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Abstract—Dynamic allocation of frequency resources to nodes
in a wireless communication network is a well-known method
adopted to mitigate potential interference, both unintentional
and malicious. Various selection approaches have been adopted
in literature, to limit the impact of interference and keep a
high quality of wireless links. In this paper, we propose a
different channel selection method, based on trust policies. The
trust management approach proposed in this work relies on the
node’s own experience and trust recommendations provided by
its neighbourhood. By means of simulation results in Network
Simulator NS-3, we demonstrate the effectiveness of the proposed
trust method, while the system is under jamming attacks, in
respect of a baseline approach. We also consider and evaluate
the resilience of our approach in respect of malicious nodes,
providing false information regarding the quality of the channel,
to induct bad channel selection of the node. Results show how the
system is resilient in respect of malicious nodes, keeping around
10% of throughput more than an approach only based on the own
proper experience, considering the presence of 40% of malicious
nodes, both single and collusive attacks.

Index Terms—Countermeasure In Wireless Networks, Com-
munications Channel Selection, Trustworthiness Management,
Jamming Attacks.

I. INTRODUCTION

The ubiquitous connotation of wireless devices, pushed by
the advent of 5G and new technologies such as Artificial
Intelligence (AI), is contributing to making wireless services
a daily life presence.

The wireless network capacity has been drastically boosted,
with the advent of new services and the constant evolution of
wireless towards 802.11ax for the Wi-Fi and the 5th generation
(5G) of cellular systems [1], [2]. The high-speed services
based on wireless technologies are expected to become still
more ubiquitous and support a massive deployment of wireless
communicating objects, enabling the Internet of Everything
(IoE) paradigm. The IoE concept encompasses things, pro-
cesses, people and data [3]. The inherent openness of wireless
technology, together with its increasing use, makes security
threats increase as well. In particular, wireless communica-
tion networks are very sensitive to interference: a mitigation
approach adopted to face this interference effect is channel
hopping. It is a method that allocates in a dynamic way the
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frequencies to the nodes in a wireless communication system.
Different approaches have been proposed in the literature, with
the main objective of mitigating interference, both uninten-
tional and malicious.

In this last case, we talk about Denial of Service (DoS)
attacks, which can be realized as a jamming/adversarial attack
against a victim receiver. The effectiveness of this kind of
attack is increased exponentially with the newly developed
techniques, such as reactive jamming, where the jammer
decides where to focus for maximum impact by performing a
cognitive radio sensing [4].

In these terms, we propose a channel selection model able to
assist wireless nodes in choosing the best channel to transmit
on, that is suitable for wireless devices and does not require
standard modifications. The proposed model, developed for
wireless technologies based on the association phase, can be
implemented in several wireless technologies, spanning from
IEEE 802.15.4 to Z-Wave, just to cite a few. As follows,
we were inspired by the concept of trustworthiness and took
advantage of the well-known trust management techniques.
In this scenario, the communication between nodes involves
two different roles: the first represents the trustor, and it has
to trust the other one, which depicts the trustee and provides
the required data. However, misbehaving devices can perform
different types of attacks and can disrupt communications for
their own gain. The trustworthiness management techniques
have to solve the essential issue to detect which channel is
affected by malicious behaviours and so lead the nodes to
successful collaboration. Our paper works in this direction,
intending to estimate the best wireless channel and avoid
jamming interference, and thus provides the following con-
tributions:

• First, we propose a trust management model, based on
experience and recommendations, able to assist wireless
nodes in channel selection, that does not require any
standard modification. Thanks to the model, the nodes
should select the best reliable channel so as to prevent
jamming attacks or other interference.

• Second, we analyze different behaviours of jamming
attacks and propose a new dynamic one, which is then
used to test the resiliency of our model and the common
wireless approaches.

• Third, we conduct extensive evaluations by comparing
the proposed channel selection algorithm with two mod-
els, i.e. the classical approach described in the 802.11
standards and another one that considers only the past
experiences of nodes. The evaluation results show the
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importance of the experience and recommendation to
prevent jamming attacks and, moreover, the influence of
the time windows in dynamic jamming ones.

The rest of the article is organized as follows: Section II
presents a brief survey on channel selection, the possible types
of jamming attacks and the importance of trust mechanisms
in wireless networks. In Section III, we describe the scenario
and introduce the used notations. Section IV illustrates the
proposed trust management model, while Section V provides
details of simulations and results. We conclude the paper with
a brief discussion and some final remarks in Section VI.

II. RELATED WORKS

In this Section, we focus on the most representative works
related to three different key aspects of our approach. The
first aspect revises the most representative jamming attacks
described in the literature, while the second one evaluates the
channel selection mechanisms used to mitigate the interfer-
ence impact, which could be effective also against jamming.
Moreover, we finalize this Section by reporting the most recent
works on trust algorithms adopted in wireless networks.

A. Jammer Attacks

The massive use in our daily life of wireless services
makes security threats an important concern to be considered,
above all in terms of availability of wireless communications,
data integrity, etc [5]. The interference from other networks
produced by simultaneous transmissions, i.e., inter-network
interference, significantly reduces the network throughput and
affects all the ongoing transmissions [6]. Radio jamming is
certainly one of the major threats to which wireless net-
works are particularly prone. With the advancement of the
software-defined radio approaches, it has become quite easy to
launch a jamming attack [7]. Despite the increasing evolution
of wireless communication technologies, most of them are
vulnerable to jamming attacks, due to the lack of adequate
countermeasures.

There are several types of jamming attacks, some of them
were initially conceived for Wi-Fi technology but have been
then proven to be effective also for other types of wireless
networks. Among them, we can count constant jamming
attacks [8], where the jammer constantly broadcasts a signal
over time. Even though this type of attack is really effective,
by reaching a 100% of packet error rate, its main weakness is
the energetic inefficiency. Another type of well-known attack
in literature is reactive jamming, relying on the knowledge
of the channel from the attacker, that sends an interference
based on the detection of a legitimate transmitted packet [9].
This type of attack is more energy-efficient than constant, but
it requires a tight timing constraint, on the order of 4µs for
OFDM, in order to make the switching between listening and
transmitting. Another weakness aspect is related to the length
of the detected packet. This type of attack is ineffective for
short packet sizes.

Other types of attacks are random and periodic jamming
attacks. The former ones are considered memoryless attacks
and consist of sending signals at random times, and then the

offender switches to sleep mode [10]. In the periodic version,
the attacker sends signals at precise and predefined times. They
are certainly more energy efficient than constant attacks, but
less effective. Other types of attacks have been expressly con-
ceived for Wi-Fi networks, and in particular for the physical
and MAC layers. One of them is represented by a timing
synchronization attack. Several attacks have been proposed,
able to thwart the synchronization signal time, with the main
aim of disrupting the start-of-packet procedure. In particular,
the authors of [11] have proposed preamble spoofing attacks,
by injecting the same preamble as the legitimate user, in order
to make the receiver incapable of decoding the legitimate
data. Generally, this type of attack is based on a very good
knowledge of the network timing. Another type of jamming
attack is represented by the frequency synchronization jam-
ming attacks, where an offset of the carrier frequency may
cause a deviation from the orthogonality and introduces a
phase deviation, with an important degradation of the SNR and
the demodulation performance. Channel estimation jamming
attacks are another type of jamming based on generating
malfunctioning channel estimation and channel equalization.
If the accuracy of the channel estimation is impacted as shown
in [12], the degradation of the network can be very high.
Anyway, the results in [12] have been proved via simulation,
but nulling attacks in real-world scenarios seem complicated
to be realized, due to the mismatches between the attacker and
the legitimate device, both in terms of timing and phase.

The proposed approach is tested against a complex jamming
strategy, namely reactive, according to which an attacker
disturbs only communications that have already started and
so targeting packets that are already on the air. Two different
behaviours are implemented: a static behaviour, where the
jammer can attack only a specific channel, and a new proposed
dynamic one, thanks to which the jammer can change the
target by jumping into different channels.

B. Channel Selection Models

This subsection provides an overview regarding the back-
ground of channel selection in wireless technologies. In recent
years, the community has strongly focused on the issue of
interference and jamming attacks in wireless networks, and
several works have been proposed. Below, we provide a brief
survey of some of the most appreciated approaches in the
literature without pretending to be exhaustive.

In these terms, two well-known channel selection models
based on machine learning techniques are illustrated in [13]
and [14]. In the first work, the authors propose an advanced
deep-learning mechanism to select available wireless chan-
nels with good quality and avoid interference from external
communications. The Wi-Fi channel is selected based on the
signal strength and the channel quality in terms of Channel
State Information (CSI); the model proposes discarding the
most crowded wireless environments. In the second work, the
authors illustrate a channel assignment approach using a neural
network, namely Coherent Ising Machines (CIM), operating at
the quantum limit. The proposed centralized controller selects
the best channel by evaluating all the information periodically
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sent by the Access Points (APs); the optimization function is
formulated in order to maximize the throughput and minimize
the interference between APs.

Other two approaches based on machine learning techniques
are illustrated in [15] and [16]. In the first work, the authors
propose a combined mechanism that integrates specific ma-
chine learning algorithms and Time Slotted Channel Hopping
(TSCH) in order to select high-performance channels in a
ZigBee scenario. In specific, the authors evaluate 9 different
Multi-Armed Bandit (MAB) algorithms and illustrate how
their combination can improve the packet delivery ratio. In the
second work, the authors depict a channel and spreading factor
assignment to minimize the grid energy cost in a green LoRa
network, powered by both a renewable energy source and the
conventional grid. Based on machine learning approaches, the
proposed model is then tested under different scenarios.

Moreover, an approach based on advanced machine learning
algorithms is proposed in [17]. The authors illustrate a protocol
based on a deep learning technique that proposes to mitigate
interference through the analysis of the spectrum. The channel
is sensed, and then its spectrum is analyzed and classified by a
deep neural network that is responsible for detecting unusual
behaviours, such as jamming attacks. Another two approaches
concerning machine learning are presented in [18] and [19].
The first work depicts a decentralized learning-based channel
selection approach for IoT systems. The approach allows IoT
devices to select appropriate channels based on Acknowledge
(ACK) information among devices, with low computational
complexity. While the second work illustrates an approach for
performing the channel allocation based on graph analysis and
regression techniques to minimize the overlap among APs.
The interference is reduced through the combination of passive
measurements on the medium, such as the Received Signal
Strength Indicator (RSSI), and the analysis of the behaviour
of the neighbours and the community.

Moreover, channel selection models based on different
techniques are depicted in the literature; among them, two
works developed for a Bluetooth scenario are presented in
[20] and [21]. The first work illustrates an adaptive frequency
hopping technique based on linear programming, to prevent
interference while keeping the communication process going.
The authors propose an interference scheme based on the
packet status of a BLE connection and an algorithm that helps
to choose a channel based on probability. In the second work,
the authors investigate various interference levels and depict
an improved channel selection algorithm combining different
channel maps gathered from the environment; the model is
then tested analysing the relationship between transmission
failure probability and packet loss rate. Another recent ap-
proach is presented in [22]. The work illustrates a model that
supports assigning the best channel and selecting the spreading
factor to achieve the rate demand of end devices in LoraWAN-
based networks. The algorithm, simulated using Matlab, pro-
poses to improve throughput, reduce power consumption and
guarantee link reliability.

The last group of articles mainly focuses on the analysis
of collaboration between devices. Among them, in [23], the
authors propose a selection and allocation channel method

for wireless networks for two typical scenarios, i.e. enterprise
and residential. A bonding matrix is created to represent the
channel usage for a considered Access Point (AP) and its
neighbours. Then, a specific bandwidth is allocated for the
transmission and the channel with the lowest utilization is
selected. Another approach where the collaboration is ana-
lyzed is presented in [24]. The authors map the process of
interference minimization into a competitive game of Game
Theory, where the APs represent the players and the channels
depict the possible strategies. The competition of the wireless
network, i.e. the game, is tested with two different behaviours
of nodes, where the first demand lower collaboration, while
the other one assumes the collaboration between all the nodes
in order to reach a maximum global benefit.

However, to the best of our knowledge, even though such
advanced techniques depict acceptable results, these exhibit
several gaps. For example, many of the presented works are not
suitable for devices that are usually based on restricted and low
computation capabilities, and so, often, they require the use of
central entities or controllers, where complex algorithms are
implemented. Furthermore, the standard modifications repre-
sent another problem: several models propose the optimization
of physical or MAC frames format, which are actually already
well examined and accepted by the community. Moreover, two
other gaps are exhibited; the first one regards that many of
these works need an additional radio unit, which should be
configured in a monitor mode and can be used as support
for the master unit used to give network access to the nodes,
while the other lack considers that many works do not test their
approaches with interference and attacks, and so authors can
not estimate the resiliency in adverse scenarios. To sum it up,
in Table I, we summarize the more representative contributions
described above.

The approach proposed in this work aims to select the chan-
nels based on their reliability obtained considering a node’s
experience and the recommendations from its neighbours. The
needed information to compute the channel’s trust is integrated
into the standard, so the approach does not need additional
messages to be exchanged. Moreover, no central controllers
are required, and each device can independently estimate the
trustworthiness of the channel and its neighbours without an
additional radio unit.

C. Trust Mechanisms in Wireless Networks

Most of the contributions on trust approaches applied in
wireless networks are integrated into the routing mechanisms.
Very few papers focus on spectrum allocation or channel
selection based on the trust concept. One of the first contri-
butions in this direction is [25], where the authors propose a
trust algorithm that combines the trust value and the method
of spectrum allocation. During the spectrum allocation, the
reputation value is fixed and cannot be changed. In [26],
authors combine relay selection with channel conditions in-
formation to obtain a modified trust model, that will be
applied along with the source, the relay and the destination.
In [27], authors take advantage of the trust concept in order to
improve device-to-device (D2D) communications by gathering
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TABLE I
ANALYSIS OF THE EXISTING CHANNEL SELECTION MODELS.

Ref Approach Scenario No Standard
modification

No central
controllers

No additional
radio unit

Jamming
Attacks

[13] Deep Learning Wi-Fi ✓ ✓ - -
[14] Neural Network Wi-Fi - - ✓ -
[15] Probability Theory ZigBee ✓ ✓ ✓ -
[16] Reinforcement Learning LoRaWAN ✓ - ✓ -
[17] Deep Learning Wi-Fi ✓ ✓ - ✓
[18] Reinforcement Learning LoRaWAN - ✓ ✓ -
[19] Regression Analysis Wi-Fi ✓ ✓ - -
[20] Linear Algorithm Bluetooth - ✓ ✓ -
[21] Channel Map Bluetooth - ✓ ✓ -
[22] Mathematical Optimization LoraWAN - - ✓ -
[23] Linear Algorithm Wi-Fi - - ✓ -
[24] Game Theory Wi-Fi ✓ - ✓ -
Our

solution
Trustworthiness

Management
Multi Wireless
Technologies ✓ ✓ ✓ ✓

both Quality of Service (QoS) and spectrum sensing data and
weighting the received information using a social algorithm.
Another approach is illustrated in [28], where the authors
propose a reputation-based scheme for cooperative spectrum
sensing. The approach is based on the proper knowledge of the
spectrum and also relies on neighbourhood information. They
also consider Spectrum Sensing Data Falsification (SSDF)
attacks, based on false information regarding the sensing with
the main objective of deteriorating the network’s performance.
The method proposed in that work is close to the approach we
developed in this work, but the main important difference is
that we rely on a wireless network, and we do not consider a
cognitive radio context, with a distinction between primary and
secondary users. In general, studies have proved the validity of
the trust concept in wireless networks; however, it is necessary
to investigate the attack introduced with trust management, i.e.
attacks on recommendations, thanks to which the reputation
of good nodes is ruined when numerous malicious objects act
alone or collude together to start disseminating bad recom-
mendations intentionally [29].

III. SCENARIO

This paper proposes a trust management model able to
assist wireless nodes, both static and mobile, to choose the
most trustworthy channel to transmit on. The requirements
for the proposed approach are based on the distribution of
the nodes and the adoption of the Frequency Hopping Spread
Spectrum technique. For these reasons, technologies such as
IEEE 802.15.4, ad-hoc IEEE 802.11 and Z-waves can be
candidates for the trust-based framework. The innovative part
stands in involving all objects in the risk assessment to allow
the transmitter to select the best channel to communicate on
so as to avoid any possible jammer in the network.

In our modelling, the set of wireless nodes is represented
by N = {n1, ..., ni, ...nI} with cardinality I , where ni is the
generic node. We can then describe the subjective topology of
the network by making use of the set of distances of all the

nodes in the network from node ni as Di = {dij : j ̸= i}.
The neighbours of the generic node ni are represented in our
model by Ni = {nj ∈ N : dij < Ri} that is the set of nodes
that are within the transmission range Ri of node ni.

In the evaluated scenario, we are considering a wireless
spectrum as the resource to be monitored, so let C =
{c1, ..., cx, ...cX} be the set of X possible channels. The
goal of our paper is, for each node, to obtain a complete
and trustable vision of the spectrum usage thanks to the
neighbours’ recommendations to avoid malicious nodes that
could affect the transmission, i.e. jammers. Nevertheless, the
transmitter continuously monitors the transmission in terms of
Packet Delivery Ration (PDR) so that if its quality is below
a certain threshold due to interference from other nodes, the
communication is immediately suspended. Figure 1 shows in
detail the wireless network association procedure for the nodes
and the contribution of the proposed trust management model.

The whole process starts whenever an application is in-
stalled on a physical node, let us suppose node ni, needs to
transmit data to another node nj . At first, node ni sends probe
requests to discover wireless nodes within its proximity to send
data to, and if a response is received, the procedure moves to
the authorization phase. After the discovery and authorization
phases, node ni has to decide on which channel to transmit
its data: the proposed system makes use of the neighbours
of ni, i.e. the nodes in Ni, to identify the most reliable
channel. The selection algorithm takes into consideration the
sensing power and the experience of neighbours’ nodes and
evaluates their recommendations, represented by nz in Figure
1. Recommendations are integrated into the beacon frames,
which are continually exchanged by wireless nodes. More
details about beacon frames and recommendations will be
illustrated in the next Section. As soon as the best channel
is selected, the association phase starts and so node ni com-
municates the chosen channel to the receiver. The last phase
depicts the communication, in which the nodes transfer data
and the channel is continuously monitored to guarantee the
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Fig. 1. Wireless association process and trust management model flowchart.

best communication in terms of PDR.
When the transmission is over, the trustworthiness values

are updated. Node ni computes the trustworthiness of its Ni

neighbours on the basis of its own experience and of their
channel recommendations; in particular, node ni evaluates the
communication over the chosen channel ewi,x for transaction w
so that Ei,x is the set of all the evaluation transaction of node
ni on channel cx. Moreover, node ni assigns a feedback fw

ij to
all its neighbours that provide information about the channel
cx, so that Fij is the set of all feedback assigned from node ni

to node nj . Both ewi,x and fw
ij are associated with a timestamp

tw, so that it is possible to know when they were generated
and eventually discard them if they are outdated.

Finally, node ni updates the neighbours’ trustworthiness
values based on the assigned feedback: we refer to this
trustworthiness with Tij , i.e. the trustworthiness of node nj

seen by node ni. The details on how Tij is computed are
explained in Section IV.

IV. TRUST MANAGEMENT MODEL

According to the presented scenario, we propose a de-
centralized model, where each node calculates and stores
information regarding its own channel experiences and the
feedback needed to calculate the trustworthiness level of its
neighbours locally, so to have its own opinion about the
channels’ status. This is intended to avoid a single point of
failure and infringement of the values of trustworthiness and to
easily identify malicious attacks that change their behaviours
based on the requester, such as the Discriminatory Attack.
Whenever a node ni has data to transmit, it first needs to
establish a connection with the recipient node on a set channel.
In order to select the most reliable transmitting channel,
node ni senses the received power Pi on each channel cx
of interest, namely Pi,x, and also consider its neighbours’
evaluations regarding their past experience, integrated into the
probe requests, on all the channel in order to evaluate the risk
Ri,x associated to the transmission on each channel.

TABLE II
EXPERIENCES OF NODE nz

Channel
1 ... x ... X

Tr
an

sa
ct

io
ns w = 1 e1z,1 e1z,x e1z,X

...
w ewz,1 ewz,x ewz,X
...
w = |E∗

z,x| e
|E∗

z,x|
z,1 e

|E∗
z,x|

z,x e
|E∗

z,x|
z,X

Node ni is then able to weight the received data and
compute the resulting power for channel cx as follows:

Px = Pi,x +Ri,x (1)

where the computed risk is used as an adjustment to the
perceived power, to take into account the possibility of jammer
nodes operating in that channel. Node ni will consider the
channel as free for transmission if the combined received
power is lower than a threshold. The risk assessment is
computed taking into account both node ni’s experience and
the experience of its neighbours:

Ri,x = Ui,x + UNi,x (2)

where Ui,x expresses the average experience of node ni

while UNi,x accounts for the experiences of all its neighbours,
when using channel cx over a limited time window. This
is useful to take into account that channel conditions can
vary over time, so we can discard any outdated evaluations.
Let E∗

z,x =
{
∀ewz,x ∈ Ez,x : (tact − tw) < TH

}
be all the

evaluations received within the last TH seconds in channel cx
for the generic node nz . We can express its average experience
as follows:

Uz,x =

|E∗
z,x|∑

w=1

ewz,x

/
|E∗

z,x| (3)

where w indexes from the latest transaction (w = 1) to the
oldest one (w = |E∗

z,x|) within the considered time limit as
shown in Table II. Obviously, the number of transactions in
each channel is hardly the same, so the resulting table will not
be a matrix.

Node ni will then receive and store the experiences Uz,x

from all its neighbours related to the different channel in C,
as shown in Table III and has to aggregate them in order to
derive the risk associated to each channel. To this, node ni

will weight the received recommendations based on the trust
level of its neighbours, as follows:

UNi,x =

|Ni|∑
k=1

TikUk,x

/ |Ni|∑
k=1

Tik (4)

The experiences Uk,x can be integrated into the body of
beacon frames that are transmitted periodically by the wireless
standard, for example in the optional fields depicted in the
IEEE 802.11 [30]. In specific, the number of octets needed to
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TABLE III
AVERAGE EXPERIENCE OF NODE ni’S NEIGHBOURS

Neighbours
n1 ... nk ... n|Ni|

C
ha

nn
el

s

c1 U1,1 Uk,1 U|Ni|,1
...
cx U1,x Uk,x U|Ni|,x
...
cX U1,X Uk,X U|Ni|,X

send the recommendation for the channels strictly depends on
their accuracy.

Finally, node ni will select the channel with the minimum
resulting power Px to communicate its data. During the
transmission, node ni verifies the quality of transmission by
computing the relative PDR. If the transmission is degraded,
i.e. the computed PDR is below 60%, node ni immediately
suspends the transmission. In this case, node ni checks for
other available channels and, if any, changes the transmission
channel so that the communication between the two nodes can
continue in the new channel.

When the transmission is over, node ni evaluates the used
channel based on the PDR value. Evaluation is represented by
ewi,x, which refers to each transaction w and it is expressed
in a continuous range (ewi,x ∈ [0, 1]): ni rates 1 if it is fully
satisfied by the transaction, i.e. if the PDR is 100%, and 0
otherwise, i.e. if it has to switch channel due to PDR less
than 60%. However, in a realistic scenario, the PDR is hardly
100%, so in order to evaluate the communication, it is possible
to implement a listening phase so that the transmitting node
can obtain a reference PDR of the environment and then it can
re-scale the feedback taking into account the reference PDR
as the maximum value.

Intermediate values of the evaluation ewi,x are computed
considering the line through these two points, i.e. maximum
and minimum allowed PDR, as follows:

ei,x = 2.5PDR− 1.5 (5)

After the evaluation of the channel, ni computes the feed-
back fw

iz to be assigned to the neighbours that have contributed
to the computation of the resulting power Px by providing
their average experience on the channel Uz,x, so as to re-
ward/penalize them for their advice. According to Equation
6, if a node gave a positive experience of the channel, it
receives the same evaluation as the channel, namely a positive
feedback if the communication was satisfactory, ei,x ≥ 0.5,
and a negative one otherwise, ei,x < 0.5; instead, if the generic
neighbour nz gave a negative evaluation, then it receives
negative feedback if the communication was satisfactory and
a positive one otherwise. Note that the feedback generated by
node ni are stored locally and used for future trust evaluations.

fw
iz =

{
ei,x if Uz,x ≥ 0.5

1− ei,x if Uz,x < 0.5
(6)

According to the proposed model, let F∗
iz =

TABLE IV
NS-3 SETUP PARAMETERS

Parameter Value
Area of simulation (40x40)m
Number of packets 50
Packet dimension 1.5 kB
Protocol IEEE 802.11g
Frequency 2.4 GHz
Number of channels 13
Bandwidth 22 MHz
Number of communications 56 per node

{∀fw
iz ∈ Fiz : (tact − tw) < TH} be all the feedback

assigned within the last TH seconds. For the generic node nz ,
the transmitting node can compute the trust value of another
node as follows:

Tiz =

|F∗
iz|∑

w=1

fw
iz

/
|F∗

iz| (7)

where w indexes from the latest transaction (w = 1) to the
oldest one (w = |F∗

iz|) within the considered time limit.

V. EXPERIMENTAL EVALUATION

In this Section, we will test the proposed trust algorithm in
a network with one or more jammers and show how it is able
to prevent disturbance and help nodes select the best wireless
channel.

A. Simulation Setup

A simulation setup using the NS-3 network simulator has
been developed to generate a peer-to-peer network of objects
in a (40x40)m area. Each node randomly communicates with
others, and each interaction consists of 50 packets with a
dimension of 1.5 KB each, for a total of 75 KB of data.
Information is exchanged according to the Wi-Fi 802.11g
protocol in the 2.4 GHz microwave band, which makes use
of 13 channels with a bandwidth equal to 22 MHz. We
are considering an ad hoc scenario, where only peer-to-peer
communications are allowed, i.e. there is no presence of
an Access Point. The physical layer implements the AARF
Rate control algorithm [31] in order to provide multi-rate
capabilities, so each device is able to adapt its transmission rate
dynamically. To test the validity of our approach, we analyze
1568 communications that correspond to 56 communications
per node; all the following results consider a process with this
value of total communications. Table IV summarizes the used
configuration for the parameters in the NS-3 simulator.

Each node can play the role of either a requester or a
provider, and the information travels from the provider to the
requester in the selected channel. In these terms, the com-
munication involves two different nodes: the node that sends
the information, i.e. the provider, and the other one that uses
the data, i.e. the requester. If the quality of the transmission
drops, e.g. due to a jammer attack or a high interference, a new
channel is selected according to the implemented algorithm,
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and the interaction starts from the last received packet. In
order to test the performance of the algorithm, we make use
of different jammers. All the jammers implement a reactive
strategy, targeting only packets that are already on the air
and disturbing only communications that have already started.
Therefore, two different behaviours are implemented: in the
first one, called static behaviour, a jammer can attack only a
specific channel, while in the second one, namely dynamic
behaviour, the jammer can change the attacked channel by
jumping into different channels. In this work, we focus on a
random selection of the channels to be attacked.

As described in Section IV, each node is able to evaluate
the trust level of its neighbours based on the received rec-
ommendations. Two main types of recommendation nodes are
implemented in the network: one is always benevolent, so a
node nz provides only good recommendations, based on its
experience ez,x, while the other one is malicious, according
to which a node tries to disrupt the network by sending
false recommendations, i.e. (1 − ez,x). The trust value of
each recommendation node is calculated in an interval of
[0,1], where if trust reaches 0, the neighbour is classified as
malicious; otherwise, it is considered as benevolent, with trust
equal to 1. The neighbours’ reputation, i.e. their trust value, is
used to weigh their recommendations, and it is useful to help
the channel selection algorithm in the trust model.

We evaluate the performance by analyzing three metrics:
a) the packet delivery ratio (PDR), b) the number of channel
failures and c) the percentage throughput (THR). The PDR is
expressed as the ratio of the total number of packets delivered
to the total number of packets sent from the source node
to the destination, and it is used to check the quality of
each interaction. The number of channel failures refers to the
number of times the device is forced to change the Wi-Fi
channel due to a jammer attack or high interference. Finally,
the THR represents how information can be delivered in a
given amount of time and is usually presented as bit-per-
second. We want to clarify that, in our simulations, the THR is
influenced only by the time necessary for the communication
between the two nodes, and the amount of information does
not affect the score because every dropped packet is re-
transmitted. Therefore, all the required data reach a destination
at the end of each simulation, notwithstanding the Wi-Fi
channel selection method used. In each experiment, we express
the THR in terms of percentage regarding its highest value.

B. Trust Model Functioning

This section illustrates the functioning of the proposed
channel selection algorithm and shows how communications
can be disrupted by jamming attacks. We introduced it to show
the rationale of our work. As follows, the scenario is developed
with a limited number of 8 nodes that communicate with each
other in a Wi-Fi area, which is busy with other external com-
munications. Only 3 free channels are available for devices,
and the channels can be affected by one or more reactive
static jammers or by noise or high interference (e.g. different
communications, such as Bluetooth). Each node produces data
with a rate of 17 Kpbs and does not consider experiences

TABLE V
TRUST MODEL FUNCTIONING SCENARIO PARAMETERS

Parameter Value
Number of nodes 8
Free channels 3
Data rate 17 Kbps
Number of jammers [1, 2, 3]
Jammer hop frequency Static
Temporal limit to compute experience
and recommendations 700 s

Fig. 2. Initial channel power and PDR analysis for a communication adopting
the three analysed algorithms.

older than TH = 700s. Table V summarizes the specific
scenario parameters used as motivation and explanation of the
functioning of the system.

The proposed trust model is compared with two other
approaches, i.e. a random approach, where the channel to
communicate on is selected randomly and an approach where
the channel selection is based only on the direct experiences of
each node. Figure 2 shows a comparison from the perspective
of a single node. The first graph illustrates the initial channel
powers measured by the node: only channels 5, 10 and 13 are
available and free, i.e. they have a power below −93 dBm, at
time 0 s. Moreover, a reactive static jammer is employed in this
simulation, which affects channel 5, while channels 10 and 13
are affected by other no Wi-Fi communications starting from
90 s and 170 s, respectively. All the approaches are able to
discard the channels with low performance, i.e. with a PDR
lower than 0.6, and select another channel. Each approach
selects a new Wi-Fi channel: the random model picks a free
random channel, while the other two approaches are based
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Fig. 3. Cumulative THR increasing the number of jammers for the three
approaches.

on the node’s direct experience and on the combination of
experience and recommendations from neighbours. The graphs
illustrate how the random approach is the worst in terms of
performance due to the random selection of channel 5 affected
by the jammer. The trust approach, based only on experience,
can learn about past interactions and selects channel 5 only
once. The last graph shows how the trust model, based on
direct experience and recommendation, discards channel 5
from the beginning and selects a new channel rather than
10 and 13. Thanks to recommendations from neighbours, the
node takes advantage of other nodes’ past experiences and it
is able to select another channel, i.e. channel 12, which offers
it better performance even if it is involved in another Wi-Fi
communication.

The next set of simulations examines the models’ be-
haviours by increasing the number of jammers. Figure 3 illus-
trates the cumulative THR for different experiments with 1, 2
and 3 reactive static jammers that attack channels 5, 10 and
13, respectively. The graphs exhibit how the random approach
significantly degrades its performance with the increasing
number of jammers; this is due to the frequent selection of the
channels affected by jammers. The two trust approaches that
consider the experience and the combination of experience and
recommendations show the best performance. In the first one,
each node chooses the attacked channels only once, and thanks
to the mechanism of experience, other channels are selected
for the next interactions. Concerning the trust approach that
considers recommendations, a node that selects an attacked
channel informs its neighbours so that the same information
is shared among all the nodes and this approach is able to
reach 100% of transferred data in less time w.r.t. the other
two approaches.

C. Model Performance

In this Section, we evaluate the performance of the proposed
trust approach in a complete scenario. We make use of a net-
work of 28 nodes that communicate with each other in a free
WiFi area without external communications; all 13 channels
can be used, and each node evaluates the best channel based on
the employed approach. The performances are analyzed with
different data rates and several numbers of jammers. Moreover,
different jammer strategies are adopted, i.e. static and dynamic

TABLE VI
MODEL PERFORMANCE SCENARIO PARAMETERS

Parameter Value
Number of nodes 28
Free channels 13
Data rate [17, 24, 40, 120] kbps
Number of jammers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Jammer hop frequency Static/Dynamic
Temporal limit to compute ex-
perience and recommendations [300, 700] s / No limit

% of malicious nodes [0, 20, 40, 60, 80, 100] %
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Fig. 4. Channels failure per node increasing the number of static jammers
for the three approaches with different values of temporal limit.

ones and various temporal limits to computing experience
and recommendations are examined. Finally, in the last set of
simulations, several percentages of malicious recommendation
nodes are considered in order to evaluate the impact of attacks
on recommendations for the proposed trust approach. Table
VI summarizes the configuration of the simulation parameters
in the general scenario and the different values that can be
assigned to each one.

The focus of the first set of simulations is to test how
the three different approaches perform while increasing the
number of jammers. Each jammer presents a reactive static
behaviour, so it can attack a specific channel only if there
are packets in the air. We analyze the behaviours for dif-
ferent values of the temporal limit to compute experience
and recommendations. Figure 4 illustrates how the random
approach depicts the worst behaviour due to the high number
of times that selects the channel affected by a jammer. On
the other hand, thanks to the analysis of past experience,
the Trust - Experience approach performs better; moreover,
the higher the temporal limit, the higher the performance
against a static jammer that does not change the attacked
channel. These types of attacks are better managed by the
Trust - Experience and Recommendations approach, in which
each node communicates the attacked channel to neighbours
through recommendations; this dissemination of information
allows the fast detection of the compromise channels, and so
the selection of the best channels.

The next set of simulations examines the impact of the data
rate for the three analyzed approaches. To this, we make use
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Fig. 5. Impact of Data Rate ad the variation of the number of static jammers for the three approaches.
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Fig. 6. Channels failure per node increasing the number of dynamic jammers
with a hop frequency equal to 600s and considering different values of
temporal limit for the trust approaches.

of a temporal limit of 700s for the two approaches based
on trust, which does not strictly impact this experimentation.
Figure 5 illustrates how with the increase of the data rate,
the throughput has a different impact for all the approaches.
We consider the throughput in percentage, where each subplot
corresponds to the specific scenario of data rate. In general,
the data rate has a direct impact on the throughput, and, in
the absence of jammers, the greater the data rate, the greater
the throughput, thanks to the shorter time required to send
information. On the other hand, every time a jammer damages
a communication, the two affected nodes, i.e. the requester
and the provider, have to change the channel and proceed to
a new association phase accordingly. These phases directly
impact the throughput, and the time needed for communication
increases. However, the approaches based on experience and
recommendations overcome the classic random approach and,
with up to 5 affected channels, the proposed approach is able
to keep the throughput over 80%.

The focus of the next set of simulations is to test how the
proposed model works with the dynamic behaviour of the jam-
mers. We suppose that every 600s, a jammer changes its target
to another channel, randomly selected. Figure 6 illustrates how
the average of channel failures per node increases with the
number of dynamic jammers for the three approaches and for

different values of the temporal limit. The results exhibit how
the trust approach, based on experience and recommendations,
overcomes such attacks and shows how the approach is able
to adapt to the changes in the jammer’s behaviour quickly.
The best performance is represented with a value of temporal
limit equal to 700s, which is closest to the hop frequency
of jammers and is the fastest one to recognize the dynamic
behaviour rather than the other two values.

We now want to analyze the results varying the temporal
limit needed to evaluate the experience and the recommen-
dations for the two trust approaches. In order to analyze
the relationship between the jammer hop frequency and the
temporal limit, we make use of a higher data rate, i.e. 40
Kbit/s, since the throughput is more influenced by the temporal
window. Figure 7 illustrates the percentage of throughput for
different values of jammer hop frequency at increasing values
of temporal limit. The graphs show how the temporal limit
directly impacts only the trust approaches, while the random
approach keeps a constant behaviour. As already demonstrated
by the previous simulations, the best performance in terms
of throughput is depicted for values of the temporal limit,
which are close to the frequency hop of the jammers, while a
temporal limit equal to 0 corresponds to a random approach,
in which the nodes can not take advantages of the past
information. Low values of temporal limit exhibit the worst
performance due to the node that has to reset its memory and
select the channels starting from the beginning every time. On
the other side, values of limits much greater than the frequency
hop can degrade the throughput in the same way. For this
reason, a preliminary study of the attackers could improve the
performance of the trust approaches, which, however, show
the best results compared to the classical Wi-Fi approach.

Finally, the last set of simulations is aimed at understanding
how the proposed approach reacts when neighbours nodes
implement the two primary attacks on the recommendations.
In the first one, namely single attack, a malicious node
provides false recommendations to decrease the chance of
good channels being selected for Wi-Fi communications. This
is the simplest attack on recommendations, in which each
node acts maliciously without considering the behaviour of
its neighbours and provides false recommendations regardless
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of the destination node. The second attack, namely collusive
attack, represents the worst behaviour. In this attack, a group
of nodes works together to increase the reputation of a bad
channel, i.e. attacked by jammers, and so increase its chances
of being selected as the communication channel; this repre-
sents the worst attack on recommendations in which malicious
nodes collaborate together to maintain their reputation. Figure
8 illustrates the impact of such attacks on recommendations
for the three different approaches in a scenario with 4 static
jammers. The graph depicts how the attacks affect only the
trust approach based on the recommendations, while the other
two approaches have a constant behaviour. We can see how
the percentage of throughput decreases with increasing the
percentage of malicious nodes and reaches the lowest value
with respect to the approach based on experience, even if better
than the classical random approach. This is due to the neces-
sary time to detect the attacks; when a node detects attacks on
recommendations, it discards the malicious nodes after 1 or 2
interactions or even more for the collusive attack. This needed
time has a direct impact on the performance and so provokes a
reduction of throughput. So, for a high percentage of collusive
attackers greater than 70%, the mechanism of recommendation
falls and substantially reduces the percentage of throughput.
However, even if the percentage of malicious nodes is high,
the proposed approach performs well in comparison to the
classic random approach. Finally, we want to point out that

security mechanisms could prevent nodes from becoming
malicious, i.e. jammers or bad recommenders, but if this
happens, the information sent by the node is false but legit
as it is the response to a query from the requester and can
not be discarded. For this reason, trustworthiness management
models are required to identify such nodes and should work
together with security mechanisms to protect the network.

VI. CONCLUSIONS

In this article, we have proposed a channel selection method
for wireless communications based on trust policies. The
illustrated approach, developed for objects with low computa-
tional capabilities, operates as a support for several wireless
standards and does not require any additional device radio
unit. In specific, the proposed model is developed for wireless
technologies based on the distribution of nodes, in which an
important role is represented by the association phase and the
main requirements are based on the adoption of a channel
hopping mechanism. Applicable to a generic wireless network,
each node is able to select the most trustworthy channel to
transmit on, thanks to the neighbours’ recommendations and
its own experience.

The proposed approach has been tested against different
types of security threats, in specific concerning interference
from other networks or by simultaneous transmissions, and
moreover against the major attacks to which wireless networks
are particularly prone, i.e. the jamming attack. All the jam-
mers implement a complex reactive strategy, disturbing only
communications that have already started, and two different
behaviours are considered: a static behaviour, in which a
jammer can attack only a specific channel, and a dynamic
one, where the jammer can change the attacked channel by
jumping into different channels.

Furthermore, we have compared our solution with two other
approaches, i.e. the classical approach described in the 802.11
standards and another one that considers only the past expe-
riences of nodes. Experiments evaluation has shown that our
approach is able to outperform the other two approaches when
considering a network with different types of interference
and jamming attacks. Future further extensions that are worth
studying include the modification of the approach in order to
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be implemented in an AP scenario, in which all the wireless
devices communicate with each other through an access point.
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