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Abstract
We discuss conservation laws for thin structures which could be modelled as a
material minimal surface, i.e. a surface with zero mean curvatures. The models
of an elastic membrane and micropolar (six-parameter) shell undergoing finite
deformations are considered. We show that for a minimal surface it is possible
to formulate a conservation law similar to three-dimensional nonlinear elasticity.
It brings us a path-independent J-integral which could be used in mechanics of
fracture. So the class of minimal surfaces extends significantly a possible geometry
of two-dimensional structures which possess conservation laws.
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1 Introduction

The conservation laws play a central role in continuum physics. Indeed, it is worth to
mention conservation laws of mass, energy, momentum, moment of momentum1;2. In
addition to these classic conservation laws it is possible to establish other, trivial or non-
trivial, conservation laws2–5. Let us briefly recall the definition of a conservation law.
Let a problem under consideration be described through a setof functions of many
variablesui = ui(xj), i = 1, . . . ,m, j = 1, . . . , n, which satisfy a system of partial
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2 Mathematcs and Mechanics of Solids XX(X)

differential equations (PDEs)

lp

(
xj , ui,

∂ui

∂xj
, . . .

)
= 0, p = 1, . . . , k. (1)

Let ~P = (P1, . . . , Pn) ∈ R
n be a vector-valued function with components

Pq = Pq

(
xj , ui,

∂ui

∂xj

)
, q = 1, ..., n.

Then, if the following equation

div ~P ≡

n∑

i=1

∂Pi

∂xi
= 0, (2)

holds true for any solution of (1), it is called aconservation law.
For derivation of conservation laws in the three-dimensional (3D) elasticity one

can apply various techniques including Noether’s theorem and its extensions such as
the Bessel–Hagen and the neutral action methods, see5–9. After Noether it is known
that conservation laws are closely related to invariance properties of a total energy
functional that called also variational symmetries. For example, a homogeneity, i.e.
local invariance with respect to infinitesimal translations, results in conservation law
for the Eshelby tensor2;4;5, which brings us well-known path-independentJ-integral
and some other invariant integrals. Conservation laws are widely used in mechanics
of fracture, theory of stress-induced phase transitions and for description of other
inhomogeneity in solids2;3;5.

Instead, in the case of two-dimensional (2D) structures such as shells, one faces a
problem of homogeneity as a shell is an inhomogeneous 2D medium, since its geometry
is point-dependent, in general. The 3D conservation laws could be transformed for
plane geometry, i.e. for plates. See results for first-ordershear-deformable linear
plates10;11, linear second-order plate theory12, von Kármán plates13. As a result, unlike
to plate theory conservation laws for shells were established for particular geometries,
such as spherical, cylindrical or shells of revolution, see5;14;15. Path independent
integrals were introduced for cylindrical shells and shells of revolution within the
Sanders–Koiter variant of linear shell theory and nonlinear membrane theory in16.
Conservation laws are also known for linear shallow shell model with applications to
cracked cylindrical shell17, and nonlinear shallow shell models18 including Marguerre-
von Kármán theory19. In fact, the concept of shallow shell inherits plane geometry from
plates.

The aim of this paper is to discuss new conservation laws for 2D structures which
could be modelled using a minimal surface as a base surface carrying physical
properties of the structure. The principal property of a minimal surface is zero
mean curvature, see20–22 for basic properties of the minimal surfaces. Recently, some
structures based on minimal surface geometry were proposedfor advanced composites,
see e.g.23–26. Let us note that one can easily meet minimal surfaces in natures, for
example, as seashells27;28.
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Minimal surfaces and conservation laws 3

The paper is organised as follows. First, in Section2, we briefly recall necessary
information from differential geometry including the surface divergence theorems.
In Section3 we discuss the kinematics of a material surface consideringmembrane
theory29 and enriched (Cosserat-like) surfaces. The latter model has straightforward
relation to micropolar shells30;31 called also six-parameter shell model32. It could
be treated as 2D Cosserat continuum, i.e. a 2D medium with translational and
rotational degrees of freedom, and with surface stresses and surface couple stresses.
In Sections4 and 5 we introduced Eshelby tensors for these models and present
the corresponding conservation laws and invariant integrals. Modeling stress-induced
phase transformations in micropolar shells the 2D Eshelby tensor was introduced
in33, whereas its relation to the 3D counterpart was discussed in34. Recently, the 2D
Eshelby tensor was also used for modelling of adhesion of thin structures35. In Section
6 we briefly discuss 3D-to-2D reduction as an alternative way of derivation of 2D
conservation laws.

In what follows we almost always use the direct (index-free)tensor calculus as
in36;37.

2 Preliminaries

First, let us briefly introduce some formulae of differential geometry. LetΣ ∈ R
3 be

a smooth enough surface with a boundaryΓ = ∂Σ. Σ could be parameterized with a
position vector given as a function of two surface coordinates1 ands2:

X = X(s1, s2) = X1(s
1, s2)i1 +X2(s

1, s2)i2 +X3(s
1, s2)i3, (3)

whereXj and ij are Cartesian coordinates and corresponding unit base vectors,
respectively, see Fig.1. We introduce the surface nabla-operator∇ and the natural
and reciprocal base vectors as follows

∇=Eα ∂

∂sα
, Eα ·Eβ = δαβ , Eα ·N = 0, Eβ =

∂X

∂sβ
, α, β = 1, 2,

whereδαβ is the Kronecker symbol,N =
E1 ×E2

|E1 ×E2|
is the unit normal toΣ, “ ·” and

“×” denote dot and cross products, respectively. HereinafterGreek indices takes values
1 and 2, whereas Latin indices will take values 1, 2, and 3, andEinstein’s summation
rule is used.

For any differentiable surface fieldT we introduce the surface divergence theorem
(the Gauss–Ostrogradsky theorem)29;37

∫∫

Σ

(∇ ·T+HN ·T) dΣ =

∮

Γ

ν ·T ds. (4)

HereH ≡ − 1

2
∇ ·N is the mean curvature ofΣ, ν is the external unit normal to

Γ = ∂Σ such thatν ·N = 0. Let us note thatT could be a vector-valued or tensor-
valued surface field of any order. There are other forms of thesurface divergence
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4 Mathematcs and Mechanics of Solids XX(X)

X1

X2

s1

s2

X3

i
1

i
2

E
2

E
1

i3
X

N

N
�

�

�

��

Figure 1. Surface with parametrization.

theorem
∫∫

Σ

(∇T+HN ⊗T) dΣ =

∮

Γ

ν ⊗T ds, (5)

∫∫

Σ

(∇×T+HN×T) dΣ =

∮

Γ

ν ×T ds, (6)

∫∫

Σ

∇× (N⊗T) dΣ =

∮

Γ

τ ⊗T ds. (7)

In (5) and (7) “⊗” is the dyadic product,τ denotes the unit vector tangent toΓ,
τ × ν = N, see Fig.1.

Obviously, the form of surface divergence theorems (4)–(6) differs from its 3D
counterparts due to presence of terms related to the mean curvature. If the mean
curvature ofΣ vanishes, that is if

H = 0, (8)

then there is no such difference. A surface whose mean curvature is zero at any point is
called aminimal surface. Basic properties of the minimal surfaces can be found in20–22.

3 Kinematics of a material surface

In what follows we utilize the concept of a material surface29. In the theory of plates
and shells it is also called the direct approach38. We introduce a deformation of a
material surfaceS as a differentiable mapping from a reference placementκ into a
current placementχ. Let Σ andσ be surfaces describingS in κ andχ, respectively.
Within Lagrangian description we introduce a displacementvectoru of a pointz ∈ S
with coordinatess1 ands2 defined onΣ as follows

u = u(s1, s2) = x−X, (9)
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Minimal surfaces and conservation laws 5

where x = x(s1, s2) and X = X(s1, s2) are position vectors ofz in κ and χ,
respectively, see Fig.2.

In order to describe deformations of kinematically enriched (Cosserat-like) material
surfaces, in addition to position vector ofz ∈ S we consider two triples of unit
orthogonal vectors called directors. So we have two triples{Dk} and{dk},k = 1, 2, 3,
defined in reference and current placements, respectively.Using these triples we
introduce an orthogonal tensor

Q = Q(s1, s2) = Dk ⊗ dk (10)

as a complementary kinematical descriptor, see30;37 for more details. As a result, for
enriched material surface we have two kinematical descriptorsu (or x) andQ which
could be treated as translational and rotational degrees offreedom used in the theory
of shells30–32.

s1
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s2

i
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i
2

D
3

D
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1 d
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X
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Figure 2. Deformation of a material surface S .

4 Eshelby tensor and conservation laws: elastic membrane

In order to discuss a derivation of conservation laws for thin structures modeled
using the minimal surface property, first let us study a simple case, that is an elastic
membrane.

4.1 Finite deformations
For a hyperelastic membrane there exists a surface strain energyW . In what follows
we restrict ourselves to homogeneous membranes, soW does not depend onX ∈ Σ.
So it is a function of the surface deformation gradientF = ∇x:

W = W (F). (11)

Applying to (11) the material frame-indifference principle39 we came to the
dependence

W = W (C), (12)

Prepared usingsagej.cls



6 Mathematcs and Mechanics of Solids XX(X)

where C = F · FT is the surface Cauchy-Green strain measure29. Note that for
simplicity we keep in (12) the same notation for the energy function.

Neglecting surface forces we have the following Lagrangianequilibrium equation

∇ ·P = 0, (13)

whereP is the surface first Piola-Kirchhoff stress tensor. It is given by the formulae

P =
∂W

∂F
= S · F, S = 2

∂W

∂C
.

Here S is the surface second Piola-Kirchhoff stress tensor. Note that N ·P = 0.
Eqs. (11)–(13) constitute a 2D counterpart of governing equations of the 3D nonlinear
elasticity. So an elastic membrane model could be treated asa 2D Cauchy continuum,
or as a 2D simple medium in sense of Noll39;40.

For an elastic membrane the Eshelby tensor is defined as follows

Bm = WA−P ·FT = WA− S ·C, (14)

whereA = I−N⊗N andI is the 3D unit tensor. So, by definitionN ·Bm = 0.Bm

has also the following property

∇ ·Bm = 2HWN. (15)

Indeed, using the identities

∇ ·A = ∇ · (I−N⊗N) = −(∇ ·N)N = 2HN, (16)

∇W = Eβ ∂W

∂sβ
= ∇F : P, (17)

we have that

∇ ·Bm =∇ · (WA−P ·FT )

=(∇W ) ·A+W∇ ·A− (∇ ·P) ·FT −Eα ·P ·
∂FT

∂sα

=∇F : P+ 2HWN−P : ∇FT = 2HWN.

Here “:” stands for the double dot product. For dyads and triads of vectors it could be
defined as follows

(a ⊗ b) : (c⊗ d) = (a · c)(b · d),

(a ⊗ b) : (c⊗ d⊗ e) = (a · c)(b · d)e,

(a ⊗ b⊗ c) : (d⊗ e) = (b · d)(c · e)a,

and by linearity could be extended for tensors of any order.
Using the surface divergence theorem (4) for Bm we get the identity

∫∫

ΣΥ

2HWN dΣ =

∮

Υ

ν ·Bm ds, (18)

Prepared usingsagej.cls



Minimal surfaces and conservation laws 7

for any partΣΥ ⊂ Σ with the boundaryΥ. Eq. (18) shows that the right side of (18)
does not constitute a path-independent integral, in general.

Instead, for a minimal surfaceH = 0 and we get the conservation law

∇ ·Bm = 0, (19)

and with (4) we came to the path-independent J-integral

Jm ≡

∮

Υ

ν ·Bm ds = 0 (20)

Using (13) and (19) we can derive another useful integral identity. First, we have two
relations

∇ · (Bm ·X) = trBm, trBm = 2W −P : F. (21)

Then, we can see that
∮

Υ

ν ·Bm ·X ds =

∫∫

ΣΥ

∇ · (Bm ·X) dΣ = 2

∫∫

ΣΥ

W dΣ−

∫∫

ΣΥ

P : F dΣ. (22)

HereΣΥ ⊂ Σ is an area bounded byΥ. The last integral in (22) could be transformed
as follows

∫∫

ΣΥ

P : F dΣ = −

∫∫

ΣΥ

∇ · (P · x) dΣ +

∮

Υ

ν ·P · x ds =

∮

Υ

ν ·P · x ds. (23)

As a result, Eq. (22) takes the form
∮

Υ

ν ·Bm ·X ds = 2

∫∫

ΣΥ

W dΣ−

∮

Υ

ν ·P · x ds. (24)

So we came to ∮

Υ

ν · [Bm ·X+P · x] ds = 2

∫∫

ΣΥ

W dΣ. (25)

4.2 Infinitesimal deformations
Surface integral in (25) could be transformed into a contour one only for very particular
cases such as small deformations. Let us consider it in more detail. For infinitesimal
deformationsW takes the form

W = W (ε), ε =
1

2

(
∇u ·A+A · (∇u)T

)
, (26)

whereε is a linear surface strain tensor. Equations of equilibriumtransform into

∇ · σ = 0, σ =
∂W

∂ε
, (27)
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8 Mathematcs and Mechanics of Solids XX(X)

whereσ is the symmetric surface stress tensor. The Eshelby tensor is modified as
follows

Bsm = WA− σ · (∇u)T . (28)

Repeating derivations (21)–(24) we came to the identity
∮

Υ

ν · [Bsm ·X+ σ · u] ds = 2

∫∫

ΣΥ

W dΣ. (29)

For a linear membraneW = 1

2
σ : ε and

∫∫
ΣΥ

W dΣ could be represented as a contour

integral. Indeed, we have
∫∫

ΣΥ

W dΣ =
1

2

∫∫

ΣΥ

σ : ε dΣ =
1

2

∫∫

ΣΥ

σ : ∇u dΣ

=−
1

2

∫∫

ΣΥ

(∇ · σ) · u dΣ+
1

2

∮

Υ

ν · σ · ds

=
1

2

∮

Υ

ν · σ · ds. (30)

So instead of (29) we get the formula
∮

Υ

ν ·Bsm ·X ds = 0. (31)

As in the case of plane stress state5, in the theory of linear membranes path-
independent integral (31) could be called M-integral.

A M-integral-type identity could be also derived for a power-law constitutive
relation, that is forW given by

W =
1

2m
(ε : C : ε)m , (32)

whereC andm are material parameters, and a fourth-order tensorC has the same
symmetry properties as in the case of linear plane stress elasticity. So we have that

σ = (ε : C : ε)m−1
C : ε, W =

1

2m
σ : ε,

and instead of (31) we came to another M-integral
∮

Υ

ν ·

[
Bsm ·X+

m− 1

m
σ · u

]
ds = 0. (33)

Constitutive equation (32) could be useful for modelling of some hardening phenomena
in inelastic materials. In fact, in plasticity they used power law-type constitutive
equations likeσ = Kεn, whereK is a strength coefficient andn is an exponent, see,
e.g.,41 p. 94. Power-law constitutive relations such as Norton’s law are also widely used
the theory of plasticity and creep, see,42;43 and the references therein. For example, J-
and M-integrals for power-law materials were used in44–46 in order to estimate a stress
concentration in vicinity of crack tips.
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Minimal surfaces and conservation laws 9

5 Eshelby tensor and conservation laws: micropolar
(six-parameter) shell

As an example of more complex 2D model we consider micropolaror six-parameter
shells30–32. Within the model we have an extended kinematics wich includes two
kinematically independent fields of translations and rotations.

5.1 Finite deformations
For a hyperelastic micropolar (six-parameter) shell, a surface strain energy densityU
depends on two surface strain measuresE andK30;37

U = U(E,K), (34)

where

E = F ·QT −A, K =
1

2
Eα ⊗

(
∂Q

∂sα
·QT

)

×

. (35)

HereT× is the vectorial invariant of a second-order tensorT, see, e.g.,37. For a dyad
of two vectorsa andb we have(a⊗ b) = a× b. In what follows we consider only
homogeneous shells that is shells whose strain energy density depends only on the
strain measuresE andK.

Without surface forces and couples the Lagrangian equations of statics takes the
form

∇ ·T = 0, ∇ ·M+
[
FT

·T
]
×
= 0, (36)

where

T =
∂U

∂F
= S1 ·Q, M = S2 ·Q, S1 =

∂U

∂E
, S2 =

∂U

∂K
. (37)

HereT andMκ are the surface stress and couple stress tensors of the first Piola–
Kirchhoff type, whereas the stress measuresS1 andS2 are the referential stress and
couple stress tensors similar to the respective second Piola–Kirchhoff stress tensors of
3D nonlinear elasticity.

Within the six-parameter shell model the Eshelby tensorB was introduced in33

for description of stress-induced phase transitions. Moreprecisely, usingB the
thermodynamic compatibility condition along a phase interface was formulated.B is
defined as follows

B = UA−T · FT −M ·QT ·KT , (38)

or as
B = UA− S1 · E

T − S2 ·K
T , (39)

In34 it was shown that under some conditionsB could be obtained from its 3D
counterpart using the through-the-thickness integrationsimilar to derivation of stress
resultants32.

ForB we have the identity

∇ ·B = 2HUN, (40)

Prepared usingsagej.cls



10 Mathematcs and Mechanics of Solids XX(X)

which could be proven similarly to (15). For brevity we omit awkward calculations
here.

As a result, we came to the integral identity
∫∫

ΣΥ

2HUN dΣ =

∮

Υ

ν ·B ds, (41)

Again, for a minimal surface we get the conservation law and J-integral

∇ ·B = 0, J ≡

∮

Υ

ν ·B ds = 0. (42)

This conservation law is the 2D counterpart of the 3D one derived for nonlinear
micropolar continua in47;48 with the use of Noether’s theorem.

5.2 Small deformations
In the case of small deformations we can provide a similar study of conservation laws.
For small rotations instead of the microrotation tensorQ one can use the infinitesimal
vectorφ sinceQ can be approximated as follows30;49

Q ≈ I+ φ× I.

As a result,E andK could be replaced by the linear strain measurese andk

e = ∇u− I× φ, k = ∇φ.

Equilibrium equations take the form

∇ ·T = 0, ∇ ·M+T× = 0 (43)

with surface stressT and couple stressM tensors. The latter relate to a surface strain
energy density through the formulae

T =
∂U

∂e
, M =

∂U

∂k
, U = U(e,k). (44)

The Eshelby tensorBs has the form

Bs = UA−T · (∇u)T −M · (∇φ)T . (45)

Let us note that (45) is symmetrized with respect to translations and rotations. Indeed,
here we face a full symmetry under replacements

u ⇆ φ, T ⇆ M.

We can again prove the identity

∇ ·Bs = 2HUN. (46)

Prepared usingsagej.cls



Minimal surfaces and conservation laws 11

Unlike the case of finite deformations, here the calculations are more simple. Indeed,
similar to (17) we have

∇U =∇e : T+∇k : M = ∇∇u : T+∇∇φ : M−∇(I× φ) : T,

and we came to a series of identities

∇ ·Bs =∇U + 2HUN− (∇ ·T) · (∇u)T − (∇ ·M) · (∇φ)T

−T : ∇(∇u)T −M : ∇(∇φ)T

=∇∇u : T−T : ∇(∇u)T +∇∇φ : M−M : ∇(∇φ)T

−∇(I× φ) : T−T× · (∇φ)T + 2HUN = 2HUN,

that results in (46). Thus, for a minimal surface we get the conservation law and
corresponding J-integral for small deformations

∇ ·Bs = 0, J ≡

∮

Υ

ν ·Bs ds = 0. (47)

This conservation law is similar to 3D analogous in linear micropolar elasticity, see,
e.g.,50. Unlike the case of elastic membrane, as for micropolar 3D solids50 M-integral
for micropolar shell cannot be derived, in general. It couldbe possible for a particular
class of constitutive equations with symmetric stress resultant tensor,T× = 0, or for
decoupled relations with an energy in the formU = U(ε,k), see51 for a discussion on
this class of 3D constitutive relations.

6 On 3D-to-2D reduction of conservation laws

We have discussed so-called direct approach to bidimensional structures. Within the
approach the basic governing equations, i.e. equations of equilibrium and constitutive
equations, are formulated as for a 2D continuum. As a result,additional non-
trivial conservation laws could be derived using these 2D governing equations as
was demonstrated above. In other words, derived 2D conservation laws areexact
consequence of 2D equilibrium and constitutive equations.

An alternative way could be a 3D-to-2D reduction also applied to 3D conservation
laws. Any 3D-to-2D reduction results in 2D equations, so onecould also apply it to 3D
conservation laws. Let us note that any reduction procedureresults in anapproximate
representation of a 3D state through its 2D counterpart. Using such an approach one
should be aware of the following:

– obtained conservation law could be reduction-dependent,i.e. could depend on the
chosen reduction procedure. Indeed, in the literature there are known various shell
models which have different conservative laws, in general;

– reduction of a conservation law could result in an identitywhich is not a 2D
conservation law according to definition (1) and (2).

Let us discuss this matter in more detail using the through-the-thickness procedure.
This 3D-to-2D reduction leads to the nonlinear resultants six-parameter shell theory32.
For finite deformations of a nonlinear elastic solids we havethe Lagrangian equitation

Prepared usingsagej.cls



12 Mathematcs and Mechanics of Solids XX(X)

of equilibrium and the conservation law for the Eshelby tensorb in the form2

DivΣ =0, (48)

Divb =0, b = V I−Σ ·GT , (49)

whereΣ is the first Piola–Kirchhoff stress tensor,G = Grad r is the deformation
gradient,V is a strain energy function,r is a 3D position vector in a current placement,
Div andGrad are Lagrangian divergence and gradient operators, respectively.

Following32;37 we consider deformations of a shell-like bodyB as a differentiable
invertible mapping from a reference placement into a current one. Let V =
{(s1, s2, ζ) : (s1, s2) ∈ Σ, ζ ∈ [−h−, h+]} be a volume ofB in the reference
placement, whereΣ is a referential base surface,h = h− + h+ is the shell total
thickness, see Fig.3. So the position vector of a given pointz of B in the reference
placement is given by

R = X(s1, s2) + ζN.

s1
z

s2N

V

N+

N�

i
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i
2

i3

�

��

��
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n
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n

n
�

z �

=h
+

=0

=h
�

z

s1

s2

�

Figure 3. Deformation of a shell-like body B.
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Minimal surfaces and conservation laws 13

In a current placementz could be represented through its position vector

r = x(s1, s2) + z(s1, s2, ζ),

wherez = r− x is called the base reference deviation vector32.
Integrating (48) through the thickness we came to (43)1 with T defined as follows37

T =

h+∫

−h−

(A− ζH)−1 ·Σµ dζ, (50)

whereH = −∇N is the curvature tensor ofΣ andµ is the scale factor defined by the
formulae

dV = µ dζ dΣ, µ ≡ det(A− ζH) = 1− 2Hζ +Kζ2,

K ≡ detH is the Gaussian curvature ofΣ. Note that here we have used the assumption

N ·Σ

∣∣∣∣
Σ±

= 0, (51)

i.e. we assumed that facesΣ− andΣ+ are free.
To derive (43)2 we cross-multiply (48) by z from the left and integrate the result

through the thickness. We get (43)2 with M defined as

M =

h+∫

−h−

(A− ζH)−1 ·Σ× zµ dζ. (52)

So (43) are exact consequence of the 3D equilibrium equations.
Similarly, the 2D strain energy densityU could be introduced as follows

U =

h+∫

−h−

V µ dζ. (53)

Obviously, within this 3D-to-2D reduction some part of an energy stored inB could be
lost, see32 for more details.

Let us now repeat the same integration technique to (49). Similarly, we came to

∇ · B̂+ µ+V +N+ + µ−V −N− = 0, (54)

B̂ =

h+∫

−h−

(A− ζH)−1 · bµ dζ, (55)

where we have used (51), µ± and V ± are the values ofµ and V taken onΣ±,
respectively, i.e. atζ = ±h±, andN− andN+ are unit outward normals toΣ±, see
Fig.3. Obviously,B̂ does not coincide nor withBs neither withB. Moreover, Eq. (54)
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does not constitute a conservation law, in general. So one has to apply additional
assumptions of kinematical and/or smallness type to get a conservation law.

As an example, let us transform (54) and (55) to the case of an elastic nonlinear
membrane. First, we restrict ourselves to a symmetric caseh+ = h− = h/2. In
addition we assume thatG does not depend onζ or that such dependence is negligible.
So forG we use an approximationG = F+N⊗ n, wheren is a normal toσ. As
a result,V does not depend onζ. For a thin enough structure we also assume that
N± = ±N. As a result, we get the formulae

µ± = 1∓Hh+
1

4
Kh2, µ+V +N+ + µ−V −N− = 2HhVN.

With these assumptionŝB transforms into

B̂ = hVA−

h/2∫

−h/2

A ·Σ dζ · FT . (56)

Thus, introducingW andP as follows

W = hV, P =

h/2∫

−h/2

A ·Σ dζ

we came to (15) with Bm = B̂. For derivation of 2D equations of elastic membranes
we also refer to32;52.

Transformation of (54) and (55) to the case of six-parameter (micropolar) shells
can be provided similarly. It requires additional and more complex kinematical
assumptions, see Eq. (28) in34 for normal components ofb andB.

7 Conclusions

We have discussed a few conservation laws for thin-walled structures, i.e. elastic
membranes and six-parameter shells, modelled using material minimal surface. Let
us underline that minimal surfaces significantly extended aclass of geometry of
shells and membranes for which it is possible to introduce such conservation laws.
Using the property of a minimal surface (8) we have demonstrated that conservation
laws for two-dimensional systems are similar to the case of 3D nonlinear elasticity.
With conservation laws one can derive invariant (path-independent) integrals such
as J-integrals. The latter could be useful in mechanics of fracture, for example, for
estimation of stress concentration in the vicinity of geometrical singularities such as
holes, crack tips, notches, and rigid inclusions. Moreover, they could be related to the
energy release rate for quasistatically propagating defects in thin structures.
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