTS IN
HOMOGENEOUS ISOTROPIC TURBULENCE

1. Frozen turbulence

An explicit expression for the dimensionless spectrum
Ŝftg in Eq. (19) is obtained by substituting Eq. (A3) into
Eq. (18). Let us setU ¼ ðU; 0; 0Þ and introduce dimension-
less quantities ω̂ ¼ ωr0=U and k̂ ¼ kU=ω. We find

Ŝftg ¼
Z

dk̂2dk̂3
k̂17=3

cos2ðψ þ ϕÞe−2k̂⊥ω̂; ðC1Þ

where k̂1 ¼ 1 from the Dirac delta in Eq. (18). We easily
verify that the integral converges to a finite function of ψ
for ω̂ → 0. This implies that for ω ≪ U=r0, Sg scales like a
power in ω and U [see Eq. (19)].
In the opposite limit r0 ≫ U=ω, we can approximate

Ŝftg ≃
Z

dk̂2dk̂3
k̂17=3

�
cos2ψþ k̂22sin2ψ

1þ k̂22

�
exp½−ω̂ð2þ k̂22Þ�; ðC2Þ

where we have exploited k̂2 ∼ ω̂−1=2 ≪ 1. Evaluating the
integral in Eq. (C2) to lowest order in ω̂−1 yields Eq. (20).

2. Weak wind regime

Let us indicate p ¼ k⊥=k. We can evaluate the integral
in Eq. (15) in spherical coordinates. If h½τkðω − k · UÞ�≃
hðτkωÞ, the integral over ϕ in Eq. (15) is trivial, so that we
are left with

Swwg ∼
ETα

2

E1=3

Z þ∞

0

dkk−13=3hðτkωÞ
Z

1

0

dppe−2pkr0

¼ ETα
2

E1=3

Z þ∞

0

dk
1 − ð1þ 2kr0Þe−2kr0

4k19=3r20
hðτkωÞ

∼
ETα

2

E1=3

Z þ∞

kω

dk
1 − ð1þ 2kr0Þe−2kr0

k19=3r20
; ðC3Þ

where kω is defined in Eq. (22). We can now carry out the
integral in Eq. (C3) in the two limits of large and small
depth and we recover Eq. (21).

APPENDIX D: TIME CORRELATIONS FOR
TURBULENCE IN THE SURFACE LAYER

Let us indicate

η ¼ ωτkðx̄3Þ; ζ ¼ k⊥τkðx̄3ÞUx̄3 : ðD1Þ

We find the following limit behaviors for the function A
in Eq. (27):

(i) If either ζ ≪ η ∼ 1 or η ≫ 1 and ζ ≪ jhðη − ζÞ=
h0ðη − ζÞj,

Aðη; ζÞ ≃ πhðηÞ: ðD2Þ

(ii) If either ζ ≫ maxðη; 1Þ or ζ > η ≫ 1,

Aðη; ζÞ ∼ cos2ðψ þ ϕmÞ
ζ sinϕm

; ðD3Þ

where ϕm ¼ arccosðη=ζÞ.
(iii) If η ≫ maxð1; ζÞ and ζ ≫ jhðη − ζÞ=h0ðη − ζÞj,

Aðη; ζÞ ∼ cos2 ψ
h3=2ðη − ζÞ

jζh0ðη − ζÞj1=2 : ðD4Þ

The result in Eq. (D2) is straightforward. The result in
Eq. (D3) is obtained by saddle-point approximation,
expanding hðη − ζ cosϕÞ ≃ hðζϕ0 sinϕmÞ, ϕ0 ¼ ϕ − ϕm,
where ϕm ¼ arccosðη=ζÞ, and then integrating from
−ðζ sinϕmÞ−1 to ðζ sinϕmÞ−1. The result in Eq. (D4) is
obtained by expanding

hðη − ζ cosϕÞ ≃ hðη − ζð1 − ϕ2=2ÞÞ
≃ hðη − ζÞ þ ðζϕ2=2Þh0ðη − ζÞ

and then integrating by steepest descent. In order to have
Â ¼ Oð1Þ, it is sufficient that η ∼ ζ ∼ 1.

APPENDIX E: ASYMPTOTIC RESULTS FOR
TURBULENCE IN THE SURFACE LAYER

In the integral in Eq. (26) we separate contributions from
integral scale vortices (“domain 1,” kx̄3 < 1) and those
from inertial scale vortices (“domain 2,” kx̄3 > 1). Different
cutoffs act in the integral:

(i) The term e−2kpr0 , accounting for the decay of the
signal with the depth of the detector;

(ii) The factor k−13=3, associated with the decay of
turbulent fluctuations at small scales;

(iii) The function A that filters eddies at timescales
below ω−1.

The analysis in Appendix D tells us that the function A is
surely negligible for η ≫ maxð1; ζÞ. Let us analyze the
remaining regions η < 1 and ζ > η > 1.
The region ζ > η > 1 corresponds in domain 1 to

ω̂x̂3 <
k̂⊥x̂3
κ

lnðex̂3Þ <
1

κ
lnðex̂3Þ

⇒ 1 > k̂x̂3 >
κω̂x3
lnðex̂3Þ

⇒ ω̂ <
lnðex̂3Þ
κx̂3

<
1

κ
; ðE1Þ
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where x̂3 ¼ x̄3=z0. The region η < 1 with x̂3 > 1, in turn,
corresponds to ω̂ < 1. We thus reach the conclusion that for
ω̂ sufficiently large (ω̂≳ 2.5), integral range vortices do not
contribute to Ŝg.

1. Large frequency limit

The large ω̂ limit confines us to domain 2. The region
1 < η < ζ corresponds to

ω̂ <
pk̂
κ
lnðex̂3Þ <

k̂
κ
lnðex̂3Þ

⇒ k̂ >
κω̂

lnðex̂3Þ
; ðE2Þ

and the integral in p in Eq. (26) is bounded in this range by

p > pmin ¼
κ

k̂2=3 lnðex̂3Þ
: ðE3Þ

Now, unless the detector is at the surface, the term r̂0 is
large, and thus, unless p ≃ 0, the factor e−2pk̂r̂0 in Eq. (26)
is going to be very small. The contribution to Ŝg from the
region ζ > η > 1 is in this case exponentially damped.
To get pmin ¼ 0 we need to go to the region η < 1,

corresponding to the condition on k:

k̂ > k̂min ≃ ω̂3=2x̂1=23 : ðE4Þ

The function B (28) is Oð1Þ in the whole integration
domain of Eq. (26), and we thus get

Ŝg ∼
Z þ∞

1

x̂−4=33 dx̂3

Z þ∞

k̂min

k̂−13=3dk̂
Z

1

0

pdpe−2pk̂r̂0

∼ ω̂−8r̂−20 : ðE5Þ

2. Small frequency limit

Let us consider first domain 1. The two conditions η < 1
and x̄3 < LO imply

x̂3 < x̂3;max ¼ minðω̂−1; L̂OÞ: ðE6Þ

The contribution to Ŝg from domain 1 is therefore

Ŝg1 ∼
Z

x̂3;max

x̂3;min

dx̂3

Z
1=x̂3

0

dk̂
Z

1

0

dpg1ðp; k̂; x̂3Þ;

where g1ðp; k̂; x̂3Þ ¼ pBx̂3e−2pk̂r̂0 . The integral is concen-
trated at ðx̂3; k̂Þ ∼ ðx̂3;max; 0Þ. We find the limit behaviors

Ŝg1 ∼
� x̂33;max; r̂0 ≲ x̂3;max

x̂53;maxr̂
−2
0 ; r̂0 ≫ x3;max:

ðE7Þ

Let us switch to domain 2 and continue to focus on the
region η < 1, for which A ∼ 1. We have now

Ŝg2 ∼
Z

x̂3;max

x̂3;min

dx̂3

Z þ∞

1=x̂3

dk̂
Z

1

0

dpg2ðp; k̂; x̂3Þ;

where g2ðp; k̂; x̂3Þ ¼ pBk̂−13=3x̂−4=33 e−2pk̂r̂0 . In this case
the integral is concentrated at ðx̂3; k̂Þ ∼ ðx̂3;max; 1=x̂3;maxÞ.
We can verify that Ŝg2 ∼ Ŝg1, and thus recover
Eqs. (32) and (33).

APPENDIX F: GENERAL SCALING OF THE
NOISE SPECTRA WITH r0

In Secs. IV and V we have shown that, in some limiting
cases Sg scales as 1=r20 [see Eqs. (21), (31), and (32)]. Here
we prove that such a behavior generally arises whenever
vortex decay dominates over wind advection and the
detector depth is sufficiently large, independently of the
chosen turbulence model. From Eqs. (15) and (26), we can
see that Sg can be expressed in the general form

Sg ∼
Z

1

0

dp
pffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − p2
p

Z
L

xmin

dx
Z

2π

0

dϕcos2ϕ

×
Z

∞

0

dkfðp; x;ϕ; kÞh½τkðω − p cosϕkUÞ�Fðpkr0Þ:

ðF1Þ

Here f is the spatial part of the correlation functions, h
contains information about time correlations and F is a
function whose form depend on the chosen geometry. In
particular, Fðpkr0Þ ¼ e−2pkr0 in our case. We assume that

(i) The integral (F1) is convergent, which is always the
case for reasonable models;

(ii) The function h satisfies the properties given in
Sec. IV below Eq. (14), i.e., hðzÞ has a maximum
for z ¼ 0 and hðzÞ → 0 at least exponentially for
z → ∞;

(iii) f is regular over the whole integration domain;
(iv) Fðpkr0Þ → 0 for pkr0 ≫ 1 sufficiently fast (at least

exponentially).
Due to the properties of h, we see that the contribution to
the integral over k in Eq. (F1) will be peaked around some
value k ¼ k̄, whose specific value depends on the other
parameters and on the specific model. Thus,

Sg ∼
Z

1

0

dp
pffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − p2
p

Z
L

xmin

dx
Z

2π

0

dϕcos2ϕ

× k̄fðp; x;ϕ; k̄Þh½τk̄ðω − p cosϕk̄UÞ�Fðpk̄r0Þ: ðF2Þ

If we now assume ω ≫ k̄U, i.e., vortex decay dominates
over wind advection, we see that the function h will
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become independent of the wind speed. One can now
perform the integrals over x and ϕ, so that

Sg ∼ k̄hðτk̄ωÞ
Z

1

0

dp
pffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − p2
p

× gðp; xmin; L; k̄ÞFðpk̄r0Þ: ðF3Þ

When r0 ≫ 1=k̄, we see that the only non-negligible
contribution to the integral comes from the values of

p≲ 1=ðk̄r0Þ ≪ 1, according to the last assumption above.
The integral becomes then

Sg ∼ k̄hðτk̄ωÞgð0; xmin; L; k̄ÞFð0Þ
Z

1=ðk̄r0Þ

0

dpp

∼
hðτk̄ωÞgð0; xmin; L; k̄ÞFð0Þ

k̄r20
: ðF4Þ
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