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Abstract

We discuss conservation laws for thin structures which could be modelled as a
material minimal surface, i.e. a surface with zero mean curvatures. The models
of an elastic membrane and micropolar (six-parameter) shell undergoing finite
deformations are considered. We show that for a minimal surface it is possible
to formulate a conservation law similar to three-dimensional nonlinear elasticity.
It brings us a path-independent J-integral which could be used in mechanics of
fracture. So the class of minimal surfaces extends significantly a possible geometry
of two-dimensional structures which possess conservation laws.

Keywords
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1 Introduction

The conservation laws play a central role in continuum pisydndeed, it is worth to
mention conservation laws of mass, energy, momentum, moofi@iomentunt?. In
addition to these classic conservation laws it is possibésstablish other, trivial or non-
trivial, conservation laws®. Let us briefly recall the definition of a conservation law.
Let a problem under consideration be described through afdeinctions of many
variablesu; = u;(z;), i =1,...,m, j = 1,...,n, which satisfy a system of partial
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2 Mathematcs and Mechanics of Solids XX(X)

differential equations (PDES)

aui
lp<l'j,’u“a—xj,>0, pil,,k (1)
LetP = (Py,...,P,) € R" be a vector-valued function with components
aui
P, =P, (mj,u,-, 5‘_%) , q=1,...,n.

Then, if the following equation

~ n OP:
ivP = L= 2
div ; 7, 0, (2)

holds true for any solution oflj, it is called aconservation law

For derivation of conservation laws in the three-dimenaid3D) elasticity one
can apply various techniques including Noether's theorathits extensions such as
the Bessel-Hagen and the neutral action methods;%e&fter Noether it is known
that conservation laws are closely related to invarianopgnties of a total energy
functional that called also variational symmetries. Foaraple, a homogeneity, i.e.
local invariance with respect to infinitesimal translaipresults in conservation law
for the Eshelby tenséf*®, which brings us well-known path-independehintegral
and some other invariant integrals. Conservation laws adelyused in mechanics
of fracture, theory of stress-induced phase transitiorts fan description of other
inhomogeneity in solid&>°.

Instead, in the case of two-dimensional (2D) structuref sigcshells, one faces a
problem of homogeneity as a shell is an inhomogeneous 2Dumedince its geometry
is point-dependent, in general. The 3D conservation lawddcbe transformed for
plane geometry, i.e. for plates. See results for first-oislerar-deformable linear
plates®!!, linear second-order plate thedfyvon Karman plate’s. As a result, unlike
to plate theory conservation laws for shells were estaétigbr particular geometries,
such as spherical, cylindrical or shells of revolution, %8¢&°. Path independent
integrals were introduced for cylindrical shells and shelf revolution within the
Sanders—Koiter variant of linear shell theory and nonlin@@mbrane theory itf.
Conservation laws are also known for linear shallow sheltletavith applications to
cracked cylindrical shelf, and nonlinear shallow shell modéfsncluding Marguerre-
von Karman theor$P. In fact, the concept of shallow shell inherits plane geoyfedm
plates.

The aim of this paper is to discuss new conservation laws Bosteuctures which
could be modelled using a minimal surface as a base surfatginza physical
properties of the structure. The principal property of a imal surface is zero
mean curvature, sé&?? for basic properties of the minimal surfaces. Recently,esom
structures based on minimal surface geometry were progosadvanced composites,
see e.g?>?%. Let us note that one can easily meet minimal surfaces inresitdor
example, as seashells®,
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Minimal surfaces and conservation laws 3

The paper is organised as follows. First, in Sectipnwve briefly recall necessary
information from differential geometry including the sack divergence theorems.
In Section3 we discuss the kinematics of a material surface considenegbrane
theory?® and enriched (Cosserat-like) surfaces. The latter modektraightforward
relation to micropolar shelf§3! called also six-parameter shell motfellt could
be treated as 2D Cosserat continuum, i.e. a 2D medium withslaonal and
rotational degrees of freedom, and with surface stressg@sariace couple stresses.
In Sections4 and 5 we introduced Eshelby tensors for these models and present
the corresponding conservation laws and invariant integkdodeling stress-induced
phase transformations in micropolar shells the 2D Eshe#imgdr was introduced
in®3, whereas its relation to the 3D counterpart was discuss&d Recently, the 2D
Eshelby tensor was also used for modelling of adhesion nfsiniictureg®. In Section
6 we briefly discuss 3D-to-2D reduction as an alternative whgerivation of 2D
conservation laws.

In what follows we almost always use the direct (index-fremjsor calculus as
in 36,37
in=%s7,

2 Preliminaries

First, let us briefly introduce some formulae of differenigometry. Lett € R? be
a smooth enough surface with a boundBry: 9X. ¥ could be parameterized with a
position vector given as a function of two surface coordiatands?:

X = X(Sl, 82) = Xl(sl, 52)i1 + XQ(SI, 82)i2 + )(3(517 52)i3, 3)

where X; andi; are Cartesian coordinates and corresponding unit basersect
respectively, see Figl. We introduce the surface nabla-opera¥orand the natural
and reciprocal base vectors as follows

0 0X
— O‘_ Oé. pr— « Oé. = = — =
V=E 5ea BT Eg 55, E* N=0, Eg 5o o, f=1,2,
I x E?
whered$ is the Kronecker sym = ———— s the unit normal “an
eredy is the Kronecker symboIN |El><E2|steuto al to, “" and

“x" denote dot and cross products, respectively. Herein&iteek indices takes values
1 and 2, whereas Latin indices will take values 1, 2, and 3,Enstein’s summation
rule is used.

For any differentiable surface fiell? we introduce the surface divergence theorem
(the Gauss—Ostrogradsky theoréffy

/E/(V-T—l—HN-T)dZ:fV-TdS. (4)

Here H = 7§V - N is the mean curvature of, v is the external unit normal to
I' = 0% such thatv - N = 0. Let us note thaf could be a vector-valued or tensor-
valued surface field of any order. There are other forms ofstlnéace divergence
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4 Mathematcs and Mechanics of Solids XX(X)

Figure 1. Surface with parametrization.

theorem

// VT+HN®T)dE:j{V®Tds (5)

//VXT+HNXT dE:j{VXTdS (6)

[foxmoma- SR o

r

In (5) and (7) “®” is the dyadic products denotes the unit vector tangent Iy
7 x v =N, see Figl.

Obviously, the form of surface divergence theoreds-(©) differs from its 3D
counterparts due to presence of terms related to the meaatare. If the mean
curvature oY vanishes, that is if

then there is no such difference. A surface whose mean aue/stzero at any point is
called aminimal surfaceBasic properties of the minimal surfaces can be fouRgin

3 Kinematics of a material surface

In what follows we utilize the concept of a material surfi4tén the theory of plates
and shells it is also called the direct appro&thVe introduce a deformation of a
material surfaceS as a differentiable mapping from a reference placemeimto a
current placemenyt. Let ¥ ando be surfaces describing§ in « and x, respectively.
Within Lagrangian description we introduce a displacenvectoru of a pointz € S
with coordinates' ands? defined oy as follows

u=u(s' s =x-X, 9)
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Minimal surfaces and conservation laws 5

where x = x(s!,s?) and X = X(s!,s?) are position vectors ot in x and ¥,
respectively, see Fi@.

In order to describe deformations of kinematically enrit(@osserat-like) material
surfaces, in addition to position vector efe S we consider two triples of unit
orthogonal vectors called directors. So we have two tripl@g} and{d; }, k = 1,2, 3,
defined in reference and current placements, respectildging these triples we
introduce an orthogonal tensor

Q=Q(s',5*) =Dr @ di (10)

as a complementary kinematical descriptor,§éefor more details. As a result, for
enriched material surface we have two kinematical desinspt (or x) and Q which
could be treated as translational and rotational degreésedfom used in the theory
of shells>2,

Figure 2. Deformation of a material surface S.

4 Eshelby tensor and conservation laws: elastic membrane

In order to discuss a derivation of conservation laws fon teiructures modeled
using the minimal surface property, first let us study a sengase, that is an elastic
membrane.

4.1 Finite deformations

For a hyperelastic membrane there exists a surface strangyeW . In what follows
we restrict ourselves to homogeneous membranel; stbes not depend oK € 3.
So itis a function of the surface deformation gradiEnt Vx:

W =W(F). (11)

Applying to (11) the material frame-indifference principfe we came to the
dependence
W =Ww(C), (12)
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6 Mathematcs and Mechanics of Solids XX(X)

where C = F - FT s the surface Cauchy-Green strain measur&lote that for
simplicity we keep in {2) the same notation for the energy function.
Neglecting surface forces we have the following Lagraneiguilibrium equation

V-P =0, (13)
whereP is the surface first Piola-Kirchhoff stress tensor. It isegioy the formulae

ow ow
P= 5F =S.F, Sf28c.
Here S is the surface second Piola-Kirchhoff stress tensor. Noéd¢ IN - P = 0.
Egs. ((1)—(13) constitute a 2D counterpart of governing equations of ea8nlinear
elasticity. So an elastic membrane model could be treated2& Cauchy continuum,
or as a 2D simple medium in sense of NigH°.
For an elastic membrane the Eshelby tensor is defined asviollo

B, =WA-P.-F' =WA -S.C, (14)

whereA =1 — N ® N andI is the 3D unit tensor. So, by definitidd - B,,, = 0. B,
has also the following property

V.B,, = 2HWN. (15)
Indeed, using the identities
V- A=V-I-N@N)=—(V-N)N =2HN, (16)
v =gt =VF: P, (17)
9sB

we have that
V-B,, =V (WA -P.F7)
OFT
0s™

=(VW)-A+WV-A—(V-P)-F' —E*.P
=VF:P+2HWN —P : VF' = 2HWN.

Here “” stands for the double dot product. For dyads and triads ofors it could be
defined as follows

(a®b):(c@d)=(a-c)(b-d),
(a®@b):(ced®e)=(a-c)(b-d)e,
(a@b®c): (dee)=(b-d)(c-e)a,

and by linearity could be extended for tensors of any order.
Using the surface divergence theorefhfor B,,, we get the identity

// 2HWNdY = }{V -B,, ds, (18)
Sy e
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Minimal surfaces and conservation laws 7

for any part>y C 3 with the boundaryr'. Eq. (L8) shows that the right side of.§)
does not constitute a path-independent integral, in génera
Instead, for a minimal surfacd = 0 and we get the conservation law

V-B,, =0, (29)
and with @) we came to the path-independent J-integral
szj{Imeds:O (20)
e

Using @3) and (L9) we can derive another useful integral identity. First, \aeetwo
relations
V-(B, -X)=trB,,, trB,, =2W -P:F. (21)

Then, we can see that

fu-Bm-deE/T/V-(Bm-X)dEZE/T/WdEZ/T/P:FdE. (22)

HereXy C X is an area bounded b. The last integral in42) could be transformed
as follows

Z/T/P:FdZ:—E/T/V.(P.X)dZ—f—fy.P.XdS:fV,P.XdS. 23

As aresult, Eq.42) takes the form

%I/-Bm-XdS:Q/ WdZ—?gu-P-xds. (24)
T Sy T
So we came to
}{V-[B,,,L-X—i—P-X]ds:2//WdZ. (25)
Xy

4.2 Infinitesimal deformations

Surface integral ing5) could be transformed into a contour one only for very patéc
cases such as small deformations. Let us consider it in meteal.dFor infinitesimal
deformationdV takes the form

W), e=y(VuAtA (Vo)) (26)

whereg is a linear surface strain tensor. Equations of equilibritansform into

oW

o =0 = 27
Vio-0, o=, (27)
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8 Mathematcs and Mechanics of Solids XX(X)

whereo is the symmetric surface stress tensor. The Eshelby tessmodified as
follows

B, =WA -0 - (Vu)l. (28)
Repeating derivation®()—(24) we came to the identity
fl/-[Bsm-X—i—a-u] ds:2/ W dx. (29)
Yy

For alinear membrand = 1o : e and [ W dX could be represented as a contour
Sy
integral. Indeed, we have

//WdZ:%//a:st:%//O':VudZ
Sy Sy Sy
1 1
:—5//(V-0)-ud2+§}{1/-0'- ds
Yy

T

:%}{V-O'- ds. (30)

T
So instead ofZ9) we get the formula

}{V -Bgm - Xds = 0. (31)
T

As in the case of plane stress sfatén the theory of linear membranes path-
independent integraB() could be called M-integral.
A M-integral-type identity could be also derived for a poview constitutive

relation, that is fol" given by
1
W=—(:C:e)" 2
5 (e:C:e)", (32)

whereC andm are material parameters, and a fourth-order teiddras the same
symmetry properties as in the case of linear plane stressaiia So we have that

_ 1
o=(:C:e)"'C:e, W:%azs,

and instead of31) we came to another M-integral

j{u-[Bsm-Xerlo'-u ds = 0. (33)
m

Constitutive equatior3?) could be useful for modelling of some hardening phenomena
in inelastic materials. In fact, in plasticity they used mowaw-type constitutive
equations liker = Ke™, whereK is a strength coefficient andis an exponent, see,
e.g.* p. 94. Power-law constitutive relations such as Nortonisdee also widely used
the theory of plasticity and creep, s&&? and the references therein. For example, J-
and M-integrals for power-law materials were usetitf in order to estimate a stress
concentration in vicinity of crack tips.
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Minimal surfaces and conservation laws 9

5 Eshelby tensor and conservation laws: micropolar
(six-parameter) shell

As an example of more complex 2D model we consider micropmiaix-parameter
shells$®32, within the model we have an extended kinematics wich inesutivo
kinematically independent fields of translations and fores.

5.1 Finite deformations

For a hyperelastic micropolar (six-parameter) shell, #agerstrain energy density
depends on two surface strain measiBemndK 3937

U=U(E,K), (34)

where

E=F - QT -A, KEE‘“®<8—Q~QT) . (35)
2 0s® «
Here T, is the vectorial invariant of a second-order tenprsee, e.g’. For a dyad
of two vectorsa andb we have(a ® b) = a x b. In what follows we consider only
homogeneous shells that is shells whose strain energytdategiends only on the
strain measurek andK.
Without surface forces and couples the Lagrangian equabdrstatics takes the
form
V-T=0, V-M+ [F".T] =0, (36)

where

ou ou ou
:a—F:Sl'Qa M:SQ'Q7 Slza—E, 228—K-

Here T and M, are the surface stress and couple stress tensors of theifitat P

Kirchhoff type, whereas the stress measu$gesand S, are the referential stress and
couple stress tensors similar to the respective second-fachhoff stress tensors of
3D nonlinear elasticity.

Within the six-parameter shell model the Eshelby terBowas introduced if’
for description of stress-induced phase transitions. Maorecisely, usingB the
thermodynamic compatibility condition along a phase ifsteg was formulated is
defined as follows

T (37)

B=UA-T -F'—-M.Q" . KT, (38)

or as
B=UA-S,-ET -8, .K7, (39)

In®* it was shown that under some conditioBs could be obtained from its 3D
counterpart using the through-the-thickness integragionlar to derivation of stress
resultants?.

For B we have the identity

V-B =2HUN, (40)
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10 Mathematcs and Mechanics of Solids XX(X)

which could be proven similarly tol§). For brevity we omit awkward calculations
here.
As a result, we came to the integral identity

//QHUNdE = }z{y-BdS, (41)
Sy T

Again, for a minimal surface we get the conservation law aimderal

V.B=0, Jz?{u-Bds:O. (42)
T

This conservation law is the 2D counterpart of the 3D oneveerifor nonlinear
micropolar continua iff**® with the use of Noether’s theorem.

5.2 Small deformations

In the case of small deformations we can provide a similatystf conservation laws.
For small rotations instead of the microrotation tenQoone can use the infinitesimal
vectore sinceQ can be approximated as follows®

Q~I+¢xL
As aresultE andK could be replaced by the linear strain measeraadk
e=Vu—-Ix¢, k=Vo.
Equilibrium equations take the form
V.-T=0, V-M+T,=0 (43)

with surface stresT and couple stresdI tensors. The latter relate to a surface strain
energy density through the formulae

oU oU
T_%, M_ﬁ, U =U(e k). (44)
The Eshelby tensdB, has the form
B,=UA-T- - (Vu) —M-(Ve¢)". (45)

Let us note that45) is symmetrized with respect to translations and rotatitmieed,
here we face a full symmetry under replacements

us ¢, TSM.
We can again prove the identity

V.B, = 2HUN. (46)
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Minimal surfaces and conservation laws 11

Unlike the case of finite deformations, here the calculatiare more simple. Indeed,
similar to (L7) we have

VU=Ve:T+Vk:M=VVu: T+VVep:M-V(Ixep):T,
and we came to a series of identities

V-B, =VU+2HUN — (V-T) - (Vu)l —(V-M)- (V)T
~T:V(Vu)! —M: V(Ve)"
=VVu:T-T:V(Vu)! +VVep:M-M:V(Vep)"
~V(Ix¢): T—Tyx- (V)" +2HUN =2HUN,

that results in 46). Thus, for a minimal surface we get the conservation law and
corresponding J-integral for small deformations

V.B, =0, Jzyfu-Bsds:o. (47)
T

This conservation law is similar to 3D analogous in lineactmpolar elasticity, see,
e.g.>% Unlike the case of elastic membrane, as for micropolar 30s8 M-integral
for micropolar shell cannot be derived, in general. It cduddpossible for a particular
class of constitutive equations with symmetric stressltasutensor,T'x = 0, or for
decoupled relations with an energy in the fobin= U (e, k), se€* for a discussion on
this class of 3D constitutive relations.

6 On 3D-to-2D reduction of conservation laws

We have discussed so-called direct approach to bidimealsgbructures. Within the
approach the basic governing equations, i.e. equationgulilerium and constitutive
equations, are formulated as for a 2D continuum. As a resultitional non-
trivial conservation laws could be derived using these 2Degaing equations as
was demonstrated above. In other words, derived 2D corsenviaws areexact
consequence of 2D equilibrium and constitutive equations.

An alternative way could be a 3D-to-2D reduction also ampt® 3D conservation
laws. Any 3D-to-2D reduction results in 2D equations, so omdd also apply it to 3D
conservation laws. Let us note that any reduction procedists in arepproximate
representation of a 3D state through its 2D counterparndJsuch an approach one
should be aware of the following:

— obtained conservation law could be reduction-dependentould depend on the
chosen reduction procedure. Indeed, in the literaturestlaee known various shell
models which have different conservative laws, in general,

— reduction of a conservation law could result in an identyich is not a 2D
conservation law according to definitiof) @nd Q).

Let us discuss this matter in more detail using the throinghthickness procedure.
This 3D-to-2D reduction leads to the nonlinear resultamtgarameter shell theory.
For finite deformations of a nonlinear elastic solids we haeel agrangian equitation
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12 Mathematcs and Mechanics of Solids XX(X)

of equilibrium and the conservation law for the Eshelby teisin the forn?

Div ¥ =0, (48)
Divb =0, b=VI-X-GT, (49)

where X is the first Piola—Kirchhoff stress tensdg = Gradr is the deformation
gradientV is a strain energy functiom,is a 3D position vector in a current placement,
Div andGrad are Lagrangian divergence and gradient operators, regplgct

Following®2%” we consider deformations of a shell-like boBlyas a differentiable
invertible mapping from a reference placement into a currene. Let V =
{(s',s%,¢): (s',s?) € ¥, € [-h~,h"]} be a volume ofB in the reference
placement, where is a referential base surfack,= h~ + h't is the shell total
thickness, see Fid. So the position vector of a given pointof B in the reference
placement is given by

R = X(s', s%) + ¢N.

Figure 3. Deformation of a shell-like body B.
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Minimal surfaces and conservation laws 13

In a current placementcould be represented through its position vector
r=x(s',s%) +2(s', 5%, (),

wherez = r — x is called the base reference deviation vettor
Integrating ¢8) through the thickness we came #8); with T defined as follow?’
ht
T = /(A—gH)—l-zudg, (50)
-
whereH = —VN is the curvature tensor af andy is the scale factor defined by the

formulae
dV = pd¢dy, p=det(A—CH)=1-2H(+ K¢,

K = det H is the Gaussian curvature Bf Note that here we have used the assumption

N-=| =o, (51)

»E

i.e. we assumed that facEs andX: ™ are free.
To derive @3); we cross-multiply 48) by z from the left and integrate the result
through the thickness. We get3), with M defined as

ht
M = /(A—CH)_l-Exzudg. (52)

—h—

So (@3) are exact consequence of the 3D equilibrium equations.
Similarly, the 2D strain energy density could be introduced as follows

ht

U= / VpdC. (53)
—h—
Obviously, within this 3D-to-2D reduction some part of arergy stored ir3 could be

lost, seé? for more details.
Let us now repeat the same integration techniqué® Similarly, we came to

V- -B+utVINt 4+ 4V "N- =0, (54)
h+
B [ (A~ ) bade, (55)

—h—

where we have used(), u* and V*+ are the values oft and V taken onX*,
respectively, i.e. af = +h*, andN~ and N are unit outward normals ta*, see
Fig. 3. Obviously,B does not coincide nor witB s neither withB. Moreover, Eq.%4)
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14 Mathematcs and Mechanics of Solids XX(X)

does not constitute a conservation law, in general. So osetdapply additional
assumptions of kinematical and/or smallness type to gehsetwation law.

As an example, let us transforri4) and 65) to the case of an elastic nonlinear
membrane. First, we restrict ourselves to a symmetric dase= h~ = h/2. In
addition we assume th&t does not depend ahor that such dependence is negligible.
So for G we use an approximatio& = F + N ® n, wheren is a normal too. As
a result,V does not depend oq. For a thin enough structure we also assume that
N+ = +N. As a result, we get the formulae

1
pt=1FHh+ ZKh?, pTVINT 4+ 4" V-N~ =2HAVN.

With these assumptiorﬁ transforms into

h/2
B=hVA — / A-2d¢-FT. (56)
—h/2
Thus, introducing? andP as follows
h/2
W=hV, P- / A-Tdc
—h/2

we came to 15) with B,,, = B. For derivation of 2D equations of elastic membranes
we also refer t6>>2,

Transformation of §4) and 65) to the case of six-parameter (micropolar) shells
can be provided similarly. It requires additional and mommplex kinematical
assumptions, see Eq. (28)frfor normal components df andB.

7 Conclusions

We have discussed a few conservation laws for thin-walledcsitres, i.e. elastic
membranes and six-parameter shells, modelled using ralateimimal surface. Let
us underline that minimal surfaces significantly extendedass of geometry of
shells and membranes for which it is possible to introduad stonservation laws.
Using the property of a minimal surfac8) (we have demonstrated that conservation
laws for two-dimensional systems are similar to the caselh8nlinear elasticity.
With conservation laws one can derive invariant (pathjreelent) integrals such
as J-integrals. The latter could be useful in mechanicsadftdire, for example, for
estimation of stress concentration in the vicinity of getnmal singularities such as
holes, crack tips, notches, and rigid inclusions. Morea¥ay could be related to the
energy release rate for quasistatically propagating tiefiethin structures.
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