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Abstract. We show that intuitionistic logic is deductively equivalent to Connexive Heyt-

ing Logic (CHL), hereby introduced as an example of a strongly connexive logic with an

intuitive semantics. We use the reverse algebraisation paradigm: CHL is presented as the

assertional logic of a point regular variety (whose structure theory is examined in de-

tail) that turns out to be term equivalent to the variety of Heyting algebras. We provide

Hilbert-style and Gentzen-style proof systems for CHL; moreover, we suggest a possible

computational interpretation of its connexive conditional, and we revisit Kapsner’s idea of

superconnexivity.
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1. Introduction

Despite being one of the earliest traditions to appear in the development
of contemporary nonclassical logics (see e.g. [35]), connexive logic has gone
under the radar for quite a while, overshadowed by modal and relevance
logics in the debate over entailment and other philosophically driven appli-
cations of logic. However, the last two decades have witnessed a spectacular
resurgence of interest for this approach [36,39,51]. Connexive logics embrace
some theses about implication and negation that fail in classical logic, yet
are intuitively appealing to many:

• ¬(ϕ → ¬ϕ) (Aristotle 1)

• ¬(¬ϕ → ϕ) (Aristotle 2)

• (ϕ → ψ) → ¬ (ϕ → ¬ψ) (Boethius 1)

• (ϕ → ¬ψ) → ¬ (ϕ → ψ) (Boethius 2)

It is precisely the presence of the above theorems that qualifies a logic
as connexive, together with the fact that implications should not always be
convertible. The latter desideratum is crucial, because connexive logicians
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are adamant that they are after some notion of implication, not some notion
of logical equivalence. These requirements are aptly summarised by Wansing
[51], whose definition of a connexive logic we take verbatim (although with
some notational changes):

Let L be a language containing a unary connective ¬ (negation) and
a binary connective → (implication). A logical system in a language
extending L is called a connexive logic if [Aristotle 1, Aristotle 2,
Boethius 1 and Boethius 2] are theorems and, moreover, implication
is non-symmetric, i.e., (ϕ → ψ) → (ψ → ϕ) fails to be a theorem (so
that → can hardly be understood as a bi-conditional). This is the now
standard notion of connexive logic.

Some authors like Kapsner [31], have contended that these minimal fea-
tures are insufficient to meet the intuitive demand of connexivity. Something
more is required, namely, that formulas of the form ϕ → ¬ϕ behave like the
connexive analogue of contradictions, while formulas of the form ϕ → ψ
and ϕ → ¬ψ should play the role of connexive contraries. Kapsner says
that a connexive logic is strongly connexive if it satisfies the two additional
conditions:

• In no model, ϕ → ¬ϕ is satisfiable (for any ϕ);

• In no model, ϕ → ψ and ϕ → ¬ψ are simultaneously satisfiable
(for any ϕ,ψ).

Strong connexivity, however, is not so easy to implement in practice.
Omori and Wansing [39, p. 382] observe:

The only strongly connexive logic, to the best of our knowledge, is the
heavily criticized system of Angell-McCall, and it remains to be seen
if there are strongly connexive systems with more intuitive semantics.

In this paper, we introduce and investigate a strongly connexive logic
– Connexive Heyting Logic – that is algebraisable in the sense of Blok and
Pigozzi, hence it occupies the highest rank in the so-called Leibniz hierarchy
in abstract algebraic logic [23]. More to the point, we follow the reverse al-
gebraisation approach, as advocated e.g. in [12,19]: We introduce a suitable
class of algebras – indeed, a subvariety of Sankappanavar’s semi-Heyting
algebras [42] – whose properties have a pronounced connexive flavour, en-
coding into its axioms enough deductive power to force the algebraisability
of its assertional logic. It is precisely by studying the algebraic properties of
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such connexive Heyting algebras, and in particular the presence of a quater-
nary deductive term (see below), that we conjectured that they might have
been term equivalent, as a variety, to Heyting algebras, and then that Con-
nexive Heyting Logic might have turned out to be deductively equivalent to
intuitionistic logic. Both conjectures were indeed correct, as shown below.

The strategy we followed in establishing these results is evidently in-
debted to a fundamental paper by Spinks and Veroff [44,45], who prove
that Nelson’s constructive logic with strong negation is deductively equiva-
lent to a certain substructural logic. These similarities are even alluded to
in the title of the present work.

Let us now summarise the discourse of the paper. In Section 2 we re-
hearse a few preliminary notions of abstract algebraic logic and universal
algebra needed in the sequel. In Section 3, which is the core of this work,
we introduce the variety of connexive Heyting algebras, study its properties,
and show that they are term equivalent to Heyting algebras. In Section 4 we
take advantage of this result to establish a deductive equivalence between
Connexive Heyting Logic (the assertional logic of connexive Heyting alge-
bras) and intuitionistic logic. Putting to good use such an equivalence, we
provide Hilbert-style and Gentzen-style calculi for Connexive Heyting Logic.
Some philosophical considerations on the computational meaning of connex-
ive implication and on Kapsner’s notion of superconnexivity are reserved for
Section 5. We conclude in Section 6. We rerouted the proofs of some lemmas
and theorems to a final Appendix to avoid, as far as possible, to interrupt
the flow of the article.

2. Preliminaries

We assume a basic knowledge of universal algebra and abstract algebraic
logic on the part of the reader, who is referred to [13] and to [23], respectively,
for any unexplained concept or symbol. None the less, a few notions and
results that are important for what follows and may be relatively unfamiliar
to the intended readership of this paper are recapitulated in this section.
We also assume some familiarity with the fundamental notions of connexive
logic, for which the reader can consult [51].

2.1. Equivalence of Logics

It is nowadays customary to view (propositional) logics as ordered pairs
of the form L = 〈FmL,�L〉, where FmL is the formula algebra of some
propositional language L and �L⊆ ℘(FmL) × FmL is a binary relation
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obeying the following conditions for all Γ, Δ ⊆ FmL, ϕ, ψ ∈ FmL, and σ
an L-substitution (an endomorphism of FmL):

• Γ �L ϕ whenever ϕ ∈ Γ. (Reflexivity)

• If Γ �L ϕ and Γ ⊆ Δ, then Δ �L ϕ. (Monotonicity)

• If Δ �L ϕ and Γ �L ψ for every ψ ∈ Δ, then Γ �L ϕ. (Cut)

• If Γ �L ϕ, then σ(Γ) �L σ(ϕ). (Substitution-invariance)

The first three demands in the previous list define the general concept
of a consequence relation; according to the fourth condition, whether a sen-
tence logically follows from a set of sentences should not depend on the
subject matter of the sentences under consideration, but merely on their
logical form. However, one might further contend that the definition of log-
ical consequence should not be tied to any pre-determined type of syntactic
unit. In other words, we should make room for consequence relations among
sequents or equations, alongside the traditional ones among formulas, and
devise at the same time a notion of equivalence according to which relations
on different syntactic units can be taken to represent the same logic.

In a 2006 paper [5], Wim Blok and Bjarni Jónsson take a decisive step.
They suggest to replace the formula algebra in the traditional definition of
a consequence relation by an arbitrary set:

Definition 1. An abstract consequence relation on a set A is a relation
� ⊆ ℘(A) × A obeying the following conditions for all Γ, Δ ⊆ A and for all
a ∈ A:

• Γ � a whenever a ∈ Γ. (Reflexivity)

• If Γ � a and Γ ⊆ Δ, then Δ � a. (Monotonicity)

• If Δ � a and Γ � b for every b ∈ Δ, then Γ � a. (Cut)

The absence of an analogue of substitution-invariance in this definition is
not that surprising. After all, in a set there is no structure to be preserved,
and consequently no applicable concept of an endomorphism. Blok and
Jónsson’s valuable insight is the observation that the application of substi-
tutions to propositional formulas (or, for that matter, equations or sequents)
behaves like a multiplication by a scalar. In fact, if L is a language, ϕ is an
L-formula and σ1, σ2 are L-substitutions, then (σ1 ◦ σ2) (ϕ) = σ1 (σ2 (ϕ)),
and if ι is the identity L-substitution, ι (ϕ) = ϕ. Generalising this example,
we are led to the following abstract counterpart of a substitution-invariant
consequence relation on formulas.

Definition 2.
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• Let A be a set and M = 〈M, ·, 1〉 a monoid. A is a left M-act if there is a
map � : M ×A → A s.t. for all m1,m2 ∈ M and all a ∈ A, (m1 · m2)�a =
m1 � (m2 � a) and 1 � a = a.

• An abstract consequence relation � on a left M-act A is action-invariant
if for all X ∪ {a} ⊆ A and m ∈ M , whenever X � a we also have that
{m � x : x ∈ X} � m � a.

Next, Blok and Jónsson define a notion of equivalence between action-
invariant abstract consequence relations:

Definition 3. Let M be a monoid, and let �1 and �2 be two action-
invariant abstract consequence relations on the left M-acts A1 and A2,
respectively. �1 and �2 are equivalent if there are mappings τ : A1 → ℘ (A2) , ρ :
A2 → ℘ (A1) such that for every Γ ∪ {a} ⊆ A1, every b ∈ A2 and every
m ∈ M :

• Γ �1 a iff τ (Γ) �2 τ (a);

• b 
�2 τ (ρ (b));

• τ(m � a) = m � τ(a) and ρ(m � b) = m � ρ(b).

Two special cases of this definition are worth flagging. The former is the
celebrated notion of algebraisability of a logic, due to Blok and Pigozzi [8].
The latter is the notion of Gentzen algebraisability of a sequent calculus,
which presents different incarnations in the algebraic logic literature; the
one we use in this paper is, essentially, to be found in the work of James
Raftery [41].

Definition 4.

• Let L = 〈FmL,�L〉 be a logic of language L, and K be a class of similar
algebras of the same language. L is algebraisable with equivalent algebraic
semantics K if �L and the equational consequence relation �K are equiva-
lent as abstract consequence relations. The sets of all equations τ(ϕ) and
of all formulas ρ(ϕ,ψ) are called a system of defining equations and a
system of equivalence formulas, respectively, for L and K.

• Let C be a sequent calculus of language L, and K be a class of similar
algebras of the same language. C is Gentzen algebraisable with equiva-
lent algebraic semantics K if the derivability relation �C of C and �K are
equivalent as abstract consequence relations.

As general and wide-ranging as it is, this definition does not quite capture
another very natural notion of equivalence between logics, which is roughly
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an analogue of the algebraic relation of term equivalence between varieties
(see e.g. [14,25,40] for different precisifications of this idea). The next special
case, the only one which is needed for our current purposes, is a common
instance of all these notions. For the concept of a translation (of which we
also need here only a very special case), see e.g. [15,29].

Definition 5. Let L1 = 〈FmL,�L1〉 and L2 = 〈FmL,�L2〉 be two logics
of language L. A (definitional) translation of L1 to L2 is a map τ such that
τ(x) = x for all x ∈ V arL, and such that for any n-ary connective g in L
there is a (not necessarily primitive) connective gτ in L such that for any
L-formulas ϕ1, ..., ϕn, τ(g(ϕ1, ..., ϕn)) = gτ (τ(ϕ1), ..., τ(ϕn)).

Definition 6. Let L1 = 〈FmL,�L1〉 and L2 = 〈FmL,�L2〉 be two logics of
language L. L1 and L2 are deductively equivalent if there exist two transla-
tions τ (of L1 to L2) and ρ (of L2 to L1) such that for all Γ ∪ {ϕ} ⊆ FmL,

(1) Γ �L1 ϕ iff τ (Γ) �L2 τ (ϕ);

(2) τ (ρ (ϕ)) 
�L2 ϕ.

2.2. Complements of Universal Algebra

A thriving literature is available in universal algebra on varieties with a
good theory of ideals (e.g., groups, rings, Boolean algebras). There is some
consensus to the effect that such varieties, in case the language contains
at least one constant, coincide with varieties that are both subtractive and
point-regular (see e.g. [26]). The relevant definitions follow.

Definition 7. A variety V, whose language L includes a constant 1, is said
to be:

• 1-subtractive iff for any congruences θ, ϕ on any A ∈ V, 1/θ ◦ ϕ =
1/ϕ ◦ θ;

• 1-regular iff for any congruences θ, ϕ on any A ∈ V, 1/θ = 1/ϕ implies
θ = ϕ;

• 1-ideal determined iff it is both 1-subtractive and 1-regular.

We say that V, of language L, is subtractive (resp. point regular, ideal de-
termined) if it is 1-subtractive (resp. 1-regular, 1-ideal determined) for some
constant 1 in L. All the above properties are Maltsev properties; moreover,
they are crucially related to properties of the ideals and of the assertional
logics of the varieties at issue. The universal algebraic definition of an ideal,
as well as the definition of an assertional logic, are given below.

Definition 8. Let V be a variety whose language L includes a constant 1.
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(1) A formula ϕ (−→x ,−→y ) of language L is a V-ideal formula in −→x iff �V
ϕ (1, ..., 1,−→y ) ≈ 1.

(2) A nonempty subset J of the universe of an A ∈ V is a V-ideal of
A (w.r.t. 1) iff for any V-ideal formula ϕ (−→x ,−→y ) in −→x we have that
ϕA

(−→a ,
−→
b

)
∈ J whenever −→a ∈ J and

−→
b ∈ A.

Definition 9. Let V be a variety whose language L includes a constant 1.
The 1-assertional logic of V is the logic LV = 〈FmL,�LV 〉, where

Γ �LV ϕ iff {ψ ≈ 1 : ψ ∈ Γ} �V ϕ ≈ 1.

For 1-subtractive varieties, we have the following result [3,26]:

Theorem 1. For V a variety of algebras whose language L includes a con-
stant 1, the following are equivalent:

(1) V is 1-subtractive;

(2) There is a binary formula ϕ(x, y) in FmL such that �V ϕ(1, x) ≈ x
and �V ϕ(x, x) ≈ 1.

For 1-regular varieties, we have instead [3,19,22]:

Theorem 2. For V a variety of algebras whose language L includes a con-
stant 1, the following are equivalent:

(1) V is 1-regular;

(2) LV is algebraisable with V as equivalent algebraic semantics;

(3) There are binary formulas ϕ1(x, y), ..., ϕn(x, y) in FmL such that x ≈
y 
�V ϕ1 (x, y) ≈ 1, ..., ϕn (x, y) ≈ 1.

The 1-assertional logic LV of a 1-regular variety V can be effectively
axiomatised provided an axiomatisation of V and a system of equivalence
formulas for L and V are both known [12, Thm. 8.0.9]:

Theorem 3. Let V be a 1-regular variety of language L, and let ρ (ϕ, ψ) be
a system of equivalence formulas for LV and V. Then LV is axiomatised by
the following axioms and rules:

A1 �LV ρ (ϕ,ϕ);

A2 ϕ, ρ (ϕ,ψ) �LV ψ;

A3 ρ (ϕ,ψ) �LV ρ (ψ,ϕ);

A4 For each k-ary L-connective ck,
⋃

i≤k ρ (ϕi, ψi) �LV ρ
(
ck (−→ϕ ) , ck

(−→
ψ

))
;

A5 ϕ 
�LV ρ (ϕ, 1);
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A6 For each axiom of V ϕ ≈ ψ,

�LV ρ (ϕ,ψ) .

Clearly, ideal determined varieties possess the desiderable features of both
subtractive and point-regular varieties. In particular, ideals correspond bi-
jectively to congruences in any member of such [8,11,26]:

Theorem 4. Let V be a 1-ideal determined variety, and let A ∈ V. The
following lattices are isomorphic:

(1) The lattice of all V-ideals (w.r.t. 1) of A;

(2) the lattice of all deductive filters on A of the 1-assertional logic of V;

(3) the lattice of congruences of A.

Varieties with equationally definable principal congruences (EDPC) were
introduced by Fried, Grätzer and Quackenbush [24] and extensively studied
in algebraic logic as equivalent algebraic semantics of algebraisable logics
with the deduction-detachment theorem [6,7,9,10,34]. Among the varieties
with EDPC, a prominent role is played by varieties with a quaternary deduc-
tive (QD) term, the latter being a generalisation of the quaternary discrimi-
nator (normal transform) to non-semisimple varieties. We start by recalling
the relevant definitions.

Definition 10. Let V be a variety of language L. We say that:

• V has equationally definable principal congruences (EDPC) if there
exist L-identities ϕ1 ≈ ψ1, ..., ϕn ≈ ψn in the variables x, y, z, w such
that for any A ∈ V and any a, b, c, d ∈ A,

〈c, d〉 ∈ θA (a, b) iff ϕA
i (a, b, c, d) = ψA

i (a, b, c, d)

for each i ≤ n;

• V has a quaternary deductive (QD) term if there exist an L-formula ϕ
in the variables x, y, z, w such that for any A ∈ V and any a, b, c, d ∈ A,

ϕA (a, b, c, d) =
{

c if a = b;
d if 〈c, d〉 ∈ θA (a, b) .

The results in the next theorem, variously due to [6,7,34,47], collect the
main properties of varieties with a QD term.

Theorem 5. Let V be a variety with a QD term. Then:

(1) V is congruence permutable and has EDPC.
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(2) The join semilattice of compact congruences of any A ∈ V is dually
relatively pseudocomplemented, namely, there exists a binary operation
∗ such that, for any compact members θ, δ, γ of Con(A) one has:

θ ⊆ δ ∨ γ ⇔ δ ∗ θ ⊆ γ.

(3) If V is 1-regular, then every compact congruence of any A ∈ V is
principal.

For future use, we specify that the dual relative pseudocomplement ∗ of
Theorem 5.(2) is such that

θA(a, b) ∗ θA(c, d) = θA(ϕA(a, b, c, d), d),

where ϕ is the QD term for V.
By Theorem 4, in an algebra A belonging to a 1-ideal determined variety

V, V-ideals of A correspond to congruence classes of 1, in a way that yields a
bijective correspondence between the lattice of such V-ideals and the lattice
of congruences of A. In light of Theorem 5.(2)-(3), the join-semilattice of
principal V-ideals of A is dually relatively pseudocomplemented.

3. Connexive Heyting Algebras

In this section we introduce the variety of connexive Heyting algebras, study
its properties, and establish its term equivalence with the variety of Heyting
algebras. Recall from our introduction that we aim at finding a strongly
connexive logic with an intuitive semantics which is, moreover, algebraisable
according to Definition 4. The results collected in Section 2.2 suggest the
following “recipe” for obtaining an algebraisable connexive logic:

• Consider a language L containing (at least) a negation ¬ and an
implication → (primitive or definable) and a constant 1.

• Define a variety V of language L and make sure that the different
versions of Aristotle’s and Boethius’ laws evaluate at 1 in each
A ∈ V.

• Make sure that the symmetry of implication has a counterexample
in some A ∈ V.

• Encode enough properties into → so that the set {ϕ → ψ, ψ → ϕ}
witnesses 1-regularity for V.

• Apply Theorem 3 to the 1-assertional logic of V.
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Our candidate V is the variety CHA of connexive Heyting algebras, to be
defined below. It is a subvariety of semi-Heyting algebras, an important and
well-studied class introduced by Sankappanavar in 2007 [42] and investigated
e.g. in [2,18].

3.1. Definition and Elementary Properties

Let LCH the language 〈2, 2, 2, 0, 0〉, whose operation symbols are respectively
denoted by ∧ (meet), ∨ (join), → (implication), 0 (falsity) and 1 (truth).
The following identities of language LCH will be considered in what follows
(¬x is short for x → 0):

C1 (x → y) → ((y → z) → (x → z)) ≈ 1;

C2 (x → y) → ¬(x → ¬y) ≈ 1;

C3 x ∧ (x → y) ≈ x ∧ y;

C4 x → y ≤ (z ∧ x) → (z ∧ y);

C5 x → y ≤ (z ∨ x) → (z ∨ y);

C6 x ∧ (y → z) ≈ x ∧ ((x ∧ y) → (x ∧ z);

C7 x → x ≈ 1.

Definition 11. A semi-Heyting algebra is an algebra A = 〈A,∧,∨,→, 0, 1〉
of language LCH such that:

• 〈A,∧,∨, 0, 1〉 is a distributive lattice with bottom element 0, top ele-
ment 1, and induced order ≤;

• the identities C3, C6, and C7 hold.

The next lemma is proved in [42].

Lemma 1. Let A be a semi-Heyting algebra. The following hold, for any
a, b ∈ A:

(1) 1 → a = a;

(2) a → b = 1 implies a ≤ b;

(3) a ≤ b → (a ∧ b);

(4) a ≤ ¬b if and only if a ∧ b = 0;

(5) a ≤ a → 1;

(6) a ≤ (a → b) → b;

(7) a ≤ ¬¬a;

(8) a ∧ ¬a = 0;
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(9) a → 0 ≤ 0 → a;

(10) ¬a = ¬¬¬a.

Moreover, the proof of items (1), (2), (3), (5) and (6) does not depend on
C6 or C7.

We now present the notion that will be at the centre of the present paper.

Definition 12. A connexive Heyting algebra is an algebra A = 〈A,∧,∨,→,
0, 1〉 of language LCH such that:

• 〈A,∧,∨, 0, 1〉 is a distributive lattice with bottom element 0, top ele-
ment 1, and induced order ≤;

• the identities C1, C2, C3, C4, and C5 hold.

Connexive Heyting algebras form a variety, hereafter noted CHA. We
show that CHA is a subvariety of the variety of semi-Heyting algebras.

Lemma 2. Every connexive Heyting algebra is a semi-Heyting algebra.

Proof. It suffices to show that C6 and C7 hold in every connexive Heyting
algebra. We will be free to use items (1), (2), (3), (5) and (6) in Lemma 1,
which, as already observed, do not depend on either C6 or C7. Observe,
moreover, that if A is a connexive Heyting algebra and d, e, f ∈ A, we have
that (d → e) ∧ (e → f) ≤ d → f .

Now, let again A be a connexive Heyting algebra and a, b, c ∈ A. By C4
a ∧ (b → c) ≤ a ∧ ((a ∧ b) → (a ∧ c)). Conversely,

a ∧ ((a ∧ b) → (a ∧ c)) = a ∧ (b → (a ∧ b)) ∧ ((a ∧ b) → (a ∧ c)) Lm. 1.(3)-(6)

≤ a ∧ (b → (a ∧ c))

= a ∧ (a → 1) ∧ (b → (a ∧ c)) Lm. 1.(5)

≤ a ∧ ((a ∧ c) → c) ∧ (b → (a ∧ c)) C4

≤ a ∧ (b → c).

Hence C6 holds. For C7, by Lemma 1.(1)-(2) and C1, 1 = 1 → 1 ≤ (1 →
a) → (1 → a) = a → a.

We provide a finite example of a connexive Heyting algebra (called L9 by
Sankappanavar [42, Thm. 4.1] and also mentioned by Kapsner and Omori,
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see [33])) showing both that this class is nonempty and that implication, in
general, fails to be symmetric therein.

Example 1. Consider the 3-element bounded chain KO3 = 〈{0, a, 1},∧,∨,
→, 0, 1〉 equipped with a binary operation → according to the following
table:

1

a

0

→ 1 a 0
1 1 a 0
a 1 1 0
0 0 0 1

Note that KO3 is a connexive Heyting algebra.1 Moreover, it satisfies neither
the identity (x → y) → (y → x) ≈ 1 nor the quasi-identity

x → y ≈ 1 � y → x ≈ 1.

Indeed, e.g. (a → 1) → (1 → a) = 1 → a = a.

We now list some elementary arithmetical properties of CHA.

Lemma 3. Let A be a connexive Heyting algebra. The following hold, for
any a, b, c ∈ A:

(1) (a → b) ∧ (b → c) ≤ a → c;

(2) (a → b) → ((c → a) → (c → b)) = 1;

(3) if a ≤ b then ¬b ≤ ¬a;

(4) a ≤ a → 1 ≤ b → (a → b);

(5) if ¬a = 1, then a = 0;

(6) ¬(a → ¬a) = 1:

(7) a → ¬a = 0 = ¬a → a;

(8) (a → b) ∧ (a → ¬b) = 0;

(9) (a → b) → (a → ¬b) = 0;

(10) (a → 1) → ¬a = 0;

(11) 0 → a = (a → 0) → 1;

(12) a → ¬¬a = 1;

1Cornejo and Sankappanavar [17] have independently observed that KO3 satisfies C2
and other connexive principles. We warmly thank H.P. Sankappanavar for pointing this
out to us.
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(13) 0 → a = a → 0;

(14) ¬b = ¬((b → a) → a) = ¬a → (b → a);

(15) (a → 1) ∧ ¬a = 0;

(16) ¬a = (a → 1) → 0;

(17) (a → b) → 1 = ¬(a → ¬b);

(18) ¬¬a = a → 1;

(19) ¬(a → b) = ¬(b → a);

(20) ¬(a → b) = a → ¬b;

(21) a → b = 0 if and only if a → ¬b = 1;

(22) a → b = 1 implies a → ¬b = 0.

Proof. See Appendix A.

By C1, C7 and Lemma 1.(1)-(2), the relation {〈a, b〉 : a → b = 1} is a
partial ordering on any A ∈ CHA. By Example 1, it is generally stronger
than the ordering induced by the lattice operations. A more precise charac-
terisation is contained in the following theorem.

Theorem 6. Let A be a connexive Heyting algebra. The following hold, for
any a, b ∈ A:

a → b = 1 if and only if a ≤ b and ¬a = ¬b.

Proof. By Lemmas 1.(2) and 3.(3), if a → b = 1, then a ≤ b and also
¬b ≤ ¬a. Moreover, by Lemmas 1.(2) and 3.(2)-(13), 1 = a → b ≤ (0 →
a) → (0 → b) = (a → 0) → (b → 0), hence ¬a ≤ ¬b.

Conversely,

1 = a → ¬¬a Lm. 3.(12)

≤ (a ∧ b) → (¬¬a ∧ b) C4

= a → (¬¬b ∧ b)

= a → b Lm. 1.(7)

It may be expedient to observe that axiom C1 in the definition of con-
nexive Heyting algebras can be equivalently replaced by the only seemingly
weaker condition x → y ≤ (y → z) → (x → z). Observe first that Theorem 6
does not depend on the full version of C1, but only on the above-mentioned
condition. Also, let A satisfy all the remaining axioms of CHA, and let
a, b, c ∈ A. We have that:
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¬(a → b) = a → ¬b Lm. 3.(20)

≤ (c → a) → (c → ¬b) Lm. 3.(2)

= (c → a) → ¬(c → b) Lm. 3.(20)

= (c → a) → ¬(b → c) Lm. 3.(19)

= ¬((c → a) → (b → c)) Lm. 3.(20)

= ¬((b → c) → (c → a)) Lm. 3.(19)

= (b → c) → ¬(c → a) Lm. 3.(20)

= (b → c) → ¬(a → c) Lm. 3.(19)

= ¬((b → c) → (a → c)). Lm. 3.(20)

(We notice that none of the results used above depend on the full version of
C1 either.) Hence, by Theorem 6, (a → b) → ((b → c) → (a → c)) = 1.

Also, a stronger version of Boethius’ law holds in CHA.

Lemma 4. Let A be a connexive Heyting algebra. The following holds, for
any a, b, c ∈ A:

(a → b) → ((b → c) → ¬(a → ¬c)) = 1.

Proof. By C2, Lemma 1.(1) and Lemma 3.(2), we have that

1 = ((a → c) → ¬(a → ¬c)) → (((b → c) → (a → c))

→ ((b → c) → ¬(a → ¬c)))

= 1 → (((b → c) → (a → c)) → ((b → c) → ¬(a → ¬c)))

= ((b → c) → (a → c)) → ((b → c) → ¬(a → ¬c)).

Since a → b ≤ (b → c) → (a → c), by C1 and Theorem 6, we have on
the one hand that a → b ≤ (b → c) → ¬(a → ¬c), and on the other that
¬(a → b) = ¬((b → c) → (a → c)) = ¬((b → c) → ¬(a → ¬c)), and
therefore (a → b) → ((b → c) → ¬(a → ¬c)) = 1, again by Theorem 6.

3.2. Structure Theory

After surveying some of the most elementary arithmetical properties of
CHA, we now delve into its structure theory, with an eye to establishing
some crucial underpinnings of the term equivalence result that follows. For
a start, we observe that CHA is an ideal determined variety.

Lemma 5. CHA is a 1-ideal determined variety.
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Proof. By Theorem 1, C7 and Lemma 1.(1), the formula x → y witnesses
1-subtractivity for CHA. By Theorem 2, C7 again and Lemma 1.(2), the set
{x → y, y → x} witnesses 1-regularity for CHA.

In light of Theorem 4, in any connexive Heyting algebra A we have a
lattice isomorphism between the lattices of congruences of A, of CHA-ideals
of A, and of congruence classes of 1 of some congruence on A. If θ is such a
congruence, its congruence class of 1 is customarily denoted by 1/θ. Thanks
to the result in [42, Thm. 5.4], which holds more generally for the variety
of semi-Heyting algebras, such congruence classes of 1 are nothing but the
lattice filters of A.

For future reference, we state the special case of this theorem that is of
interest to us, and fix some notation and terminology. Let A ∈ CHA. We
denote by Fi(A) the lattice of lattice filters of A, as well as its universe. If
C ⊆ A, Fg(C) will denote the lattice filter generated by C, i.e. the smallest
filter of A containing C. It is well known that, for any C ⊆ A, one has

Fg(C) = {y ∈ A : y ≥ x1 ∧ · · · ∧ xn, x1, . . . , xn ∈ C, n ≥ 1}.

Given A ∈ CHA and F ⊆ A, we also set

Θ(F ) := {〈x, y〉 ∈ A2 : x → y, y → x ∈ F}.

Lemma 6. Let A be a connexive Heyting algebra. The following hold:

(1) For any θ ∈ Con(A), 1/θ ∈ Fi(A).

(2) For any F ∈ Fi(A), Θ(F ) ∈ Con(A).

(3) 1/Θ(F ) = F and θ = Θ(1/θ).

Next, we show that CHA has a QD term, which, as we have observed in
Section 2.2, is a bountiful property in terms of implying many other desirable
features for a variety.

Theorem 7. CHA has a QD term.

Proof. Recall that, in light of Definition 10, we have to find an LCH-
formula ϕ in the variables x, y, z, w such that for any A ∈ CHA and any
a, b, c, d ∈ A,

ϕA (a, b, c, d) =
{

c if a = b;
d if 〈c, d〉 ∈ θA (a, b) .

Let ψ(x, y, z) := ((z → y) → x) ∧ ((x → y) → z) and χ(x, y, z) := (x ↔
y) ∧ z, where x ↔ y := (x → y) ∧ (y → x). We set ϕ(x, y, z, w) :=
ψ(χ(x, y, z), χ(x, y, w), w). Explicitly:

ϕ(x, y, z, w) = ((w → ((x ↔ y) ∧ w)) → ((x ↔ y) ∧ z))
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∧ ((((x ↔ y) ∧ z) → ((x ↔ y) ∧ w)) → w).

A straightforward computation, involving C7 and Lemma 1.(6), shows that
if a = b then ϕA (a, b, c, d) = c. If 〈c, d〉 ∈ θA(a, b), then by Lemma 6 we
have that c ↔ d ∈ Fg(a ↔ b), i.e., a ↔ b ≤ c ↔ d. Thus (a ↔ b) ∧ c ≤
(a ↔ b) ∧ c ∧ (c ↔ d) = (a ↔ b) ∧ c ∧ d ∧ (d → c) ≤ (a ↔ b) ∧ d. Similarly
(a ↔ b) ∧ d ≤ (a ↔ b) ∧ c, and hence (a ↔ b) ∧ c = (a ↔ b) ∧ d. It readily
follows, using C7 and Lemma 1.(6), that ϕA (a, b, c, d) = d.

The following corollary to the foregoing theorem had already been estab-
lished by Sankappanavar for semi-Heyting algebras [42, Cor. 5.7, Thm. 5.8].

Corollary 1. CHA has EDPC and is congruence permutable.

Proof. By Theorem 5. Observe that the formula that witnesses congruence
permutability is none other than ψ(x, y, z) in the previous theorem, while
the single identity that witnesses EDPC is (still retaining the conventions
from the previous theorem) χ(x, y, z) ≈ χ(x, y, u).

By Theorem 5.(2), the join semilattice of compact congruences of any
A ∈ V is dually relatively pseudocomplemented. However, we can say much
more in the present case. On the one hand, by Lemmas 5 and 6, congruences
on A bijectively correspond to lattice filters of A. On the other hand, by
Theorem 5.(3) and Lemma 5 again, the join semilattice of principal lattice
filters of A must be dually relatively pseudocomplemented as well. By the
remarks following Theorem 5, we can actually compute such dual relative
pseudocomplements by first determining the behaviour of the former on
principal congruences of the form θ(x, 1), and then cashing out the behaviour
of latter on their 1-classes, i.e., on principal filters. Thus, we have, using
Lemmas 1.(7) and 3.(18), (19):

θ(a, 1) ∗ θ(b, 1) = θ(ϕA(a, 1, b, 1), 1)

= θ((a → (a ∧ b)) ∧ (((a ∧ b) → a) → 1), 1)

= θ((a → (a ∧ b)) ∧ ¬¬((a ∧ b) → a), 1)

= θ((a → (a ∧ b)) ∧ ¬¬(a → (a ∧ b)), 1)

= θ(a → (a ∧ b), 1).

Hence, the principal filter Fg(a) ∗ Fg(b) is generated by a → (a ∧ b). Since
there is a dual order isomorphism between the poset reduct of A and the
poset of lattice filters of A, one is somehow led to surmise that the element
a → (a ∧ b) must have some features that make it akin to a relative pseudo-
complement, i.e., to a Heyting implication. This was the main insight that
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made us conjecture, and then prove, the results in the next section, even
before we got acquainted with Sankappanavar’s results on semi-Heyting al-
gebras.

3.3. Term Equivalence with Heyting Algebras

Our next goal is to show that any connexive Heyting algebra has a term
reduct that is a Heyting algebra. This is a property that holds, more gener-
ally, for all semi-Heyting algebras [2, Lm. 4.1]. However, capitalising on the
stronger structure results obtained so far for CHA, we can give an essen-
tially different proof of the same theorem. Hereafter, whenever A ∈ CHA
and a, b ∈ A, we let a ⇒ b := a → (a ∧ b).

Theorem 8. Let A = 〈A,∧,∨,→, 0, 1〉 ∈ CHA. Then the algebra H(A) =
〈A,∧,∨,⇒, 0, 1〉 is a Heyting algebra.

Proof. Let A ∈ CHA. Since A is a bounded distributive lattice, all we
need to show is that for any a, b, c ∈ A, a∧b ≤ c iff a ≤ b ⇒ c. The following
chain of equivalences holds by Theorem 5, Lemma 6 and Theorem 7:

a ∧ b ≤ c ⇐⇒ Fg(c) ⊆ Fg(a ∧ b)

⇐⇒ Fg(c) ⊆ Fg(a) ∨ Fg(b)

⇐⇒ Fg(b) ∗ Fg(c) ⊆ Fg(a)

⇐⇒ Fg(b ⇒ c) ⊆ Fg(a)

⇐⇒ a ≤ b ⇒ c.

It is also true that any Heyting algebra has a connexive Heyting algebra
term reduct. Hereafter, we denote by HA the variety of Heyting algebras.
We follow the convention that the Heyting arrow ⇒ binds less strongly than
the lattice operations. Whenever H ∈ HA and a, b ∈ H, we let a → b :=
(a ⇒ b) ∧ (¬a ⇒ ¬b).

Theorem 9. Let H = 〈H,∧,∨,⇒, 0, 1〉 ∈ HA. Then the algebra C(H) =
〈H,∧,∨,→, 0, 1〉 is a connexive Heyting algebra.

Proof. See Appendix A.

Theorem 10. The varieties CHA and HA are term equivalent. The term
equivalence is implemented by the mutually inverse maps H of Theorem 8
and C of Theorem 9.
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Proof. By Theorems 8 and 9, the maps H and C are well-defined. It
remains to be shown that they are mutually inverse, namely, that (a) if
A ∈ CHA, then C(H(A)) = A, and (b) if B ∈ HA, then H(C(B)) = B.

First, we observe that any connexive Heyting algebra satisfies the follow-
ing identity:

x ∧ (z → (x ∧ y)) ≈ x ∧ (z → y).

Indeed, let A ∈ CHA, and let a, b, c ∈ A. By C6, a ∧ (c → (a ∧ b)) =
a ∧ ((a ∧ c) → (a ∧ (a ∧ b))) = a ∧ ((a ∧ c) → (a ∧ b)) = a ∧ (c → b). Next,
we show:

• (P1) a → b = max{c ∈ A : a ∧ c ≤ b and ¬a ∧ c ≤ ¬b};

• (P2) a → b = (a → (a ∧ b)) ∧ (¬a → (¬a ∧ ¬b)).

Note that a∧ (a → b) ≤ b, by C3, and ¬a∧ (a → b) ≤ ¬a∧ ((0 → a) → (0 →
b)) = ¬a ∧ (¬a → ¬b) ≤ ¬b, by C3, Lemma 1.(2) and Lemma 3.(2)-(13).
Now, let c be such that a ∧ c ≤ b and ¬a ∧ c ≤ ¬b. By Lemma 1.(4) c ∧ b ≤
¬¬a. Moreover, applying C4 and Lemma 3.(12)-(21), as well as the previous
observations, 1 = a → ¬¬a ≤ (a∧ b ∧ c) → (¬¬a ∧ b ∧ c) = (a ∧ c) → (b ∧ c).
Hence, in virtue of Lemma 1, c ≤ a → (a ∧ c) ≤ ((a ∧ c) → (b ∧ c)) → (a →
(b ∧ c)) = 1 → (a → (b ∧ c)) = a → (b ∧ c). By the previously established
identity, one has c ≤ a → b. Hence P1 follows.

Concerning P2, in light of P1 it suffices to show:

• (a → (a∧b))∧(¬a → (¬a∧¬b)) ∈ {c ∈ A : a∧c ≤ b and ¬a∧c ≤ ¬b};

• if a∧c ≤ b and ¬a∧c ≤ ¬b, then c ≤ (a → (a∧b))∧(¬a → (¬a∧¬b)).

For the first bullet, we have that a ∧ (a → (a ∧ b)) ∧ (¬a → (¬a ∧ ¬b)) =
a ∧ b ∧ (¬a → (¬a ∧ ¬b)) ≤ b, and similarly ¬a ∧ (a → (a ∧ b)) ∧ (¬a →
(¬a ∧ ¬b)) ≤ ¬b. For the second, if a ∧ c ≤ b, then a ∧ c ≤ a ∧ b, whence
c ≤ a → (a ∧ c) ≤ a → (a ∧ b). Similarly c ≤ ¬a → (¬a ∧ ¬b), whence our
conclusion follows.

Now, C(H(A)) = A is immediate by P2. In order to prove H(C(B)) = B,
just note that in B, for any a, b ∈ B, we have that a ⇒ b = (a ⇒ (a ∧ b)) ∧
(¬a ⇒ ¬(a ∧ b)).

3.4. The Boolean Subvariety

A noteworthy consequence of the results in the previous section is that there
are continuum many subvarieties of CHA, arranged in a lattice whose single
atom is a term equivalent incarnation of the variety of Boolean algebras.
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We now aim at describing precisely this atom. Preliminarly, we prove the
following lemma:

Lemma 7. Let A be a connexive Heyting algebra. Then, for any a ∈ A,

¬¬a = a if and only if a → b ≤ b → a, for any b ∈ A.

Proof. The right-to-left direction follows from Lemma 1.(7). Conversely,
note that by Lemmas 1.(1) and 3.(19)−(20), b → a = b → ¬¬a = ¬¬(b →
a) = ¬¬(a → b) ≥ a → b.

We are now ready to characterise, in several different ways, the variety
of connexive Heyting algebras that is term equivalent to the variety BA of
Boolean algebras. Note that, alongside with the predictable demand that
every element be Glivenko-closed (item 6), other equivalent conditions that
axiomatise it relative to CHA include the symmetry of connexive implication
(items 3, 4, 5) and its coincidence with material equivalence (item 2).

Lemma 8. Let V be a subvariety of CHA. The following are equivalent:

(1) V is term equivalent to the variety BA of Boolean algebras;

(2) V |= x → y ≈ (¬x ∨ y) ∧ (¬y ∨ x);

(3) V |= x → y ≈ y → x;

(4) V |= (x → y) → (y → x) ≈ 1;

(5) The following quasi-identity holds in V:

x → y = 1 � y → x = 1;

(6) V |= ¬¬x ≈ x.

Proof. We first show that items (1), (2), (3), and (6) are all pairwise
equivalent. By Lemma 7, (3) is equivalent to (6), which is clearly equivalent
to (1). If (2) holds, then in particular for all a ∈ A ∈ V, 1 = a → a = ¬a∨a,
and (1) follows. Finally, if (1) holds, then for all a ∈ A ∈ V, a ⇒ b = ¬a ∨ b
and ¬a ⇒ ¬b = b ⇒ a = ¬b ∨ a, whence a → b = (a ⇒ b) ∧ (¬a ⇒ ¬b) =
(¬a ∨ b) ∧ (¬b ∨ a). Hence our claim is established.

(3) implies (4) by C7, and (4) implies (5) by Lemma 1.(1). Finally, (5)
implies (6) as a → ¬¬a = 1 together with (5) entails that ¬¬a → a = 1, i.e.
a = ¬¬a.

Let us call CBA the variety which is axiomatised relative to CHA by any
of these equivalent conditions; its members will be called connexive Boolean
algebras. We vigorously flag the fact that in CBA the connexive arrow de-
notes material equivalence, not material implication (which is denoted by
the Heyting arrow).
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The next example considers another subvariety of interest of CHA: con-
nexive Gödel algebras.

Example 2. Let CGA be the subvariety of CHA generated by all chains,
whose relative equational basis with respect to CHA is the single identity

(x → (x ∧ y)) ∨ (y → (x ∧ y)) ≈ 1. (G)

This variety has been studied in [1,2]. CGA is term equivalent to Gödel
algebras; it is not hard to show, using Theorem 10, that the equational
basis provided in [1] for CGA is equivalent (relative to CHA) to G. Also,
observe that any chain L = 〈L,∧,∨, 0, 1〉 can be uniquely equipped with a
binary operation “→” such that 〈L,∧,∨,→, 0, 1〉 ∈ CGA by setting

a → b =

{
1 if a ≤ b and ¬a = ¬b

a ∧ b otherwise,
(3.1)

where

¬a =

{
1, if a = 0
0 otherwise.

(3.2)

We conclude this section by parlaying the above theorems into some
Glivenko-style translation results. Let us set A = {¬¬a : a ∈ A}, and
consider the following binary operations over A:

x � y = x ∧ y and x � y = ¬¬(x ∨ y).

Theorem 11. Let A ∈ CHA. Then the structure A = 〈A,�,�,→, 0, 1〉 ∈
CBA. Moreover, the mapping ¬¬ : A → A is an onto {∧,→, 0, 1}-morphism.

Proof. Proving that A is closed under � and →, and � is the l.u.b. in A is
straightforward and is left to the reader. The remaining part of the statement
follows by Lemma 8, Theorem 10 and standard results concerning Heyting
algebras.

It is well known that, for any Heyting algebra H = 〈H, ∧,∨,⇒, 0, 1〉, the
set CC(H) of closed and complemented (i.e. central) elements of H forms
a sub-Heyting algebra of H which is a Boolean algebra. This fact together
with Theorem 10 yields the following

Corollary 2. Let A be a connexive Heyting algebra and let CC(A) be
the set of closed and complemented elements of A. Then 〈CC(A),∧,∨,→
, 0, 1〉 is a sub-connexive Heyting algebra of A which is term-equivalent to a
Boolean algebra.
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4. Connexive Heyting Logic

As a next item on our agenda, we capitalise on the previous results to obtain
a deductive equivalence between the assertional logics of CHA and HA. In
the process, we obtain a Hilbert-style axiomatisation of the 1-assertional
logic of CHA and we gain insights that allow us to parlay the standard
sequent calculus for intuitionistic logic into a calculus for this logic.

4.1. An Axiomatic Calculus

While faced with the problem of axiomatising LCHA, one could be tempted
to give it short shrift. Indeed, Theorem 10 guarantees that CHA is term
equivalent to HA, and of course we know how to axiomatise the 1-assertional
logic of HA, i.e., intuitionistic logic IL. Why not simply apply the appro-
priate translation to the axioms of IL? This approach, however, would be
wrong-headed, as pointed out by Hiz [27] and several other authors after
him [28,43]. Hence, we have to proceed in a more roundabout way.

For a start, we introduce a new logic in the language LCH , whose conse-
quence relation is determined by a certain Hilbert-style calculus. Then we
use Theorem 3 to show that it coincides with LCHA.

Definition 13. Let CHL = 〈FmLCH
,�CHL〉, where �CHL is the deriv-

ability relation of the Hilbert system with the following postulates (letting
ϕ ⇒ ψ be a shorthand for ϕ → (ϕ ∧ ψ)):

CHL1 Any set of axioms and rules for positive logic (with implication re-
placed by the defined connective ⇒);

CHL2 ¬ (0 ∧ ϕ);

CHL3 ¬ϕ ⇒ (0 → ϕ);

CHL4 (ϕ → ψ) ⇒ (ϕ ⇒ ψ);

CHL5 (ϕ → ψ) → ((ψ → χ) → (ϕ → χ));

CHL6 (ϕ → ψ) → ¬ (ϕ → ¬ψ);

CHL7 ϕ ⇔ ψ � (ϕ → χ) ⇒ (ψ → χ), (χ → ϕ) ⇒ (χ → ψ);

CHL8 ϕ ∧ ψ ⇒ ϕ ∧ (ϕ → ψ);

CHL9 (ϕ → ψ) ⇒ ((ϕ ∧ χ) → (ψ ∧ χ));

CHL10 (ϕ → ψ) ⇒ ((ϕ ∨ χ) → (ψ ∨ χ)).

Theorem 12. CHL = LCHA.
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Proof. It is easy to see that the axioms CLH1-CLH6, CLH8-CLH10 evalu-
ate at 1 in any connexive Heyting algebra, and that the rules ϕ, ϕ ⇒ ψ � ψ
and CLH7 preserve this property. For the converse direction, we resort
to Theorem 3. First, observe that the set {ϕ ⇒ ψ, ψ ⇒ ϕ} witnesses 1-
regularity for CHA and is a set of equivalence formulas for LCHA and CHA.
Thus, all we have to show is that the formulas and rules A1-A6 in Theorem 3
are derivable in CHL.

As regards A1, A2, A3, and A5, they can be proved by means of the
postulates of positive logic, hence of CLH1. The same can be said for A4,
except for the rule

ϕ1 ⇒ ϕ2, ψ1 ⇒ ψ2, ϕ2 ⇒ ϕ1, ψ2 ⇒ ψ1 � {(ϕ1 → ψ1) ⇒ (ϕ2 → ψ2),

(ϕ2 → ψ2) ⇒ (ϕ1 → ψ1)},

which can be proved by repeatedly applying CHL7. As for A6, if η ≈ λ is
any of the identities C1-C5 in Definition 12, ρ(η, λ) can be easily proved with
the aid of CHL5, CHL6, CHL7-8, CHL9, and CHL10 respectively, as well as
principles of positive logic. This leaves us with all ρ(η, λ), where η ≈ λ is an
identity axiomatising bounded distributive lattices. Again, CHL1 suffices to
establish all the required theorems, except for 0 ∧ ϕ ⇒ 0 and its converse
0 ⇒ 0 ∧ ϕ. The former result follows from CHL2 and CHL4, whereas the
latter is a consequence of CHL2 and CHL3.

Recalling Definition 6, now we have all we need to prove the following

Theorem 13. CHL is deductively equivalent to intuitionistic logic IL. The
equivalence is implemented by the translations τ, ρ that leave all the connec-
tives unaltered except for:

ϕ →τ ψ = (ϕ ⇒ ψ) ∧ (¬ϕ ⇒ ¬ψ) ;

ϕ ⇒ρ ψ = ϕ → (ϕ ∧ ψ) .

Proof. According to Definition 6, we must show that for all Γ ∪ {ϕ} ⊆
FmLCH

,

(1) Γ �CLH ϕ iff τ (Γ) �IL τ (ϕ);

(2) τ (ρ (ϕ)) 
�IL ϕ.

As regards (1), we have that:

Γ �CHL ϕ iff {γ ≈ 1 : γ ∈ Γ} �CHA ϕ ≈ 1 Thm. 12
iff {τ (γ) ≈ 1 : γ ∈ Γ} �HA τ (ϕ) ≈ 1 Thm. 10
iff τ (Γ) �IL τ (ϕ) .
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For (2), it suffices to show that ϕ ⇒ ψ is intuitionistically interderivable
with (ϕ ⇒ ϕ ∧ ψ) ∧ (¬ϕ ⇒ ¬(ϕ ∧ ψ)). We give an algebraic argument to
that effect. Suppose A is a Heyting algebra and a, b ∈ A. If a ⇒ b = 1, then
a ≤ b and thus

(a ⇒ a ∧ b) ∧ (¬a ⇒ ¬(a ∧ b)) = (a ⇒ a) ∧ (¬a ⇒ ¬a) = 1.

Conversely, if (a ⇒ a∧b)∧(¬a ⇒ ¬(a∧b)) = 1, then a fortiori a ⇒ a∧b = 1,
hence a ≤ a ∧ b ≤ b, whereby a ⇒ b = 1.

4.2. Gentzen-Style Proof Theory

The deductive equivalence between CHL and IL certainly invites to piggy-
back on the existing proof systems for intuitionistic logic in order to obtain
analytic calculi for our new logic. Although this may be a natural option,
it need not be a straightforward, let alone a purely algorithmic, exercise. It
is well-known that the most relevant properties of Gentzen calculi, like cut
elimination, are by no means to be considered as intrinsic properties of a
logic but are heavily sensitive to the particular presentation one chooses to
adopt.

In what follows, we introduce a sequent calculus CHC which is Gentzen
algebraisable with CHA as equivalent variety semantics. As it will be clear
below, CHC is virtually identical to the standard intuitionistic calculus LJ,
except for a different rule for introducing implication on the right, and an
additional rule for introducing implication on the left. It is essentially dif-
ferent from the calculus for semi-intuitionistic logic (the logic corresponding
to semi-Heyting algebras) given in [16], whose operational rules must be
appropriately supplemented so as to guarantee the extra deductive power
needed to prove the connexive axioms.

Hereafter, we retain our practice of denoting formulas in FmLCH
by

ϕ,ψ, . . . , but also by α, β, . . . , especially (but not only) when they are used
as metaformulas in rule schemata. Finite or empty sets of LCH-formulas are
denoted by Γ, Δ, . . . . We set ¬ϕ := ϕ → 0, for any formula ϕ. A sequent
is an ordered pair 〈Γ, Π〉 of finite sets of formulas where Π, called stoup, is
either empty or a singleton. As usual, a sequent 〈Γ, Π〉 is noted Γ � Π, and
for any formulas ϕ,ψ, ϕ �� ψ is short for the set {ϕ � ψ, ψ � ϕ}. SeqLCH

will refer to the set of all sequents. If Γ is a finite set of formulas, Γ∧ stands
for the conjunction of all formulas in Γ, associated to the left, if Γ �= ∅, and
1 otherwise. Similarly, if Π is a stoup, Π∨ is the formula ϕ, if Π∨ = {ϕ},
and 0 otherwise.
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The notions of an inference rule and a proof (or derivation) are the cus-
tomary ones. If there exists a proof of s from S, where S ∪s ⊆ SeqL, we will
express this fact by S �CHC s. Observe that �CHC is an abstract consequence
relation according to Definition 1.

Axioms

(id)
α � α

(0)0 � (1)� 1

Structural rules

Γ � Π (w-l)
α,Γ � Π

Γ � (w-r)
Γ � α

Γ � α α,Δ � Π
(cut)

Γ, Δ � Π

Operational Rules

α,Γ � Π
α ∧ β,Γ � Π

β,Γ,� Π
(∧-l)

α ∧ β,Γ � Π
Γ � α Γ � β

(∧-r)
Γ � α ∧ β

Γ � α
Γ � α ∨ β

Γ � β
(∨-r)

Γ � α ∨ β

α,Γ � Π β,Γ � Π
(∨-l)

α ∨ β,Γ � Π

Γ � α Δ, β � Π
(→-l(a))

Δ, Γ, α → β � Π

¬α,Γ � β Δ, α, β �
(→-l(b))

Γ, Δ, α → β �

α,Γ � β Δ,¬α, β �
(→-r)

Γ, Δ � α → β

It is easily seen by means of a routine argument that the inference rules
(∧-l) can be equivalently replaced by the single rule

α, β,Γ � Π
α ∧ β,Γ � Π

Therefore, in what follows, by (∧-l) we will mean an application of either
(∧-l), or the above rule. We observe that some of the rules for connexive im-
plication are neither separate, nor explicit in the sense of [49]: They exhibit
connectives other than the connexive arrow (i.e., the constant 0), and they
exhibit the arrow in their premiss sequents as well as in their conclusion
sequents.
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Lemma 9. The following inference rules are derivable in CHC:

Γ � α (¬-l)
Γ,¬α �

Γ, α �
(¬-r)

Γ � ¬α

Γ, α � Δ � β
(→-l(c))

α → β,Γ, Δ �

α,Γ � β Δ,¬α, β �
(→-l(d))

Γ, Δ, α → ¬β �

Proof. We confine ourselves to prove (¬-r) and (→-l(d)) leaving the re-
maining inference rules to the reader. Concerning (¬-r), we have

Γ, α �
(w-r)

Γ, α � 0

(0)0 � (w-l)0,¬α �
(→-r)

Γ � α → 0 (=)
Γ � ¬α

Furthermore, one can easily check that (¬-l) can be proven by means of
straightforward applications of (→-l(a)) and (0), while (→-l(c)) can be de-
rived by applying (w-l) and (→-l(b)). Finally, concerning (→-l(d)), let us
consider the following derivation:

Δ,¬α, β �
(¬-r)

Δ,¬α � ¬β

Γ, α � β
(¬-l)

Γ, α,¬β �
(→-l(b))

Γ, Δ, α → ¬β �

Lemma 10. The following hold, for any ϕ,ψ, χ, ξ ∈ FmLCH
:

(1) �CHC (ϕ → ψ) ∧ ϕ �� ϕ ∧ ψ;

(2) �CHC ϕ → ψ � (ϕ ∧ χ) → (ψ ∧ χ);

(3) �CHC ϕ → ψ � (ϕ ∨ χ) → (ψ ∨ χ).

Proof. See Appendix A.

Lemma 11. The following hold, for any ϕ,ψ, χ ∈ FmLCH
:

(1) �CHC ϕ → ψ,ϕ → ¬ψ �
(2) �CHC � (ϕ → ψ) → ¬(ϕ → ¬ψ);

(3) �CHC ϕ → ψ,ψ → χ � ϕ → χ

(4) �CHC ϕ → ψ � (ψ → χ) → (ϕ → χ).

Proof. See Appendix A.
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4.3. Gentzen Algebraisability

We are now ready to show that CHC is Gentzen algebraisable (according to
Definition 4) with CHA as equivalent variety semantics. In other words, we
show that there exist maps τ : SeqLCH

→ P(Fm2
LCH

) and ρ : Fm2
LCH

→
P(SeqLCH

) such that, for any S ∪ {s} ⊆ SeqLCH
, and ϕ, ψ ∈ FmLCH

, one
has:

(1) S �CHC s iff τ(S) �CHA τ(s);

(2) ϕ ≈ ψ 
�CHA τ(ρ(ϕ ≈ ψ));

(3) τ(σ(s)) = σ(τ(s)) and ρ(σ(ϕ), σ(ψ)) = σ(ρ(ϕ, ψ)) for all substitu-
tions σ on FmLCH

, extended pointwise to Fm2
LCH

and SeqLCH
.

Given Γ � Π ∈ SeqLCH
and ϕ ≈ ψ ∈ Fm2

LCH
, we set

τ(Γ � Π) := Γ∧ ≤ Π∨ and ρ(ϕ ≈ ψ) := {ϕ � ψ, ψ � ϕ}.

Given S ⊆ SeqLCH
, we set τ(S) := {Γ∧ ≤ Π∨ : Γ � Π ∈ S}. Clearly, τ

and ρ commute with substitutions, whence (3) is satisfied. A routine proof
yields the following lemma:

Lemma 12. Let S ∪ {Δ � Θ} ⊆ SeqLCH
. Then

S �CHC Δ � Θ iff {Γ∧ � Π∨ : Γ � Π ∈ S} �CHC Δ∧ � Θ∨.

Proof. Left to the reader.

Lemma 13. For all ϕ,ψ ∈ FmLCH
, ϕ ≈ ψ 
�CHA τ(ρ(ϕ ≈ ψ)).

Proof. Just note that
ϕ ≈ ψ 
�CHA τ(ρ(ϕ ≈ ψ)) iff ϕ ≈ ψ 
�CHA τ{ϕ � ψ, ψ � ϕ}

iff ϕ ≈ ψ 
�CHA {ϕ ≤ ψ, ψ ≤ ϕ}.

Since the last condition trivially holds, our result obtains.

Lemma 14. (Soundness) For all S ∪ {s} ⊆ SeqLCH
:

S �CHC s implies τ(S) �CHA τ(s).

Proof. Suppose that s is Γ � Π. We prove the statement by induction
on the length of a designated CHC-proof of s from S. The base case is clear
since, if s is an axiom, then Γ∧ ≤ Π∨ is x ≤ x which holds in CHA, while if
s is an assumption the result is obvious. The induction step can be managed
by distinguishing cases depending on the last rule applied in the derivation.
We confine ourselves to the cases (→-l(b)) and (→-r), leaving the remaining
cases to the reader. Suppose that Γ � Π := Γ1, Δ � ϕ → ψ has been
obtained by Γ1, ϕ � ψ and Δ, ψ,¬ϕ � by means of an application of (→-r).
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By induction hypothesis one has that τ(S) �CHA Γ∧
1 ∧ϕ ≤ ψ and τ(S) �CHA

Δ∧ ∧ψ∧¬ϕ ≤ 0. By Theorem 10, we have that τ(S) �CHA Γ∧
1 ∧Δ∧ ≤ (ϕ ⇒

ψ) ∧ (¬ϕ ⇒ ¬ψ). Concerning the case (→-l(b)), by induction hypothesis
one has that τ(S) �CHA Γ∧

1 ∧ ¬ϕ ≤ ψ and τ(S) �CHA Δ∧ ∧ ϕ ∧ ψ ≤ 0. By
Lemma 1.(4), τ(S) �CHA Γ∧

1 ∧ ¬ψ ∧ ¬ϕ ≤ 0 and τ(S) �CHA Δ∧ ∧ ϕ ≤ ¬ψ.
Reasoning as above one has τ(S) �CHA Γ∧

1 ∧ Δ∧ ≤ ϕ → ¬ψ, and the right-
hand side of the inequality can be replaced by ¬(ϕ → ψ) by Lemma 3.(20).
Therefore we conclude τ(S) �CHA Γ∧

1 ∧Δ∧ ∧ (ϕ → ψ) ≤ Γ∧
1 ∧Δ∧ ∧¬¬(ϕ →

ψ) ≤ 0.

Lemma 15. (Completeness) For all S ∪ {s} ⊆ SeqL,

τ(S) �CHA τ(s) implies S �CHC s.

Proof. The proof follows a routine Lindenbaum-Tarski argument. Suppose
contrapositively that S �CHC s. We need a connexive Heyting algebra A and a
homomorphism h : FmLCH

→ A such that τ(S) ⊆ ker h while τ(s) /∈ ker h.
Let us denote by T the smallest set of sequents containing S and closed under
�CHC. Moreover, for any ϕ,ψ ∈ FmLCH

, we set ϕθT ψ if ϕ � ψ, ψ � ϕ ∈ T .
We show that the desired algebra and homomorphism are FmLCH

/θT and
the natural homomorphism x �→ x/θT . To this aim we prove:

(1) θT is a congruence over FmLCH
, and

(2) FmLCH
/θT ∈ CHA.

Concerning (1), note that θT is obviously symmetric, reflexive and transi-
tive by (id) and (cut). Now, in order to prove that θT is compatible with
operations, we show that for any ϕ1, ϕ2, ψ1, ψ2 ∈ FmLCH

, ϕiθT ψi (i = 1, 2)
entails (ϕ1 � ϕ2)θT (ψ1 � ψ2), for any � ∈ {∧,∨,→}. Since the cases ∧,∨ are
straightforward, we confine ourselves to →. Let us consider the following
derivation:

ψ1 � ϕ1 ϕ2 � ψ2 (→-l(a))
ϕ1 → ϕ2, ψ1 � ψ2

ϕ1 � ψ1 (¬-l)¬ψ1, ϕ1 � ψ2 � ϕ2 (→-l(c))
ϕ1 → ϕ2, ψ2,¬ψ1 �

(→-r)
ϕ1 → ϕ2 � ψ1 → ψ2

Therefore ϕ1 → ϕ2 � ψ1 → ψ2 ∈ T . Similarly, one proves also that ψ1 →
ψ2 � ϕ1 → ϕ2 ∈ T . We conclude that θT is a congruence on FmLCH

.
As for (2), a routine proof shows that the relation ≤FmLCH

/θT ⊆ (FmLCH
/θT )2

such that ϕ/θT ≤FmLCH
/θT ψ/θT iff ϕ �� ϕ∧ψ ⊆ T iff ϕ � ψ ∈ T is indeed

a lattice ordering. Furthermore, FmLCH
/θT satisfies C1-C5 by Lemma 10,

Lemma 11 and the remarks following Theorem 6. Therefore we conclude
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FmL/θT ∈ CHA. Now, it can be seen that τ(S) ⊆ kerh. Indeed, making
use of Lemma 12, we have:

τ(S) ⊆ ker h iff for any Γ � Π ∈ S, Γ∧ ≤ Π∨ ∈ ker h
iff for any Γ � Π ∈ S, (Γ∧ ≈ Γ∧ ∧ Π∨) ∈ ker h
iff for any Γ � Π ∈ S, Γ∧ � (Γ∧ ∧ Π∨) ∈ T
iff for any Γ � Π ∈ S, Γ∧ � Π∨ ∈ T
iff for any Γ � Π ∈ S, Γ � Π ∈ T.

Given the way T was defined, the last condition trivially holds. Similarly,
one can show that τ(s) /∈ kerh, since otherwise S �CHC s. Therefore our
statement is proved.

4.4. Cut Elimination

Whether CHC admits cut elimination is not an issue we can brush off by re-
marking that the intuitionistic calculus LJ is a cut-free calculus, and leaving
it at that. Again, readers are warned that the existence of an algorithm for
the elimination of cuts is not preserved by any of the relationships we have
established in this paper. As a consequence, we must provide the required
algorithm “manually”, as it were. This is the next item on our agenda.

Theorem 14. The calculus CHC admits cut elimination.

Proof. The proof of this theorem has (nearly) the same structure as Gentz-
en’s original proof for the intuitionistic calculus LJ. In particular, it can be
shown that CHC can be equivalently formulated with sequents Γ � Π consist-
ing in a multiset Γ of formulas and a stoup Π, with an explicit contraction
rule, and that in such a calculus the cut rule is equivalent to the mix rule:

Γ � α Δ � Π (mixα)
Γ, Δ∗α � Π

where Δ∗α is Δ minus any occurrence of the mixformula α. We focus on
proofs D with a single final application of mixα, and we proceed by induction
on the lexicographically ordered pair 〈w(D), r(D)〉, where:

• w(D) (the weight of D)2 is defined by induction on the construction
of the mixformula α: w(α) = 0 if α is the constant 0, w(α) = 1 if α
is a variable or the constant 1, w(α) = w(β) + w(γ) + 1 if α has the
form β ∗ γ, with ∗ ∈ {∧,∨,→}.

• r(D) (the rank of D) is customarily defined.

2This definition of weight is essentially the one given by Negri and von Plato [37] in
establishing cut elimination for a certain calculus for intuitionistic logic.



Intuitionistic Logic is a Connexive Logic

There are only two cases where the proof differs from the analogous proof
for LJ. Let S1 and S2 be the premisses of the final application of mixα in
D. We must only consider the following cases:

(1) The case where r(D) = 2, and both S1 and S2 are conclusions of an
application of a logical rule, in which case α is principal in both such
applications.

(2) The case where r(D) > 2, the antecedent of S1 does not contain α, and
S2 is the conclusion of an application of a logical rule whose principal
formula is α.

Unsurprisingly, we only address the case α = β → γ. If γ is 0, in light of
Lemma 9, the case can be dealt with using the cut elimination strategies for
LJ (formulated with primitive negation) and obtaining thereby a reduction
in the weight of D. Thus, we lose no generality in supposing that γ is not
0. In Case (1), we suppose first that S1 was obtained by (→-r) and S2 was
obtained by (→-l(a)):

D1

β,Γ � γ
D2

Δ,¬β, γ �
(→-r)

Γ, Δ � β → γ

D3

Σ � β
D4

γ,Λ � Π
(→-l(a))

β → γ,Σ, Λ � Π
(mixα)

Γ, Δ, Σ, Λ � Π
Observe that our assumption to the effect that r(D) = 2 implies that Λ =
Λ∗α and that Σ = Σ∗α. Consider the following proof D5:

D3

Σ � β
D1

β,Γ � γ
(mixβ)

Γ∗β, Σ � γ
D4

γ,Λ � Π
(mixγ)

Γ∗β, Σ, Λ∗γ � Π
The subproof of D5 ending with Γ∗β, Σ � γ can be replaced by a proof
D′

5, containing no mixes and ending with the same sequent, by Induction
Hypothesis. Again by Induction Hypothesis, the result of this replacement
can be converted into a proof without mix of Γ∗β, Σ, Λ∗γ � Π, from which a
proof without mix of Γ, Σ, Λ � Π can be obtained by successive applications
of weakening.

Suppose next that S1 was obtained by (→-r) and S2 was obtained by
(→-lb):

D1

β,Γ � γ
D2

Δ,¬β, γ �
(→-r)

Γ, Δ � β → γ

D3

¬β,Λ � γ
D4

β, γ,Σ �
(→-l(b))

β → γ,Σ, Λ �
(mixα)

Γ, Δ, Σ, Λ �
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Observe again that our assumption to the effect that r(D) = 2 implies
that Λ = Λ∗α and that Σ = Σ∗α. Consider the following proof D5:

D2

Δ,¬β, γ �
D3

¬β,Λ � γ
(mixγ)

Λ, Δ∗γ ,¬β �

D1

β,Γ � γ
D4

β, γ,Σ �
(mixγ)

β,Γ, Σ∗γ �
(¬-r)

Γ, Σ∗γ � ¬β (mix¬β)
Γ, Σ∗γ , Λ∗β, Δ∗γ∗¬β �

Remark that the subproofs of D5 respectively ending with Λ, Δ∗γ ,¬β �,
β,Γ, Σ∗γ �, and Γ, Σ∗γ , Λ∗β, Δ∗γ∗¬β � have strictly smaller weights than D,
since we have assumed that γ is not 0. Hence, reasoning as above and using
the Inductive Hypothesis several times, we conclude that there is a proof of
Γ, Σ∗γ , Λ∗β, Δ∗γ∗¬β � containing no mixes, and by successive applications
of weakening we end up proving Γ, Σ, Λ, Δ �.

As regards Case (2), the only interesting subcase is as follows:

D1

Γ � β → γ

D2

¬β,Δ � γ
D3

Σ, β, γ �
(→-l(b))

β → γ,Δ, Σ �
(mixα)

Γ, Δ∗α, Σ∗α �
We first trade D for two proofs with a single final application of mix, call
them D′ and D′′ respectively, having the same weight as D and a strictly
smaller rank:

D1

Γ � β → γ
D2

¬β,Δ � γ
(mixα)¬β,Γ, Δ∗α � γ

D1

Γ � β → γ
D3

Σ, β, γ �
(mixα)

Γ, Σ∗α, β, γ �
By Inductive Hypothesis, there are D′′′ and D′′′′ containing no mixes, respec-
tively ending with ¬β,Γ, Δ∗α � γ and Γ, Σ∗α, β, γ �. Hence the following
proof D4:

D1

Γ � β → γ

D′′′
¬β,Γ, Δ∗α � γ

D′′′′
Γ, Σ∗α, β, γ �

(→-l(b))
β → γ,Γ, Δ∗α, Σ∗α �

(mixα)
Γ, Δ∗α, Σ∗α �

has a right rank equal to 1 (for Γ does not contain α), and a rank strictly
less than that of D. Since the weights of D4 and D are the same, we have
got every right to apply the Inductive Hypothesis and also this subcase is
settled.
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5. Philosophical Upshots

5.1. BHK Interpretation of Connexive Implication

What are we to make of the connection we have discovered between in-
tuitionistic logic and a certain connexive logic? Although we do not claim
by any means that establishing a deductive equivalence with a freshly intro-
duced system may shed new light on such a thoroughly well-understood logic
as intuitionistic logic, it is the reverse direction that we find promising. Our
result, indeed, unearths a gravy train in terms of opportunities to reassess
the very idea of connexivity. In particular, this may happen via the cele-
brated BHK (Brouwer-Heyting-Kolmogorov) interpretation (for which see
e.g. [46]), allowing the intuitionistic logician to assign a constructive, com-
putational meaning to the intuitionistic connectives and quantifiers. Thanks
to our deductive equivalence, we can parlay this semantics of proofs into a
constructive interpretation of the connexive conditional.

For a start, recall the BHK interpretation of conjunction, implication,
negation and falsity:

• a proof of ϕ ∧ ψ is a pair consisting in a proof of ϕ and a proof of
ψ;

• a proof of ϕ ⇒ ψ is a function that converts any (hypothetical)
proof of ϕ into a proof of ψ;

• there is no proof of 0;

• a proof of ¬ϕ := ϕ ⇒ 0 is a function that converts any (hypothet-
ical) proof of ϕ into a proof of 0; since, however, there is no proof
of 0, a proof of ¬ϕ amounts to a refutation of ϕ.

The given clause for negation has been criticised by Wansing [48] be-
cause, in the BHK framework, an intuitionistically negated formula ¬ϕ is
valid if and only if there exists a construction that outputs a nonexistent
object, namely a proof of 0, when applied to a proof of ϕ, a condition that
can be satisfied only vacuously for unprovable formulas. Interestingly, this
objection is echoed by Kapsner [32] in his defence of Aristotle’s law from
the alleged counterexamples arising in correspondence of unsatisfiable for-
mulas. According to Kapsner, such putative counterexamples rest on “empty
promise conversions” very much like the intuitionistic falsifications deplored
by Wansing (see also [52]).

Here, on the other hand, we do not intend to take issue with the standard
BHK interpretation of logical constants – rather, we aim at reading off its
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clauses a possible computational meaning for the connexive implication of
CHL. A disclaimer is of course in order: We are not maintaining that the
suggestions that follow apply to any connexive implication. It is unlikely, for
example, that they can somehow relate to the implications studied within
the different traditions stemming from Nelson [38], Angell and McCall [4],
De Finetti, Cooper and Cantwell [20], or the so-called “Bochum plan” [50],
all of which are based on quite different intuitions. Other approaches, like the
Boolean connexive logics of Jarmuzek and Malinowski [30], and in particular
the connexive logic of content equality by Estrada Gonzalez and Klonowski
[21], may on the contrary stand better chances to ensconce themselves into
the interpretation we suggest.

Thus, recall that ϕ → ψ can be defined in IL as (ϕ ⇒ ψ) ∧ (¬ϕ ⇒ ¬ψ),
that ¬ϕ ⇒ ¬ψ is intuitionistically equivalent to ψ ⇒ ¬¬ϕ, and that ϕ ⇒ 0 is
equivalent in both CHL and IL to ϕ → 0. The standard BHK interpretation
of the intuitionistic connectives appearing in the compound formula that
interprets the connexive conditional translates into the following reading for
ϕ → ψ:

• a proof of ϕ → ψ is a pair consisting in a function that converts
any (hypothetical) proof of ϕ into a proof of ψ, and a function
that converts any (hypothetical) proof of ψ into a refutation of the
refutation of ϕ.

A proof of a connexive implication ϕ → ψ can be seen as consisting of
two different parts: A constructively acceptable proof of ψ on the assump-
tion that ϕ, and a weaker, classically (but not perforce intuitionistically)
valid proof of ϕ on the assumption that ψ. It remains to be seen whether
the weak asymmetry that distinguishes the different directions of such a
“quasi-equivalence” is sufficient to qualify our connective as a full-blooded
conditional, as opposed to a biconditional in disguise. This misgiving cer-
tainly deserves a fuller discussion, which we defer to future research.

5.2. On Superconnexivity

It is now time to take stock with respect to the idea of strong connexivity.
At the outset, we sympathetically endorsed Kapsner’s quest for logics that
are not only legally connexive, in so far as they abide by the minimal re-
quirements to be certified as such, but also have the concept that ϕ → ¬ϕ
is a sort of “connexive contradiction” – and that ϕ → ψ and ϕ → ¬ψ are
a sort of “connexive contraries” – deeply ingrained in their semantics. CHL
is strongly connexive in precisely this sense, since ϕ → ¬ϕ is equivalent to
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¬ϕ ∧ ¬¬ϕ, and hence unsatisfiable, while ϕ → ψ and ϕ → ¬ψ are respec-
tively equivalent to ϕ ⇒ ψ ∧ ¬ϕ ⇒ ¬ψ and to ϕ ⇒ ¬ψ ∧ ¬ϕ ⇒ ¬¬ψ, and
hence non simultaneously satisfiable.

Interestingly, Kapsner [31] also entertains, but ultimately rejects, a nat-
ural option for attaining strong connexivity by capturing in the object lan-
guage the unsatisfiability of ϕ → ¬ϕ, or the non-simultaneous satisfiability
of ϕ → ψ and ϕ → ¬ψ. He states some explosion-like superconnexive prin-
ciples, including:

• (ϕ → ¬ϕ) → ψ (Super-Aristotle 1)

• (ϕ → ψ) → ((ϕ → ¬ψ) → χ) (Super-Boethius 1)

Yet, these principles are dumped because they lead to triviality given a
modicum of assumptions. Very recently, however, Kapsner and Omori [33]
have attempted to revisit the superconnexive insight. Their goal, in a nut-
shell, is to salvage the spirit of superconnexivity by slightly weakening the
letter of it. The concept behind the standard principle of explosion can be
pinned down in different ways – by the demand that a contradiction entail
any sentence, or perhaps by the demand that a contradiction entail a des-
ignated absurdity, like the falsum constant. This may make no difference in
most contexts, but sometimes it does (like in some relevant logics). Analo-
gously, one might envisage the thought that a connexive contradiction need
not entail any sentence whatsoever, but only the falsum. This naturally leads
to the following super-Bot-connexive principles:

• (ϕ → ¬ϕ) → 0 (Super-Bot-Aristotle 1)

• (ϕ → ψ) → ((ϕ → ¬ψ) → 0) (Super-Bot-Boethius 1)

Unlike the original superconnexive principles, these weaker laws are not
so easily trivialised: Indeed, Kapsner and Omori point out that they are
consistent with a number of axiomatic frameworks.

Maybe, though, super-Bot-connexivity is an unnecessary retreat. Per-
haps superconnexivity was abandoned too swiftly, while it was only in need
of some rephrasing. Let us consider Super-Aristotle 1, by way of example.
Connexive implication occurs twice therein – once in the formulation of the
connexive contradiction ϕ → ¬ϕ, and once to signal that such a contradic-
tion explosively implies any old formula. In CHL, we have an intuitionistic
conditional that coexists with the connexive one. Can we avoid trivialisation
by replacing one of the occurrences of implication in Super-Aristotle 1 by its
intuitionistic counterpart? If we want to do so in a principled way, and not
merely as a means to the end of consistency preservation, we ought to look
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at the BHK interpretation of these connectives, as spelt out in the previous
section. The former occurrence of the arrow in Super-Aristotle 1 can’t be
anything but a connexive implication – else, how could ϕ → ¬ϕ express the
idea of a connexive contradiction? The latter occurrence, on the other hand,
is much more plausibly construed as an intuitionistic conditional. If it can’t
be the case that ϕ → ¬ϕ, any hypothetical proof of this fact should (vacu-
ously) yield a proof of an arbitrary ψ. But there’s no reason to expect that
any hypothetical proof of some ψ would yield a refutation of a refutation of
ϕ → ¬ϕ...

For these reasons, we argue that the ideal object-language analogues of
the strong connexive unsatisfiability principles are obtained by tweaking as
follows the original superconnexive principles:

• (ϕ → ¬ϕ) ⇒ ψ (mixed Super-Aristotle 1)

• (ϕ → ψ) ⇒ ((ϕ → ¬ψ) ⇒ χ) (mixed Super-Boethius 1)

Of course, this is only a preliminary suggestion in need of a deeper
scrutiny, which we intend to bring forth in the future.

6. Conclusions and Open Problems

The connection we found between a certain connexive logic and a time-
honoured, well-understood logic like IL opens promising avenues of research.
We list hereafter some problems one could naturally address.

• Develop more proof systems for CHL. We used the term equiva-
lence between CHL and IL to rejig the sequent calculus for the lat-
ter into a corresponding calculus for connexive implication. Some-
thing analogous can certainly be done for the other calculi (e.g.
natural deduction systems) available for intuitionistic logic.

• Study the extensions of CHL. The study of intermediate logics
(logics that lie between IL and classical logic in terms of deductive
strength) is a fruitful and amply trodden area of investigation.
Via our translational equivalence, we get uncountably many logics
between CHL and classical logic. It would be interesting to explore
their properties and to assess their significance.

• Clarify the relationships between CHL and other connexive logics.
In particular, one should focus on other connexive logic based on
positive logic, the prime example being Wansing’s C [50]. It would
also be desirable to shed some further light on the relationships
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between superconnexivity, super-Bot connexivity and mixed su-
perconnexivity.

• Make sense of other features inherited from IL. Intuitionistic logic
is extremely pliant to different semantical analysises, in terms of
Kripke models, topological semantics, etc. Perhaps a treatment of
our connexive implication within these frameworks could better
enlighten its meaning and conceptual significance.
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Appendix A: Proof of Lemmas 3, 10, 11 and Theorem 9

Proof of Lemma 3. (1) Clear.

(2) Note that Lemma 1.(1) and C1 entail that

(((b → d) → (c → d)) → a) → ((c → b) → a) = 1.

Upon setting c := 1, again by Lemma 1.(1) it follows that (((b → c) →
c) → a) → (b → a) = 1. Therefore, one obtains

((((b → d) → (c → d)) → (c → d)) → ((c → b) → (c → d)))

→ ((b → d) → ((c → b) → (c → d))) = 1

and also

((((b → d) → (c → d)) → (c → d)) → ((c → b) → (c → d))) = 1.

Hence, Lemma 1.(1) yields the desired conclusion.

(3) If a ≤ b then ¬b∧a = a∧¬b ≤ b∧¬b = 0, whence, using Lemma 1.(4),
¬b ≤ ¬a.

(4) The first inequality is Lemma 1.(5). For the second one, a → 1 ≤ (1 →
b) → (a → b) = b → (a → b), by C1 and Lemma 1.(1)-(2).

(5) By Lemma 1.(4).

(6) By C2, C7 and Lemma 1.(1).

(7) The fact that a → ¬a = 0 follows from items (5) and (6). Moreover,

¬a → a ≤ (¬a → ¬a) → (¬a → a) = 1 → 0 = 0.

(8) By C2 and Lemma 1.(4).

(9) By C2 and items (5) and (8).

(10) From (9), setting b := 1.

(11) By C1,

0 → a ≤ (a → 0) → (0 → 0) = (a → 0) → 1.

So, 0 → a ≤ (a → 0) → 1. Also, (a → 0) → 1 ≤ (1 → a) → (¬a →
a) = a → 0 ≤ 0 → a, by C1, Lemma 1.(2)-(9) and item (7).

(12) By C2,

a → ¬¬a = (1 → a) → ((1 → (a → 0)) → 0) = 1.

(13) By the proof of item (11).
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(14)

¬b ≤ (0 → a) → (b → a) C1, Lm. 1.(2)

≤ ((b → a) → a) → ((0 → a) → a) C1, Lm. 1.(2)

= ((b → a) → a) → ((a → 0) → a) (13)

= ¬((b → a) → a) (7)

≤ ¬b. (3),Lm. 1.(6)

(15) a → 1 ≤ ¬(a → ¬1) = ¬¬a by C2 and Lemma 1.(2), hence the claim
follows from Lemma 1.(4).

(16) Since a ≤ a → 1 by Lemma 1.(5), (a → 1) → 0 ≤ a → 0 by item (3).
Also, from (15) and Lemma 1.(4) we obtain that a → 0 ≤ (a → 1) →
0.

(17)

1 = (a → b) → ¬(a → ¬b) C2

≤ (¬(a → ¬b) → 1) → ((a → b) → 1). C1, Lm. 1.(2)

Then, by Lemma 1.(2)-(5) and C1, ¬(a → ¬b) ≤ ¬(a → ¬b) → 1 ≤
(a → b) → 1. Also,

((a → b) → 1) ∧ (a → ¬b)

≤ ((1 → (a → ¬b)) → ((a → b) → (a → ¬b))) ∧ (a → ¬b) C1, Lm. 1.(2)

= ¬(1 → (a → ¬b)) ∧ (a → ¬b) (9)

= ¬(a → ¬b) ∧ (a → ¬b) Lm. 1.(1)

= 0, Lm. 1.(8)

i.e. (a → b) → 1 ≤ ¬(a → ¬b).

(18) Set a := 1 and b := a in (17).

(19)

(a → b) ∧ ((b → ¬a) → 1)

= (a → b) ∧ ¬(b → ¬¬a) (17)

≤ ((b → ¬¬a) → (a → ¬¬a)) ∧ ¬(b → ¬¬a) C1, Lm. 1.(2)

= ((b → ¬¬a) → 1) ∧ ¬(b → ¬¬a) (12)

= 0. (15)
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Therefore,

0 = (a → b) ∧ ((b → ¬a) → 1)

= (a → b) ∧ ¬¬(b → ¬a) (18)

= (a → b) ∧ ¬((b → a) → 1) (17)

= (a → b) ∧ ¬(b → a), (18), Lm. 1.(10)

i.e. ¬(a → b) ≥ ¬(b → a).

(20)

¬(a → b) = ¬¬¬(a → b) Lm. 1.(10)

= ¬((a → b) → 1) (18)

= ¬¬(a → ¬b) (17)

= ¬¬(¬b → a) (19)

≤ a → ((¬b → a) → a) (4)-(18)

= a → ¬b

The last line is justified as follows. ¬b can be replaced by (¬b → a) → a
since, by Lemma 1.(6)-(7) and (10), as well as item (14), ¬b ≤ (¬b →
a) → a ≤ ¬¬((¬b → a) → a) = ¬¬¬b = ¬b.

(21) If a → b = 0, then ¬(a → b) = a → ¬b = 1 by (20). The converse
holds as well by item (8).

(22) follows from items (20) and (21).

Proof of Theorem 9. We show that C(H) satisfies C1 through C5 in
Definition 12. In so doing, we use without a mention some well-known prop-
erties of Heyting algebras. Throughout this proof, let a, b, c be arbitrary
elements of H. As regards C3:

(a → b) ∧ a = (a ⇒ b) ∧ (¬a ⇒ ¬b) ∧ a

= a ∧ b ∧ (¬a ⇒ ¬b)

= a ∧ b.

We now move on to C4. We must establish that

(a ⇒ b) ∧ (¬a ⇒ ¬b) ≤ ((c ∧ a) ⇒ (c ∧ b)) ∧ (¬ (c ∧ a) ⇒ ¬ (c ∧ b)) .

Observe first that

(a ⇒ b) ∧ (¬a ⇒ ¬b) ∧ c ∧ a = a ∧ b ∧ c ∧ (¬a ⇒ ¬b)
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= a ∧ b ∧ c ≤ c ∧ b.

Hence

(a ⇒ b) ∧ (¬a ⇒ ¬b) ≤ c ∧ a ⇒ c ∧ b.

On the other hand, 0 = c∧ a∧¬ (c ∧ a), whence c∧¬ (c ∧ a) ≤ ¬a. Thus

c ∧ ¬ (c ∧ a) ∧ b ∧ (a ⇒ b) ∧ (¬a ⇒ ¬b) = c ∧ ¬ (c ∧ a) ∧ b ∧ (¬a ⇒ ¬b)

≤ ¬a ∧ b ∧ (¬a ⇒ ¬b)

= ¬a ∧ b ∧ ¬b = 0.

Hence ¬ (c ∧ a)∧(a ⇒ b)∧(¬a ⇒ ¬b) ≤ ¬ (c ∧ b), and (a ⇒ b)∧(¬a ⇒ ¬b)
≤ ¬ (c ∧ a) ⇒ ¬ (c ∧ b). Summing up, our claim follows.

C5 is established similarly.
By the remarks following Theorem 6, to prove C1 it is enough to show

that a → b ≤ (b → c) → (a → c), which in turn holds if and only if:

(a) (a ⇒ b) ∧ (¬a ⇒ ¬b) ≤ (b → c) ⇒ (a → c), and

(b) (a ⇒ b) ∧ (¬a ⇒ ¬b) ≤ ¬(b → c) ⇒ ¬(a → c).

Concerning (a), one has that (a ⇒ b) ∧ (¬a ⇒ ¬b) ∧ (b ⇒ c) ∧ (¬b ⇒ ¬c) ≤
(a ⇒ c) ∧ (¬a ⇒ ¬c). So (a ⇒ b) ∧ (¬a ⇒ ¬b) ≤ [(b ⇒ c) ∧ (¬b ⇒ ¬c)] ⇒
[(a ⇒ c) ∧ (¬a ⇒ ¬c)] = (b → c) ⇒ (a → c).
As regards (b), we have (a ⇒ b) ∧ (¬a ⇒ ¬b) ≤ ¬(b → c) ⇒ ¬(a →
c) iff (a ⇒ b)∧(¬a ⇒ ¬b)∧¬((b ⇒ c)∧(¬b ⇒ ¬c))∧(a ⇒ c)∧(¬a ⇒ ¬c) = 0.
We compute

(a ⇒ b) ∧ (¬a ⇒ ¬b) ∧ ¬((b ⇒ c) ∧ (¬b ⇒ ¬c)) ∧ (a ⇒ c) ∧ (¬a ⇒ ¬c)
≤ (¬b ⇒ ¬a) ∧ (¬a ⇒ ¬b) ∧ ((¬b ⇒ ¬c) ⇒ ¬(b ⇒ c)) ∧ (a ⇒ c) ∧ (¬a ⇒ ¬c)
≤ (¬b ⇒ ¬c) ∧ (¬a ⇒ ¬b) ∧ ((¬b ⇒ ¬c) ⇒ ¬(b ⇒ c)) ∧ (a ⇒ c)

= (¬b ⇒ ¬c) ∧ (¬a ⇒ ¬b) ∧ ¬(b ⇒ c) ∧ (a ⇒ c)

≤ (¬b ⇒ ¬c) ∧ (¬a ⇒ ¬b) ∧ ¬(b ⇒ c) ∧ (¬c ⇒ ¬a)
≤ (¬b ⇒ ¬c) ∧ (¬c ⇒ ¬b) ∧ ¬(b ⇒ c)

= (¬b ⇒ ¬c) ∧ ¬¬(b ⇒ c) ∧ ¬(b ⇒ c) = 0.

In fact, one has that, for any a, b ∈ H, a ∧ ¬b ≤ ¬(a ⇒ b) entails ¬¬(a ⇒
b) ≤ ¬(a ∧ ¬b) = ¬b ⇒ ¬a. Moreover, ¬a ∨ b ≤ a ⇒ b implies ¬b ⇒ ¬a =
¬¬(¬a ∨ b) ≤ ¬¬(a ⇒ b).

Finally, concerning C2, we have that (a → b) → ¬(a → ¬b) = 1 if and
only if

(a) (a → b) ⇒ ¬(a → ¬b) = 1, and

(b) ¬(a → b) ⇒ ¬¬(a → ¬b) = 1.



D. Fazio et al.

As regards (a), we have that:

(a → b) ⇒ ¬(a → ¬b) = 1

iff (a → b) ≤ ¬(a → ¬b)

iff (a → b) ∧ (a → ¬b) = 0

iff (a ⇒ b) ∧ (¬a ⇒ ¬b) ∧ (a ⇒ ¬b) ∧ (¬a ⇒ ¬¬b) = 0

iff (a ⇒ (b ∧ ¬b)) ∧ (¬a ⇒ (¬b ∧ ¬¬b)) = ¬a ∧ ¬¬a = 0.

Since the last identity trivially holds, (a) is proved.

Concerning (b), it is easily seen that H satisfies, for any a, b1, b2, c1, c2 ∈ H:

((a ⇒ b1) ⇒ c1) ∧ ((a ⇒ b2) ⇒ c2) ≤ (a ⇒ (b1 ∧ b2)) ⇒ (c1 ∧ c2). (7.1)

Now, we have ¬(a → b) ≤ ¬¬(a → ¬b) iff ¬(a → b) ∧ ¬(a → ¬b) = ¬((a ⇒
b) ∧ (¬a ⇒ ¬b)) ∧ ¬((a ⇒ ¬b) ∧ (¬a ⇒ ¬¬b)) = 0. By (7.1), we compute

¬((a ⇒ b) ∧ (¬a ⇒ ¬b)) ∧ ¬((a ⇒ ¬b) ∧ (¬a ⇒ ¬¬b))

= ((a ⇒ b) ⇒ ¬(¬a ⇒ ¬b)) ∧ ((a ⇒ ¬b) ⇒ ¬(¬a ⇒ ¬¬b))

≤ (a ⇒ (b ∧ ¬b)) ⇒ (¬(¬a ⇒ ¬b) ∧ ¬(¬a ⇒ ¬¬b))

= (¬a ⇒ ¬(¬a ⇒ ¬b)) ∧ (¬a ⇒ ¬(¬a ⇒ ¬¬b))

= ¬(¬a ∧ ¬b) ∧ ¬(¬a ∧ ¬¬b)

= (¬a ⇒ ¬¬b) ∧ (¬a ⇒ ¬b)

= ¬a ⇒ (¬¬b ∧ ¬b) = ¬¬a.

Similarly, one has:

¬((a ⇒ b) ∧ (¬a ⇒ ¬b)) ∧ ¬((a ⇒ ¬b) ∧ (¬a ⇒ ¬¬b))

= ((¬a ⇒ ¬b) ⇒ ¬(a ⇒ b)) ∧ ((¬a ⇒ ¬¬b) ⇒ ¬(a ⇒ ¬b))

≤ (¬a ⇒ (¬b ∧ ¬¬b)) ⇒ (¬(a ⇒ b) ∧ ¬(a ⇒ ¬b))

= (¬¬a ⇒ ¬(a ⇒ b)) ∧ (¬¬a ⇒ ¬(a ⇒ ¬b))

= ((a ⇒ b) ⇒ ¬a) ∧ ((a ⇒ ¬b) ⇒ ¬a)

= ¬(a ∧ b) ∧ ¬(a ∧ ¬b)

= (a ⇒ ¬b) ∧ (a ⇒ ¬¬b) = ¬a.

Therefore, since we have ¬((a ⇒ b) ∧ (¬a ⇒ ¬b)) ∧ ¬((a ⇒ ¬b) ∧ (¬a ⇒
¬¬b)) ≤ ¬¬a ∧ ¬a = 0, the desired result obtains.

Proof of Theorem 9. Concerning (1), we have
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ϕ � ϕ
(∧-l)

(ϕ → ψ) ∧ ϕ � ϕ

(id)ϕ � ϕ
(id)

ψ � ψ
(→-l(a))

ϕ → ψ, ϕ � ψ
(∧-l)

(ϕ → ψ) ∧ ϕ � ψ
(∧-r)

(ϕ → ψ) ∧ ϕ � ϕ ∧ ψ

Moreover, we have also

(id)ϕ � ϕ
(∧-l)

ϕ ∧ ψ � ϕ

(id)
ψ � ψ

(w-l)
ϕ,ψ � ψ

(id)ϕ � ϕ
(¬-l)

ϕ,¬ϕ �
(w-l)

ϕ, ψ, ¬ϕ �
(→-r)

ϕ,ψ � ϕ → ψ
(∧-l)

ϕ ∧ ψ � ϕ → ψ
(∧-r)

ϕ ∧ ψ � (ϕ → ψ) ∧ ϕ

As regards (2), we have:

(id)
ϕ � ϕ

(id)
ψ � ψ

(→-l(a))
ϕ → ψ, ϕ � ψ

(∧-l)
ϕ → ψ, ϕ ∧ χ � ψ

(id)
χ � χ

(w-l)
ϕ → ψ, χ � χ

(∧-l)
ϕ → ψ, ϕ ∧ χ � χ

(∧-r)
ϕ → ψ, ϕ ∧ χ � ψ ∧ χ

D1

ϕ → ψ, ψ ∧ χ, ¬(ϕ ∧ χ) �
(→-r)

ϕ → ψ � (ϕ ∧ χ) → (ψ ∧ χ)

where D1 has the following form:

(id)
ϕ � ϕ

(w-l)
ϕ,ψ ∧ χ � ϕ

(id)χ � χ
(w-l)

ϕ, χ � χ
(∧-l)

ϕ,ψ ∧ χ � χ
(∧-r)

ϕ,ψ ∧ χ � ϕ ∧ χ
(¬-l)

ϕ,ψ ∧ χ,¬(ϕ ∧ χ) �

(id)
ψ � ψ

(∧-l)
ψ ∧ χ � ψ

(→-l(c))
ϕ → ψ,ψ ∧ χ,¬(ϕ ∧ χ) �

Concerning (3), first let us consider the following proof D
(id)

ϕ � ϕ
(id)

ψ � ψ
(→-l(a))

ϕ → ψ,ϕ � ψ
(∨-r)

ϕ → ψ,ϕ � ψ ∨ χ

(id)
χ � χ

(∨-r)
χ � ψ ∨ χ

(w-l)
ϕ → ψ, χ � ψ ∨ χ

(∨-l)
ϕ → ψ,ϕ ∨ χ � ψ ∨ χ

Furthermore, we have

D
ϕ → ψ, ϕ ∨ χ � ψ ∨ χ

(id)
ϕ � ϕ

(∨-r)
ϕ � ϕ ∨ χ

(¬-l)
ϕ, ¬(ϕ ∨ χ) � (id)

ψ � ψ
(→-l(c))

ϕ → ψ, ψ, ¬(ϕ ∨ χ) �

(id)
χ � χ

(∨-r)
χ � ϕ ∨ χ

(¬-l)
χ, ¬(ϕ ∨ χ) �

(w-l)
ϕ → ψ, χ, ¬(ϕ ∨ χ) �

(∨-l)
ϕ → ψ, ψ ∨ χ, ¬(ϕ ∨ χ) �

(→-r)
ϕ → ψ � (ϕ ∨ χ) → (ψ ∨ χ)
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Proof of Theorem 9. Concerning (1), one has:

(id)
ϕ � ϕ

(id)
ψ � ψ

(→-l(a))
ϕ → ψ,ϕ � ψ

(id)
ϕ � ϕ

(¬-l)
ϕ,¬ϕ � (id)

ψ � ψ
(→-l(c))

ϕ → ψ, ¬ϕ, ψ �
(→-l(d))

ϕ → ψ,ϕ → ¬ψ �
Now, in order to prove (2), let us consider the following derivation D∗

(id)
ψ � ψ

(w-l)
ϕ, ψ � ψ

(id)
ϕ � ϕ

(¬-l)
ϕ, ¬ϕ �

(w-l)
ϕ, ψ, ¬ϕ �

(→-r)
ϕ, ψ � ϕ → ψ

(¬-l)¬(ϕ → ψ), ϕ, ψ �
(¬-r)

¬(ϕ → ψ), ϕ, � ¬ψ

(id)
ϕ � ϕ

(¬-l)
ϕ, ¬ϕ �

(w-l)¬ψ, ϕ, ¬ϕ �
(w-r)¬ψ, ϕ, ¬ϕ � ψ

(id)
ψ � ψ

(¬-l)
ψ, ¬ψ �

(w-l)¬ϕ, ψ, ¬ψ �
(→-r)¬ϕ, ¬ψ � ϕ → ψ

(¬-l)
¬ϕ, ¬ψ, ¬(ϕ → ψ) �

(→-r)
¬(ϕ → ψ) � ϕ → ¬ψ

Finally, one has

Item (1)
ϕ → ψ,ϕ → ¬ψ �

(¬-r)
ϕ → ψ � ¬(ϕ → ¬ψ)

D∗
¬(ϕ → ψ) � ϕ → ¬ψ

(¬-l)¬(ϕ → ψ),¬(ϕ → ¬ψ) �
(→-r)� (ϕ → ψ) → ¬(ϕ → ¬ψ)

Concerning (3), first let us consider the following proof D2

(id)ϕ � ϕ
(id)

ψ � ψ
(→-l(a))

ϕ → ψ,ϕ � ψ
(id)

χ � χ
(→-l(a))

ϕ → ψ,ψ → χ, ϕ � χ

Moreover, we have

D2

ϕ → ψ, ψ → χ, ϕ � χ

(id)
ϕ � ϕ

(¬-l)
ϕ, ¬ϕ � (id)

ψ � ψ
(→-l(c))

ϕ → ψ, ¬ϕ, ψ � (id)
χ � χ

(→-l(c))
ϕ → ψ, ψ → χ, χ, ¬ϕ �

(→-r)
ϕ → ψ, ψ → χ � ϕ → χ

As regards (4), let us consider the following proof D3:

D∗

¬(ψ → χ) � ψ → ¬χ

Item (3)

ϕ → ψ, ψ → ¬χ � ϕ → ¬χ

Item (1)

ϕ → χ, ϕ → ¬χ �
(cut)

ϕ → ψ, ψ → ¬χ, ϕ → χ �
(cut)

ϕ → ψ, ϕ → χ, ¬(ψ → χ) �

Finally, one has:

Item (3)
ϕ → ψ,ψ → χ � ϕ → χ

D3

ϕ → ψ,ϕ → χ,¬(ψ → χ) �
(→-r)

ϕ → ψ � (ψ → χ) → (ϕ → χ)
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