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1. Introduction

We would like to compute the solution of the least-squares problem

min
x

∥Ax− b∥2 , (1)

where the singular values of the matrix A ∈ Rm×n decay to zero without
a significant gap. This makes A severely ill-conditioned. In particular, A
may be rank-deficient. The vector b ∈ Rm contains error-free data, and
the solution x ∈ Rn represents the unknown signal that we would like to
determine. Throughout this paper, ∥ · ∥ denotes the Euclidean norm. If the
solution of (1) is not unique, then we choose the solution of minimal minimal
Euclidean norm. We can express this solution as xtrue = A†b, where A†

denotes the Moore-Penrose pseudoinverse of A. Problems of the form (1) are
commonly referred to as discrete ill-posed problems; see, e.g., [1]. They arise,
for instance, from the discretization of ill-posed problems, such as Fredholm
integral equations of the first kind; see, e.g., [1, 2].

In many applications, the vector b is not available. Instead, an error-
contaminated version bδ of b is known and the least-squares problem (1) is
replaced by

min
x

∥∥Ax− bδ
∥∥2

. (2)

However, due to the ill-conditioning of A, the solution of (2) of minimal
Euclidean norm, namely A†bδ, usually is a very poor approximation of the
desired vector xtrue. This difficulty can be remedied by replacing the least-
squares problem (2) by a nearby problem, whose solution is less sensitive to
the error e = bδ − b in bδ. We will sometimes refer to e as noise. The re-
placement is commonly referred to as regularization. In its simplest form,
Tikhonov regularization replaces the problem (2) by the penalized least-
squares problem

min
x

{∥∥Ax− bδ
∥∥2

+ µ ∥x∥2
}
, (3)

where the regularization parameter µ ≥ 0 determines how sensitive the solu-
tion xµ of (3) is to the error e in bδ, and how close xµ is to xtrue. Generally,
a suitable value of µ is not known a priori, but is determined during the
solution of (3).

To avoid having to know a suitable value of µ before solving (3), we can
solve the Tikhonov problem (3) repeatedly starting from an initial approx-
imation of xtrue and defining a sequence {µk} of regularization parameters.
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The resulting iterated Tikhonov method is given by

xk+1 = xk + AT (AAT + µkI)
−1(bδ − Axk), k = 0, 1, 2, . . . , (4)

where the parameters µk > 0 are user-defined and may be chosen according
to the amount of noise that corrupts the data vector bδ, and x0 is a suitable
initial vector, e.g., x0 = bδ or x0 = ATbδ. If the parameters µk are chosen
so that

∞∑
k=1

µ−1
k = ∞,

then the iterates converge to A†bδ; see [3]. Regularization is achieved by
terminating the iterations (4) after a suitable (not too large) number of iter-
ations. One of the most popular stopping criteria is the discrepancy principle,
which prescribes that the iterations be terminated at iteration k̂ if∥∥bδ − Axk̂

∥∥ ≤ τδ and
∥∥bδ − Axk

∥∥ > τδ ∀k ≤ k̂,

where τ > 1 is a user-defined parameter and

∥e∥ ≤ δ, (5)

is a fairly accurate estimate of the norm of the noise.
The iterated Tikhonov algorithm can be seen as a preconditioned Landwe-

ber iteration, where the preconditioner is chosen to approximate a regularized
version of the pseudo-inverse of A. Other possible regularizing preconditioner
are described in [4, 5, 6].

Application of the iterated Tikhonov method to large-scale problems
presents two difficulties that have to be addressed: The solution of linear
systems of equations with the matrix (AAT + µkI) at each iteration may
be computationally expensive, and the parameter µk has to be determined
at each iteration. Donatelli and Hanke [7] proposed an approach to over-
come these challenges. Their Approximated Iterated Tikhonov (AIT) method
provides a rule for choosing the parameter µk that ensures the regularization
properties of the method, and the matrix AT (AAT +µkI)

−1 in (4) is replaced
by CT (CCT + µkI)

−1, where C is an approximation of A chosen so that lin-
ear systems of equations with the matrix (CCT + µkI) can be solved quite
rapidly.

To show convergence of the AIT method, Donatelli and Hanke [7] require
the matrix C to be spectrally equivalent to A; see below. However, this is a
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strong requirement that is almost never satisfied in practice. In applications,
this condition is relaxed by the presence of noise and by a good choice of
the initial guess, such that the parameter ρ, which measures the accuracy of
the spectral approximation (and is used in Assumptions 1, 2, and 3 below),
can be chosen small enough to yield accurate reconstructions. To reduce the
sensitivity of the AIT method to the choice of ρ, i.e., to the parameter that
measures how accurately C approximates A, amodified AIT (MAIT) method,
with different theoretical requirements was proposed in [8]. In particular, a
new parameter β was introduced, so that ρ can be simply set small enough,
e.g., ρ = 10−3, without compromising the numerical performances of the
algorithm. Computed examples in [8] show the MAIT method to be less
sensitive than the AIT method in [7] to the choice of ρ and to the noise
in the available data bδ. In particular, AIT may fail to converge when the
amount of noise in bδ is small, while MAIT converges for any noise level,
provided that the parameter β is tuned appropriately. However, as we will
show in this paper, the requirements imposed in the convergence analysis of
the MAIT method turn out to be equivalent to the requirement of spectral
equivalence in [7].

This paper first shows that the hypotheses used for the convergence analy-
sis in [7] and [8] are equivalent. Subsequently, we propose a weaker hypothesis
and prove that the MAIT method has the same convergence properties under
the new assumption as under the assumption in [8]. It was observed in [7, 9]
that the choice of the initial approximate solution is of vital importance for
the computation of an accurate solution, however, no rigorous mathematical
reason was given. The new weaker hypothesis of the present paper provides
a theoretical explanation for the need of a good initial guess. This is of great
relevance in applications of the proposed method as it furnishes a practical
guide for a user who applies the method. Moreover, we propose an empirical
approach to estimate the parameter β. The resulting MAIT method is ro-
bust and does not require a user to explicitly determine any parameters; see
numerical experiments reported in Section 4. The capability of automatically
determining the parameter β is important because this allows the method to
be used by non-experts in the field.

This paper is structured as follows: Section 2 briefly describes the AIT
and MAIT methods. In Section 3 we introduce our new hypothesis on the
relationship between the matrices A and C, and we show the same properties
of the MAIT method as those shown in [8] under stronger assumptions.
Section 4 discusses the choice of the initial guess for the MAIT method and
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of the parameter β used in the algorithm, and presents a few computed
examples. Finally, we draw some conclusions in Section 5.

2. The AIT and MAIT methods

We briefly describe the AIT and MAIT methods from [7] and [8], respec-
tively, starting with the former.

2.1. The AIT method

Assumption 1 (Spectral equivalence). Let A,C ∈ Rm×n, and assume that
for some constant ρ ∈

(
0, 1

2

)
and for all z ∈ Rn it holds that

∥(A− C)z∥ ≤ ρ ∥Az∥ .

Under Assumption 1 we can formulate the AIT method described by
Algorithm 1.

Algorithm 1: AIT

1 Let A and C satisfy Assumption 1 for a given 0 < ρ < 1/2, and fix
q ∈ (2ρ, 1). Let δ > 0 satisfy (5) and let x0 be an initial
approximation of xtrue;

2 r0 = bδ − Ax0;

3 τ = 1+2ρ
1−2ρ

;

4 for k = 0, 1, . . . do
5 τk = ∥rk∥ /δ;
6 qk = max{q, 2ρ+ (1 + ρ)/τk};
7 Determine µk such that

∥∥rk − CCT (CCT + µkI)
−1rk

∥∥ = qk ∥rk∥;
8 hk = CT (CCT + µkI)

−1rk;
9 xk+1 = xk + hk;

10 rk+1 = bδ − Axk+1;
11 if ∥rk+1∥ ≤ τδ then
12 exit;

Throughout this paper,

ek = xtrue − xk

denotes the error in the kth iterate xk generated by the algorithms for the
AIT or MAIT methods.
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Proposition 1 ([7]). Let Assumption 1 hold. Then the norm of the error ek
in the iterate xk generated by Algorithm 1 decreases monotonically, namely

∥ek∥2 − ∥ek+1∥2 ≥ 2ρ∥(CCT + µkI)
−1rk∥ ∥rk∥,

as long as ∥rk∥ > τδ, where rk = bδ − Axk.

Corollary 2 ([7]). Under the assumptions of Proposition 1, let kδ denote
index of the last iterate determined by Algorithm 1. Then

∥e0∥2 ≥ 2ρ

kδ−1∑
k=0

∥(CCT + µkI)
−1rk∥ ∥rk∥ ≥ c

kδ−1∑
k=0

∥rk∥2 ,

for some constant c > 0 that only depends on ρ and q, where q is defined in
Algorithm 1.

The above corollary implies that if δ > 0, then the computations with
Algorithm 1 terminate after a finite number of iterations. The following
theorem is concerned with the solution of the noise-free problem (1) and
shows that when δ = 0, the iterates generated by Algorithm 1 converge to a
solution of the exact problem (with data vector b) that is closest to x0. In
particular, if x0 = 0 and δ = 0, then the iterates of Algorithm 1 converge to
xtrue.

Theorem 3 ([7]). Assume that x0 is not a solution of (1). Then the sequence
of iterates xk, k = 0, 1, 2, . . . , generated by Algorithm 1 with bδ replaced by
b converges as k → ∞ to a solution of (2) that is closest in Euclidean norm
to x0.

It follows from the next theorem that the AIT algorithm is an iterative
regularization method.

Theorem 4 ([7]). Let Assumption 1 be valid and let δ 7→ bδ be a function
such that (5) holds for all δ > 0. For fixed parameters τ and q (defined in Al-
gorithm 1), let xδ denote the approximate solution computed by Algorithm 1.
Then, choosing x0 = 0, as δ → 0, xδ converges to xtrue = A†b.

2.2. The MAIT method

We now describe the MAIT method proposed in [8], where the following
condition is imposed on the matrices A and C.
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Assumption 2. Let A,C ∈ Rm×n and assume that there are constants ρ ∈(
0, 1

2

)
and β > 0, such that for all z ∈ Rn it holds that

∥(A− C)z∥ ≤ ρ (∥Az∥+ β) .

The above assumption is used in [8] to prove the convergence of the MAIT
method. We next show that Assumptions 1 and 2 are equivalent.

Proposition 5. Assumptions 1 and 2 are equivalent.

Proof. Obviously, if the matrices A and C satisfy Assumption 1, then they
satisfy Assumption 2 for any β > 0. Assume instead that the matrices A
and C satisfy Assumption 2 for a finite β > 0, but that they do not satisfy
Assumption 1. Then there is a vector z̄ ∈ Rn such that

∥(A− C)z̄∥ > ρ ∥Az̄∥ , (6)

for all ρ ∈
(
0, 1

2

)
. However, by Assumption 2, for all λ > 0, we have that

∥(A− C)λz̄∥ ≤ ρ (∥Aλz̄∥+ β) .

Therefore, it holds for all λ > 0 that

β ≥ λ

ρ
(∥(A− C)z̄∥ − ρ ∥Az̄∥) .

Letting λ → ∞, it follows from (6) that β > 0 cannot be finite. This
contradiction shows that Assumption 2 implies Assumption 1.

Computed examples reported in [8] illustrate that the parameter β is im-
portant as it allows the iterates generated by the MAIT method to converge
when the noise level δ > 0 is very small, in situations when the iterates de-
termined by the AIT methods do not. This indicates that the MAIT method
may not require Assumption 2 to hold to yield convergence. A new weaker
assumption that secures convergence of the MAIT method is derived in Sec-
tion 3. We would like to stress that, even though Assumption 2 is not weaker
than Assumption 1 as stated in [8], the theoretical results in [8] are still valid.

Theorem 6 ([8]). Let Assumption 2 hold. With the notation of Algorithm 2,
we have that, if

∥rk+1∥ > τδ and ∥rk+1∥ > τ
δ + β

t0
,
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Algorithm 2: MAIT

1 Let the matrices A and C satisfy Assumption 2 for some
0 < ρ < 1/2 and β ≥ 0. Fix q ∈ (2ρ, 1), let δ > 0 satisfy (5), and let
x0 be an initial approximation of xtrue;

2 t0 = min
{

δ
β
, β
δ

}
+ 1;

3 r0 = bδ − Ax0;

4 τ = 1+2ρ
1−2ρ

;

5 for k = 0, 1, . . . do

6 τk = t0
∥rk∥
δ + β

qk = max{q, 2ρ+ (1 + ρ)/τk};

7 Determine µk such that ∥rk − CCT (CCT + µkI)
−1rk∥ = qk∥rk∥

hk = CT (CCT + µkI)
−1rk;

8 xk+1 = xk + hk;
9 rk+1 = bδ − Axk+1;

10 if ∥rk+1∥ ≤ τδ or ∥rk+1∥ ≤ τ
δ + β

t0
then

11 exit;
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then

∥ek∥2 − ∥ek+1∥2 ≥ 2ρ
τ − 1

τ
∥(CCT + µkI)

−1rk∥ ∥rk∥.

In particular, it follows from τ > 1, that ∥ek∥ decreases monotonically as k
increases.

3. A new convergence proof

We first introduce a new relaxed condition for the convergence of the
MAIT method.

Assumption 3. Let the matrices A,C ∈ Rm×n. Assume that there are
constants ρ ∈

(
0, 1

2

)
, β > 0, and γ > 0 such that for all z ∈ Rn with ∥z∥ ≤ γ

it holds
∥(A− C)z∥ ≤ ρ (∥Az∥+ β) .

Assumption 3 is obtained by requiring that the condition in Assumption 2
only holds for vectors z ∈ Rn in a ball centered at 0 with radius γ. The new
parameter γ is not directly involved in the algorithm.

We first observe that [8, Lemma 1], which was used to justify the stopping
criterion in Algorithm 2, still holds, since its proof does not use Assumption 2.
Therefore, we do not dwell on the stopping criterion here.

We now show an auxiliary result that will be needed in the following.
This result is the analogue of Proposition 3 in [8].

Proposition 7. Assume that Assumption 3 holds and that ∥ek∥ ≤ γ, where

γ is defined in Assumption 3. Let τk = t0
∥rk∥
δ+β

, where t0 = min
{

β
δ
, δ
β

}
+ 1 is

defined in Algorithm 2. Then

∥rk − Cek∥ ≤
(
ρ+ t0

1 + ρ

τk

)
∥rk∥ − β.

Proof. The proof is almost identical to the proof of [8, Proposition 3]. We
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report it here for completeness. We have

∥rk − Cek∥ = ∥bδ − b+ b− Axk − Cek∥
= ∥bδ − b+ A(xtrue − xk)− Cek∥
≤ ∥bδ − b∥+ ∥(A− C)(xtrue − xk)∥
(a)

≤ ∥bδ − b∥+ ρ(∥A(xtrue − xk)∥+ β)

≤ ∥bδ − b∥+ ρ(∥b− bδ + bδ − Axk∥+ β)

≤ (1 + ρ)δ + ρ∥rk∥+ ρβ, (7)

where inequality (a) follows from Assumption 3, since we assumed that
∥ek∥ ≤ γ.

It follows from the definition of τk that

δ = t0
∥rk∥
τk

− β.

Substituting this expression into (7), we obtain

∥rk−Cek∥ ≤ (1+ρ)

(
t0
∥rk∥
τk

− β

)
+ρ ∥rk∥+ρβ =

(
ρ+ t0

1 + ρ

τk

)
∥rk∥−β.

We can now show our main theoretical result.

Theorem 8. Let Assumption 3 hold and assume that ∥ek∥ ≤ γ. With the
notation of Algorithm 2, we have that, if

∥rk+1∥ > τδ and ∥rk+1∥ > τ
δ + β

t0
,

then

∥ek∥2 − ∥ek+1∥2 ≥ 2ρ
τ − 1

τ
∥(CCT + µkI)

−1rk∥ ∥rk∥.

It follows from τ > 1, that ∥ek∥ decreases monotonically as k increases. In
particular, since ∥ek∥ ≤ γ, we also have ∥ek+1∥ ≤ γ.

Proof. The proof of this result is almost identical to the proof of [8, Theorem
3]. Let ⟨v,u⟩ denote the standard inner product in Rn and let

hk = CT (CCT + µkI)
−1rk.
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Then

∥ek∥2 − ∥ek+1∥2 = 2 ⟨ek,hk⟩ − ∥hk∥2

≥ 2
〈
ek, C

T (CCT + µkI)
−1rk

〉
− 2

〈
rk, CCT (CCT + µkI)

−2rk
〉

= 2
〈
rk, (CCT + µkI)

−1rk
〉
− 2

〈
rk − Cek, (CCT + µkI)

−1rk
〉

− 2
〈
rk, CCT (CCT + µkI)

−2rk
〉

= 2
〈
rk, µk(CCT + µkI)

−2rk
〉
− 2

〈
rk − Cek, (CCT + µkI)

−1rk
〉

≥ 2∥(CCT + µkI)
−1∥

(
∥µk(CCT + µkI)

−1∥ − ∥rk − Cek∥
)
.

By the definition of hk, we have

rk − Chk = rk − CCT (CCT + µkI)
−1rk = µk(CCT + µkI)

−1rk.

Combining the above inequality and equality, and using the definitions of µk

and τk, as well as Proposition 7 (which can be applied since we assumed that
∥ek∥ ≤ γ), we obtain

∥ek∥2 − ∥ek+1∥2 ≥ 2∥(CCT + µkI)
−1∥ (∥rk − Chk∥ − ∥rk − Cek∥)

≥ 2∥(CCT + µkI)
−1∥ (qk∥rk∥ − ((1 + ρ)δ + ρ∥rk∥+ ρβ))

≥ 2∥(CCT + µkI)
−1∥

((
2ρ+

1 + ρ

τk
− ρ

)
∥rk∥ − (1 + ρ)δ − ρβ

)
≥ 2∥(CCT + µkI)

−1∥
(
ρ∥rk∥+

1 + ρ

t0∥rk∥
(δ + β)∥rk∥ − (1 + ρ)δ − ρβ

)
= 2∥(CCT + µkI)

−1∥
(
ρ∥rk∥+

1 + ρ

t0
(δ + β)− (1 + ρ)δ − ρβ

)
.

We now show that

1 + ρ

t0
(δ + β)− (1 + ρ)δ − ρβ ≥ −ρδ.

First consider the expression (δ+β)/t0. If δ ≥ β, then δ/β ≥ β/δ and, thus,

δ + β

t0
=

δ + β

β/δ + 1
= δ. (8)

Conversely, if δ ≤ β, then δ/β ≤ β/δ and, therefore,

δ + β

t0
=

δ + β

δ/β + 1
= β. (9)
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Combining the expressions (8) and (9), we obtain

δ + β

t0
= max{β, δ}.

We now can bound

1 + ρ

t0
(δ + β)− (1 + ρ)δ − ρβ

below. Thus,

1 + ρ

t0
(δ + β)− (1 + ρ)δ − ρβ = (1 + ρ)max{β, δ} − (1 + ρ)δ − ρβ

= (max{β, δ} − (1 + ρ)δ) + (ρmax{β, δ} − ρβ)

≥ (δ − (1 + ρ)δ) + (ρβ − ρβ) = −ρδ.

Recalling that, by assumption, ∥rk∥ ≥ τδ, we obtain

∥ek∥2 − ∥ek+1∥2 ≥ 2∥(CCT + µkI)
−1∥ (ρ∥rk∥ − ρδ)

≥ 2∥(CCT + µkI)
−1∥

(
ρ∥rk∥ − ρ

∥rk∥
τ

)
= 2∥(CCT + µkI)

−1∥ρτ − 1

τ
∥rk∥.

The following result follows trivially.

Corollary 9. With the notation of Theorem 8, if ∥e0∥ ≤ γ then, for all
k ≥ 0 such that

∥rk+1∥ > τδ and ∥rk+1∥ > τ
δ + β

t0
,

it holds
∥ek+1∥ ≤ ∥ek∥ .

Remark 1. Note that Corollary 9 requires that

∥e0∥ ≤ γ,

i.e., that the initial approximate solution x0 is not too far from xtrue. This
illustrates why in [7] the choice of the initial approximate solution is impor-
tant and the authors avoided using x0 = 0 in the numerical examples. This
was pointed out in [9] as well, where the author selected ATbδ as the initial
approximate solution.
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Remark 2. It is stated in [8] that the MAIT method is not an iterative regu-
larization method under Assumption 2, i.e., if we let xδ denote the computed
approximation determined by the method when the error in the data bδ is
bounded by δ, then, in general, it does not hold that xδ → A†b as δ → 0.
This depends on the parameter β. Obviously, the MAIT method is not an
iterative regularization method under Assumption 3 either, since the latter
assumption is weaker.

4. Numerical results

This section presents some numerical results. First, we consider an ex-
ample in one space-dimension, where the task is to solve a linear system of
equations that is obtained by discretizing a Fredholm integral equation of
the first kind of the form

g(s) =

∫ b

a

k(s− t)x(t)dt; (10)

see below. We will show the behavior of both the AIT and MAIT methods
when applied to problems in one and two space-dimensions as δ → 0, high-
lighting that the MAIT method, as already illustrated in [8], converges also
for small values of δ, while the AIT method may fail to do so.

It follows from Proposition 7 that, if Assumption 3 is satisfied, then, for
all k, it holds that

∥rk − Cek∥+ β

∥rk∥
≤ ρ+ t0

1 + ρ

τk
,

provided that ∥e0∥ ≤ γ. The left-hand side of this inequality depends on β.
We will consider the simplified version

∥rk − Cek∥
∥rk∥

≤ ρ+ t0
1 + ρ

τk
, (11)

which is closely related to the inequality used in [7, Section 5]. In this section
we illustrate that inequality (11) holds with small values of ρ > 0, and how
the choices of x0 and β affect the inequality. In particular, for a fixed ρ, we
elucidate the following:

� Inequality (11) is not satisfied for an imprudent choice of x0.
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Table 1: Description of the numerical examples.

True image Size of the true image PSF Size of the PSF
Phantom 237× 237 pixels Gaussian 237× 237 pixels
Cameraman 248× 248 pixels Average 18× 18 pixels
Clock 248× 248 pixels Motion 7× 7 pixels
Grain 238× 238 pixels Hand-shaking 17× 17 pixels

� We can estimate the value of β in Assumption 3 by exploiting (11).

To this aim, we analyze the same computed examples as in [8]. In par-
ticular, we consider the four image deblurring problems described in Table 1
and use two noise levels, namely 0.1% and 1%, where we say that the data
bδ is contaminated by noise e of level σ if

σ =
δ

∥b∥
.

In the computed examples, the noise e in bδ is white Gaussian.
The point spread functions (PSFs) model four different kinds of blur

descibed in Table 1. These blurs are further illustrated in [8]. We measure the
relative restoration error (RRE) in the computed solution x for all examples.
It is given by

RRE(x) =
∥x− xtrue∥
∥xtrue∥

.

4.1. Example in one space-dimension

We consider a convolution problem of the form (10), where

k(u) = e−u2

,

a = −π, and b = π. By discretizing the problem with a collocation method
with equidistant collocation points, we obtain a Toeplitz matrix A, and
choose C to be the circulant matrix that is generated by the same sym-
bol as A; see, e.g., [10], as well as [11, 12], for related results. We use a grid
of 3001 equispaced points and obtain A ∈ R3001×3001. The vector xtrue is
constructed as a uniform sampling of f(x) = sin(x) in [−π, π] and obtain the
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Table 2: RRE values obtained for different noise levels with AIT and MAIT for the example
in one space-dimension.

Noise Level
Method σ = 0.1% σ = 1%
AIT 8.2487× 103 0.0061480
MAIT 0.0075916 0.0061480

noise-free right-hand side as b = Axtrue. Adding white Gaussian noise with
σ ∈ {0.1%, 1%} to b gives bδ. We ran both AIT and MAIT, where we set
q = 0.7, ρ = 10−2, β = 10−1, and x0 = 0. Table 2 reports the RREs obtained
for the AIT and MAIT methods for two noise levels. We can observe that
AIT fails to converge for σ = 0.1% while MAIT produces a very accurate
reconstruction of xtrue. For σ = 1% the AIT and MAIT methods provide
reconstructions of the same quality..

Note that the MAIT method provides a more accurate reconstruction
with σ = 1% than with σ = 0.1%. This may seem counter-intuitive, but it
is due to the parameter β. It is a consequence that the MAIT method is not
an iterative regularization method, as already pointed out in [8].

Observe that the AIT and MAIT algorithms can be used straightfor-
wardly when A is a Toeplitz matrix by letting C be a circulant matrix that
approximates A. For a non-structured matrix A, the construction of a suit-
able preconditioner C is not as straightforward. A possible approach for the
construction of C in this situation has recently been proposed in [13].

4.2. Behavior for σ → 0

We now turn our attention to studying the behavior of the AIT and
MAIT methods as the noise level σ decreases to zero. In particular, we are
interested in showing how the algorithms select the parameters µk and the
evolution of the RRE. We consider the Grain example in Table 1. Thus,
this reconstruction problem is in two space-dimensions. We fix x0 = 0 and
β = 150 and run the algorithms for several values of the noise level σ in the
interval [10−5, 10−1].

Figure 1 reports the parameters computed by AIT and MAIT for three
values of σ, i.e., for 10−5, 10−3, and 10−1. We can observe that for the
first two values of σ, AIT produces very small values µk, which results in
poor approximations of the desired solution xtrue. On the other hand, the
µk-values determined by MAIT decrease during the first iterations and then
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Figure 1: Values of the regularization parameter µk determined by AIT in panel (a) and
by MAIT in panel (b) for different noise levels σ as a function of k. The solid black graph
is for σ = 10−5, the dotted red graph is for σ = 10−3, and the dashed blue graph is for
σ = 10−1.

start to increase, stabilizing the computations. For σ = 10−1 both methods
converge quickly and the values of µk do not become too small.

In Figure 2 we show the evolution of the RRE versus σ for both algo-
rithms. We can observe that for small values of σ, AIT does not produce
reasonable approximations of xtrue and the RRE-value is larger than 1, while
MAIT produces accurate reconstructions for all σ. When σ is large enough,
we observe that AIT and MAIT are equivalent (quality-wise). This was al-
ready pointed out in [8]. Finally, we note that the RRE for MAIT does not
decrease to 0 as σ → 0; this is in agreement with the fact that MAIT is not
an iterative regularization method.

4.3. On the choice of the initial approximate solution x0

For simplicity, we fix ρ = 10−3 and illustrate, for a fixed value of β,
inequality (11) for three choices of x0, namely 0, bδ, and ATbδ. Obviously,
the choice of x0 affects the value of γ as discussed in Remark 1.

We first choose the fairly large value β = 400. Table 3 displays graphs
with the evolution of ∥rk−Cek∥

∥rk∥
and ρ + t0

1+ρ
τk

as a function of the iteration

number k. We can observe that for x0 = 0 the inequality (11) is not satisfied
for all k, while for x0 = bδ and x0 = ATbδ the inequality always holds.
Moreover, we see that the choice of the initial approximate solution affects the
number of iterations required to reach convergence, in particular, the choice
x0 = 0 necessitates a much higher computational effort. This illustrates that
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Figure 2: Values of the RRE obtained with AIT and MAIT for different values of the noise
level σ. The dashed red graph reports results for AIT, while the solid blue graph shows
results for MAIT.

the choice of the initial approximate solution is important for this method
and that an imprudent choice of x0 may result in an computed approximation
of poor quality. To quantify this, we report in Table 4 for the Cameraman
example the RRE for the six different cases considered. As was already
pointed out in [9], we can observe that a good choice for x0 is usually ATbδ.
Intuitively, this is due to the fact that the operator AT is a low-pass filter
and removes some noise from the reconstruction. The results for the other
examples are similar and, therefore, we do not report them.

4.4. On the choice of β

We now turn to the role of β. Let us fix x0 = ATbδ and show how the
evolution of ∥rk−Cek∥

∥rk∥
and ρ + t0

1+ρ
τk

throughout the iterations changes with

β. For simplicity we let σ = 1% and ρ = 10−3. Our results are reported
in Table 5. We can observe that for small values of β, inequality (11) does
not hold, while for larger values of this parameter the inequality is satisfied.
Moreover, as β increases the gap between ∥rk−Cek∥

∥rk∥
and ρ+ t0

1+ρ
τk

increases as
well. In particular, we can see that, as β increases, the blue curve approaches
the red curve from above, and for a certain value β∗ the two switch places.

The tables suggest a heuristic approach to determine a suitable value of
the parameter β. Let us first observe that the curves in Table 5 cannot be
plotted unless the exact solution is available. Therefore, we cannot directly
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Table 3: Verification of (11) for fixed β = 400, ρ = 10−3, different choices of σ, and

x0. The blue solid curves and the red dashed curves report the values of ∥rk−Cek∥
∥rk∥ and

ρ+ t0
1+ρ
τk

versus the number of iterations, respectively. Below each graph, we report the
number of iterations required to reach convergence.

Phantom Cameraman Clock Grain
σ = 0.1%, x0 = 0
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Table 4: RREs obtained with β = 400, ρ = 10−3, and different choices of σ and x0 in the
Cameraman example.

Noise Level
Initial Guess σ = 0.1% σ = 1%
x0 = 0 0.13085 0.12184
x0 = bδ 0.13124 0.11819
x0 = ATbδ 0.13056 0.11813

use them to determine β. However, one can determine a suitable value of β
for synthetic examples and then use this value for the desired example. In
detail, we proceed as follows:

1. Create J synthetic examples with the same matrix A, known exact solu-
tions x

(j)
true, and data b(j) such that∥∥∥Ax(j)

true − b(j)
∥∥∥∥∥∥Ax(j)

true

∥∥∥ = σ, j = 1, 2, . . . , J,

where σ is the noise level of the problem we would like to solve. Moreover,
we assume that the solutions x

(j)
true are scaled similarly as the unknown

solution xtrue. For instance, they all represent 8-bit grayscale images.

2. For each synthetic problem, we run the MAIT algorithm with several
values of β and determine the smallest value of them for which inequality
(11) holds. We denote these values by βj, j = 1, 2, . . . , J .

3. Use the average value

β̂ =
1

J

J∑
j=1

βj

for the real problem we would like to solve.

We will illustrate this approach when applied to the following image de-
blurring problem: Consider the exact image in Figure 3(a), blur it with
the average PSF in Figure 3(b), and cut the borders to simulate realistic
boundary conditions. This gives the blurred and noise-free image shown in
Figure 3(c). We impose reflexive boundary conditions. Two noise levels are
considered, namely σ = 0.1% and σ = 1%. For each noise level, we generate
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Table 5: Verification of (11) for fixed σ = 1%, ρ = 10−3, and x0 = ATbδ, and different

choices of β. The blue solid curves and the red dashed curves report the values of ∥rk−Cek∥
∥rk∥

and ρ+ t0
1+ρ
τk

, respectively, versus the number of iterations.
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Table 6: House test case: RRE obtained with both AIT and MAIT and the value β̂
determined by our heuristic for the two considered noise levels.

Noise level RRE AIT RRE MAIT β̂
σ = 0.1% – 0.059279 187.5
σ = 1% 0.061720 0.061720 112.5

(a) (b) (c)

Figure 3: House test case: (a) true image (248× 248 pixels), (b) PSF (14× 14 pixels), (c)
blurred and noise-free image.

5 synthetic test problems with different true images and apply the MAIT
algorithm with the values of β of Table 5. For each test, we determine the
minimum value of β for which (11) is satisfied for all k, average these values,
and use the average value to solve the original problem.

Table 6 reports the RREs obtained with the AIT and MAIT methods for
each noise level, as well as the average values of β̂ computed by our scheme.
We obtain similar results as in [8]. For σ = 0.1% the AIT method fails
to converge, while the MAIT method converges and computes an accurate
restoration. When the noise level is increased to 1% both the AIT and MAIT
methods produce restorations of the same quality. Moreover, we can observe
that our heuristic approach determines a suitable value of β. Figure 4 reports
the evolution of the RRE versus the number of iterations. Figure 5 displays
the computed solutions. Visual inspection of these figures are in agreement
with Table 6.
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Figure 4: House test case evolution of the RRE throughout the iterations for the two
considered noise levels. The red dashed line is refereed to AIT, while the solid blue line
reports the RRE obtained with MAIT: (a) σ = 0.1%, (b) σ = 1%.

(a) (b) (c)

Figure 5: House test case reconstructions: (a) MAIT (σ = 0.1%), (b) AIT (σ = 1%), (c)
MAIT (σ = 1%).
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5. Conclusions

In this work, we show that Assumption 2 and Assumption 1 are equiva-
lents. This corrects a statement in [8]. Nevertheless, the theoretical results
shown in [8] are correct. We propose a weaker assumption and show that
under this new hypothesis the convergence properties of Algorithm 2 are
maintained, provided that the initial approximate solution is not too far
from the desired solution. Finally, we propose a heuristic approach for the
automatic determination of the parameter β needed by Algorithm 2.
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