
Ph.D. DEGREE IN
Electronic and Computer Engineering

Cycle XXXV

TITLE OF THE Ph.D. THESIS

Evaluating Adversarial Robustness of Detection-based

Defenses against Adversarial Examples

Scientific Disciplinary Sector(s)

ING-INF/05

Ph.D. Student: Angelo Sotgiu

Supervisor Prof. Battista Biggio
Co-supervisor Prof. Fabio Roli

 Final exam. Academic Year 2021/2022
Thesis defence: February 2023 Session

Abstract

Machine Learning algorithms provide astonishing performance in a wide range of
tasks, including sensitive and critical applications. On the other hand, it has been
shown that they are vulnerable to adversarial attacks, a set of techniques that violate
the integrity, confidentiality, or availability of such systems. In particular, one of the
most studied phenomena concerns adversarial examples, i.e., input samples that are
carefully manipulated to alter the model output. In the last decade, the research
community put a strong effort into this field, proposing new evasion attacks and
methods to defend against them.

With this thesis, we propose different approaches that can be applied to Deep Neu-
ral Networks to detect and reject adversarial examples that present an anomalous
distribution with respect to training data.

The first leverages the domain knowledge of the relationships among the consid-
ered classes integrated through a framework in which first-order logic knowledge
is converted into constraints and injected into a semi-supervised learning problem.
Within this setting, the classifier is able to reject samples that violate the domain
knowledge constraints. This approach can be applied in both single and multi-label
classification settings.

The second one is based on a Deep Neural Rejection (DNR) mechanism to detect
adversarial examples, based on the idea of rejecting samples that exhibit anomalous
feature representations at different network layers. To this end, we exploit RBF
SVM classifiers, which provide decreasing confidence values as samples move away
from the training data distribution.

Despite technical differences, this approach shares a common backbone structure
with other proposed methods that we formalize in a unifying framework. As all
of them require comparing input samples against an oversized number of reference
prototypes, possibly at different representation layers, they suffer from the same
drawback, i.e., high computational overhead and memory usage, that makes these
approaches unusable in real applications. To overcome this limitation, we intro-
duce FADER (Fast Adversarial Example Rejection), a technique for speeding up
detection-based methods by employing RBF networks as detectors: by fixing the
number of required prototypes, their runtime complexity can be controlled.

All proposed methods are evaluated in both black-box and white-box settings, i.e.,
against an attacker unaware of the defense mechanism, and against an attacker who

knows the defense and adapts the attack algorithm to bypass it, respectively.
Our experimental evaluation shows that the proposed methods increase the robust-
ness of the defended models and help detect adversarial examples effectively, espe-
cially when the attacker does not know the underlying detection system.

Contents

List of Figures 5

List of Tables 11

Symbols 15

1 Introduction 17

1.1 Contributions . 19

1.2 List of Publications . 20

2 Background 23

2.1 Machine Learning . 23

2.2 Support Vector Machines . 26

2.3 Neural Networks and Deep Learning 27

2.4 Adversarial Machine Learning . 29

2.4.1 Attacker Model . 29

2.4.2 Evasion Attacks . 31

2.4.3 Defenses against Evasion Attacks 34

2.4.4 Security Evaluation of Defenses against Evasion Attacks . . . 36

2.5 Limitations and Open Issues . 38

3 Increasing Robustness with Domain Knowledge 39

3.1 Learning with Domain Knowledge . 40

3.2 Exploiting Domain Knowledge against Adversarial Attacks 42

3.2.1 Attacking Multi-label Classifiers 47

3.2.2 Impact of Domain Knowledge and Main Issues 49

3.3 Related Work . 51

4 Detecting Adversarial Examples in Inner DNN layers 55

4.1 Deep Neural Rejection . 55

4.2 Attacking Deep Neural Rejection . 57

4.3 Related Work . 60

4 CHAPTER 0. CONTENTS

5 Improving the Efficiency of Prototypes-based Det. 61
5.1 A Framework for Adversarial Example Detection 61

5.1.1 Neural Reject . 63
5.1.2 Kernel Density Estimation . 63
5.1.3 DNN Binary Classifier . 63
5.1.4 Dimensionality Reduction . 64
5.1.5 Deep Neural Reject . 64
5.1.6 Deep k-Nearest Neighbour . 64
5.1.7 Generative Models . 64

5.2 Fast Adversarial Example Rejection 65
5.2.1 FADER . 66

5.3 Related Work . 69

6 Experiments 71
6.1 Increasing Robustness with Domain Knowledge 71

6.1.1 Experimental Settings . 72
6.1.2 Experimental Results on Multi-label Classifiers 75
6.1.3 In-depth Analysis on Multi-label Classifiers 78
6.1.4 Experimental Results on Single-label Classifiers 80
6.1.5 In-depth Analysis on Single-label Classifiers 83

6.2 Detecting Adversarial Examples in Inner DNN layers 90
6.2.1 Experimental setup . 90
6.2.2 Experimental Results . 92

6.3 Improving the Efficiency of Prototypes-based Detectors 97
6.3.1 Experimental Setup . 97
6.3.2 Experimental Results . 99
6.3.3 Comparison with PGD . 100

7 Conclusions 107
7.1 Limitations and Future Works . 108
7.2 Closing Remarks . 109

Bibliography 111

A Adversarial Examples 127

B Domain Knowledge 133

List of Figures

2.1 Salmon and sea bass samples represented in a two-dimensional feature
space, where features are lightness and width. The dark line repre-
sents a possible decision boundary between the two classes (Duda
et al., 2000). 25

2.2 Error-specific (left) and error-generic (right) evasion attacks against a
multiclass RBF-SVM (Melis et al., 2017). Decision boundaries among
the three classes (blue, red and green points) are shown as black
solid lines. The gray circles show a ℓ2 constraint on the adversarial
perturbation. In the first case, the initial (blue) sample is shifted
towards the green class (selected as the target one). In the second
case, instead, it is shifted towards the red class, as it is the closest
class to the initial sample. 33

2.3 Example of security evaluation curves for two classifiers (C1 and
C2) (Biggio and Roli, 2018). The two curves show how C1 is more
robust to an increasing adversarial perturbation than C2, although
C2 report a slightly better performance in absence of perturbations. . 37

3.1 Leveraging domain knowledge to improve the robustness of multi-
label classifiers. At training time, domain knowledge is used to en-
force constraints on the learning process using unlabeled or partially-
labeled data. At evaluation time, domain-knowledge constraints are
used to detect and reject samples outside of the training data distri-
bution. 43

6 LIST OF FIGURES

3.2 Toy example using the domain knowledge of Eqs. (3.4)- (3.7)) on 4
classes: cat (yellow), animal (blue), motorbike (green), vehicle (red).
Labeled/unlabeled training data are depicted with rounded dots/gray
triangles. (a,b) The decision regions for each class are shown in two
sample outcomes of the training procedure: (a) open/loose decision
boundaries; (b) tight/closed decision boundaries. The white area
is associated with no predictions. Some adversarial examples (pur-
ple arrows/dots) are detected as they end up in regions that violate
the constraints. Moreover, in (c,d), The feasible/unfeasible regions
(blue/gray) that fulfill/violate the constraints for (a,b) are shown.
Decision boundaries of the classes in (a,b) are also depicted in (c,d). . 44

3.3 Single-label classifier on a set of mutually exclusive classes (main
classes), computing the class activations by f v and exposing them to
the user (red path). It internally computes by fa additional predic-
tions over auxiliary classes that are involved in the domain knowledge
(together with the main classes). Training considers all the classes,
Figure 3.1. 47

4.1 Architecture of Deep Neural Rejection (DNR). DNR considers dif-
ferent network layers and learns an SVM with the RBF kernel on
each of their representations. The outputs of these SVMs are then
combined using another RBF SVM, which will provide prediction
scores s1, . . . , sc for each class. This classifier will reject samples if
the maximum score maxk=1,...,c sk is not higher than the rejection
threshold θ. This decision rule can be equivalently represented as
arg maxk=0,...,c sk(x), if we consider rejection as an additional class
with s0 = θ. 57

4.2 Our defense-aware attack against an RBF SVM with rejection on a
3-class bi-dimensional classification problem. The initial sample x0

and the adversarial example x⋆ are respectively represented as a red
hexagon and a green star, while the ℓ2-norm perturbation constraint
∥x0−x′∥2 ≤ ε is shown as a black circle. The left plot shows the deci-
sion region of each class, along with the reject region (in white). The
right plot shows the values of the attack objective Ω(x) (in colors),
which correctly enforces our attacks to avoid the reject region. 59

5.1 Architecture of the proposed framework for adversarial example de-
tection. It extends a pre-trained DNN by attaching several layer
detectors g whose goal is to determine distribution drifts in the rep-
resentation of an input x at a given layer. Multiple layer-detector
predictions are combined and fed to a combiner classifier σ, which
outputs the final detector prediction. The undefended network and
detector outputs are combined by ω to provide the final predictions. . 62

LIST OF FIGURES 7

5.2 Comparison of classifiers decision regions on a two-dimensional clas-
sification example with three classes (green, blue, and red points),
using multiclass SVMs with RBF kernels (SVM) and RBF Networks.
a) SVM without reject option, the solution found exploits nsv = 34
support vectors (circled in black). b) SVM with reject option using
a threshold th = 0.67 to obtain 10% FPR, rejected samples are high-
lighted with black dots. c) RBF Network without rejecting option,
the solution found properly separates all classes using only nr = 3
bases (black circles). d) RBF Network with reject option using a
threshold th = 0.86 to obtain 10% FPR, rejected samples are high-
lighted with black dots. Notably, nr = 3 is the minimum number of
bases to ensure each class is correctly enclosed. 68

6.1 Black-box attack on the ANIMALS dataset. While the attack is able
to flip the initial prediction from albatross to ostrich, the attack is
eventually detected as the constraint loss remains above the rejection
threshold (dashed black line). 76

6.2 White-box attack on the ANIMALS dataset. The attack is able to
flip the initial prediction from albatross to ostrich, and then starts
reducing the constraint loss, which eventually falls below the rejec-
tion threshold (dashed black line). The attack sample remains thus
undetected. 77

6.3 Black-box attacks. Classification quality of vanilla and knowledge-
constrained models in function of ε. Dotted plots include rejection
(Rej) of inputs that are detected to be adversarial. 85

6.4 White-box attacks in the case of the FT classifiers. Classification
quality of vanilla and knowledge-constrained models in function of ε.
Dotted plots include rejection (Rej) of inputs that are detected to be
adversarial. 86

6.5 Further analysis of the proposed approach in the ANIMALS dataset
(ε = 0.5), in black-box (left) and white-box (right) settings; (a,b):
increasing amounts of domain knowledge K1, . . . ,K4 - legend reported
only on the latter, for better readability; (c,d): different values of the
rejection threshold θ (from larger to smaller values, left-to-right). . . 87

6.6 Noisy domain knowledge. Analysis of the proposed approach in the
same setup of Figure 6.5, when exploiting different noisy knowledge
bases K̃a, K̃b, K̃c (see Sect 3.1 text for details). K is the original
noise-free knowledge. 88

6.7 Adversarial data generated (ε = 0.5) by different attacks – AN-
IMALS, TL+C(Rej), black-box. Examples that are rejected/not-
rejected by the proposed knowledge-based criterion are depicted with
crosses/circles (“Clean” indicates unaltered examples from the test
set; the vertical line is the reject threshold). 88

8 LIST OF FIGURES

6.8 Adversarial data generated (ε = 0.03) by different attacks – CIFAR-
100, TL+C(Rej), black-box. See Figure 6.7. 89

6.9 Security evaluation curves for MNIST (top) and CIFAR10 (bottom)
data, reporting mean accuracy (and standard deviation) against ε-
sized attacks. 94

6.10 Influence of the rejection threshold θ on classifier accuracy under at-
tack (y-axis) vs false rejection rate (i.e., fraction of wrongly-rejected
unperturbed samples) on MNIST for NR (top) and DNR (bottom),
for different ε-sized attacks. The dashed line highlights the perfor-
mance at a 10% false rejection rate (i.e., the operating point used in
our experiments). 95

6.11 Influence of the rejection threshold θ on classifier accuracy under at-
tack (y-axis) vs false rejection rate (i.e., fraction of wrongly-rejected
unperturbed samples) on CIFAR10 for NR (top) and DNR (bottom),
for different ε-sized attacks. The dashed line highlights the perfor-
mance at a 10% false rejection rate (i.e., the operating point used in
our experiments). 96

6.12 Security evaluation curves for MNIST data, under black-box (top)
and white-box (bottom) settings. Mean accuracy at increasing ℓ2-
norm perturbation size is reported in the top subplots, while the
bottom subplots show the corresponding rejection rates. 103

6.13 Security evaluation curves for CIFAR10 data, under black-box (top)
and white-box (bottom) settings. Mean accuracy at increasing ℓ2-
norm perturbation size is reported in the top subplots, while the
bottom subplots show the corresponding rejection rates. 104

6.14 Classification time (in seconds) against an increasing number of test
samples, averaged on 10 runs, using batches of 256 samples. Similar
linear dependencies are also found for batch sizes of 32, 64, 128, 512,
and 1024. FADER gives a consistent advantage over NR and DNR,
as also quantified in Table 6.15. 105

A.1 Adversarial examples with highest supervision loss (low constraint
loss), APGD-CE attack, ANIMALS dataset. 127

A.2 Adversarial examples with highest constraint loss (low supervision
loss), APGD-CE attack, ANIMALS dataset. 128

A.3 Adversarial examples computed on the MNIST data to evade the
undefended DNN, NR, and DNR. The source image is reported on the
left, followed by the (magnified) adversarial perturbation crafted with
ε = 1 against each classifier and the resulting adversarial examples.
We remind the reader that the attacks considered in this work are
untargeted, i.e., they succeed when the attack sample is not correctly
assigned to its true class. 129

LIST OF FIGURES 9

A.4 Adversarial examples computed on the CIFAR10 dataset adding a
perturbation computed with ε = 0.2. See the caption of FigureA.3
for further details. 130

A.5 Perturbed samples from the ImageNet10 dataset produced by at-
tacking each classifier using PGD-LS (left columns) and PGD (right
columns) algorithms. The maximum size of the ℓ2 perturbation is
equally set to ε = 1. 131

10 LIST OF FIGURES

List of Tables

2.1 Categorization of attacks against machine learning, as defined in Big-
gio and Roli (2018). 31

5.1 Detector-based defenses against adversarial examples framed in our
proposed detector framework (− for unnecessary components). 65

6.1 Datasets and details on the experimental setting. “Classes” reports
the total number of categories, specifying the number of main classes
in parentheses. The fraction of labeled (%L) samples, the level of par-
tial labeling (%P), along with the number of training (|L|), validation
(|V|), and test (|T |) examples are also reported. 72

6.2 Values of the hyperparameter λ selected via cross-validation in our
experiments. Note that baseline models TL and FT do not exploit
domain knowledge (λ = 0). 72

6.3 Values of the constraint loss φ on the test data T 73

6.4 Multi-label classification results in T , for different models, averaged
across different repetitions (standard deviations are < 1%). The
second-row block is restricted to the main classes (Accuracy or F1).
See the main text for details. 73

6.5 ANIMALS dataset. Vulnerability analysis of the classifiers against
MKA and state-of-art attacks—classification quality is reported, the
same as Figuress 6.3- 6.4 (first column). For each type of classifier
(TL, FT), rows are organized into three groups, that are: models
without rejection, with rejection (Rej), classifier equipped with Neu-
ral Rejection (NR). For each attack (columns—see Croce and Hein
(2020a) for a description of the compared attacks), the result of the
most robust classifier in the group is highlighted in bold. Models ex-
ploiting the proposed rejection (Rej) that overcome NR are marked
with *, and vice-versa. 81

12 LIST OF TABLES

6.6 CIFAR-100 dataset. Vulnerability analysis of the classifiers against
MKA and state-of-art attacks—classification quality is reported, the
same as Figures 6.3- 6.4 (second column). Refer to the caption of Ta-
ble 6.5 for more details (see Croce and Hein (2020a) for a description
of the compared attacks). 82

6.7 Model architecture of the MNIST neural network (Carlini and Wag-
ner, 2017a). The layers used by DNR and FADER detectors are
highlighted in bold. 91

6.8 Model architecture of the CIFAR10 neural network. The layers used
by DNR and FADER detectors are highlighted in bold. 92

6.9 Parameters used to train the MNIST and CIFAR10 DNNs. 92
6.10 DNR configurations for MNIST (left) and CIFAR10 (right) datasets. 93
6.11 DNR configuration for ImageNet10 dataset. 98
6.12 Comparison of the number of prototypes used by each component

of the rejection-based defense architectures (FADER in bold) on the
MNIST dataset. We also report the mean accuracy of each detector
at ε = 0 and the memory consumption related to the stored reference
prototypes. 100

6.13 Comparison of the number of prototypes used by each component
of the rejection-based defense architectures (FADER in bold) on the
CIFAR10 dataset. We also report the mean accuracy of each detector
at ε = 0 and the memory consumption related to the stored reference
prototypes. 100

6.14 Comparison of the number of prototypes used by each component of
the rejection-based defense architectures (FADER in bold) on the Im-
ageNet10 dataset. We also report the mean accuracy of each detector
at ε = 0 and the memory consumption related to the stored reference
prototypes. 101

6.15 Expected time ± standard deviation (in milliseconds) to classify 5000
samples, averaged over 10 runs. The reduction attained by each
FADER detector (in bold), computed as the ratio between the time
spent by the SVM-based detector and the corresponding FADER vari-
ant, is reported in parenthesis. 101

6.16 Classification accuracy under white-box attack at fixed values of ε for
the different classifiers (FADER in bold), MNIST data (ε = 1.5), CI-
FAR10 data (ε = 0.2) and ImageNet10 data (ε = 1.0), using our PGD
with Line Search (PGD-LS, Algorithm 2), and a standard PGD with
normalized step (Madry et al., 2018). PGD-LS outperforms PGD
when optimizing attacks is more challenging, e.g., when attacking
NR and NR-BRF on MNIST, and DNR on MNIST and CIFAR10. . . 102

B.1 Domain knowledge, ANIMALS dataset. 135
B.2 Domain knowledge, CIFAR-100 dataset. 136

LIST OF TABLES 13

B.4 Domain knowledge, PASCAL-Part dataset. 139
B.5 First noisy domain knowledge (K̃a), ANIMALS dataset, obtained by

altering the clean knowledge of Table B.1. We report only the altered
rules, highlighting the changes that make them not-coherent with the
ANIMALS domain. 140

B.6 Second noisy domain knowledge (K̃b), ANIMALS dataset, obtained
by adding new rules to the clean knowledge of Table B.1. We report
only the added rules, that were explicitly created to be not-coherent
with the ANIMALS domain. 140

B.7 Third noisy domain knowledge (K̃c), ANIMALS dataset, obtained by
altering the clean knowledge of Table B.1. We report only the altered
rules, highlighting the changes that make them not-fully-coherent
with the ANIMALS domain. They all involve main-class-oriented
conclusions. 140

14 LIST OF TABLES

Symbols

c number of classes
d number of input dimensions
f decision function of the classifier
K domain knowledge (FOL formulas)
L training data
T testing data
V validation data
x ∈ X ⊆ Rd input sample
x⋆ adversarial example
y ∈ Y ⊆ Rc sample label
ŷ predicted label
Γ supervision attached to (some) of the data in L
δ perturbation
ε upper bound on the norm of the difference between

a clean example and its perturbed instance
η step size
θ rejection threshold
Π projection operator
Ω attacker loss
suploss loss function, supervised data only
∧, ∨, ¬, ⇒ logical connectives
∇xf gradient of function f w.r.t. x

16 Symbols

Chapter 1

Introduction

Machine learning can be included among the most impacting technologies of the
last decade. Although the first research work in the area is not recent, after several
years, it has experienced exponential growth. The availability of large amounts of
data and the increase of computational resources on computer systems led to the
growth of application domains and diffusion of machine learning-based solutions,
reporting impressive performance in many fields, like speech recognition (Hinton
et al., 2012; Nassif et al., 2019; Deng and Li, 2013), computer vision (He et al.,
2015; Rehman et al., 2017; Kato et al., 2017) (used, for example, by self-driving
cars (Chen and Huang, 2017)), natural language processing (Vaswani et al., 2017),
reinforcement learning (Silver et al., 2016) and cybersecurity tasks like spam and
malware detection (Lowd and Meek, 2005b; Barreno et al., 2006; Biggio et al.,
2007a,b, 2008; Newsome et al., 2006; Nelson et al., 2008; Raff et al., 2018).

Despite their impressive performances on a variety of tasks, it has been known for
more than a decade that machine learning algorithms can be misled by different
adversarial attacks staged either at training or at test time (Joseph et al., 2018;
Biggio and Roli, 2018). The most used machine learning algorithms are designed to
work under the so-called stationarity assumption: both the training and test data
are assumed to belong to the same distribution. However, distribution drifts can
happen either naturally or adversarially. The former can happen for several rea-
sons, such as missing data due to sensor failures. In the latter, an adversary tampers
with data purposely to cause failures during system operation (Huang et al., 2011;
Biggio and Roli, 2018). After the first attacks proposed against linear classifiers in
2004 (Dalvi et al., 2004; Lowd and Meek, 2005b), Biggio et al. (2013) have been the
first to show that nonlinear machine-learning algorithms, including support vector
machines (SVMs) and neural networks, can be misled by gradient-based optimiza-
tion attacks (Joseph et al., 2018). Nevertheless, such vulnerabilities of learning
algorithms have become extremely popular only after that Szegedy et al. (2014)
have demonstrated that also deep learning algorithms exhibiting superhuman per-
formances on image classification tasks suffer from the same problems. They have
shown that even only slightly manipulating the pixels of an input image can be suf-

18 CHAPTER 1. INTRODUCTION

ficient to induce deep neural networks to misclassify its content. Such attacks have
then been popularized under the name of adversarial examples.

Since the seminal works on adversarial attacks, many defense methods have been
proposed to mitigate the threat of adversarial examples. However, a large number of
these defenses reported overly optimistic evaluations, whereas they have been shown
to be ineffective against more sophisticated attacks, such as attacks that are aware
of the defense mechanism. Therefore, the problems of defending machine learning
models against adversarial examples and evaluating their robustness are still open.

According to Biggio and Roli (2018), the most promising defenses can be broadly
categorized into two families. The first includes approaches based on robust opti-
mization and game-theoretical models (Globerson and Roweis, 2006; Brückner et al.,
2012; Rota Bulò et al., 2017). These approaches, which also encompass adversar-
ial training (Goodfellow et al., 2015), explicitly model the interactions between the
classifier and the attacker to learn robust classifiers. The underlying idea is to in-
corporate knowledge of potential attacks during training. This typically requires,
however, generating attack samples during model training, which may be very com-
putationally demanding for state-of-the-art DNNs. Moreover, they are usually de-
veloped against a specific class of attacks, thus they might not be robust against
adversarial examples generated with different techniques (Araujo et al., 2020). The
second family of defenses (complementary to the first) is based on the idea of de-
tecting and rejecting samples that exhibit an outlying behavior with respect to
unperturbed training data (Bendale and Boult, 2016; Lu et al., 2017), providing an
additional class for anomalies and potential out-of-distribution attacks. Typically,
they are designed to work under the so-called manifold hypothesis : in several do-
mains, natural data are assumed to lie in a low-dimensional manifold embedded in
a high-dimensional space (e.g., grayscale digits image domain). Remarkably, not ev-
ery high-dimensional representation belongs to the natural data manifold (e.g., salt
and pepper noise). Assuming adversarial examples to be out-of-manifold data, these
defenses work by identifying adversarial points from their distance to the manifold,
based on a distance-based rejection strategy: as far as a sample moves away from
class prototypes, classifier support decreases to zero. If an input sample is not sup-
ported by any class, then it is rejected. Several remarkable instances of this approach
can be found in the literature (Feinman et al., 2017; Melis et al., 2017; Papernot and
Mcdaniel, 2018; Lamb et al., 2018; Metzen et al., 2017; Crecchi et al., 2019; Meng
and Chen, 2017). Apart from technical differences, all these rejection-based de-
fenses share a common backbone structure and suffer from the same drawback, i.e.,
high computational overhead and memory usage, as they require comparing input
samples against a set of reference prototypes.

Most of the existing approaches work in the fully-supervised learning setting,
whereas only a few approaches also leverage unlabeled data to improve adversarial
robustness (Miyato et al., 2016; Park et al., 2018; Akcay et al., 2018; Carmon et al.,
2019; Miyato et al., 2018; Schmidt et al., 2018; Najafi et al., 2019; Alayrac et al.,

1.1. CONTRIBUTIONS 19

2019), although the semi-supervised learning setting provides a natural scenario for
real-world applications in which labeling data is costly while unlabeled samples are
readily available. More importantly, the case of multi-label classification, in which
each sample can belong to more classes, is only preliminary discussed in the context
of adversarial learning in Song et al. (2018), while using adversarial examples to
improve the accuracy on legitimate (non-adversarial) samples of some multi-label
classifiers is studied in Wu et al. (2017) and Babbar and Schölkopf (2018).

1.1 Contributions

In this thesis, we focus on detection-based defenses against adversarial examples,
providing three different techniques that can be applied to deep neural networks
in order to increase their robustness by relying on an additional reject class. All
the proposed methods do not need to generate adversarial examples during their
training and can be either integrated during the model training (in the case of the
first one) or applied to pre-trained models (in the case of the other ones), with a low
additional computational overhead for the training phase. Furthermore, we evaluate
them with specifically designed adaptive attacks. Indeed, an attack that is unaware
of the defense mechanism may tend to craft adversarial examples in areas of the
input space which are assigned to the rejection class; thus, such attacks, as well as
previously-proposed ones, may rarely bypass our defenses.

Increasing Robustness with Domain Knowledge

In the first contribution, we exploit the use of domain knowledge to improve the
robustness of multi-label classifiers and to detect adversarial examples by integrating
it into the learning process through logic constraints. While the generic idea of
considering domain information in adversarial attacks has been recently followed by
other authors to different extents, to the best of our knowledge, we are the first
to use domain knowledge expressed by First-Order Logic (FOL) and converted into
polynomial constraints to improve adversarial robustness of multi-label classifiers.
To properly evaluate the robustness of this approach, we also propose a novel multi-
label attack that can implement both black-box and white-box adaptive attacks,
being driven by the domain knowledge in the latter case. Both the defense and the
attack can be applied in the single-label setting too.

Detecting Adversarial Examples in Inner DNN layers

In the second contribution, we propose a multi-layer adversarial examples detection
mechanism for deep neural networks, which is able to reject those samples showing
anomalous behavior with respect to samples from the training data distribution.
Although the idea of rejecting inputs on which the classifier is not sufficiently con-
fident or that are far from the training data distribution is not new (even though

20 CHAPTER 1. INTRODUCTION

the majority of these approaches are not tested against adversarial examples), we
leverage multiple DNN layers without requiring to generate adversarial examples at
test time. In addition, we design a novel adaptive attack that is able to break the
defense in a white-box setting to evaluate it properly.

Improving the Efficiency of Prototypes-based Detectors

In the third contribution, after designing a framework that unifies detector-based
defenses against adversarial examples, we present a technique to speed up such de-
tectors. In fact, all of them share a huge computational overhead and memory usage
due to the fact that they require comparing input samples with a (usually large)
set of reference prototypes, making it difficult to apply those approaches in practi-
cal settings. To overcome these limitations, we propose FADER (Fast Adversarial
Example Rejection), a technique that allows obtaining an end-to-end differentiable
detector capable of an up to 80× prototypes reduction with respect to analyzed
competitors.

1.2 List of Publications

This thesis is based on the following publications:

• S. Melacci, G. Ciravegna, A. Sotgiu, A. Demontis, B. Biggio, M. Gori, and F.
Roli. Domain Knowledge Alleviates Adversarial Attacks in Multi-Label Clas-
sifiers. In IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2021 (Melacci et al., 2021);

• A. Sotgiu, A. Demontis, M. Melis, B. Biggio, G. Fumera, Xiaoyi Feng, and
F. Roli. Deep neural rejection against adversarial examples. In EURASIP
Journal on Information Security, 2020 (Sotgiu et al., 2020);

• F. Crecchi, M. Melis, A. Sotgiu, D. Bacciu, and B. Biggio. FADER: Fast Ad-
versarial Example Rejection. In Neurocomputing, 2022 (Crecchi et al., 2022).

Other works carried out during the Ph.D. course, that are not included in this thesis:

• M. Pintor, D. Angioni, A. Sotgiu, L. Demetrio, A. Demontis, B. Biggio, and
F. Roli. ImageNet-Patch: A Dataset for Benchmarking Machine Learning
Robustness against Adversarial Patches. In Pattern Recognition, 2022 (Pintor
et al., 2022a);

• M. Pintor, L. Demetrio, A. Sotgiu, A. Demontis, N. Carlini, B. Biggio, and
F. Roli. Indicators of Attack Failure: Debugging and Improving Optimization
of Adversarial Examples. In Thirty-sixth Conference on Neural Information
Processing Systems (NeurIPS 2022), 2022 (Pintor et al., 2022b);

1.2. LIST OF PUBLICATIONS 21

• M. Pintor, L. Demetrio, A. Sotgiu, M. Melis, A. Demontis, and B. Biggio.
secml: Secure and explainable machine learning in Python. In SoftwareX,
2022 (Pintor et al., 2022c);

• A. Sotgiu, M. Pintor, and B. Biggio. Explainability-based Debugging of Ma-
chine Learning for Vulnerability Discovery. In The 17th International Con-
ference on Availability, Reliability and Security (ARES 2022), 2022 (Sotgiu
et al., 2022).

22 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This preliminary chapter introduces some basic concepts about machine learning
(Section 2.1) and two of the most deployed learning algorithms, i.e., support vector
machines (Section 2.2) and neural networks (Section 2.3), on which the defense ap-
proaches presented in this thesis are based. In Section 2.4, an overview of adversarial
machine learning is given, with a particular focus on evasion attacks and defenses
and their evaluation methodology. Finally, Section 2.5 summarizes the limitations
and open issues of the current approaches.

2.1 Machine Learning

Machine learning refers to an ensemble of techniques that enables computer systems
to learn from data, performing specific tasks without being explicitly programmed to
do so. These tasks range from classification and regression to clustering problems.
The process starts from data, represented by a feature vector that contains specific
discriminant characteristics of data. Algorithms learn from a set of collected data
called training data (or training set).

Supervised and Unsupervised Learning

Supervised learning algorithms use labeled training data, while unsupervised learning
ones rely on unlabeled data. Classification and regression belong to supervised
learning algorithms and have the purpose of predicting labels of novel data, different
from training one. In classification, these labels are discrete categories (classes); in
regression, they are continuous values. Clustering is a set of unsupervised learning
algorithms. In these learning algorithms, data is unlabeled, and the goal is to find
structure and relationships in the data. In clustering algorithms, the task is to group
sets of data that have similar characteristics. Finally, semi-supervised learning refers
to the case in which both labeled and unlabeled data are available. Typically, in
this case, only a small fraction of data is labeled as it might require a considerable
amount of resources, and unlabeled data can help to improve learning accuracy.

24 CHAPTER 2. BACKGROUND

Binary, Multi-class and Multi-label Classification

Classification algorithms can be categorized based on the number of classes that
are modeled by the classifier. In the simplest case of binary classification, only two
classes exist, whereas in the multi-class setting three or more classes are considered.
For the latter, we can further distinguish between the single-label setting, where
classes are mutual-exclusive and a sample can be assigned to one and only one class,
and the multi-label setting, where a sample might belong to more than one class.
In this work, we focus on different settings: the first contribution is mostly focused
on a semi-supervised setting in both single and multi-label cases, whereas the other
two contributions are based on a fully-supervised single-label setting. Unless when
explicitly specified (Chapter 3 and its related experimental evaluation in Section 6.1),
in the rest of the thesis, we assume that the single-label fully-supervised setting is
considered.

Learning Algorithm Overview

To be effective, classification algorithms have to be able to generalize what they
learned during the training phase to new unseen data.

To understand how these learning algorithms work, we can analyze a simple classifi-
cation problem, as the famous one showed in Duda et al. (2000), where the task is to
distinguish salmons from sea basses from images of fishes. These are the two classes,
and many features can be selected to represent each sample. In this specific example,
the lightness and width of fishes are used as features. We can then represent each
fish with its feature vector in a two-dimensional feature space (Figure 2.1). In this
vector space, the algorithm aims to learn a decision boundary, separating the space
into two different decision regions so that a new fish can be classified depending on
the region to which it belongs in its feature representation.
The optimal decision boundary is chosen in order to separate training samples while
preserving the ability to generalize to new (test) samples. Classification is performed
with a decision function f : X 7→ Y that maps an input sample x ∈ X ⊆ Rd to
a class label y ∈ Y ⊆ Rc, where c and d are the number of classes and features,
respectively. The learning of the optimal decision function needs a set of training
data L = (X,y). A general definition of the decision function can be formulated as
follow:

f(x) = [f1(x), . . . , fc(x)] , (2.1)

where each component fi provide a membership score w.r.t. the class i for the input
sample x. The predicted class label can then be computed as:

ŷ = arg max
i=0,...,c

fi(x) . (2.2)

Often, in a two-class dataset, the labels are a number y ∈ {−1, 1}, and the learning
algorithm looks for a single-output function f(x) so that y = +1 if f(x) ≥ 0, − 1

2.1. MACHINE LEARNING 25

Figure 2.1: Salmon and sea bass samples represented in a two-dimensional feature
space, where features are lightness and width. The dark line represents a possible
decision boundary between the two classes (Duda et al., 2000).

otherwise. This function can assume several shapes. If we consider Figure 2.1,
classes are separated by a straight line: this is an example of linear model. If we
generalize to a d-dimensional space, we can assume that classes can be separated by
a hyperplane, and the decision function is given as:

f(x) = sign(w⊤x + b) , (2.3)

where the vectors w ∈ Rd and b ∈ R contain the so-called feature weights and bias,
respectively. These parameters define different hyperplanes (that can be obtained
with the equation f(x) = 0) and must be optimized to find the ones that provide
the best trade-off between fitting training samples and generalizing to novel ones.
Indeed, if a classifier overfits training samples, it will not be able to classify correctly
new testing samples. To solve the optimization problem can thus be defined the
following objective function to minimize over all the n training samples:

min
w,b

R(w) + C
∑n

i=1Q(yi,w
Txi, b) . (2.4)

The term Q(yi,w
Txi, b) denotes a loss function, that basically measures the number

of errors made by the decision function f(x) on the samples in L. Minimizing this
term, in fact, has the effect of fitting the algorithm to training data. To avoid
overfitting on such data, the regularization term R(w) is used. Basically, minimizing
this term forces the algorithm to find a simpler and smoother solution to the problem.
Finally, C is a trade-off parameter, called regularization parameter, that balances
the influence of R and Q.

If more than two classes are present, we can still use the aforementioned method by
leveraging different strategies. In One-Versus-One classifiers, a two-class classifier is

26 CHAPTER 2. BACKGROUND

trained for each pair of classes. However, this approach is not efficient, as it requires
c(c−1)

2
classifiers to be trained, with c being the number of classes. In One-Versus-All

classifiers, c two-class classifiers are used. The i-th classifier is trained using the i-th
class as positive and all other classes as negatives. The predicted class ŷ (being fi(x)
the decision function of the i-th classifier) can be computed with Equation (2.2).

2.2 Support Vector Machines

Among classification algorithms, before the recent interest in Deep Learning, Sup-
port Vector Machines (SVMs) were one of the mostly used. Based on a sound
mathematical formulation, this algorithm ensures efficient and accurate classifica-
tion in many tasks. In the simplest application scenario with two linearly separable
classes, its behavior strongly resembles the example shown in Section 2.1, as it ba-
sically constructs a hyperplane separating data with a discriminant function. The
algorithm looks for the maximum-margin hyperplane, i.e., the one with the maxi-
mum distance from the nearest training data points (called support vectors) of the
two classes. This is the hard-margin case, which works well if data does not contain
samples out of class distributions (also known as outliers). Otherwise, the com-
puted solution might not be effective when classifying new data samples unless a
soft-margin is used, allowing some training points to violate the separating hyper-
plane. In order to do this, the algorithm applies Equation (2.4), exploiting an ℓ2
regularizer on the feature weights and the so-called hinge loss as loss function.
Minimizing this function, called primal form, can be difficult. A simplified problem
can be obtained using the Lagrangian dual, thus the function to be solved becomes:

max
α

−1

2

n∑
i,j=1

yiyjxixj +
n∑

i=1

αi (2.5)

s.t. 0 ≤ αi ≤ C , (2.6)
n∑

i=1

yiαi = 0 . (2.7)

This is called the dual form. The decision function of the classifier also changes:

f(x) =
n∑
i

αiyi(xi
′x) + b . (2.8)

Quadratic programming or gradient descent algorithms can solve the optimization
problem above. If classes are not linearly separable, these approaches do not ensure
an acceptable solution. To overcome this issue, the so-called kernel trick is used. It
consists of mapping samples into feature spaces with higher dimensions, selected in
order to make them separable. Indeed, with appropriate nonlinear mapping, data
can always be separated by a hyperplane. The aforementioned dual form allows

2.3. NEURAL NETWORKS AND DEEP LEARNING 27

training the classifier without mapping samples in the new feature space. Mapping
functions are called Kernel (K) functions, and they are applied by computing a
scalar product between samples, satisfying K(xi,xj) = Φ(xi)·Φ(xj) where Φ(x) rep-
resents the mapped sample. In the algorithm, we use only K for the sake of brevity,
without regard for Φ. Replacing all the products xixj (see Equation (2.5) and (2.8))
with K(xi,xj), the data points are easily projected into a new space, where they are
separable, and all previous considerations are still valid. Many kernel functions can
be used. One of the most famous is the radial basis function (RBF) kernel, which
allows mapping the samples in an infinite-dimensional features space:

K(x1,x2) = exp(−γ||x1 − x2||2) , (2.9)

where the parameter γ defines the variance of the Gaussian function.

The number of support vectors characterizes the complexity of the resulting classi-
fier, and it is independent of the dimensionality of the transformed space. Therefore,
the kernel trick allows efficient deployment of SVMs classifiers in high-dimensional
spaces. In the multi-class setting, either One-Versus-One or One-Versus-All scheme
described in Section 2.1 can be applied.

2.3 Neural Networks and Deep Learning

Neural networks are inspired by the human brain, as they are composed of artificial
neurons, which receive and can activate based on inputs, eventually giving an output.
Their basic units were initially developed in the 1950s and 1960s and are connected
into a network where each connection has a weight. Typically neural networks are
organized in layers, where the first layer receives the input data, and the last layer
outputs the result of the algorithm. Between these layers, a network can have one or
more hidden layers. In feed-forward neural networks, only neurons of adjacent layers
are connected. Feed-forward networks can be seen as annealed functions, one for
each layer. Let us assume that, without loss of generality, the network consists of m
layers. This implies that the prediction function f can be expressed as a composition
of functions:

f(hm(hm−1(. . . h1(x;w1));wm−1);wm) , (2.10)

where h1 and hm denote the mapping function learned, respectively, by the input
and the output layer, and w1 and wm are their weight parameters (learned during
training). If each neuron in one layer is connected to all neurons in the next layer,
the network is fully-connected.
The training of feed-forward neural networks basically consists in minimizing a loss
function, which usually is an error function computed on the classifier output, ad-
justing the values of connection weights. Since this function can be very complex
as the number of neurons increases, efficient learning algorithms have been devel-
oped since the 1980s, namely backpropagation algorithms. They exploit continuous

28 CHAPTER 2. BACKGROUND

and differentiable activation functions of neurons, which makes the network output
a continuous and differentiable function of its inputs, leveraging the chain rule to
compute derivatives:

∂f

∂w
=

∂hm

∂hm−1

. . .
∂h2

∂h1

∂h1

∂w
. (2.11)

The training loss can thus be minimized using gradient descent methods by forward-
ing training data into the network, computing the loss from the network output
and its gradient with respect to the network weights, and updating them accord-
ingly. This procedure is repeated iteratively for a certain number of training epochs,
whereas the learning rate tunes the magnitude of weights adjustments. It can be
applied by forwarding all training samples (batch gradient descent), subsets of these
samples (mini-batch gradient descent), or one sample at a time (stochastic gradient
descent).

Deep learning models are based on neural networks with a large number of hidden
intermediate layers, called deep neural networks (DNNs), which are able to perform
very complex tasks. This has become possible in the last decade, especially due
to the increase in available data and computational power (e.g., dedicated GPUs).
DNNs can be applied in both supervised and unsupervised learning settings, and
their main applications are speech and audio processing, natural language process-
ing, information retrieval, object recognition, and computer vision. In these models,
multiple layers process the raw input with transformations that can also be non-
linear, where each layer learns during the training a feature representation that
becomes more and more abstract, in a hierarchical structure.

For computer vision applications convolutional neural networks (CNNs) are typ-
ically used, which have specialized layers (not fully connected) that process raw
input images mapping them into increasingly abstract feature spaces, followed by
fully-connected layers that perform the classification on such feature representations.
Convolutional layers are used by CNNs to incorporate the relative invariance of the
spatial relationship in typical image pixels with respect to the location. They use
local receptive fields so that each unit processes data only on its assigned image
region, with kernels that are computed during the learning and convolved to the in-
put. Pooling layers, also called subsampling layers, take the output of convolutional
layers and reduce the dimensions of data, usually using the average or the maximum
value of input clusters. Two additional operations can be added to increase perfor-
mances in CNNs. The first is a powerful regularization technique called dropout,
which drops individual units with a fixed probability, training the network on re-
maining neurons and then reinserting dropped neurons in order to avoid overfitting.
The second is the use of the rectified linear unit (ReLU) activation function, which
computes f(x) = max(x, 0), which adds sparsity, increases efficiency, and reduces
the presence of vanishing gradients.

2.4. ADVERSARIAL MACHINE LEARNING 29

2.4 Adversarial Machine Learning

Since machine learning algorithms have been deployed in security-critical appli-
cations, it quickly emerged that attackers could threaten their functionality. For
instance, the first works (Dalvi et al., 2004; Lowd and Meek, 2005a,b) showed
that email spam filters based on linear classifiers could be evaded with a few small
carefully-crafted changes to the text. These works laid the foundations for the ad-
versarial machine learning research field, specifically focused on the study of attacks
against machine learning algorithms, defense strategies to mitigate such attacks,
and methodologies for their security evaluations.

2.4.1 Attacker Model

As highlighted in Biggio and Roli (2018), it is first necessary to model threats against
learning-based systems in order to evaluate their security against the corresponding
attacks by defining different attack scenarios and strategies. To this end, they pro-
pose an attacker model based on seminal work by Barreno et al. (2006) and following
works, where attackers are characterized with respect to their goal, knowledge of the
target system, and capability of manipulating the input data. Afterward, it is possi-
ble to define an optimization problem corresponding to the optimal attack strategy
that allows the attacker to achieve its goal by manipulating the input data.

Attacker’s Goal

It can be further detailed with the following three different aspects.

Security Violation. The attacker may aim to violate one or more components of
the security triangle, i.e., availability, integrity and confidentiality. The first can be
threatened by compromising normal system operation, while the second refers to,
e.g., evading the detection without making the system unavailable. Confidentiality
violation aims to steal private information from and about the system.

Attack Specificity. It can be indiscriminate or targeted. The goal is, in both cases,
to cause the misclassification of samples, but in the second case, this is performed
only with a specific set of them.

Error Specificity. If the attacker wants the system to misclassify only samples
from a specific class, it is specific. Otherwise, it is generic if the aim is to make the
system misclassify samples of any of the classes different from the true class.

Attacker’s Knowledge

The attacker can have different knowledge of the main elements of the targeted
system, namely the training data, the feature set, the learning algorithm, the objec-
tive function minimized during training, and the trained model parameters/hyper-

30 CHAPTER 2. BACKGROUND

parameters. Depending on these assumptions, one can describe different attack
scenarios.

Perfect-knowledge (PK) White-box Attacks. In this setting, the attacker
is assumed to know everything about the targeted system, i.e., all the elements
mentioned above. This scenario can be considered the worst-case, and an evaluation
of the system security in this setting can provide empirical upper bounds on its
performance degradation under attack.

Limited-knowledge (LK) Gray-box Attacks. This case includes different com-
binations related to partial knowledge of the system components. Typically, the
attacker is assumed to know only the kind of learning algorithm and the feature
representation but neither the model parameters nor the training data. However,
he can still perform an attack if he is able to collect a surrogate dataset and even-
tually get feedback from the target classifier by observing its output, estimating
its parameters, and then training a surrogate classifier. A surrogate classifier can
also be used when the optimization required to perform an attack is too complex
if conducted against a known target classifier. In this case, the attack is crafted
against the surrogate classifier and tested against the target one, and it represents
an example of the transferability of attacks between different algorithms, as shown
in Biggio et al. (2013) and Papernot et al. (2017).

Zero-knowledge (ZK) Black-box Attacks. If the attacker has no knowledge
of the system components but can query the system and get its feedback (e.g., the
predicted labels or the confidence scores for the classes), he can still perform an
attack (Tramèr et al., 2016; Papernot et al., 2017; Chen et al., 2017), by using or
not surrogate classifiers. Actually, it’s unlikely that the attacker has zero knowledge
of the system: it is natural that he knows the task that the classifier is designed to
perform and consequently has an idea of which potential transformations to apply
to cause some feature changes, and which kind of training data was used, otherwise,
neither change can be inflicted to the output of the classification function, nor any
useful information can be extracted from it.

Attacker’s Capability

According to the influence that the attacker can have on the input data and on
application-specific data manipulation constraints, two different characteristics can
be identified.

Attack Influence. Here, two settings can be distinguished. In the former, the
attacker can manipulate training data, altering the training phase in order to obtain
a desired model behavior. This kind of attacks is commonly known as poisoning. In
the latter, the attacker can manipulate test data to achieve his goal. In this thesis,
we only focus on evasion attacks (widely discussed in Section 2.4.2), where input
test data is manipulated to alter the model output.

2.4. ADVERSARIAL MACHINE LEARNING 31

Attacker’s Goal

Attacker’s Capability Integrity Availability Privacy / Confidentiality

Test data
Evasion (a.k.a. adversarial
examples)

Energy-latency attacks
(a.k.a. sponge examples)

Model extraction / stealing
and model inversion (a.k.a.
hill-climbing attacks)

Training data
Poisoning (to allow subsequent
intrusions) – e.g., backdoors or
neural network trojans

Poisoning (to maximize
classification error)

-

Table 2.1: Categorization of attacks against machine learning, as defined in Biggio
and Roli (2018).

Data Manipulation Constraints. Based on the specific application domain of the
targeted system, the manipulation of input data might be constrained. Generally,
these constraints are taken into account in the definition of the optimal attack
strategy, e.g., limiting the alteration of attack samples within a space of possible
modifications. Also, feature values of attack samples can be bounded (Biggio et al.,
2013).

Attack Strategy

The attacker goal, given the above-defined attack scenario, can be represented with
an objective function that quantifies the effectiveness of the attack. This function
changes depending on the kind of attack and is usually minimized or maximized by
the attack algorithm.
In Table 2.1, the taxonomy of adversarial attacks against machine learning is shown
based on the defined attacker’s goal and capability. In this thesis, we will only focus
on evasion attacks, considering different settings regarding the attacker’s knowledge.
Our evaluations are performed with untargeted and error-generic attacks, whereas
they can be easily extended to the targeted and error-specific configurations.

2.4.2 Evasion Attacks

The already mentioned first works attempting to perform evasion attacks, mainly
focused on anti-spam filters and intrusion detection systems, date back to 2004-
2006 (Dalvi et al., 2004; Wittel and Wu, 2004; Lowd and Meek, 2005b; Fogla et al.,
2006). It quickly turned out that in critical domains, where an adversary has an
interest in fooling the system, a learning algorithm can be easily misled. Even by
changing the algorithm reactively, an adaptive attacker can find new solutions to
reach this goal, like an arms race.
Evasion was performed firstly on linear classifiers, obfuscating bad words and/or
adding good words in emails. Afterward, Biggio et al. (2013) showed that also non-
linear machine learning algorithms, including support vector machines and neural
networks, can be misled by gradient-based optimization attacks (Joseph et al., 2018).

32 CHAPTER 2. BACKGROUND

Algorithm 1: Generalized gradient-based attack for optimizing adversarial
examples.

Input : x, the initial sample; yt, the target class label; n, the number of
iterations; η, the step size; Θ, the target model; Ω the loss
function; Π, the projection operator enforcing the constraints in
Equation (2.13).

Output: x⋆, the solution found by the algorithm
1 x0 ← initialize(x) ▷ Initialize starting point

2 Θ̂← approximation(Θ) ▷ Use surrogate model (if required)

3 δ0 ← 0 ▷ Initialize δ
4 for i ∈ [1, n] do

5 δi ← δi−1 − η∇xL(x + δi−1, yt; Θ̂) ▷ Compute gradient update(s)

6 δi ← Π(x, δi) ▷ Project δ onto the feasible domain

7 return x⋆ ← x + best(δ0, ..., δn) ▷ Return best solution

Figure 2.2 shows a 2-dimensional toy example of error-specific and error-generic eva-
sion attacks computed using gradient-based algorithms. A gradient-based attack
was also presented in Šrndic and Laskov (2014), targeting a PDF malware detector
based on nonlinear classifiers.
Nevertheless, such vulnerabilities of learning algorithms have become extremely pop-
ular when Szegedy et al. (2014) and subsequent works (Goodfellow et al., 2015;
Nguyen et al., 2015; Moosavi-Dezfooli et al., 2016) have demonstrated that also
deep learning algorithms exhibiting superhuman performances on image classifica-
tion tasks suffer from the same problems. They have shown that even only slightly
manipulating the pixels of an input image can be sufficient to induce deep neural
networks to misclassify its content. Such attacks have then been popularized under
the name of adversarial examples.
Since then, several attack algorithms have been proposed to craft adversarial exam-
ples (Carlini and Wagner, 2017b; Croce and Hein, 2020a). In addition to distinctions
that can be made based on the categorization in Section 2.4.1, evasion attack strate-
gies can be different. In maximum-confidence attacks, the objective is to cause a
misclassification with the higher possible confidence, given a fixed upper bound for
the perturbation that can be applied to data samples. On the other hand, minimum-
distance attacks aim to find the smallest perturbation leading to misclassification.

In this thesis, we only consider maximum-confidence attacks, as they are required to
perform black-box evaluations of proposed detection methods by generating high-
confidence adversarial examples against the undefended models and evaluating the
defenses with them. In addition, these attacks allow us to create adversarial exam-
ples with a controlled amount of perturbation and thus produce security evaluation
curves (see Section 2.4.4) in both black-box and white-box settings. Most of them
adopt a similar optimization procedure that can be summarized with the following

2.4. ADVERSARIAL MACHINE LEARNING 33

Figure 2.2: Error-specific (left) and error-generic (right) evasion attacks against a
multiclass RBF-SVM (Melis et al., 2017). Decision boundaries among the three
classes (blue, red and green points) are shown as black solid lines. The gray circles
show a ℓ2 constraint on the adversarial perturbation. In the first case, the initial
(blue) sample is shifted towards the green class (selected as the target one). In the
second case, instead, it is shifted towards the red class, as it is the closest class to
the initial sample.

general formulation:

min
δ

Ω(x + δ, y;Θ), (2.12)

s.t. ∥δ∥p ≤ ε, and x + δ ∈ [0, 1]d, (2.13)

where δ ∈ Rd is the perturbation applied to the input sample x during the optimiza-
tion, and Θ are the parameters of the model. The loss function Ω is defined such
that minimizing it amounts to having the perturbed sample x+δ misclassified, i.e.,
its predicted label must be different from the true label y (additionally, if the at-
tack is targeted, the predicted label must be equal to the target label yt). Typical
examples include the Cross-Entropy (CE) loss1, or the so-called logit loss (Carlini
and Wagner, 2017b), shown in the following equation:

Ω(x + δ, y;Θ) =

®
maxk ̸=yt fk(x + δ,Θ)− fyt(x + δ,Θ) if targeted,

fy(x + δ,Θ)−maxk ̸=y fk(x + δ,Θ) if untargeted,
(2.14)

being fi(·,Θ) the model’s prediction (logit) for class i. Let us finally discuss the
constraints in Equation (2.13). While the ℓp-norm constraint ∥δ∥p ≤ ε bounds the
maximum perturbation size, the box constraint x + δ ∈ [0, 1]d ensures that the
perturbed sample stays withing the given (normalization) bounds.

Biggio et al. (2013), Papernot et al. (2016a) and subsequent works (Demontis et al.,
2019) have shown the transferability property of adversarial examples, i.e., adver-
sarial samples computed against a given model, are also effective against different,

1If the attack is targeted, the CE is computed on the target class yt, whereas if the attack is
untargeted it is computed on the true class y and its sign is inverted

34 CHAPTER 2. BACKGROUND

potentially unknown, models. This enables to perform evasion attacks without hav-
ing access to target model parameters and gradients and can also be useful if the
target model is either non-differentiable or not sufficiently smooth (Athalye et al.,
2018a).

We provide here a generalized algorithm, given as Algorithm 1, which summarizes
the main steps followed by gradient-based attacks to solve Problem (2.12)-(2.13).
The algorithm starts by defining an initialization point (line 1), which can be the
input sample x, a randomly-perturbed version of it, or even a sample from the
target class (Brendel et al., 2019). If the target model Θ is either non-differentiable
or not sufficiently smooth, a surrogate model Θ̂ can be used to approximate it, and
perform a transfer attack (line 2). The attack then iteratively updates the point
to find an adversarial example (line 4), computing one (or more) gradient updates
in each iteration (line 5), while the perturbation δi+1 is projected onto the feasible
domain (i.e., the intersection of the constraints in Equation 2.13) via a projection
operator Π (line 6). The algorithm finally returns the best perturbation across the
whole attack path, i.e., the perturbed sample that evades the (target) model with
the lowest loss (line 7).

Remarkably, other works exploit different techniques to perform these attacks by
relying only on the classifier output (either the predicted label or the output
scores) (Chen et al., 2017; Andriushchenko et al., 2020). Finally, different works
showed the feasibility of generating adversarial examples in the real world. Sharif
et al. (2016) attacked a face recognition system by printing a pair of eyeglasses
frames, performing both targeted and untargeted evasion attacks, Eykholt et al.
(2018) added stickers to road sign to make them misclassified, Athalye et al. (2018b)
used a 3D printer to create real adversarial examples by shaping their texture, all
using modified attack algorithms to produce pose-invariant perturbations.

2.4.3 Defenses against Evasion Attacks

Together with works on evasion attacks and adversarial examples, many defense
systems were introduced to mitigate this issue. Those defenses can be categorized,
accordingly to Biggio and Roli (2018), in reactive and proactive. While reactive
defenses aim to counter past attacks (e.g., by timely detection of novel attacks,
frequently retraining classifiers, or verifying the consistency of classifier decisions),
proactive defenses aim to prevent future attacks, either by hiding information to
the attacker (a.k.a. security by obscurity) or developing machine learning models
able to provide intrinsic robustness (a.k.a. security by design), evaluating them in
a white-box setting where the attacker has a perfect knowledge of the system. The
latter approaches are the most promising and include several different techniques
that we will briefly describe.

Adversarial Training. This approach aims to inject knowledge of adversarial at-
tacks in the defended model during its training so that the model can learn how

2.4. ADVERSARIAL MACHINE LEARNING 35

to map them to their true labels. Dalvi et al. (2004) proposed for the first time
an adversary-aware classifier able to increase its security by iteratively retraining
itself on simulated attacks. Other approaches were introduced by Goodfellow et al.
(2015) and Kurakin et al. (2017), and then extended by Madry et al. (2018). De-
spite improving adversarial robustness, adversarial learning is resource-demanding
and time-consuming, as it requires creating adversarial examples during training.
Training time is slowed down by the inner attack iterations that create the aug-
mented samples. However, applying faster attacks still produces good results (Wong
et al., 2019; Rony et al., 2019). This method is often combined with other defense
mechanisms for further increasing robustness.

Robust Regularization. It consists in penalizing the input gradients during the
classifier training, smoothing out its decision function and hence its sensitivity to
input perturbations. With respect to adversarial learning, the cost of computing
adversarial examples is removed, but the method still requires the computation of
the input gradients to regularize them along with the objective function, increasing
the computational overhead. This method was shown to be equivalent to adversarial
training in Ross and Doshi-Velez (2018).

Manifold Projections. In this defense approach, the input test data is projected
into a previously learned data manifold that models the distribution of the training
samples. In this way, if an adversarial example is submitted to the model, it can
be reprojected in the natural data distribution with the intent of removing the
adversarial perturbation (Jalal et al., 2017; Shen et al., 2017; Samangouei et al.,
2018; Song et al., 2018; Schott et al., 2018).

Stochasticity. This defense method tries to hinder the attacker by adding random-
ness to the input (Xie et al., 2018; Prakash et al., 2018), the activations (Xiao et al.,
2020; Dhillon et al., 2018), or to the outputs (Park et al., 2021). These approaches
follow the security-by-obscurity paradigm, and many of them are often broken by
the use of smoothing techniques in the loss (Tramer et al., 2020).

Preprocessing/Input Quantization. In this defense technique, input samples
or the activations (Buckman et al., 2018) are preprocessed (Guo et al., 2018;
Munusamy Kabilan et al., 2018) and often quantized (Papernot et al., 2016b; Lu
et al., 2017), but also, in this case, it has been shown that many of them are inef-
fective (Carlini and Wagner, 2016).

Detectors. This family of defenses is based on the idea of detecting and rejecting
samples that exhibit an outlying behavior with respect to unperturbed training
data. To do this, usually, a separate model is trained to detect the adversarial
examples (Bendale and Boult, 2016; Meng and Chen, 2017; Li and Li, 2017; Melis
et al., 2017; Yu et al., 2019). Most of these works focus on rejecting samples that
are far from the training data in feature space. Such samples appear in regions of
the feature space scarcely populated by training data, and they are called blind-spot
evasion points. During the classifier training, these regions can be assigned to any

36 CHAPTER 2. BACKGROUND

class, almost indifferently regarding the training loss. This occurs consequently to
the assumption that training and test data come from the same distribution (Pillai
et al., 2013), which underlies many machine learning algorithms. Typically the
outputs of the model are the label and the probability that the sample is adversarial,
which can be thresholded to reject the decision. In this case, the model does not
provide the prediction unless a separate algorithm recovers the input sample.

Certified Defenses. These defenses provide guarantees of robustness to norm-
bounded attacks by ensuring no adversarial example is present in the certified ra-
dius (Cohen et al., 2019; Zhang et al., 2020). The limitation of these defenses is that
they do not scale well or are supported for very specific types of models or attacks.

2.4.4 Security Evaluation of Defenses against Evasion At-
tacks

In light of what was stated in previous sections, evaluating the robustness of machine
learning models against adversarial examples is a crucial task, although not easy to
perform. The security evaluation is typically performed by simulating the attacks
and evaluating the robust accuracy of the system under attack, under a given setting,
which is especially characterized by the attacker’s knowledge and its strength.
For the former is usually assumed white-box access to the model where the attacker
has full knowledge of the defense system in order to provide an evaluation under
a worst-case scenario, whereas the black-box setting can still be useful to provide
insights about the effectiveness of the defense. The latter can be fixed, but to have
a complete overview of defenses’ robustness and compare them security evaluation
curves (Biggio and Roli, 2018) are more suitable. They compute the robust accu-
racy as a function of the attack strength by running it with different amounts of
perturbation, showing how gracefully the performance decreases while the attack
increases in strength, up to the point where the defense reaches zero accuracy (Fig-
ure 2.3). This is another important phenomenon to be observed since any defense
against test-time evasion attacks has to fail when the perturbation is sufficiently
large (or, even better, unbounded); in fact, in the unbounded case, the attacker can
ideally replace the source sample with any other sample from another class (Athalye
et al., 2018a). If accuracy under attack does not reach zero for very large pertur-
bations, then it may be that the attack algorithm fails to find a good optimum,
which corresponds to a good adversarial example. This, in turn, means that we are
probably providing an optimistic evaluation of the defense. As suggested in Athalye
et al. (2018a), the purpose of a security evaluation should not be to show which
attacks the defense withstands but rather to show when the defense fails. If one
shows that larger perturbations that may compromise the content of the input sam-
ples and their nature (i.e., its true label) are required to break the defense, then we
can retain the defense mechanism to be sufficiently robust. Another relevant point
is to show that such a breakdown point occurs at a larger perturbation than that

2.4. ADVERSARIAL MACHINE LEARNING 37

Figure 2.3: Example of security evaluation curves for two classifiers (C1 and C2) (Big-
gio and Roli, 2018). The two curves show how C1 is more robust to an increasing
adversarial perturbation than C2, although C2 report a slightly better performance
in absence of perturbations.

exhibited by competing defenses, to show that the proposed defense is more robust
than previously-proposed ones.

Despite the importance of this procedure, for many proposed defenses, it was not
correctly performed. Some of them have been only evaluated against previous at-
tacks rather than against ad-hoc attacks crafted specifically to break them (Pa-
pernot et al., 2016b; Lu et al., 2017; Meng and Chen, 2017; Athalye et al., 2018a;
Carlini and Wagner, 2017a), providing overly optimistic results. It has indeed been
shown afterward that such defenses can be easily bypassed by simple modifica-
tions to the attack algorithm (Athalye et al., 2018a; Carlini and Wagner, 2017b,a).
Other defenses have been found to perform gradient obfuscation, i.e., they learn
functions which are harder to optimize for gradient-based attacks; however, they
can be easily bypassed by constructing a smoother, differentiable approximation of
their function, e.g., via learning a surrogate model (Biggio et al., 2013; Biggio and
Roli, 2018; Russu et al., 2016; Papernot et al., 2017; Demontis et al., 2019; Melis
et al., 2018) or replacing network layers which obfuscate gradients with smoother
mappings (Athalye et al., 2018a; Carlini and Wagner, 2017b,a). Finally, in other
cases, some defenses were evaluated by running existing attacks with inappropriate
hyperparameters (e.g., using an insufficient number of iterations). To prevent such
evaluation mistakes, and help develop better defenses, evaluation guidelines and best
practices have been described in recent work (Carlini et al., 2019). However, they
have been mostly neglected as their application is non-trivial; in fact, 13 defenses
published after the release of these guidelines were found again to be wrongly eval-
uated, reporting overestimated adversarial robustness values (Tramer et al., 2020).
It has also been shown that, even when following such guidelines, robustness can
still be overestimated (Popovic et al., 2022).

38 CHAPTER 2. BACKGROUND

2.5 Limitations and Open Issues

In the previous section, we gave an overview of the state-of-the-art on evasion at-
tacks and defenses. Despite the strong effort made by the research community,
which produced a huge amount of proposed approaches, defending against adver-
sarial examples and correctly evaluating proposed defense methods still remain an
open issue.
Whereas certified defenses are the only ones providing provable robustness bounds,
currently, their application is limited to specific settings.
On the other hand, among empirical defenses, the most promising results came from
adversarial training. However, this technique needs to be applied during the model
training, adding a relevant computational overhead and being unable to defend
models without training them from scratch or applying an additional retraining
phase to already trained models. Moreover, as adversarially-trained models are often
developed to be robust with respect to a specific class of attacks, they might still
be vulnerable to adversarial examples generated with different techniques (Araujo
et al., 2020).
Complementary to these kinds of defenses are detection methods aiming to reject
adversarial examples which are out-of-distribution with respect to natural samples.
These approaches usually provide better computational performance with respect to
adversarial training during the training phase, but they add some overhead at test
time. Many of them rely on comparing input samples with a set of training data
samples, whose number is thus crucial for the runtime efficiency of these detectors.
In these methods, the number of selected training prototypes cannot be tuned and
might almost match the training set size, increasing (i) the memory usage, as they
usually need to be kept in memory, and (ii) the computational overhead, as the
more prototypes are selected, the more computations are required when comparing
input samples with them. A second issue we found in existing approaches is that,
especially for multilayered defenses, classifiers are optimized to maximize detection
separately, i.e., they are not jointly trained to perform rejection, as they are typically
based on ensembling classifiers with heuristic methods, rather than optimizing the
whole architecture in an end-to-end manner to better perform detection.
Another point that was not thoroughly considered when designing defenses, despite
it represents a natural scenario for real-world applications, is the presence of un-
supervised samples in the training dataset. The required cost to obtain them is
typically very small with respect to labeled data, whereas they can contribute to in-
crease the robustness of classifiers. Finally, the vast majority of attacks and defenses
are designed for a single-label classification setting, while only few works preliminary
addressed the multi-label scenario.

Chapter 3

Increasing Robustness with
Domain Knowledge

In this chapter, we focus on multi-label classification and, in particular, in the case
in which domain knowledge on the relationships among the considered classes is
available. Such knowledge can be naturally expressed by First-Order Logic (FOL)
clauses, and, following the learning framework of Gnecco et al. (2015) and Diligenti
et al. (2017), it can be used to improve the classifier by enforcing FOL-based con-
straints on the unsupervised or partially labeled portions of the training set. A well-
known intuition in adversarial machine learning suggests that a reliable model of the
distribution of the data could be used to spot adversarial examples, being them not
sampled from such distribution, but it is not a straightforward procedure (Grosse
et al., 2017). We borrow such intuition, and we intersect it with the idea that
semi-supervised examples can help learn decision boundaries that better follow the
marginal data distribution, coherently with the available knowledge (Melacci and
Belkin, 2011; Diligenti et al., 2017), and we investigate the role of such knowledge
in the context of data generated in an adversarial manner.

The chapter is organized as follows. Section 3.1 introduces the notion of learning
with domain knowledge, emphasizing its effects in the input space. Section 3.2 shows
how domain knowledge can be used to defend against adversarial attacks, together
with a knowledge-aware attack procedure. Finally, related work is discussed in
Section 3.3.

A detailed experimental analysis is reported in Section 6.1, evaluating the quality
of our defense mechanisms and also considering state-of-the-art attacks and existing
defense schemes.

The work presented in this chapter (including the related experiments) has been
published on the IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (Melacci et al., 2021).

40 CHAPTER 3. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE

3.1 Learning with Domain Knowledge

In the context of this chapter, we focus on a multi-label classification problem in
which each input x ∈ X is associated with one or more of the c classes. We consider
the case in which additional domain knowledge is available for the problem at hand,
represented by a set of relationships that are known to exist among (a subset of)
the c classes. Exploiting such knowledge when training the classifier is the main
subject of this section, and it has been shown to improve the generalization skills
of the model (Gnecco et al., 2015; Gori and Melacci, 2013; Diligenti et al., 2017).
The introduction of domain knowledge in the learning process provides precious
information only when the training data are not fully labeled, as in the classic semi-
supervised framework. Some examples might be partially labeled (i.e., for each data
point, a subset of the c classes participates in the ground truth), or a portion of the
training set might be unsupervised. Of course, if the data are fully labeled, then
all the class relationships are already encoded in the supervision signal. However,
in this thesis, we also consider domain knowledge as a means to define a criterion
that can spot potentially adversarial examples at test time, as we will discuss in
Section 3.2, and that is also feasible in fully-supervised learning problems.

Notation. Formally, we consider the vector function defined in Equation (2.1),
where each function fi is responsible for implementing a specific task on the input do-
main X .1 In a classification problem, function fi predicts the membership degree of
x to the i-th class. Moreover, when we restrict the output of fi to [0, 1], we can think
of fi as the fuzzy logic predicate that models the truth degree of belonging to class
i. In order to simplify the notation, we will frequently make no explicit distinctions
between function names, predicate names, class names, or between input samples
and predicate variables. Whenever we focus on the predicate-oriented interpretation
of each fi, First-Order Logic (FOL) becomes the natural way of describing relation-
ships among the classes, i.e., the most effective type of domain knowledge that could
be eventually available in a multi-label problem; e.g., ∀x ∈ X , fi(x)∧fj(x)⇒ fk(x),
for some i, j, k, meaning that the intersection between the i-th class and the j-th
class is always included in the k-one.

Learning from Constraints. The framework of Learning from Con-
straints (Gnecco et al., 2015; Gori and Melacci, 2013; Diligenti et al., 2017) follows
the idea of converting domain knowledge into constraints on the learning problem,
and it studies, amongst a variety of other knowledge-oriented constraints (see, e.g.,
Table 2 in Gnecco et al. (2015)), the process of handling FOL formulas so that they
can be both injected into the learning problem or used as a knowledge verification
measure (Gori and Melacci, 2013; Diligenti et al., 2017). Such knowledge is enforced
on those training examples for which either no information or only partial/incom-
plete labeling is available, thus casting the learning problem in the semi-supervised

1This notion can be trivially extended to the case in which the task functions operate in different
domains.

3.1. LEARNING WITH DOMAIN KNOWLEDGE 41

setting. As a result, the multi-label classifier can improve its performance and make
predictions on out-of-sample data that are more coherent with the domain knowl-
edge (see, e.g., Table 4 in Gnecco et al. (2015)). In particular, FOL formulas that
represent the domain knowledge of the considered problem are converted into nu-
merical constraints using Triangular Norms (T-Norms, from Klement et al. (2013)),
binary functions that generalize the conjunction operator ∧. Following the previous
example, fi(x) ∧ fj(x) ⇒ fk(x) is converted into a bilateral constraint ϕ(f(x)) = 1
that, in the case of the product T-Norm, is 1− fi(x)fj(x)(1− fk(x)) = 1. The 1 on
the right-hand side of the constraint is due to the fact that the numerical formula
must hold true (i.e., 1), while the left-hand side is in [0, 1]. We indicate with ϕ̂(f(x))
the loss function associated to ϕ(f(x)). In the simplest case (the one followed in this
thesis) such loss is ϕ̂(f(x)) = 1 − ϕ(f(x)), where the minimum value of ϕ̂(f(x)) is
zero. The quantifier ∀x ∈ X is translated by enforcing the constraints on a discrete
data sample U ⊂ X . The loss function φ(f,U) associated with all the available FOL
formulas K is obtained by aggregating the losses of all the corresponding constraints
and averaging over the data in U .
Since we usually have ℓ > 1 formulas whose relative importance could be uneven,
we get

φ(f,U ,K, µ) =
1

|U|

|U|∑
j=1

(
ℓ∑

k=1

µkϕ̂k(f(xj))

)
∈ [0, ζ], (3.1)

where µ is the vector that collects the scalar weights µk > 0 of the FOL formulas,
and ζ =

∑ℓ
k=1 µk.

In this specific context, f is implemented with a neural architecture with c output
units and weights collected in W . We distinguish between the use of Equation (3.1)
as a loss function in the training stage and its use as a measure to evaluate the
constraint fulfillment on out-of-sample data. In detail, the classifier is trained on
the training set L by minimizing

min
W

[
suploss(f(·,W),L,Γ) + λ · φ(f(·,W),L,K, µL)

]
, (3.2)

where µL is the importance of the FOL formulas at training time, and λ > 0
modulates the weight of the constraint loss with respect to the supervision loss
suploss, being Γ the supervision information attached to some of the data in L.
The optimal λ is chosen by cross-validation, maximizing the classifier performance.
When the classifier is evaluated on a test sample x, the measure

φ(f(·,W), {x},K, µT) ∈ [0, ζT], (3.3)

with weights µT and ζT =
∑ℓ

k=1 µ
T
k , returns a score that indicates the fulfillment of

the domain knowledge on x (the lower the better). Note that µL and µT might not
necessarily be equivalent, even if certainly related. In particular, one may differently
weigh the importance of some formulas during training to better accommodate the
gradient-descent procedure and avoid bad local minima.

42 CHAPTER 3. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE

It is important to notice that Equation (3.2) enforces domain knowledge only on
the training data L. There are no guarantees that such knowledge will be fulfilled
in the whole input space X . This suggests that optimizing Equation (3.2) yields a
stronger fulfillment of knowledge K over the space regions where the training points
are distributed (low values of φ), while φ could return larger values when departing
from the distribution of the training data. The constraint enforcement is soft so
that the second term in Equation (3.2) is not necessarily zero at the end of the
optimization.

3.2 Exploiting Domain Knowledge against Ad-

versarial Attacks

The constraint loss of Equation (3.1) is not only useful to enforce domain knowledge
into the learning problem but also (i) to gain some robustness with respect to
adversarial attacks and (ii) as a tool to detect adversarial examples at no additional
training cost.
The underlying idea of our defense approach is conceptually represented in Fig-
ure 3.1. At training time, domain-knowledge constraints are enforced on the un-
labeled (or partially-labeled) data to learn decision boundaries that better align
with the marginal distributions. At test time, the same constraints can be effi-
ciently evaluated on the test samples to identify and reject incoherent predictions,
ideally outside of the training data distribution, potentially including adversarial
examples. Our approach can also be used in single-classification tasks where do-
main knowledge and auxiliary classes are present and can be exploited internally
by the classifier to implement the rejection mechanism based on domain-knowledge
constraints. We will show some concrete examples of this latter setting in our exper-
iments (Section 6.1), reporting comparisons with state-of-the-art adversarial attacks
and concurrent defenses developed for single-classification tasks.

A Paradigmatic Example. The example in Figure 3.2 illustrates the main princi-
ples followed in this work in a multi-label classification problem with 4 classes (cat,
animal, motorbike, vehicle) for which the following domain knowledge is available,
together with labeled and unlabeled training data:

∀x, CAT(x)⇒ ANIMAL(x) , (3.4)

∀x, MOTORBIKE(x)⇒ VEHICLE(x) , (3.5)

∀x, VEHICLE(x)⇒ ¬ANIMAL(x) , (3.6)

∀x, CAT(x) ∨ ANIMAL(x) ∨MOTORBIKE(x) ∨ VEHICLE(x). (3.7)

Such knowledge is converted into numerical constraints, as described in Section 3.1,
while the loss function φ is enforced on the training data predictions during classifier
training (Equation (3.2)). Figure 3.2 shows two examples of the learned classifier.

3.2. EXPLOITING DOMAIN KNOWLEDGE AGAINST ADVERSARIAL ATTACKS 43

Training

All classes !Input
Sample

!

Evaluation

Unlabeled
Data

Labeled
Data

All classes ! Domain
KnowledgeSupervision

Loss

Reject /
Don’t Reject

Rejection
Criterion

Domain
Knowledge

Figure 3.1: Leveraging domain knowledge to improve the robustness of multi-label
classifiers. At training time, domain knowledge is used to enforce constraints on
the learning process using unlabeled or partially-labeled data. At evaluation time,
domain-knowledge constraints are used to detect and reject samples outside of the
training data distribution.

Considering point (i), in both cases, the decision boundaries are altered on the
unlabeled data, enforcing the classifier to take a knowledge-coherent decision over
the unlabeled training points and to better cover the marginal distribution of the
data. This knowledge-driven regularity improves classifier robustness to adversarial
attacks, as we will discuss in Section 6.1.

Going into further details to illustrate claim (ii), in (a) we have the most likely case,
in which decision boundaries are not always perfectly tight to the data distribution,
and they might not be closed (ReLU networks typically return high-confidence pre-
dictions far from the training data (Hein et al., 2019)). Three different attacks are
shown (purple). In attack 1, an example of a motorbike is perturbed to become an
element of the cat class, but Equation (3.4) is not fulfilled anymore. In attack 2, an
example of an animal is attacked to avoid being predicted as an animal. However, it
falls in a region where no predictions are yielded, violating Equation (3.7). Attack
number 3 consists of an adversarial attack to create a fake cat that, however, is also
predicted as a vehicle, thus violating Equation (3.4) and Equation (3.6). In (b),
we have an ideal and extreme case with very tight and closed decision boundaries.
Some classes are well separated, it is harder to generate adversarial examples by
slightly perturbing the available data, while it is easy to fall in regions for which
Equation (3.7) is not fulfilled. The pictures in (c-d) show the unfeasible regions in
which the constraint loss φ is significantly larger, thus offering a natural criterion
to spot adversarial examples that fall outside of the training data distribution.

44 CHAPTER 3. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE

Cat

Animal

Vehicle

Motorbike

3

1

2

(a)

Cat

Animal

Vehicle

Motorbike

(b)

Feasible

FeasibleUnfeasible

(c)

Feasible

Feasible

Unfeasible

(d)

Figure 3.2: Toy example using the domain knowledge of Eqs. (3.4)- (3.7)) on 4
classes: cat (yellow), animal (blue), motorbike (green), vehicle (red). Labeled/un-
labeled training data are depicted with rounded dots/gray triangles. (a,b) The
decision regions for each class are shown in two sample outcomes of the training
procedure: (a) open/loose decision boundaries; (b) tight/closed decision boundaries.
The white area is associated with no predictions. Some adversarial examples (pur-
ple arrows/dots) are detected as they end up in regions that violate the constraints.
Moreover, in (c,d), The feasible/unfeasible regions (blue/gray) that fulfill/violate
the constraints for (a,b) are shown. Decision boundaries of the classes in (a,b) are
also depicted in (c,d).

3.2. EXPLOITING DOMAIN KNOWLEDGE AGAINST ADVERSARIAL ATTACKS 45

Domain Knowledge-based Rejection. Following these intuitions, and motivated
by the approach of Hendrycks and Gimpel (2017b) and Hendrycks and Gimpel
(2017a), we define a rejection criterion Ψ as the Boolean expression

Ψ(x, θ|f(·,W),K, µT) = φ(f(·,W), {x},K, µT) > θ, (3.8)

where θ > 0 is estimated by cross-validation in order to avoid rejecting (or rejecting
a small number of2) the examples in the validation set V . Equation (3.8) evaluates
the constraint loss on the validation data V , using the importance weights µT (that
we will discuss in what follows), as in Equation (3.3). The rationale behind this
idea is that those samples for which the constraint loss is larger than what it is on
the distribution of the data that are available when training/tuning the classifier
should be rejected. The training samples are the ones over which domain knowl-
edge was enforced during the training stage, while the validation set represents data
on which knowledge was not enforced but that are sampled from the same distri-
bution from which the training set is sampled, making them good candidates for
estimating θ. Notice that Ψ is measured at test time on an already trained classi-
fier, and it can be used independently on the nature of the training data (fully or
partially/semi-supervised). Differently from ad-hoc detectors, which usually require
training generative models, this rejection procedure comes at no additional training
cost.3

Pairing Effect. The procedure is effective whenever the functions in f are not
too strongly paired with respect to K, and we formalize the notion of “pairing” as
follows.

Definition 3.2.1. Pairing. We consider a classification problem whose training
data are distributed accordingly to the probability density p(x). Given K and µT ,
the functions in f are strongly paired whenever τ(H,L) = ∥φ(f(·,W),H,K, µT)−
φ(f(·,W),L,K, µT)∥ ≈ 0, being H a discrete set of samples uniformly distributed
around the support of p(x).

This notion indicates that if the constraint loss is fulfilled in similar ways over the
training data distribution and space areas close to it, then there is no room for
detecting those examples that should be rejected. While it is not straightforward to
evaluate pairing before training the classifier, the soft constraining scheme of Equa-
tion (3.2) allows the classification functions to be paired in a less strong manner than
what they would be when using hard constraints.4 Note that a multi-label system
is usually equipped with activation functions that do not structurally enforce any
dependencies among the classes (e.g., differently from what happens with softmax),

210% in our experiments.
3Generative models on the fulfillment of the single constraints could be considered too.
4See Teso (2019) for a discussion on hard constraints and graphical models in an adversarial

context.

46 CHAPTER 3. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE

so it is naturally able to respond without assigning the input to any class (white ar-
eas in Figure 3.2). This property has been recently discussed as a means for gaining
robustness to adversarial examples (Shafahi et al., 2019; Bendale and Boult, 2016).
The formula in Equation (3.7) is what allows our model to spot examples that might
fall in this “I don’t know” area. Dependencies among classes are only introduced
by the constraint loss φ in Equation (3.2) on the training data.

The choice of µT is crucial in the definition of the reject function Ψ. On the one hand,
in some problems, we might have access to the certainty degree of each FOL formula
that could be used to set µT , otherwise, it seems natural to select an unbiased set
of weights µT , µk = 1, ∀k. On the other hand, several FOL formulas involve
the implication operator⇒, which naturally implements if-then rules (if class i then
class j) or, equivalently, rules that are about hierarchies, since⇒models an inclusion
(class i included in class j). However, whenever the premises are false, the whole
formula holds true. It might be easy to trivially fulfill the associated constraints by
zeroing all the predicates in the premises, eventually avoiding rejection. As a rule
of thumb, it is better to select µk’s that are larger for those constraints that favor
the activation of the involved predicates.

Single-label Classifiers. The type of domain knowledge described so far usually
involves logic formulas that encode relationships among multiple classes, thus it is
naturally associated with multi-label problems. Let us focus our attention on multi-
label scenarios in which there exists a subset of categories that are known to be
mutually exclusive, that we will refer to as main classes, while the remaining cate-
gories will be referred to as auxiliary classes. If we restrict the original classification
problem to the main classes only, we basically end up in a single-label scenario. Let
us assume that the available logic formulas introduce relationships between (some
of) the main classes and (some of) the auxiliary ones. As a result, in order to set up
our defense mechanism (Equation (3.8)) or to learn with domain knowledge (Equa-
tion (3.2)), predictions on both the main and auxiliary classes must be available, so
that the truth degree of the logic formulas can be evaluated. This consideration can
be exploited to design classifiers that expose single-label predictions on the main
classes, thus acting as single-label classifiers, and include predictions on the auxil-
iary classes that are not exposed to the user at all but that are internally used to
set up our defense mechanism or to improve the quality of the whole classifier when
learning in a semi-supervised context. Formally, let us assume that the components

{fi, i = 1, . . . , c} of the vector function f are partitioned into two disjoint subsets,
where the first one considers the components about the mutually-exclusive main
classes and the second subset is about the auxiliary classes. We define with f v the
vector function with the elements in the first subset, while fa is the vector function
based on the elements of the second one, as shown in Figure 3.3. The system only
exposes to the user predictions computed by means of f v, while the computations of
fa are hidden. Overall, the system can still exploit domain knowledge that consists
of relationships between the classes associated with f v (main classes) and the ones

3.2. EXPLOITING DOMAIN KNOWLEDGE AGAINST ADVERSARIAL ATTACKS 47

Evaluation

Input
Sample

!!

Reject /
Don’t Reject

Rejection
Criterion

Domain
Knowledge

Main classes !!

Aux. classes !"a

Figure 3.3: Single-label classifier on a set of mutually exclusive classes (main
classes), computing the class activations by f v and exposing them to the user (red
path). It internally computes by fa additional predictions over auxiliary classes that
are involved in the domain knowledge (together with the main classes). Training
considers all the classes, Figure 3.1.

associated with fa (auxiliary classes) or among the ones in fa only, thus leveraging
the learning principles that were described in Section 3.1. Moreover, the system
can exploit the hidden predictions and the available knowledge to implement the
knowledge-based rejection mechanism that we proposed in this section, as sketched
in Figure 3.3.

Due to the single-label nature of the visible portion of the classifier, existing state-
of-the-art attacks, specifically designed for single-label models, can be used to fool
the classifier in a black-box scenario. In Section 6.1, when the considered data are
compatible with this special setting, we will exploit recent attack procedures to
generate adversarial examples and evaluate the proposed knowledge-based rejection
mechanism. Of course, different from what we previously stated about the real multi-
label setting, we cannot consider the cost of the rejection mechanism negligible in
this case since the system must learn the functions in fa in order to be able to
compute the rejection criterion.

3.2.1 Attacking Multi-label Classifiers

As described in Section 2.4.2 and 2.4.4, the robustness against adversarial examples
is typically evaluated against black-box and white-box attacks. In the black-box set-
ting, the attacker is assumed to ignore the presence of our defense mechanisms, with-
out having access to any additional domain knowledge and related constraints. In the
white-box setting, instead, the attacker is assumed to know everything about the tar-
get model, including the defense mechanism. White-box attacks are thus expected
also to exploit the available domain knowledge to try to bypass the knowledge-based
defense.

The existing literature on the generation of adversarial examples is strongly fo-
cused on single-label classification problems (see Miller et al. (2020) and references
therein). In such a context, the classifier is expected to take a decision that is only
about one of the c classes, and, in a nutshell, attacking the classifier boils down to

48 CHAPTER 3. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE

perturbing the input in order to make the classifier predict a wrong class. The whole
procedure is subject to constraints on the amount of perturbation that the system is
allowed to apply. Formally, given x ∈ T , being T the test set, the attack generation
procedures in single-label classification commonly solve the following problem,

x⋆ = arg min
x′

[−suploss(f(x′,W),L,Γ)],

s.t. ∥x− x′∥ < ε,
(3.9)

being ∥ · ∥ an Lp-norm and ε > 0. Each x has a unique class label/index attached to
it and stored in Γ, and suploss is usually the cross-entropy loss. Different attacks
and optimization techniques for solving the problem of Equation (3.9) have been
proposed (Croce and Hein, 2020a). While there are no ambiguities on the class on
which we want the classifier to reduce its confidence, i.e., the ground-truth (positive)
class of the given input x, the class that the classifier will predict in input x⋆ might
be given or not, thus each of the remaining c − 1 classes could be a valid option.
When moving to the multi-label setting, each x ∈ T is associated with multiple
ground-truth positive classes, collected in set Px, and we indicate with Nx the set of
ground-truth negative classes of x. Different from the previous case, due to the lack
of mutual exclusivity of the predictions, creating an adversarial example out of x is
more arbitrary. For example, the optimization procedure could focus on making the
classifier not able to predict any of the classes in Px or a subset of them. Similarly,
the optimization could focus on making the classifier positively predict one or more
classes of Nx.

Departing from the overwhelming majority of existing attacks for single-label clas-
sifiers, we propose a multi-label attack that focuses on the classes on which the
classifier is less confident (thus easier to attack), that are selected and re-defined
during the optimization procedure in function of the way the predictions of the
classifier progressively change. Of course, in the black-box case, this attack is not
considering that classes are related, and it is not taking care that, perhaps, changing
the prediction on a certain class should also trigger a coherent change in other re-
lated classes. Differently, in the white-box setting, the previously introduced domain
knowledge and, in particular, the corresponding loss of Equation (3.1) is what en-
codes such relationships in a differentiable way so that we can easily exploit it when
crafting attacks. We first introduce the proposed multi-label attack in a black-box
setting, in which domain knowledge is not available. To make gradient computation
numerically more robust, as in Carlini and Wagner (2017b), we consider the acti-
vations (logits) of the last layer of f to compute the objective function instead of
using the cross-entropy loss.

Let us define p = arg mini[fi(x), i ∈ Px], and n = arg maxi[fi(x), i ∈ Nx], i.e., p (n)
is the index of the positive (negative) class with the smallest (largest) output score.
These are essentially the indices of the classes for which x is closer to the decision

3.2. EXPLOITING DOMAIN KNOWLEDGE AGAINST ADVERSARIAL ATTACKS 49

boundaries. Our attack optimizes the following objective,

x⋆ = arg min
x′

[max(lp(x
′),−κ)−min(ln(x′), κ)]

s.t. ∥x− x′∥ < ε,
(3.10)

where lj is the value of the logit of fj, ∥ · ∥ is an Lp-norm (L2 in our experiments),
and in the case of image data with pixel intensities in [0, 1] we also have x′ ∈ [0, 1].
The scalar κ ≥ 0 is used to threshold the values of the logits to avoid increasing/de-
creasing them in an unbounded way (in our experiments, we set κ = 2). Optimizing
the logit values is preferable to avoid sigmoid saturation. While the definition of
Equation (3.10) is limited to a pair of classes, we dynamically update p and n when-
ever logit lp (ln) goes beyond (above) the threshold −κ (κ), thus multiple classes
are considered by the attack, compatibly with the maximum number of iterations of
the optimizer. This strategy resulted in being more effective than jointly optimizing
all the classes in Px and Nx. Moreover, the classes involved in the attack can be
a subset of the whole set, as in Song et al. (2018). In a white-box scenario, when
the attacker has the use of the domain knowledge, the information in K provides a
comprehensive description of how the predictions of the classifier should be altered
over several classes in order to be coherent with the knowledge. In such a scenario,
we enhance Equation (3.10) to implement what we refer to as multi-label knowledge-
driven adversarial attack (MKA), including the differentiable knowledge-driven loss
φ in the objective function,

x⋆ = arg min
x′

[max(lp(x
′),−κ)−min(ln(x′), κ)+

ρ · φ(f, {x′},K, µT)], s.t. ∥x− x′∥ < ε,
(3.11)

in which we set ρ > 0 to enforce domain knowledge and avoid rejection. When
crafting adversarial examples, MKA softly enforces the fulfillment of domain knowl-
edge by means of the loss function φ. For black-box attacks, instead, we set ρ = 0
to recover Equation (3.10). MKA naturally extends the formulation of single-label
attacks (when Px is composed of a single class) and it allows the staging of both
black-box and white-box (adaptive) attacks against our approach. Equation (3.11)
is minimized via projected gradient descent (1000 samples and 50 iterations in our
experiments).

3.2.2 Impact of Domain Knowledge and Main Issues

Our approach is built around the idea of exploiting the available domain knowledge
K on the target classification problem, both in the cases of rejection and multi-label
attack. Several existing works use additional knowledge on the learning problem
with different goals, being it represented by logic (d’Avila Garcez et al., 2019; Dili-
genti et al., 2017; Gnecco et al., 2015; Gori and Melacci, 2013), inherited by knowl-
edge graphs or other external resources (Melacci et al., 2018; Yu and Dredze, 2014),

50 CHAPTER 3. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE

and encoded in multiple ways to face specific tasks (Pi et al., 2017; Morgado and
Vasconcelos, 2017; Melacci et al., 2018). For instance, Semantic-based Regulariza-
tion (Diligenti et al., 2017) and the theory formalized in Gnecco et al. (2015) focus
on the same approach we use here to convert generic FOL knowledge. On one hand,
K might not always be available, thus limiting the applicability of what we pro-
pose and of the other aforementioned approaches. On the other hand, K is about
relationships among classes that, in the case of the universal quantifier, hold ∀x.
As a result, such knowledge is more generic than specific example-level supervision.
Human experts can produce FOL rules to a lesser effort than what is needed to
manually label large batches of examples since K naturally represents the type of
high-level knowledge on the target domain that a human would develop during a
concrete experience on the considered task (e.g., if A happens, then also B or C are
triggered, but not D). Moreover, we are currently working on methods to extract the
type of knowledge that we consider in this chapter by means of special neural archi-
tectures, with clear connections to Explainable AI (Ciravegna et al., 2020; Barbiero
et al., 2022).

When the number ℓ of FOL formulas in K is large, a larger number of penalty
terms ϕ̂k will be considered in φ of Equation (3.1). Of course, every approach
that exploits additional knowledge usually incurs increased complexity when the
knowledge base is large (d’Avila Garcez et al., 2019; Diligenti et al., 2017; Gnecco
et al., 2015; Gori and Melacci, 2013). In our case, the T-Norm-based conversion
does not represent an issue since it is computed only once in a pre-processing stage,
and similarly, the output of the network f(x,W) is computed only once in order to
evaluate φ for a certain sample x and for given weights W , independently on the
size of K. However, the computation of φ must be repeated at each iteration of the
optimization of Equation (3.2) or Equation (3.11), and when evaluating whether an
input should be rejected or not, Equation (3.8). From the practical point of view, the
computational complexity scales almost linearly with ℓ, but each ϕ̂k has a different
structure depending on the FOL formula from which it was generated—roughly
speaking, formulas involving more predicates usually yield more complex T-Norm-
based polynomials. Several heuristic solutions are indeed possible to overcome these
issues. For example, the knowledge base could be sub-selected in order to bind the
number of rules in which each class is involved, or a stochastic optimization could
be devised to sample the rules included in φ at each iteration of the optimization
process. However, we remark that in the related experimental activities none of the
mentioned issues arose.

The way we convert FOL rules into polynomial constraints, described in Section 3.1,
inherits the flexibility of logic in terms of knowledge representation capabilities. Of
course, the concrete impact of K in the rejection mechanisms or in MKA depends
on the specific information that is encoded by the FOL rules. For instance, suppose
that fi(x) = 1 for a certain x. The formula fi(x) ⇒ fj(x) ∨ . . . ∨ fu(x) is “more
likely” to be fulfilled than the formula with an analogous structure in which ∨’s are

3.3. RELATED WORK 51

replaced by ∧’s. In the former, it is enough for a predicate in the conclusions to be
1, while in the latter, all the predicates of the conclusions must be jointly true. The
rejection criterion or MKA is likely to be more effective in the latter case, but it
cannot be strongly stated in advance since it depends on the concrete way in which
f(·,W) is developed by the learning procedure, as discussed in Section 3.2, and, in
the case of MKA, on the difficulty in optimizing Equation (3.11).

When restricting our attention to the rejection function of Equation (3.8), a key
element to the success of the proposed criterion is the choice of θ. In Section 3.2,
we suggested using data in V to tune θ. Although this is a valuable solution, it
strongly depends on the quality of V , similarly to what happens when tuning other
hyper-parameters. More generally, a too-small θ will result in a reject-prone system
that does not reject only those inputs that are strongly coherent with the domain
knowledge. A too large θ would end up in not rejecting inputs, being them coherent
with K or not. If further information on the formulas in K is available, such as their
expected importance with respect to the considered task, one could avoid computing
an averaged measure as φ and evaluate the penalty term ϕ̂k of every single formula
against its own reject threshold (i.e., multiple θ’s), that might be selected accordingly
to the importance of the formula itself (i.e., smaller θ’s in more important formulas).

3.3 Related Work

We emphasize here the main differences between what we propose in this chapter
with respect to the most strongly related approaches.

Multi-label Adversarial Perturbations. Most of the work in the adversarial ML
area focuses on single-label classification problems. To the best of our knowledge,
the first and only study on this problem is the one in Song et al. (2018), in which the
authors focus on targeted multi-label adversarial perturbations defining in advance
the set of classes on which the attack is targeted (being them positive or negative)
and also introducing another set of classes for which the attack is expected not to
change the classifier predictions. The framework described in Song et al. (2018) is
only experimented in a static/targeted context, i.e., by selecting in advance the sets
mentioned above using custom criteria to simulate the attacking scenario artificially.
The multi-label attack that we propose in this work is instead dynamic/untargeted
and without the need to define in advance what are the classes to be considered.
Regarding the defenses, to our best knowledge, none of the previously proposed ones
leverage multi-label classification outputs.

Semi-supervised Learning and Adversarial Training. In the context of ad-
versarial machine learning, unlabeled data are usually employed to improve the
robustness of the classifier by performing adversarial training. The rationale behind
such a training scheme is that if the available unlabeled samples are perturbed,
then the predicted class should not change. Miyato et al. (2016), Miyato et al.

52 CHAPTER 3. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE

(2018) and Park et al. (2018) exploit adversarial training (virtual adversarial train-
ing and adversarial dropout, respectively) to favor regularity around the supervised
and unsupervised training data and improve the classifier performance. The work
in Akcay et al. (2018) develops an anomaly detector using adversarial training in
the semi-supervised setting. Self-supervised learning is exploited in Carmon et al.
(2019) and Najafi et al. (2019) to gain stronger adversarial robustness. Stability
criteria are enforced on unlabeled training data in Schmidt et al. (2018), whereas
the work in Alayrac et al. (2019) specifically focuses on an unsupervised adversarial
training procedure in the context of semi-supervised classification. Our model nei-
ther exploits adversarial training nor any adversary-aware training criteria aimed at
gaining intrinsic regularity. We focus on the role of domain knowledge as an indi-
rect means to increase adversarial robustness and, afterward, to detect adversarial
examples. Therefore, the proposed work is not attack-dependent, and it is faster
at training time as it does not require generating adversarial examples. We believe
that using unlabeled data also to simulate attacks and incorporate them into the
training process may further improve robustness. All the described methods could
also be applied jointly with what we propose.

Rejection-based Approaches for Adversarial Examples. A different line of
defenses, complementary to adversarial training, is based on detecting and rejecting
samples sufficiently far from the training data in feature space. Our approach differs
from other adversarial-example detectors (Carlini and Wagner, 2017a; Ma et al.,
2018; Samangouei et al., 2018; Miller et al., 2020) as it has no additional training
cost and negligible runtime cost. We are the first to show that domain knowledge can
be used to reject adversarial examples and also to propose a detector that exploits
unlabeled data.

Domain-Agnostic Methods and Semantic Attacks. Recent work in adver-
sarial attacks considers the role of the learning domain and of additional semantic
information, even if with different goals to the ones of this chapter. The way the
learning domain is related to the generation of attacks was recently studied in Naseer
et al. (2019), which is based on the idea of developing generative adversarial pertur-
bations that turn out to be easily transferable from the source domain (where the
attack function is modeled) to another domain. Differently, we focus on knowledge
that is domain-specific and used both for defending and creating more informed
attacks. The knowledge of a set of semantic attributes is used to implement the
threat model of semantic adversarial attacks in Joshi et al. (2019). A generative
network is considered, and the attack procedure focuses on altering the activation
of such human-understandable attributes, that, in turn, yield visible changes in the
input image (e.g., adding glasses to the input face). Differently, our work is built on
an Lp-norm-bounded perturbation model that does not enforce the input image to
change in a human-understandable manner. Our approach considers a more generic
notion of knowledge, that includes information also on the relationships within sub-
sets of logic predicates, and that exploits the power of FOL. Predicate activations

3.3. RELATED WORK 53

are modeled by neural networks and not by scalar variables as for the attributes of
Joshi et al. (2019).

54 CHAPTER 3. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE

Chapter 4

Detecting Adversarial Examples in
Inner DNN layers

In this chapter, we propose a defense mechanism, named Deep Neural Rejection
(DNR), based on analyzing the representations of input samples at different network
layers and on rejecting samples that exhibit anomalous behavior with respect to that
observed from the training data at such layers. In fact, it has been shown that only
relying upon the feature representation learned by the last network layer to reject
adversarial examples is not sufficient (Melis et al., 2017; Bendale and Boult, 2016).
In particular, it happens that adversarial examples become indistinguishable from
samples of the target class at such a higher representation level even for small input
perturbations. With respect to similar approaches based on analyzing different
network layers (Lu et al., 2017; Crecchi et al., 2019), our defense does not require
generating adversarial examples during training, and it is thus less computationally
demanding. We evaluate our defense against an adaptive white-box attacker that is
aware of the defense mechanism and tries to bypass it. To this end, we propose a
novel gradient-based attack that accounts for the rejection mechanism and aims to
craft adversarial examples that avoid it.

The chapter is structured as follows. In Section 4.1, the DNR technique is introduced
and formulated. Section 4.2 presents the adaptive attack we use to perform the
robustness evaluation. Finally, in Section 4.3, related works are discussed.

Experimental results are reported in Section 6.2.

The work presented in this chapter (including the related experiments) has been
published on the EURASIP Journal on Information Security (Sotgiu et al., 2020).

4.1 Deep Neural Rejection

The underlying idea of our DNR method is to estimate the distribution of unper-
turbed training points at different network layers and reject anomalous samples that

56 CHAPTER 4. DETECTING ADVERSARIAL EXAMPLES IN INNER DNN LAYERS

may be incurred at test time, including adversarial examples. The architecture of
DNR is shown in Figure 4.1.
Before delving into the details of our method, let us recall some notation. We denote
the prediction function of a deep neural network with f : X 7→ Y , where X ⊆ Rd

is the d-dimensional space of input samples (e.g., image pixels) and Y ⊆ Rc is
the space of the output predictions (i.e., the estimated confidence values for each
class), being c the number of classes. If we assume that the network consists of
m layers, then the prediction function f can be rewritten to make this explicit
as: f(h1(h2(. . . hm(x;wm);w2);w1), where h1 and hm denote the mapping function
learned respectively by the output and the input layer, and w1 and wm are their
weight parameters (learned during training).

For our defense mechanism to work, one has first to select a set of network layers; for
instance, in Figure 4.1, we select the outer layers h1, h2, and h3. Let us assume that
the representation of the input sample x at level hi is zi. Then, on each of these
selected representations, DNR learns an SVM with the RBF kernel gi(zi), trying to
assign input samples to their respective classes.
The confidence values on the c classes provided by this classifier are then concate-
nated with those provided by the other base SVMs and used to train a combiner,
using again an RBF SVM.1 The combiner will output predictions s1, . . . , sc for the c
classes but will reject samples if the maximum confidence score maxk=1,...,c sk is not
higher than a rejection threshold θ.
This decision rule can be compactly represented as: arg maxk=0,...,c sk(x), where we
define an additional, constant output s0(x) = θ for the rejection class. According
to this rule, if s0(x) = θ is the highest value in the set, the sample is rejected;
otherwise, it is assigned to the class exhibiting the larger confidence value.

As proposed in Melis et al. (2017), we use an RBF SVM here to ensure that the
confidence values s1, . . . , sc, for each given class, decrease while x moves further
away from regions of the feature space which are densely populated by training
samples of that class. This property, named compact abating probability in open-set
problems (Scheirer et al., 2014; Bendale and Boult, 2016), is a desirable property to
easily implement a distance-based rejection mechanism as the one required in our
case to detect outlying samples.
With respect to Melis et al. (2017), we train this combiner on top of other base
classifiers rather than only on the representation learned by the last network layer
to further improve the detection of adversarial examples. For this reason, in the
following, we refer to the approach by Melis et al. (2017), rejecting samples based
only on their representation at the last layer, as Neural Rejection (NR); and to ours,
also exploiting representations from other layers, as Deep Neural Rejection (DNR).

1Validation samples should be used to train the combiner here and avoid overfitting, as suggested
by stacked generalization (Wolpert, 1992).

4.2. ATTACKING DEEP NEURAL REJECTION 57

Predicted outputs on known classes

cl
as

si
fie

r

g3

g2

g1

Threshold for detection of anomalous
inputs, including adversarial examples

classifier with reject option, whose
decision rule is: argmax(s1,...,sc,s0)

these classifiers try to predict the correct class
from each given representation layerinput image

s1 ... sc s0

Figure 4.1: Architecture of Deep Neural Rejection (DNR). DNR considers different
network layers and learns an SVM with the RBF kernel on each of their represen-
tations. The outputs of these SVMs are then combined using another RBF SVM,
which will provide prediction scores s1, . . . , sc for each class. This classifier will reject
samples if the maximum score maxk=1,...,c sk is not higher than the rejection thresh-
old θ. This decision rule can be equivalently represented as arg maxk=0,...,c sk(x), if
we consider rejection as an additional class with s0 = θ.

4.2 Attacking Deep Neural Rejection

A correct evaluation of proposed detection methods against adversarial examples is
essential (Biggio and Roli, 2018; Athalye et al., 2018a), and it is not sufficient to
evaluate such defenses against previous defense-unaware attacks that are likely to
fail (Lu et al., 2017; Papernot et al., 2016b; Meng and Chen, 2017), leading to overly
optimistic results in terms of classifier robustness. To perform a fair defense evalua-
tion, attacks should take into account the defense mechanism. Under this condition,
many defenses were shown not to be as effective as claimed (Carlini and Wagner,
2017a,b; Athalye et al., 2018a). When a defense exploits rejection, a defense-unaware
attack may craft adversarial examples belonging to rejection regions, making it very
difficult to evade such defense. To perform a fair robustness evaluation of the pro-
posed defense method, an adaptive defense-aware attack is required.

We formulate here an adaptive white-box attack to properly evaluate the security,
or adversarial robustness, of rejection-based defenses. Given a source sample x, the
attacker can compute a maximum-allowed ε-sized adversarial perturbation, obtain-
ing the adversarial example x⋆ by solving the following constrained optimization

58 CHAPTER 4. DETECTING ADVERSARIAL EXAMPLES IN INNER DNN LAYERS

problem:

x⋆ = arg min
x′:∥x−x′∥≤ε

Ω(x) where Ω(x) = sy(x
′)− max

j ̸∈{0,y}
sj(x

′) , (4.1)

where ∥x−x′∥ ≤ ε is an ℓp-norm constraint (typical norms used for crafting adversar-
ial examples are ℓ1, ℓ2 and ℓ∞, for which efficient projection algorithms exist (Duchi
et al., 2008)), y ∈ Y = {1, . . . , c} is the true class, and 0 is the rejection class.
Intuitively, to perform an untargeted (error-generic) evasion, the output of the true
class must be minimized, and the output of one competing class (excluding the re-
ject class) must be maximized. The resulting objective function is negative in case
of successful evasion, and its absolute value increases with the increasing classifica-
tion confidence of the competing class. The algorithm does not simply search for
a minimum-distance adversarial example, but it maximizes the confidence of the
attack. Although in this work we focus only on untargeted attacks, the proposed
formulation can be easily extended to account for targeted (error-specific) evasion,
as in Melis et al. (2017).

To solve the optimization problem above, we use a projected gradient descent (PGD)
algorithm with a line search to optimize the step size, named PGD-LS (Algorithm 2).
The initial step size η0 is doubled ten times, computing the objective function at
each step and choosing the step size which minimizes the function. The selected
step size is then used to update the point x′. Choosing a different η at each step
gives two main advantages:

• Speeding-up the optimization: using larger step sizes (when possible) allows
us to reach the convergence with a reduced number of iteration steps.

• Escaping local minima which may hinder the optimization process, using the
larger step sizes.

In fact, while attacking DNR, we found that the optimization often got stuck in local
minima inside reject decision regions, where the objective function gradient reaches
very small values close to zero. The magnitude of these gradients strongly depends
on the value of the γ parameter of SVM-RBF classifiers used by DNR, which is a
negative exponent used in the kernel computation that controls the shape of decision
regions around training samples. Larger values of γ produce more complex decision
regions and smaller gradient magnitudes, whereas smaller values of γ conversely
produce smoother decision regions. Our proposed attack exploiting an adaptive
step size turns out to be more effective than standard fixed-size step attacks, as
shown in the experiments of Section 6.3.3.
In Figure 4.2, we report an example of a bi-dimensional toy problem to show how
our defense-aware attack works against a rejection-based defense mechanism.

4.2. ATTACKING DEEP NEURAL REJECTION 59

Algorithm 2: PGD-LS: PGD-based Maximum-confidence Adversarial Ex-
amples with Exponential Line Search

Input : x0: the input sample; η0: the initial step size; Π: a projection
operator on the ℓp-norm constraint ∥x0 − x′∥ ≤ ε; t > 0: a small
positive number to ensure convergence.

Output: x′: the adversarial example.
1 x′ ← x0

2 repeat
3 x← x′

4 x′′
0 ← Π (x− η0∇Ω(x))

5 for k = 1 to k < 10 do
6 ηk ← 2kη0
7 x′′

k ← Π (x− ηk∇Ω(x))
8 if Ω(x′′

k) < Ω(x′′
k−1) then

9 η′ ← ηk

10 x′ ← Π (x− η′∇Ω(x))

11 until |Ω(x′)− Ω(x)| ≤ t;
12 return x′

Figure 4.2: Our defense-aware attack against an RBF SVM with rejection on a 3-
class bi-dimensional classification problem. The initial sample x0 and the adversarial
example x⋆ are respectively represented as a red hexagon and a green star, while
the ℓ2-norm perturbation constraint ∥x0 − x′∥2 ≤ ε is shown as a black circle. The
left plot shows the decision region of each class, along with the reject region (in
white). The right plot shows the values of the attack objective Ω(x) (in colors),
which correctly enforces our attacks to avoid the reject region.

60 CHAPTER 4. DETECTING ADVERSARIAL EXAMPLES IN INNER DNN LAYERS

4.3 Related Work

Different approaches have been recently proposed to perform rejection of samples
that are outside of the training data distribution (Thulasidasan et al., 2019; Geifman
and El-Yaniv, 2019, 2017) For example, Thulasidasan et al. (2019) and Geifman and
El-Yaniv (2019) have proposed novel loss functions accounting for rejection of inputs
on which the classifier is not sufficiently confident. Geifman and El-Yaniv (2017)
have proposed a method that allows the system designer to set the desired risk level
by adding a rejection mechanism to a pre-trained neural network architecture. These
approaches have, however, not been originally tested against adversarial examples,
and it is thus of interest to assess their performance under attack in future work,
also in comparison to our proposal.
Even if the majority of approaches implementing rejection or abstaining classifiers
have not considered the problem of defending against adversarial examples, some
recent work has explored this direction, too (Bendale and Boult, 2016; Melis et al.,
2017). Nevertheless, with respect to the approach proposed in this work, they have
only considered the output of the last network layer and performed rejection based
solely on that specific feature representation. In particular, Bendale and Boult
(2016) have proposed a rejection mechanism based on reducing the open-set risk
in the feature space of the activation vectors extracted from the last layer of the
network, while Melis et al. (2017) have applied a threshold on the output of an
RBF SVM classifier. Despite these differences, the rationale of the two approaches
is quite similar and resembles the older idea of distance-based rejection.
Few approaches have considered a multi-layer detection scheme similar to that en-
visioned in our work (Lu et al., 2017; Carrara et al., 2018; Crecchi et al., 2019; Pang
et al., 2018; Papernot and Mcdaniel, 2018). However, most of these approaches re-
quire generating adversarial examples at training time, which is computationally in-
tensive, especially for high-dimensional problems and large datasets (Lu et al., 2017;
Carrara et al., 2018; Crecchi et al., 2019; Pang et al., 2018). Finding a methodol-
ogy to tune the hyperparameters for generating the attack samples is also an open
research challenge. Finally, even though the Deep k-Nearest Neighbors approach
by Papernot and Mcdaniel (2018) does not require generating adversarial examples
at training time, it requires computing the distance of each test sample against all
the training points at different network layer representations, which again raises
scalability issues to high-dimensional problems and large datasets.

Chapter 5

Improving the Efficiency of
Prototypes-based Detectors

In this chapter, we start from the intuition that the vast majority of detector de-
fenses in literature are a form of instance-based classifiers: in fact, when a new
sample is fed to the classifier, it is compared with a set of prototypes to produce
an output prediction. We thus provide a comprehensive review of such adversarial
examples detection methods in the form of a unifying framework. Each proposed
detector defense can be obtained by correctly instantiating our framework compo-
nents. Subsuming each analyzed detector defense in the framework allowed us to
identify common drawbacks, leading us to propose FADER, a technique for speeding
up detection methods. It works by replacing the detector’s distance-based classi-
fiers with size-constrained RBF networks to reduce computational overhead at test
time. The proposed solution is capable of enforcing adversarial robustness even in
presence of adaptive attacks specifically designed to defeat the defense.

The chapter is structured as follows. In Section 5.1, we present our adversarial
examples detector framework. Section 5.2 introduces FADER, our proposed fast
detection method. Finally, Section 5.3 discusses complementary methods for ad-
dressing adversarial examples than detection strategies.

We performed an extensive experimental evaluation, which is reported in Section 6.3.

The work presented in this chapter (including the related experiments) has been
published on the Neurocomputing journal (Crecchi et al., 2022).

5.1 A Framework for Adversarial Example Detec-

tion

The proposed detection framework, conceptually depicted in Figure 5.1, assumes an
already-trained DNN classifier to be protected against adversarial examples, denoted

62 CHAPTER 5. IMPROVING THE EFFICIENCY OF PROTOTYPES-BASED DET.

h3h2h1

o

y

σ

S

x

s3s2s1

s3

s2

s1

z3

z2

z1

g3

g2

g1

ỹ

ω

Figure 5.1: Architecture of the proposed framework for adversarial example detec-
tion. It extends a pre-trained DNN by attaching several layer detectors g whose
goal is to determine distribution drifts in the representation of an input x at a given
layer. Multiple layer-detector predictions are combined and fed to a combiner clas-
sifier σ, which outputs the final detector prediction. The undefended network and
detector outputs are combined by ω to provide the final predictions.

with f : X → Y , being X ⊆ Rd a d-dimensional input space, and Y ⊆ Rc the output
space consisting of c classes.1

Building a detector amounts to selecting a set of network layers to inspect the inter-
nal DNN representations corresponding to each given input sample, with the goal of
identifying anomalous (adversarial) patterns with respect to those exhibited by the
natural samples. Let zj = hj(hj−1(. . . (h1(x;w1));wj−1);wj) be the representation
learned by the network for a given input sample x at layer hj. A layer detector
function gj : Zj → Sj is applied to zj producing a score vector sj of size c, where
each element represents the probability that x belongs to a given class, according
to the given representation zj.

The predictions coming from the k different layer detectors are then stacked in
a scoring matrix S ∈ Rk·c, and combined by a multilayer detector σ : Rk·c →
O, where o ∈ O is the vector of predictions provided by the multilayer detector.

1We assume here that the classifier predicts continuous output values for each class and that
the final decision is made as usual by selecting the class exhibiting the maximum support.

5.1. A FRAMEWORK FOR ADVERSARIAL EXAMPLE DETECTION 63

The multilayer detector may provide one output for each class, i.e., O = Y , or
alternatively only produce a single score that measures how likely the input sample
is retained anomalous.

The predictions of the multilayer detector may be finally combined with those com-
ing from the undefended DNN to produce the final predictions for each input sample
x. This can be formalized as a function ω : Y × O → Ỹ , being y ∈ Y and o ∈ O
the DNN and the detector predictions, respectively, and ỹ ∈ Ỹ a c+1 output vector
which includes an additional rejection class reserved for the detected adversarial ex-
amples. For single-layer defenses, no combiner is clearly needed. In our framework,
this corresponds to instantiating σ as the identity function.

In the remainder of the section, we will rephrase the aforementioned adversarial-
example defenses in terms of the proposed framework. As already mentioned, we
are considering only rejection-based defenses against adversarial attacks. For the
sake of clarity, the considered defenses are also schematized in terms of framework
components in Table 5.1.

5.1.1 Neural Reject

Inspired by the concept of open set recognition, Melis et al. (2017) proposed a
method called Neural Reject (NR), which attaches a support vector machine with
an RBF kernel (SVM RBF) on the last (i.e., m − 1) hidden layer of a DNN to
perform rejection of samples showing an outlying behavior. In particular, the choice
of the RBF kernel implies that the prediction scores provided by the SVM are
proportional to the distance of the input sample to the reference prototypes (i.e.,
the support vectors), thus enabling the rejection of samples that fall far away from
the training data in the given representation space. This single-layered defense can
be expressed in our framework, instantiating gm−1 as an SVM RBF.

5.1.2 Kernel Density Estimation

Feinman et al. (2017) proposed an adversarial examples detector exploiting a Kernel
Density Estimator (KDE) on the embeddings obtained from the last hidden layer of
the neural network to identify low-confidence input regions. As for NR, such defense
can be obtained by instantiating gm−1 as a KDE.

5.1.3 DNN Binary Classifier

The idea of a layer-wise detector is further developed in Metzen et al. (2017) provid-
ing a single detector subnetwork connected to an arbitrary layer of the DNN which
is intended to protect. This subnetwork is trained to perform a binary classification
task to distinguish genuine data from samples containing adversarial perturbations.
In our framework, gj is the detector subnetwork at a given layer j.

64 CHAPTER 5. IMPROVING THE EFFICIENCY OF PROTOTYPES-BASED DET.

5.1.4 Dimensionality Reduction

Multiple-layer inspection has been performed by Crecchi et al. (2019), who proposed
a detection method combining non-linear dimensionality reduction techniques, i.e.,
t-SNE (Van Der Maaten and Hinton, 2008), and density estimation to detect ad-
versarial samples. For a given layer j of the network, the classifier obtained by
performing density estimation on top of the embeddings produced by t-SNE repre-
sents gj, whereas the support vector machine combiner is a realization of σ.

5.1.5 Deep Neural Reject

In Chapter 4, we propose to apply NR to multiple internal layer representations to
form a Deep Neural Rejection (DNR) detector, empirically demonstrating improve-
ments upon the single-layered solution. As for NR, gj is obtained through SVM
RBF classifiers at layer j, whereas σ is again an SVM RBF, trained via stacked
generalization (Wolpert, 1992).

5.1.6 Deep k-Nearest Neighbour

Papernot and Mcdaniel (2018) proposed a detection method named Deep k-Nearest
Neighbour (DkNN), which employs a k-nearest neighbor classifier on the represen-
tations of the data learned by each layer of the DNN. When a test input is fed to
DkNN, it is compared to its neighboring training points according to the distance
that separates them in the representations to estimate the nonconformity, i.e., the
lack of support, for a prediction in the training data. If the input sample is not
conformed with the training data, it is rejected as an adversarial example. This
defense can be obtained by employing kNNs for gj for layer j of the DNN. Statisti-
cal hypothesis tests for combiner predictions in the realm of conformal predictions
(Saunders et al., 1999; Vovk et al., 1999; Shafer and Vovk, 2008) can be used as σ.

5.1.7 Generative Models

As generative models are trained to approximate the data-generating distribution
(which is typically unknown), they are a natural candidate for manifold-based de-
fenses against adversarial examples. Meng and Chen (2017) proposed MagNet for
defending neural network classifiers against adversarial samples leveraging genera-
tive models. MagNet works in the input space and employs one or more separate
detector networks in the form of a denoising autoencoder (DAE), exploiting the re-
construction error to estimate how far a test sample is from the manifold of normal
samples and to reform it to a natural sample lying on the data manifold, which is
used for classification.
Fortified Networks (Lamb et al., 2018) exploit this very same idea but on the learned
hidden representation distribution: DAEs are inserted at crucial points between

5.2. FAST ADVERSARIAL EXAMPLE REJECTION 65

Defense Adv. Training g σ

Feinman et al. (2017) ✗ KDE -
Melis et al. (2017) ✗ SVM RBF -

DNR (from Chapter 4) ✗ SVM RBF SVM RBF
Papernot and Mcdaniel (2018) ✗ k-NN Statistical Test

Lamb et al. (2018) ✗ DAE -
Metzen et al. (2017) ✓ DNN -
Crecchi et al. (2019) ✓ t-SNE + KDE SVM

Meng and Chen (2017) ✓ DAE -

Table 5.1: Detector-based defenses against adversarial examples framed in our pro-
posed detector framework (− for unnecessary components).

layers of the original DNN to clean up the adversarial sample lying away from
the original data manifold, arguing that this provides stronger protection against
adversarial examples than acting in the input space.
Magnet and Fortified Network defenses can be obtained in our framework by instan-
tiating gj as a DAE for layer j. By having σ as the identity function, threshold-based
detection (ω) on input sample reconstruction error can be used to identify outliers
with respect to the expected input distribution.
However, despite the promising theoretical background, all these methods are still
vulnerable (Carlini and Wagner, 2017a; Athalye et al., 2018a).

5.2 Fast Adversarial Example Rejection

In this section, we present our proposal for speeding up existing detection methods
for adversarial examples by controlling the number of reference prototypes they make
use of. Previous instance-based detectors, in fact, do not allow one to specify the
number of prototypes (e.g., support vectors for SVM-based ones) used for identifying
adversarial examples. Selecting a large number of reference prototypes, possibly at
different representation layers, dramatically increases classification time, as the input
sample has to be compared with each prototype at each selected representation
layer to compute the corresponding prediction. Thus, controlling the number of
prototypes employed by detectors is crucial for runtime efficiency. With FADER,
we propose to replace existing classifiers in such detectors with size-constrained RBF
networks designed for an optimal accuracy vs. speed trade-off.

RBF networks are shallow artificial neural networks that use radial basis functions
(RBF) as activation functions. The output of the network is a linear combination of
radial basis functions of the inputs and neuron parameters. Despite their architec-
tural simplicity, they have been shown to possess structural resistance to adversarial
attacks (Goodfellow et al., 2015; De Alfaro, 2018; Habib Zadeh et al., 2019; Chenou
et al., 2019) thanks to their localized nature, thus they are a natural candidate for

66 CHAPTER 5. IMPROVING THE EFFICIENCY OF PROTOTYPES-BASED DET.

building fast and secure detectors. The use of RBF activation functions enforces
the classifier to assume a desirable compact abating probability property for open
set recognition (Bendale and Boult, 2016; Scheirer et al., 2011). Being s1, . . . , sc
the output scores produced by the classifier for an input sample x, such property
ensures that, for each given class, such scores decrease while x moves away from
input regions densely populated by training samples of that class. This property
allows us to easily implement a distance-based rejection mechanism required to de-
tect adversarial examples, as also suggested in Melis et al. (2017) and Bendale and
Boult (2016).

5.2.1 FADER

The central idea of FADER is to speed up instance-based adversarial example detec-
tors by controlling the number of prototypes used for comparison while maintaining
comparable performances with original solutions. To this end, we replace detector
classifiers with RBF network-based ones, allowing for the joint optimization of pro-
totypes and network parameters. Suppose to take an RBF SVM as a reference layer
detector (e.g., used in NR or DNR) that we intend to speed up. Then, given zj

as the input representation for an input sample x obtained at the j-th layer of the
DNN, the layer-detector function can be formulated as follows:

gj(zj) = sign

(
nsv∑
i=1

αj,i exp
(
−γj ∥zj − zj,i∥2

)
+ bj

)
, (5.1)

where zj,i is the representation of the training sample xi at layer j, αj,i is its cor-
responding (signed) coefficient, bj is the bias, and γj is the RBF kernel parameter.
The coefficients αj,i and b are learned via SVM training.

One issue with kernelized SVMs is that the number of support vectors (i.e., the train-
ing samples for which αj,i ̸= 0) grows linearly with the training set size (Steinwart,
2003; Chapelle, 2007; Demontis et al., 2016), and it tends to match the training set
size n when considering multiclass SVMs (as the union of the support vector sets
learned in a disjoint manner by the different binary SVMs tends to be non-sparse).
The runtime complexity of RBF SVMs is O(q · nsv · d) (Claesen et al., 2014), and it
scales linearly with the number of test samples q, the number of support vectors nsv,
and the dimensionality d of the input (at the considered layer). Accordingly, RBF
SVMs tend to become too computationally demanding at runtime when trained on
large training sets. In addition, they also require storing a much larger number of
reference prototypes in memory, which hinders portability on low-memory embedded
devices. These problems are also witnessed by the fact that a substantial amount
of previous work has proposed many different SVM variants aimed at reducing or
pruning the set of support vectors to speed up classification and reduce memory
consumption (Claesen et al., 2014; Demontis et al., 2016).

5.2. FAST ADVERSARIAL EXAMPLE REJECTION 67

FADER aims to replace the RBF SVM layer detectors with an RBF network to
reduce the number of prototypes while maintaining the desired detector behavior,
i.e., nearly the same decision regions of the unpruned SVMs (see Figure 5.2). The
new detector decision function can be formulated as follows:

gj(zj) = sign

(
nr∑
i=1

βj,i exp
(
−γj,i ∥zj − rj,i∥2

)
+ bj

)
. (5.2)

Although the two definitions look alike, they substantially differ in practical terms.
The reference prototypes rj,i can now be optimized during RBF network training, as
well as the kernel parameters γj,i (one per prototype), to better fit the training data.
This improved flexibility allows us to drastically reduce the number of reference
prototypes. Moreover, jointly optimizing prototypes (rj,i), kernel (γj,i), and network
parameters (βj,i, bj) enables a significant reduction of the number of prototypes
while maintaining comparable performances with respect to over-specified solutions,
as shown in our experiments (see Section 6.3). In addition, nr does not need to
scale linearly with the training set size (as it is fixed a priori), thereby significantly
reducing runtime complexity and memory consumption.

In terms of the proposed adversarial detector framework in Section 5.1, FADER
can be represented as follows: the layer detector function g can be instantiated as
an RBF network. In the case of multilayered detectors, the combiner σ can be
instantiated again as an RBF network. Adversarial examples are rejected if the
prediction values of the combiner do not exceed a predefined threshold, which is
tuned on a validation set not to exceed a given fraction of false rejections (i.e.,
natural samples detected as adversarial).

68 CHAPTER 5. IMPROVING THE EFFICIENCY OF PROTOTYPES-BASED DET.

SVM (no reject, nSV=34)

(a)

SVM (reject, nSV=34, th=0.67)

(b)

RBF Network (no reject, nr=3)

(c)

RBF Network (reject, nr=3, th=0.86)

(d)

Figure 5.2: Comparison of classifiers decision regions on a two-dimensional classi-
fication example with three classes (green, blue, and red points), using multiclass
SVMs with RBF kernels (SVM) and RBF Networks. a) SVM without reject option,
the solution found exploits nsv = 34 support vectors (circled in black). b) SVM with
reject option using a threshold th = 0.67 to obtain 10% FPR, rejected samples are
highlighted with black dots. c) RBF Network without rejecting option, the solution
found properly separates all classes using only nr = 3 bases (black circles). d) RBF
Network with reject option using a threshold th = 0.86 to obtain 10% FPR, rejected
samples are highlighted with black dots. Notably, nr = 3 is the minimum number
of bases to ensure each class is correctly enclosed.

5.3. RELATED WORK 69

5.3 Related Work

The problem of countering adversarial attacks is far from being new. The first
adversary-aware classification algorithm against evasion attacks was proposed in
2004, which is based on simulating attacks and iteratively retraining the clas-
sifier on them (Dalvi et al., 2004). More recently, similar techniques took the
name of adversarial training and were employed to counter adversarial examples
in DNNs (Szegedy et al., 2014; Goodfellow et al., 2015) or to harden decision trees
and random forests (Kantchelian et al., 2016). The scalability of these methods
to large datasets and high-dimensional feature spaces is in doubt, as it may be too
computationally costly to generate a sufficient number of attack samples to correctly
represent their distribution.
Other variants of this approach, instead of encouraging the correct labeling of the
attacks by augmenting the training set, introduce a new class in the model solely for
the adversarial attacks and train the model to detect them. Bhagoji et al. (2017)
propose a similar defense based on dimensionality reduction instead, which retrains
the classifier on a D-dimensional version of the inputs, with D ≪ d. This defense
restricts the attacker to manipulate only the first D components, resulting in a dra-
matic magnitude increase of the perturbation required to produce an effective attack.
Other defenses try to detect adversarial examples by comparing the distribution of
legitimate samples to the distribution of attacks. In Grosse et al. (2017), a classical
statistical method is exploited, Maximum Mean Discrepancy (MMD), which allows
determining if two sets of samples are drawn from the same underlying distribution.
Hendrycks and Gimpel (2017b) propose the use of Principal Component Analysis
(PCA) by arguing that adversarial samples place a higher (lower) weight on the
later (earlier) principal components with respect to legitimate samples. Li and Li
(2017), instead, apply PCA to the values after the inner convolutional layers of a
CNN model and use a cascade classifier to detect the differences between the two
distributions. Similarly, in Feinman et al. (2017), a Gaussian Mixture Model is used
to analyze if the outputs of the model in the case of adversarial examples belong to
a distribution different than that of legitimate samples.
Finally, recent efforts combine the advantages of adversarial training and detection
mechanisms (Yin et al., 2020), reporting promising results. However, the problem
remains still challenging and largely unsolved, especially when it comes to evaluating
adversarial robustness against adaptive white-box attacks (Tramer et al., 2020).

70 CHAPTER 5. IMPROVING THE EFFICIENCY OF PROTOTYPES-BASED DET.

Chapter 6

Experiments

In this chapter, we report the experimental evaluations performed on the defense
approaches we proposed in the previous chapters. For all of them, we describe the
experimental setting and discuss the results and findings. In particular, Section 6.1,
Section 6.2, and Section 6.3 collect experiments related to Chapter 3, Chapter 4,
and Chapter 5, respectively. All these experiments are performed using secml1 (Pin-
tor et al., 2022c), i.e., a Python framework that enables benchmarking of attacks
and defenses for secure machine learning, on a workstation equipped with an In-
tel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz with 48 cores, 126 GB of RAM and an
NVIDIA Quadro M6000 graphics card with 24 GB of memory.

6.1 Increasing Robustness with Domain Knowl-

edge

In this section, we report our experimental analysis for the defense described in
Chapter 3, discussing the experimental setup in Section 6.1.1, and the results of stan-
dard and adversarial evaluations for multi-label classifiers in Section 6.1.2 and 6.1.3.
We then show in Section 6.1.4 and 6.1.5 how our multi-label classifiers can also be
adopted to mitigate the impact of adversarial examples in single-label classification
tasks when auxiliary classes are exploited. This allows us to highlight that our
approach exhibits competitive performances with respect to other baseline defense
methods designed under the same assumptions (i.e., without assuming any specific
knowledge of the attacks) and against state-of-the-art attacks that are developed for
single-label classification tasks.

1https://github.com/pralab/secml

https://github.com/pralab/secml

72 CHAPTER 6. EXPERIMENTS

Table 6.1: Datasets and details on the experimental setting. “Classes” reports the
total number of categories, specifying the number of main classes in parentheses.
The fraction of labeled (%L) samples, the level of partial labeling (%P), along
with the number of training (|L|), validation (|V|), and test (|T |) examples are also
reported.

Dataset Classes %L %P |L| |V| |T |
ANIMALS 33 (7) 30% 90% 5808 1244 1243
CIFAR-100 120 (100) 30% 0% 40000 10000 10000
PASCAL-Part 64 (20) 30% 70% 7072 1515 1515

Table 6.2: Values of the hyperparameter λ selected via cross-validation in our ex-
periments. Note that baseline models TL and FT do not exploit domain knowledge
(λ = 0).

Model ANIMALS CIFAR-100 PASCAL-Part

TL+C 10−2 3 10−1

TL+CC 1 10 1

FT+C 10−2 3 10−1

6.1.1 Experimental Settings

Datasets. We considered three image classification datasets, referred to as ANI-
MALS, CIFAR-100, and PASCAL-Part, respectively. The first one is a collection
of 8287 images of animals, taken from the ImageNet database,2 the second one is a
popular benchmark composed of RGB images (32× 32) belonging to different types
of classes (vehicles, flowers, people, etc.),3 while the last dataset is composed of
images in which both objects (Man, Dog, Car, Train, etc.) and object-parts (Head,
Paw, Beak, etc.) are labeled.4

All datasets are used in a multi-label classification setting so that the ground truth
of each example is composed of a set of binary class labels. In the case of ANIMALS,
there are 33 categories, where the first 7 ones, also referred to as “main” classes, are
about specific categories of animals (albatross, cheetah, tiger, giraffe, zebra, ostrich,
penguin) while the other 25 classes are about more generic features (mammal, bird,
carnivore, fly, etc.). The CIFAR-100 dataset is composed of 120 classes, out of which
100 are fine-grained (“main” classes) and 20 are superclasses. In the PASCAL-Part
dataset, after having processed data as in Donadello et al. (2017), we are left with

2ANIMALS http://www.image-net.org/
3CIFAR-100 https://www.cs.toronto.edu/~kriz/cifar.html
4PASCAL-Part: https://www.cs.stanford.edu/~roozbeh/pascal-parts/pascal-parts.html

http://www.image-net.org/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.stanford.edu/~roozbeh/pascal-parts/pascal-parts.html

6.1. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE 73

Table 6.3: Values of the constraint loss φ on the test data T .

Model ANIMALS CIFAR-100 PASCAL-Part

TL 0.5833 ±0.0316 1.4440 ±0.0087 2.7286 ±0.0853

TL+C 0.2134 ±0.0160 1.0406 ±0.0020 1.7422 ±0.0516

TL+CC 0.2004 ±0.0097 0.7267 ±0.0020 0.7387 ±0.0151

FT 0.3751 ±0.0169 0.9603 ±0.0041 2.4478 ±0.0723

FT+C 0.0897 ±0.0113 0.4449 ±0.0068 0.8434 ±0.0471

Table 6.4: Multi-label classification results in T , for different models, averaged
across different repetitions (standard deviations are < 1%). The second-row block
is restricted to the main classes (Accuracy or F1). See the main text for details.

Metric Dataset TL TL+C TL+CC FT FT+C

F1 (%)
ANIMALS 98.3 98.6 98.1 98.6 99.2
CIFAR-100 52.0 55.1 53.1 59.3 64.0
PASCAL-Part 69.5 70.0 69.4 69.1 71.0

AccMain (%)1

F1Main (%)2

ANIMALS1 98.8 99.2 99.2 98.5 99.1
CIFAR-1001 53.3 55.6 52.8 60.5 61.6
PASCAL-Part2 73.8 75.9 69.5 70.4 75.0

64 categories, out of which 20 are objects (“main” classes) and the remaining 44 are
object-parts.

The use of domain knowledge holds for all the available examples. In the case
of ANIMALS, it is a collection of FOL formulas that were defined in the bench-
mark of P.H. Winston (Winston and Horn, 1986), and they involve relationships
between animal classes and animal properties, such as ∀x FLY(x) ∧ LAYEGGS(x)
⇒ BIRD(x). In CIFAR-100, FOL formulas are about the father-son relation-
ships between classes, while in PASCAL-Part they either list all the parts belong-
ing to a certain object, i.e., MOTORBIKE(x) ⇒ WHEEL(x)∨ HEADLIGHT(x)∨
HANDLEBAR(x)∨ SADDLE(x), or they list all the objects in which a part can
be found, i.e., HANDLEBAR(x)⇒ BICYCLE(x)∨ MOTORBIKE(x). We also in-
troduced a disjunction or a mutual-exclusivity constraint among the main classes
and another disjunction among the other classes. See Table 6.1 and Appendix B for
more details.

Each dataset was divided into training and test sets (the latter indicated with T).
The training set was divided into a learning set (L), used to train the classifiers,

74 CHAPTER 6. EXPERIMENTS

and a validation set (V), used to tune the model parameters. We defined a semi-
supervised learning scenario in which only a portion of the training set is labeled,
sometimes partially (i.e., only a fraction of the binary labels of an example is known),
as detailed in Table 6.1. We indicated with %L the percentage of labeled training
data and with %P the percentage of binary class labels that are unknown for each
labeled example.5

Classifiers. We compared two neural architectures based on the popular backbone
ResNet50, trained using ImageNet data. In the first network, referred to as TL,
we transferred the ResNet50 model and trained the last layer from scratch in order
to predict the dataset-specific multiple classes (sigmoid activation). The second
network, indicated with FT, has the same structure as TL, but we also fine-tuned
the last convolutional layer. Each model is based on the product T-Norm, and it
was trained for a number of epochs e that we selected as follows: 1000 epochs in
ANIMALS, 300 (TL) or 100 (FT) epochs in CIFAR-100, and 500 (TL) or 250 (FT)
in PASCAL-Part, using mini-batches of size 64. We used the Adam optimizer, with
an initial step size of 10−5, except for FT in CIFAR-100, for which we used 10−4 to
speed up convergence. We selected the model at the epoch that led to the largest
F1 in V . We considered unconstrained (λ = 0) and knowledge-constrained (λ > 0)
models. The latter are indicated with the +C (and +CC) suffix.

Evaluation Metrics. To evaluate performance, we considered the (macro) F1
score and a metric restricted to the main classes.6 For ANIMALS and CIFAR-100,
the main classes are mutually exclusive, so we measured the accuracy in predicting
the winning main class (AccMain), while in PASCAL-Part, we kept the F1 score
(F1Main) as multiple main classes can be predicted on the same input.

Hyperparameter Tuning. In Table 6.2, we report the optimal value of λ ∈
{10−2, 10−1, 1, 3, 5, 8, 10, 102} for the TL+C and FT+C models used in our exper-
iments, selected via a 3-fold cross-validation procedure. In the case of TL, we
also considered a strongly-constrained (+CC) model with inferior performance but
higher coherence (greater λ) among the predicted categories (that might lead to a
worse fitting of the supervisions).7 Table 6.3 reports the value of the constraint
loss φ measured on the test set T . We used µL = µT , setting each component µ·

h

to 1, with the exception of the weight of the mutual exclusivity constraint or the
disjunction of the main classes, which was set to 10 to enforce the classifier to take
decisions.

Attack Optimization. Our attack optimizes Equation (3.11) via projected gradi-
ent descent. Black-box attacks are non-adaptive and thus ignore the defense mecha-

5When splitting the training data into L and V, we kept the same percentages of unknown
binary class labels per example (%P) in both the splits. Of course, in V, there are no fully-
unlabeled examples (%L is 100). Moreover, when generating partial labels, we ensured that the
percentages of discarded positive (i.e., 1) and negative (i.e., 0) class labels were the same.

6We compared the outputs against 0.5 to obtain binary labels.
7FT+C has more learnable weights: constraint loss is already small.

6.1. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE 75

nism. For this reason, the constraint loss term φ in our attack is ignored by setting
its multiplier ρ = 0 and κ =∞. For white-box attacks on ANIMALS and PASCAL-
PART, we set ρ = 0.1 and ρ = 1, respectively, while setting κ = 2. These values
are chosen to appropriately scale the values of the constraint loss term φ w.r.t. the
logit difference (i.e., the first term in Equation 3.11, lower bounded by −2κ). This is
required to have the sample misclassified while also fulfilling the domain-knowledge
constraints.

The process is better illustrated in Figure 6.1 and 6.2, in which we respectively
report the behavior of the black-box and white-box attack optimization on a single
image from the ANIMALS dataset, with ε = 1. In particular, in each Figure, we
report the source image, the (magnified) adversarial perturbation, and the resulting
adversarial examples, along with some plots describing the optimization process,
i.e., how the attack loss of Equation (3.11) is minimized across iterations, and how
the softmax-scaled outputs on the main classes and the logarithm of the constraint
loss φ change accordingly.
In both the black-box and white-box cases, the attack loss is progressively reduced
during the iterations of the optimization procedure. While the albatross prediction
is progressively transformed into an ostrich, the constraint loss increases across iter-
ations, exceeding the rejection threshold. Thus, the adversarial example is correctly
detected. Similarly, the white-box attack is able to initially flip the prediction from
albatross to ostrich, allowing the constraint loss to increase. However, after this
initial phase, the attack correctly reduces the constraint loss after its initial bump,
bringing its value below the rejection threshold. The system thus fails to detect
the corresponding adversarial example. Finally, it is also worth remarking that,
in both cases, the final perturbations do not substantially compromise the source
image content, remaining essentially imperceptible to the human eye.

6.1.2 Experimental Results on Multi-label Classifiers

We discuss here the main experiments related to the evaluation of the considered
multi-label classifiers.

Standard Evaluation. In order to assess the behaviors of the classifiers in the
considered datasets and the available domain knowledge, we compared classifiers
that exploit domain knowledge with the ones that do not exploit it. The results of
our evaluation are reported in Table 6.4, averaged over the 3 training-test splits. For
each of them, 3 runs were considered, using different initialization of the weights.
The introduction of domain knowledge allows the constrained classifiers to slightly
outperform the unconstrained ones.

Adversarial Evaluation. To evaluate adversarial robustness, we used the MKA
attack procedure described in Section 3.2. and we restricted the attack to work on
the already introduced main classes, being them associated with the most important
categories of each problem. In ANIMALS and CIFAR-100, we assumed the attacker

76 CHAPTER 6. EXPERIMENTS

Figure 6.1: Black-box attack on the ANIMALS dataset. While the attack is able to
flip the initial prediction from albatross to ostrich, the attack is eventually detected
as the constraint loss remains above the rejection threshold (dashed black line).

to have access to the information on the mutual exclusivity of the main classes so
that p in Equation (3.11) is not required to change during the attack optimization.
We also set κ =∞ to maximize confidence of misclassifications at each given pertur-
bation bound ε. All the following results are averaged after having attacked twice
the model obtained after each of the 3 training runs.

In the black-box setting, we assumed the attacker to be also aware of the network ar-
chitecture of the target classifier, and attacks were generated from a surrogate model
trained on a different realization of the training set. Figure 6.3 shows the classifi-
cation quality as a function of the data perturbation bound ε, comparing models
trained with and without constraints against those implementing the detection/re-
jection mechanism described in Equation (3.3). When using such a mechanism, the
rejected examples are marked as correctly classified if they are adversarial (ε > 0).
Otherwise (ε = 0), they are marked as points belonging to an unknown class, slightly
worsening the performance.

The +C/+CC models show larger accuracy/F1 than the unconstrained ones. De-
spite the lower results at ε = 0, models that are more strongly constrained (+CC)
resulted in being harder to attack for increasing values of ε. When the knowledge-
based detector is activated, the improvements with respect to models without rejec-

6.1. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE 77

Figure 6.2: White-box attack on the ANIMALS dataset. The attack is able to
flip the initial prediction from albatross to ostrich, and then starts reducing the
constraint loss, which eventually falls below the rejection threshold (dashed black
line). The attack sample remains thus undetected.

tion are significantly evident. No model is specifically designed to face adversarial
attacks, and, of course, there are no attempts to reach state-of-the-art results.8

However, the positive impact of exploiting domain knowledge can be observed in all
the considered models and datasets and for almost all the values of ε, confirming
that such knowledge is not only useful to improve classifier robustness but also as a
means to detect adversarial examples at no additional training cost.

In general, FT models yield better results due to the larger number of optimized
parameters. In ANIMALS, the rejection dynamics are providing large improvements
in both TL and FT, while the impact of domain knowledge is mostly evident in the
robustness of FT. In CIFAR-100, domain knowledge only consists of basic hierar-
chical relations, with no intersections among child classes or among father classes.
By inspecting the classifier, we found that it is pretty frequent for the fooling ex-
amples to be predicted with a strongly-activated father class and a (coherent) child
class, i.e., we have strongly-paired classes, accordingly to Def. 3.2.1. Differently,

8Recall that our rejection mechanism is completely agnostic to the attack; it neither assumes
any knowledge of the attack algorithm nor is retrained on adversarial examples. Nevertheless, it
can be used as a complementary defense mechanism.

78 CHAPTER 6. EXPERIMENTS

the domain knowledge in the other datasets is more structured, yielding better de-
tection quality on average, remarking the importance of the level of detail of such
knowledge to counter adversarial examples. In the case of PASCAL-Part, the de-
tection mechanism turned out to behave better in unconstrained classifiers, even if
it has a positive impact also on the constrained ones. This is due to the intrinsic
difficulty of making predictions on this dataset, especially when considering small
object parts. The false positives have a negative effect in the training stage of the
knowledge-constrained classifiers.

To provide a comprehensive, worst-case evaluation of the adversarial robustness of
our approach, we also considered a white-box adaptive attacker that knows every-
thing about the target model and exploits knowledge of the defense mechanism to
bypass it. Of course, this attack always evades detection if the perturbation size ε
is sufficiently large. We evaluated multiple values of ρ of Equation (3.11), selecting
the one that yielded the lowest values of such objective function. In Figure 6.4,
we report the outcome of this analysis for FT models, showing that, even if the
accuracy drop is obviously evident for all datasets, in ANIMALS, the constrained
classifiers require larger perturbations than the unconstrained ones to reduce the
performance of the same quantity. Similar behavior is shown in CIFAR-100, even
though only with small ε values. Accordingly, fooling the proposed detection mech-
anism is not always as trivial as one might expect, even in this worst-case setting.
The impact of the rejection mechanisms is significantly reduced, as expected, but
still having a positive impact. Finally, let us point out that the performance drop
caused by the white-box attack is much larger than that observed in the black-box
case. However, since domain knowledge is not likely to be available to the attacker
in many practical settings, it remains an open challenge to develop stronger, prac-
tical black-box attacks that are able to infer and exploit such knowledge to bypass
our defense mechanism.

6.1.3 In-depth Analysis on Multi-label Classifiers

Incomplete Domain Knowledge. We investigated in more detail the relative
impact of the domain information on a target problem, simulating the availability
of differently sized knowledge bases, K1, K2, K3, K4, where each Kj ⊆ K. In
particular, we considered the ANIMALS dataset, and we generated K1, K2, K3

by removing some of the FOL formulas of the original K that was used in the
previous experiments (i.e., the one of Table B.1 in Appendix B), while K4 = K.
This means that some information that belongs to K4 is actually missing in the
other knowledge sets. In detail, we created K1 by removing the rules that either
include the ’mammal’ or the ’bird’ categories, while K2 is the outcome of discarding
from K the rules including the ’mammal’ category. Similarly, K3 is obtained by
removing the rules of the ’bird’ category. We repeated the experiments, using only
one of the generated knowledge bases at a time and focusing on the same models

6.1. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE 79

of Figure 6.3 (bottom) and Figure 6.4, that were retrained from scratch. Figure 6.5
(a,c) shows the classification quality we obtained in the black (a) and white box
(c) settings, using the MKA attack and ε = 0.5 (almost the mid of the plots in
Figures 6.3-6.4). In the black-box case, focusing on the models that include rejection
(Rej), it is evident how larger knowledge bases yield better results. Interestingly,
comparing the outcome of such models with the ones without rejection, we can see
that our defense makes the classifier more robust to attacks even when using the
smallest amount of knowledge (K1), confirming the versatility of what we propose.
In the white-box setting, there are still changes in the accuracy when varying Kj,
but they are not so evident and they lack a clear trend. This was expected since,
in this case, the attack procedure is aware of the domain knowledge. However, this
result confirms the capability of MKA to craft adversarial examples that lead to
knowledge-coherent predictions (to a certain extent) even when varying the level of
detail of the knowledge sets.

Rejection Threshold. In the same experimental setting, we also explored the
sensitivity of the system to the rejection threshold θ, using the whole knowledge
set K. We compared different θ’s that are smaller or greater than the one we
selected using validation data (Section 3.2), indicated here with θ⋆. In particular, we
evaluated θ ∈ {10κθ⋆, κ ∈ [−5, 5], integer}, and we measured both the classification
quality on the perturbed data, as we did so far, and the rejection rate on the clean
test data, where no samples should be rejected. Figure 6.5 (b,d) reports these
two measures on the y-axis and x-axis, respectively, and each marker is about a
specific θ, considering black (b) and white (d) box settings. The value of θ⋆ has
been highlighted with a red circle, and only the significant portions of the plots
are shown. Too small thresholds (rightmost areas of each plot) lead to systems
that frequently reject also clean examples, while too large θ’s (leftmost areas) do
not improve the quality of the classifiers, which are fooled by some of the data
generated in an adversarial manner within the ε-bound. Overall, the θ⋆ we selected
represents a pretty appropriate trade-off between the two measures.

Noisy Domain Knowledge. We further extended our analysis by considering
the case in which the available domain knowledge is noisy, thus including a small
percentage of information that is incorrect in the ANIMALS domain. We simulated
three scenarios by altering the original knowledge base K using three different crite-
ria, yielding the noisy knowledge bases K̃a, K̃b, K̃c, respectively. The chosen criteria
either modify four of the existing rules, making them not coherent with the clean
knowledge, or they add four new rules that are not correct in the considered domain,
as shown in detail in Table B.5, Table B.6, and Table B.7 of Appendix B, and for
which we provide a brief description in the following. In the case of K̃a, we selected
four existing implications of K, and we altered the premises of two of them and the
conclusions of the other two ones. We ensured to inject noise in the main and auxil-
iary classes in a balanced manner. The same balancing is also kept when generating
K̃b, that, however, was obtained by adding four new rules to K. Finally, K̃c is the

80 CHAPTER 6. EXPERIMENTS

result of augmenting each main-class-oriented conclusion of four existing implica-
tions with a disjunction involving a different, randomly selected, main class. For
example, the clean rule BLACKSTRIPES(x)∧UNGULATE(x)∧ . . .⇒ZEBRA(x) is
altered by replacing the conclusion ZEBRA(x) with ZEBRA(x)∨TIGER(x). These
rules are fulfilled both for configurations that make true their original/clean counter-
parts and for other configurations that are actually wrong in the ANIMALS domain.
Focusing on the same experimental setup we defined when testing differently sized
knowledge bases, we investigated the effects of using each noisy knowledge base both
to learn the classifier and/or as a rejection criterion. Figure 6.6 shows the results
of our experience. As expected, learning with a noisy knowledge base reduces the
accuracy of the classifier since the network learns from FOL rules that are partially
in contrast with some of the available labeled examples. It is the case of FT+C
trained on any noisy K̃· when compared with the case of the clean K (rightmost set
of bars). However, when adding the rejection criterion, we still observe a significant
improvement in the performance, even if slightly smaller than in the case of K. Re-
jection is the outcome of evaluating the average violations of all the available rules
so that the effect of the noisy portion of the knowledge base is partially compensated
by the other non-noisy rules. Of course, the final outcome depends on the type of
noise we injected into the knowledge base. In the considered experience, adding
wrong rules (K̃b) led to lower accuracies than when perturbing some of the existing
rules (K̃a). The case of K̃c is the one that most evidently impacted the classifier
performance, with or without rejection. On one hand, we simply introduced more
error-tolerant conclusions; on the other hand, we did it by altering FOL rules whose
conclusions are all about main classes, significantly compromising the way they are
related. Interestingly, for all the noisy knowledge bases, adding the rejection mod-
ule (Rej) to FT turned out to be better than adding it to FT+C, suggesting that
a rejection criterion based on noisy knowledge could be more effective in classifiers
that have not been already exposed to such noisy information during the learning
stage. As expected, results collected in the white-box case show that whenever the
attacker has full access to the knowledge, being it noisy or not, he can craft MKA at-
tacks with similar outcomes in terms of performance drops. Overall, this experience
confirms that what we propose can indeed be applied also in the case of partially
noisy domain knowledge, still increasing the robustness of the classifier, even if to a
smaller extent than in the case of clean knowledge.

6.1.4 Experimental Results on Single-label Classifiers

The focus of this section is on multi-class classification paired with domain knowl-
edge. However, as anticipated in Section 3.2 and qualitatively shown in Figure 3.3,
we can consider a special setting in which a single-label classifier internally includes
predictors over auxiliary classes that are involved in the knowledge constraints. We
experimentally evaluate this setting in the context of the ANIMALS and CIFAR-100
datasets, where the respective main classes (described in Section 6.1.1) are mutu-

6.1. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE 81

ally exclusive (which is not the case of PASCAL-Part), thus well suited to simulate
the setting of Figure 3.3. We compared the proposed rejection mechanisms to a
concurrent defense mechanism developed under the same assumptions (i.e., with-
out assuming any knowledge of the attack algorithm), known as Neural Rejection
(NR) (Melis et al., 2017), and against the state-of-the-art attacks included in the
AutoAttack framework (Croce and Hein, 2020a), developed for single-label classifi-
cation tasks.

Compared Defense and Attack Strategies. The NR defense mechanism, pro-
posed in Melis et al. (2017), aims to reject inputs that are far from the training
data in a given representation space. The rationale is that points with low support
from the training set cannot be reliably classified and should be thus rejected. To
this end, the output layer of the deep network is replaced with a support vector
machine trained using the RBF kernel (SVM-RBF), which enforces the prediction
scores to be proportional to the distance between the input sample and the refer-
ence prototypes (i.e., the support vectors) in the representation space. Samples are
rejected if the prediction scores do not exceed the rejection threshold. Similarly to
our approach, this defense mechanism does not make any assumptions about the
attack to be detected other than assuming an anomalous behavior with respect to
the observed training data.

Table 6.5: ANIMALS dataset. Vulnerability analysis of the classifiers against MKA
and state-of-art attacks—classification quality is reported, the same as Figuress 6.3-
6.4 (first column). For each type of classifier (TL, FT), rows are organized into three
groups, that are: models without rejection, with rejection (Rej), classifier equipped
with Neural Rejection (NR). For each attack (columns—see Croce and Hein (2020a)
for a description of the compared attacks), the result of the most robust classifier
in the group is highlighted in bold. Models exploiting the proposed rejection (Rej)
that overcome NR are marked with *, and vice-versa.

White-box attacks (ε = 0.5) Black-box transfer attacks (ε = 0.5)

Model ε = 0 MKA APGD-CE APGD-T FAB-T Square MKA APGD-CE APGD-T FAB-T Square

TL 99.0 25.0 17.5 14.9 20.0 96.6 45.3 29.4 29.1 83.1 98.4
TL+C 99.3 25.0 19.0 15.4 21.5 98.0 47.7 29.8 30.6 87.7 98.9
TL+CC 99.3 24.5 18.1 15.5 22.7 98.2 48.0 30.2 32.0 89.5 99.0

TL (Rej) 91.8 49.8 43.3 97.0* 100.0* 100.0* 85.6 53.7 98.4 99.9 99.9
TL+C (Rej) 92.3 56.8* 47.8 97.7* 100.0* 100.0* 91.2 56.0 98.6 99.9 99.9
TL+CC (Rej) 92.7 57.5* 45.8 98.1* 100.0* 100.0* 93.4 55.4 98.8 100.0* 100.0*

TL (NR) 99.2 55.5 58.5* 96.8 99.6 99.8 98.0* 71.7* 99.3* 100.0* 100.0*

FT 98.6 25.6 21.9 12.9 20.0 96.3 51.2 47.2 75.6 95.7 98.2
FT+C 99.1 31.7 51.1 18.0 29.5 97.7 76.7 57.5 88.8 98.3 98.9

FT (Rej) 92.7 39.3* 36.8 90.0* 99.7* 99.7* 88.9 66.9 99.6* 99.7* 99.8*
FT+C (Rej) 93.2 60.7* 66.6* 97.3* 99.8* 99.9* 98.3* 82.2* 99.9* 99.9* 99.9*

FT (NR) 98.6 37.3 38.3 87.3 97.0 99.6 91.0 79.2 98.7 99.2 99.5

TL: Transfer Learning +C: knowledge-constrained (optimal) (NR): model with Neural Rejection
FT: Fine Tuning +CC: strongly knowledge-constrained (Rej): model with rejection

82 CHAPTER 6. EXPERIMENTS

Table 6.6: CIFAR-100 dataset. Vulnerability analysis of the classifiers against MKA
and state-of-art attacks—classification quality is reported, the same as Figures 6.3-
6.4 (second column). Refer to the caption of Table 6.5 for more details (see Croce
and Hein (2020a) for a description of the compared attacks).

White-box attacks (ε = 0.03) Black-box transfer attacks (ε = 0.03)

Model ε = 0 MKA APGD-CE APGD-T FAB-T Square MKA APGD-CE APGD-T FAB-T Square

TL 51.0 21.9 22.2 21.6 22.3 51.4 23.1 23.7 23.9 39.5 52.7
TL+C 52.9 27.4 24.6 24.2 25.1 53.3 32.3 35.5 37.9 48.4 54.5
TL+CC 50.5 27.1 25.0 24.7 25.3 49.5 35.5 38.6 40.4 46.9 51.5

TL (Rej) 48.1 26.9 33.2* 34.3* 34.4 59.2* 27.6 35.1 36.9 49.1 60.2*
TL+C (Rej) 49.4 31.8* 35.0* 35.6* 36.2 60.6* 40.7 44.8 47.0 56.0* 61.0*
TL+CC (Rej) 46.1 30.8* 34.0* 34.7* 35.4 55.7* 45.4 46.3 47.6 53.5* 57.0*

TL (NR) 49.0 30.5 30.1 24.5 39.6* 45.6 49.0* 48.3* 49.0* 51.3 53.3

FT 59.4 29.0 26.4 26.0 26.7 57.2 48.4 49.1 49.7 55.5 59.5
FT+C 60.0 31.4 29.6 28.3 30.6 60.1 51.6 52.2 52.8 57.8 61.0

FT (Rej) 57.4 31.1 37.5* 42.0* 41.1 66.1* 55.1 57.2* 58.4* 62.7* 66.2*
FT+C (Rej) 56.7 37.6* 37.8* 41.1* 44.6 67.0* 60.2* 59.5* 60.3* 64.4* 67.1*

FT (NR) 59.7 36.5 35.3 30.4 50.9* 55.1 58.0 54.2 55.7 60.0 62.7

TL: Transfer Learning +C: knowledge-constrained (optimal) (NR): model with Neural Rejection
FT: Fine Tuning +CC: strongly knowledge-constrained (Rej): model with rejection

To compare our defense with NR, we have considered four different state-of-the-art
evasion attacks: APGD-CE, APGD-T, FAB-T, and Square, implemented within the
framework of AutoAttack (Croce and Hein, 2020a). APGD-CE (APGD-T) is an in-
discriminate (targeted) step-free variant of the famous attack called PGD (Madry
et al., 2018). Unlike PGD, the step size reduction is not scheduled a priori but in-
stead governed by the optimization function trend. Moreover, both APGD attacks
use momentum. FAB-T is the targeted version of an attack called Fast Adaptive
Boundary Attack (FAB) (Croce and Hein, 2020b), which tries to find the minimum
distance sample beyond the boundary of the desired class. The Square attack (An-
driushchenko et al., 2020), differently from the previously mentioned ones, is a black-
box attack; namely, it can query the classifier to obtain the predicted scores without
exploiting any knowledge of the model architecture. By default, APGD-CE makes
five random restarts, whereas the targeted versions of the attacks, i.e., APGD-T and
FAB-T, run the attack repeatedly sweeping among all the available target classes.

Adversarial Evaluation. In our experiments, we fixed the maximum allowed per-
turbation ε to 0.5 and 0.03 on the ANIMALS and CIFAR-100 datasets, respectively
– the values in the middle of the x-axis of Figures 6.3- 6.4 – and we used the de-
fault value for all the other attacks’ parameters. Table 6.5 and Table 6.6 report
the results of this analysis, showing the classification quality (the same measure of
Figure 6.3- 6.4) on the clean (unmodified) test set T (ε = 0) and on the attacked
instances of T generated in the same white-box and black-box scenarios described
in Section 6.1.2.
As expected, white-box attacks are more effective than black-box ones, reducing the

6.1. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE 83

model accuracy in a more evident manner. Results confirm that both the domain
knowledge introduced at training time (+C and +CC) or exploited to implement
the proposed rejection mechanism (Rej) improve the model robustness against all
the considered attacks and jointly using these strategies further improves it.
On average, the performances of the unconstrained classifiers (TL and FT) paired
with the proposed knowledge-based rejection are comparable with the ones paired
with NR, even though they clearly behave in different manners across the dataset-
s/attacks. Differently, when also considering constrained models (+C and +CC),
in most cases, we can find a classifier with rejection (Rej) that outperforms the
unconstrained classifiers equipped with NR. On the clean samples (ε = 0), the
knowledge-based rejection criterion resulted more aggressive than NR.
MKA and APGD-CE/T are more effective than the other attacks. On average,
their performances are comparable, and they depend on both the considered model
and the dataset. In CIFAR-100, MKA outperforms APGD-CE/T on the black-box
transfer scenario and against the model equipped with the proposed rejection mech-
anism (Rej), whereas on the ANIMALS dataset, APGD-CE usually obtained better
results. APGD-CE/T leverages an optimization strategy that is more advanced
than the one of MKA that, differently from APGD-CE/T, is designed to be used in
multi-label problems too. For example, APGD-CE/T makes several attack restarts
and uses a special type of adaptive step size. In the white-box setting, attacks yield
a larger reduction in the performances. However, in the case of ANIMALS, the
proposed rejection mechanism is still robust to all the attacks, with the exceptions
of MKA, which is knowledge aware, and of APGD-CE. The fine-tuned optimization
procedure in APGD-CE allows the attack to create samples that are confidently
misclassified, and they end up belonging to space regions in which the classification
functions are paired (Def. 3.2.1). In CIFAR-100, the rejection mechanism still has
a positive impact, even if it is less significant than in ANIMALS.

6.1.5 In-depth Analysis on Single-label Classifiers

We further analyzed our results, visualizing the behavior of all the compared attacks
in terms of the value of the constraint loss of Equation (3.3) and of the supervision
loss – the first term of Equation (3.2). Figures 6.7- 6.8 show each generated adver-
sarial example, highlighting them with different markers/colors in function of the
corresponding attack procedure on the ANIMALS and CIFAR-100 datasets, respec-
tively, black-box (i.e., the constraint loss is measured for the purpose of determining
whether to reject or not an example). Samples that are rejected are indicated with
crosses, while circles represent the non-rejected ones. The dotted line is about the
rejection threshold θ from Equation (3.8).
In line with what we observed in the numerical results, in the case of ANIMALS,
Figure 6.7, it is evident how APGD-CE is actually able to craft attacks that strongly
increase the supervision loss, still fulfilling the constraints (top-left area). Differently,
the other attacks are not able to reach such results, so their data is localized in high-

84 CHAPTER 6. EXPERIMENTS

constraint loss regions, easily rejected by the proposed technique, especially FAB-T,
while Square actually fails in generating evident attacks. It is interesting to notice
the D-shaped white region over the origin. It is an area in which constraints are
almost fulfilled and the loss function can reach significantly non-null values, but
no attacks fall there. This suggests that it is not straightforward to increase the
supervision loss without violating the constraints. However, there are more extreme
APCG-CE configurations with the largest supervision losses that also fulfill the
knowledge (Figure 6.7, top-left area). Of course, this depends on several factors, such
as the type of domain knowledge that is available, the way we selected to convert it
into polynomial constraints, and the constraint enforcement scheme, thus opening
to future improvements. Moving to the CIFAR-100 dataset, Figure 6.8, we observe
different patterns with respect to the case of ANIMALS. This was clearly expected
since the two datasets differ both in terms of the problem they consider, the number
of classes, and in terms of the known relationships among such classes, described
by the dataset-specific domain knowledge and embedded into the constraint loss.
However, we can still observe the D-shaped region over the origin, even if in a less
significant manner. On this dataset, the rejection rates are generally lower than
ANIMALS. This is mostly due to the fact the constraint loss is larger also on the
unaltered data, due to the already mentioned different problem and different type of
domain knowledge. As a matter of fact, we have also a larger reject threshold θ. In
this case, the behavior of the different attack strategies is more coherent, remarking
previous considerations on the role of knowledge in shaping the distribution of the
attacks.

6.1. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE 85

ANIMALS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.75 1
0

0.2

0.4

0.6

0.8

1

A
cc

M
ai

n

TL
TL+C
TL+CC
TL(Rej)
TL+C(Rej)
TL+CC(Rej)

ε
0 0.1 0.2 0.3 0.4 0.5 0.6 0.75 1
0

0.5

1

A
cc

M
ai

n

FT
FT+C
FT(Rej)
FT+C(Rej)

ε

CIFAR-100

0 0.01 0.02 0.03 0.05 0.1 0.2
0

0.2

0.4

0.6

A
cc

M
ai

n

ε
0 0.01 0.02 0.03 0.05 0.1 0.2
0

0.2

0.4

0.6

A
cc

M
ai

n

ε

PASCAL-Part

0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.5 2
0

0.2

0.4

0.6

0.8

F
1M

ai
n

ε
0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.5 2

0

0.2

0.4

0.6

0.8

F
1M

ai
n

ε

Figure 6.3: Black-box attacks. Classification quality of vanilla and knowledge-
constrained models in function of ε. Dotted plots include rejection (Rej) of inputs
that are detected to be adversarial.

86 CHAPTER 6. EXPERIMENTS

ANIMALS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.75 1
0

0.5

1

A
cc

M
ai

n

FT
FT+C
FT(Rej)
FT+C(Rej)

ε

CIFAR-100

0 0.01 0.02 0.03 0.05 0.1 0.2
0

0.2

0.4

0.6

A
cc

M
ai

n

ε

PASCAL-Part

0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.5 2
0

0.2

0.4

0.6

0.8

F
1M

ai
n

ε

Figure 6.4: White-box attacks in the case of the FT classifiers. Classification quality
of vanilla and knowledge-constrained models in function of ε. Dotted plots include
rejection (Rej) of inputs that are detected to be adversarial.

6.1. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE 87

Black-box White-box

1 2 3 4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cM

ai
n

(a)

1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cM

ai
n

FT
FT+C
FT (Rej)
FT+C (Rej)

(b)

0.0 0.1 0.2 0.3 0.4
False Rejection Rate

0.8

0.9

1.

Ac
cM

ai
n

FT (Rej)
FT+C (Rej)

(c)

0.0 0.2 0.4 0.6 0.8
False Rejection Rate

0.2

0.4

0.6

0.8

Ac
cM

ai
n

FT (Rej)
FT+C (Rej)

(d)

Figure 6.5: Further analysis of the proposed approach in the ANIMALS dataset (ε =
0.5), in black-box (left) and white-box (right) settings; (a,b): increasing amounts
of domain knowledge K1, . . . ,K4 - legend reported only on the latter, for better
readability; (c,d): different values of the rejection threshold θ (from larger to smaller
values, left-to-right).

88 CHAPTER 6. EXPERIMENTS

Black-box White-box

K̃a K̃b K̃c K
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

M
ai

n

K̃a K̃b K̃c K
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

M
ai

n

FT
FT+C
FT (Rej)
FT+C (Rej)

Figure 6.6: Noisy domain knowledge. Analysis of the proposed approach in the
same setup of Figure 6.5, when exploiting different noisy knowledge bases K̃a, K̃b,
K̃c (see Sect 3.1 text for details). K is the original noise-free knowledge.

Figure 6.7: Adversarial data generated (ε = 0.5) by different attacks – ANIMALS,
TL+C(Rej), black-box. Examples that are rejected/not-rejected by the proposed
knowledge-based criterion are depicted with crosses/circles (“Clean” indicates un-
altered examples from the test set; the vertical line is the reject threshold).

6.1. INCREASING ROBUSTNESS WITH DOMAIN KNOWLEDGE 89

Figure 6.8: Adversarial data generated (ε = 0.03) by different attacks – CIFAR-100,
TL+C(Rej), black-box. See Figure 6.7.

90 CHAPTER 6. EXPERIMENTS

6.2 Detecting Adversarial Examples in Inner

DNN layers

In this section, we report the experiments we ran to evaluate the DNR defense
mechanism proposed in Chapter 4.
Section 6.2.1 describes the experimental setup, and Section 6.2.2 discusses obtained
results.

6.2.1 Experimental setup

Datasets. We run experiments on MNIST and CIFAR10 datasets. MNIST hand-
written digit data consists of 60,000 training and 10,000 test gray-scale 28x28 images.
CIFAR10 consists of 50,000 training and 10,000 test RGB 32x32 images. We nor-
malized the images of both datasets in [0,1] by simply dividing the input pixel values
by 255.

Train-test splits. We average the results on five different runs. In each run, we
consider 10,000 training samples and 1,000 test samples randomly drawn from the
corresponding datasets. To avoid overfitting, we train the DNR combiner on the
outputs of the base SVMs computed on a separate validation set, using a procedure
known as stacked generalization (Wolpert, 1992). We use a 3-fold cross-validation
procedure to subdivide the training dataset into three folds. We then learn the base
SVMs on two folds and classify the remaining (validation) fold, repeating it three
times, and alternating the folds. We then concatenate the predicted values for each
validation fold and use such values to train the combiner. The deep neural networks
(DNNs) used in our experiments are pre-trained on a training dataset (different
from the ones that we use to train the SVMs) of 30,000 and 40,000 training samples,
respectively, for MNIST and CIFAR10.

Classifiers. We compare the DNR approach (which implements rejection here
based on the representations learned by three different network layers) against an
undefended DNN (without any rejection mechanism) and against the NR defense by
Melis et al. (2017) (which implements rejection on top of the representation learned
by the output network layer). To implement the undefended DNNs for the MNIST
dataset, we used the same architecture suggested by Carlini and Wagner (2017b).
For CIFAR10, instead, we consider a lightweight network that, despite its size,
allows obtaining high performances. The two considered architectures are shown
in Tables 6.7 and 6.8, where the three layers considered by the DNR classifier are
highlighted in bold. In particular, we consider (after excluding the Softmax layer)
the last three layers for the MNIST network, and the last layer, the last batch-norm
layer, and the second-to-last max-pooling layer for the CIFAR10 network (choice
aimed at obtaining a reasonable amount of features). Finally, Table 6.9 reports the
hyperparameters used for both networks’ training.

6.2. DETECTING ADVERSARIAL EXAMPLES IN INNER DNN LAYERS 91

Id Layer Type Dimension

relu1 Conv. + ReLU 64 filters (5x5)
relu2 Conv. + ReLU 64 filters (3x3)
relu3 Conv. + ReLU 64 filters (3x3)
relu4 Fully Connected + ReLU 32 units
dropout Dropout (p = 0.5)
softmax Softmax 10 units

Table 6.7: Model architecture of the MNIST neural network (Carlini and Wagner,
2017a). The layers used by DNR and FADER detectors are highlighted in bold.

Security Evaluation. We compare these classifiers in terms of their security eval-
uation curves (Biggio and Roli, 2018), reporting classification accuracy against an
increasing ℓ2-norm perturbation size ε, used to perturb all test samples. In partic-
ular, classification accuracy is computed as follows:

• in the absence of adversarial perturbation (i.e., for ε = 0), classification accu-
racy is computed as usual, but considering rejects as errors;

• in the presence of adversarial perturbation (i.e., for ε > 0), all test samples
become adversarial examples, and we consider them correctly classified if they
are assigned either to the rejection class or to their original class (which typi-
cally happens when the perturbation is too small to cause a misclassification).

We consider a significant interval of ε ∈ [0, 5] and ε ∈ [0, 2] for the attacks against
MNIST and CIFAR10 datasets, respectively. For DNR and NR, we also report
the rejection rates, computed by dividing the number of rejected samples by the
number of test samples. Note that the difference between accuracy and rejection
rate at each ε > 0 corresponds to the fraction of adversarial examples which are not
rejected but still correctly assigned to their original class. Accordingly, under this
setting, classifiers exhibiting higher accuracies under attack (ε > 0) can be retained
more robust.

Parameter Setting. For all the two datasets, DNR detectors’ best configuration
is looked for in C ∈ {10−2, . . . , 102} and γ ∈ {10−4, . . . , 102} by performing a 3-fold
cross-validation procedure to maximize classification accuracy on the unperturbed
training data. DNR optimal configurations for each dataset are reported in Ta-
ble 6.10.
As DNR layer classifiers and combiners are not independently optimized during
training, the NR best configuration can be obtained by lookup Table 6.10 for the
layer of interest.
We set the rejection threshold θ for NR and DNR to reject 10% of the samples when
no attack is performed (at ε = 0).

92 CHAPTER 6. EXPERIMENTS

Id Layer Type Dimension

relu1 Conv. + Batch Norm. + ReLU 64 filters (3x3)
relu2 Conv. + Batch Norm. + ReLU 64 filters (3x3)
drop1 Max Pooling + Dropout (p = 0.1) 2x2
relu3 Conv. + Batch Norm. + ReLU 128 filters (3x3)
relu4 Conv. + Batch Norm. + ReLU 128 filters (3x3)
drop2 Max Pooling + Dropout (p = 0.2) 2x2
relu5 Conv. + Batch Norm. + ReLU 256 filters (3x3)
relu6 Conv. + Batch Norm. + ReLU 256 filters (3x3)
drop3 Max Pooling + Dropout (p = 0.3) 2x2
relu7 Conv. + Batch Norm. + ReLU 512 filters (3x3)
drop4 Max Pooling + Dropout (p = 0.4) 2x2
linear Fully Connected 512 units
softmax Softmax 10 units

Table 6.8: Model architecture of the CIFAR10 neural network. The layers used by
DNR and FADER detectors are highlighted in bold.

Parameter MNIST CIFAR10

Learning Rate 0.1 0.01
Momentum 0.9 0.9
Dropout 0.5 (see Table 6.8)
Batch Size 128 100
Epochs 50 75

Table 6.9: Parameters used to train the MNIST and CIFAR10 DNNs.

6.2.2 Experimental Results

The results are reported in Figure 6.9. In the absence of attack (ε = 0), the unde-
fended DNNs slightly outperform NR and DNR since the latter wrongly reject also
some unperturbed samples.

Under attack, (ε > 0), when the amount of injected perturbation is exiguous, the
rejection rate of both NR and DNR increases jointly with ε, as the adversarial
examples are located far from the rest of the training classes in the representation
space (i.e., the intermediate representations learned by the neural network). For
larger ε, both NR and DNR can no longer correctly detect the adversarial examples,
as they tend to become indistinguishable from the rest of the training samples (in
the representation space in which NR and DNR operate). Both defenses outperform
the undefended DNNs on the adversarial samples, and DNR slightly outperforms

6.2. DETECTING ADVERSARIAL EXAMPLES IN INNER DNN LAYERS 93

MNIST CIFAR10

Layer C γ

relu2 10 1e-3
relu3 10 1e-2
relu4 1.0 1e-2
combiner 1e-1 1.0

Layer C γ

drop3 10 1e-3
relu7 1.0 1e-3
linear 1.0 1e-2
combiner 1e-4 1.0

Table 6.10: DNR configurations for MNIST (left) and CIFAR10 (right) datasets.

NR, exhibiting a more graceful decrease in performance. Although NR tends to
reject more samples for ε ∈ [0.1, 1] on CIFAR and for ε = 0.5 on MNIST, its
accuracy is lower than DNR. The reason is that DNR remains more accurate than
NR when classifying samples that are not rejected. This also means that DNR
provides tighter boundaries closer to the training classes than NR, thanks to the
exploitation of lower-level network representations, which makes the corresponding
defended classifier more difficult to evade.
Finally, in Figure 6.10 and 6.11, we show how the selection of the rejection thresh-
old θ allows us to trade security against adversarial examples (i.e., accuracy on
the y-axis) for a more accurate classifier on the unperturbed samples (reported in
terms of the rejection rate of unperturbed samples on the x-axis). In particular, in-
creasing (decreasing) the rejection threshold amounts to increasing (decreasing) the
fraction of correctly-detected adversarial examples, and to increasing (decreasing)
the rejection rate when no attack is performed.

94 CHAPTER 6. EXPERIMENTS

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

White-box evasion attack (MNIST)
Classifier

DNN (no rejection)
NR (Melis et al.)
DNR

0.0 0.5 1.0 1.5 2.0 3.0 4.0 5.0
0.0

0.2

0.4

0.6

Re
je

ct
io

n
ra

te

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

White-box evasion attack (CIFAR)
Classifier

DNN (no rejection)
NR (Melis et al.)
DNR

0.0 0.05 0.075 0.1 0.2 0.4 1.0 2.0
0.00

0.05

0.10

0.15

0.20

0.25

Re
je

ct
io

n
ra

te

Figure 6.9: Security evaluation curves for MNIST (top) and CIFAR10 (bottom)
data, reporting mean accuracy (and standard deviation) against ε-sized attacks.

6.2. DETECTING ADVERSARIAL EXAMPLES IN INNER DNN LAYERS 95

0.0 0.2 0.4 0.6 0.8 1.0
False positives at =0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy/FP trade-off - MNIST, NR (Melis et al.)

=0.5
=1
=1.5
=2

Operating point

0.0 0.2 0.4 0.6 0.8 1.0
False positives at =0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy/FP trade-off - MNIST, DNR

=0.5
=1
=1.5
=2

Operating point

Figure 6.10: Influence of the rejection threshold θ on classifier accuracy under at-
tack (y-axis) vs false rejection rate (i.e., fraction of wrongly-rejected unperturbed
samples) on MNIST for NR (top) and DNR (bottom), for different ε-sized attacks.
The dashed line highlights the performance at a 10% false rejection rate (i.e., the
operating point used in our experiments).

96 CHAPTER 6. EXPERIMENTS

0.0 0.2 0.4 0.6 0.8 1.0
False positives at =0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy/FP trade-off - CIFAR, NR (Melis et al.)

=0.05
=0.075
=0.1
=0.2
=0.4

Operating point

0.0 0.2 0.4 0.6 0.8 1.0
False positives at =0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy/FP trade-off - CIFAR, DNR

=0.05
=0.075
=0.1
=0.2
=0.4

Operating point

Figure 6.11: Influence of the rejection threshold θ on classifier accuracy under at-
tack (y-axis) vs false rejection rate (i.e., fraction of wrongly-rejected unperturbed
samples) on CIFAR10 for NR (top) and DNR (bottom), for different ε-sized attacks.
The dashed line highlights the performance at a 10% false rejection rate (i.e., the
operating point used in our experiments).

6.3. IMPROVING THE EFFICIENCY OF PROTOTYPES-BASED DETECTORS 97

6.3 Improving the Efficiency of Prototypes-based

Detectors

In this section, we empirically evaluate the security of the proposed FADER defense
mechanism (i) against defense-aware adversarial examples and (ii) in a black-box
setting where the attacker is essentially unaware of the defense mechanism used to
protect the DNN classifier. After detailing our experimental setup (Section 6.3.1),
we report the classifier’s performance under attack by comparing it with NR and
DNR detectors (Section 6.3.2). We also consider an additional set of experiments to
validate the effectiveness of the proposed adaptive attack (PGD-LS) against stan-
dard PGD attacks in Section 6.3.3.

6.3.1 Experimental Setup

We discuss here the datasets we use to evaluate our defense method and the classifiers
we compare the performance with. The undefended DNNs run on the GPU, while
all the attached detectors are executed on the CPU.

Datasets. Our analysis is performed on three image recognition datasets: MNIST,
CIFAR10, and a ten-class subset of ImageNet (Deng et al., 2009) referred to as
ImageNet10. The first two datasets were already introduced in Section 6.2.1, whereas
the ImageNet10 dataset is obtained by extending the Imagenette9 dataset with a
disjoint set of samples from the ImageNet validation split, so to compensate the
lack of a publicly available test split for Imagenette. In particular, we selected 50
images per class coming from the ImageNet validation split for a total of 500 test
samples. ImageNet RBG samples are resized to 256x256 pixels and center-cropped
to 224x224 pixels. For all datasets, images are normalized in [0, 1] by dividing the
input pixel values by 255.

Classifiers. We compare the performance of an undefended DNN (i.e., not im-
plementing any rejection mechanism), which represents our baseline, with NR and
DNR defense methods and their fast variants, i.e., the FADER technique is applied.
To implement the undefended DNNs for MNIST and CIFAR10 datasets, we use
the same architectures described in Section 6.2.1. For ImageNet10, we rely on the
pre-trained AlexNet (Krizhevsky, 2014) DNN available on TorchVision.10 We keep
only outputs related to the ten classes of interest. As for the detectors, we consider
the single-layer rejection mechanism on top of the pre-softmax activation layer, in
the form of an SVM-RBF for NR (Melis et al., 2017) and the DNR defense approach
(see Chapter 4) employing SVMs with RBF kernel as both layer detectors and the
top combiner. For both NR and DNR, we provide fast variants, employing size-
controlled RBF networks, denoted as NR-RBF and DNR-RBF, respectively. As for

9https://github.com/fastai/imagenette
10https://pytorch.org/vision

https://github.com/fastai/imagenette
https://pytorch.org/vision

98 CHAPTER 6. EXPERIMENTS

DNR implementation, we limit the number of layers inspected by the deep detectors
to three. For the MNIST and CIFAR10 networks, we consider the same layers as in
Section 6.2.1, whereas for the AlexNet network on ImageNet10, we select the sixth
last, fourth last, and third last layers.

Training-test Splits. We follow the same procedures described in Section 6.2.1
for the training of the MNIST and CIFAR10 networks and the experiment repeti-
tions. Regarding experiments on ImageNet10, we use images from the ImageNet
validation set as test data, obtaining 500 test samples. As a pre-trained network,
the ImageNet10 DNN is trained on the whole ImageNet training set. As such, we
exploit the Imagenette samples to train NR and DNR detectors. To avoid intersec-
tions between train and test data, we exclude from the Imagenette dataset a small
number of images that were also among the ImageNet validation split.

Parameter Setting. For all three datasets, we use the procedure in Section 6.2.1
to find the DNR detectors’ best configurations. The optimal configuration for the
ImageNet10 dataset is reported in Table 6.11 (the NR best configuration can be
obtained by lookup at Table 6.11 for the layer of interest).

The architectures of FADER-based solutions are designed to maximize the prototype
reduction rate while achieving comparable performances on clean test samples (see
Tables 6.12 and 6.13). In terms of training, RBF-based neurons are optimized using
pytorch11 Adam optimizer with default settings for 250 epochs. Rejection threshold
θ is set, in all the considered cases, to reject 10% of the samples when no attack is
performed (at ε = 0).

ImageNet10

Layer C γ

clf1 10 1e-4
clf3 1 1e-4
clf4 1 1e-4
combiner 1 1e-1

Table 6.11: DNR configuration for ImageNet10 dataset.

Security Evaluation. We compare the aforementioned undefended neural net-
works and the rejection-based architectures in terms of their security evaluation
curves (Biggio and Roli, 2018), using the same approach described in Section 6.2.1.
For ImageNet10, we perform an evaluation at fixed ε = 1.0 in a white-box setting
as a representative value for evaluating detectors’ performance under attack.

11https://pytorch.org

https://pytorch.org

6.3. IMPROVING THE EFFICIENCY OF PROTOTYPES-BASED DETECTORS 99

6.3.2 Experimental Results

Adversarial Robustness Evaluation. The security evaluation curves for both
white-box (defense-aware) and black-box settings against MNIST and CIFAR10
datasets are reported in Figures 6.12 and 6.13, top subplots. In the bottom subplots,
we report the corresponding rejection rates at increasing ℓ2-norm perturbation size.
We also report in Table 6.16 the performance of all classifiers for the ImageNet10
dataset against our attack (PGD-LS) at distance ε = 1.0.
In the absence of an attack (ε = 0), the undefended DNN slightly outperforms all
rejection-based detectors due to a portion of samples that are incorrectly flagged as
positive. Under attack (ε > 0), all detectors show improved robustness to adver-
sarial examples compared to the standard DNN, as their accuracy decreases more
gracefully. Notably, the performance of all detectors even increases for low values of
ε, as the slightly modified testing images immediately become blind-spot adversarial
examples, ending up in a region that is far from the rest of the data. As the input
perturbation increases, such samples are gradually drifted inside a different class,
making them indistinguishable for rejection-based defenses (Melis et al., 2017).
Interestingly, for the MNIST case, we notice a similar increase of accuracy for NR,
DNR, and NR-RBF detectors tested in the black-box setting at the highest values
of ε. Due to the imperfect attacker’s knowledge of the target classifier, when the ℓ2
distance is large, the adversarial samples end up again once farther from the rest
of the data and are detected by the defenses. This behavior is also confirmed by
the corresponding rejection rate, which increases jointly with ε. By comparing the
average adversarial robustness of the considered detectors, we show that FADER
provides comparable effectiveness against adversarial examples as original solutions.

Prototype Reduction. Tables 6.12, 6.13, and 6.14 report for MNIST, CIFAR10,
and ImageNet10 datasets, respectively, the number of prototypes employed in each
detector component along with the estimated prototype reduction rate for FADER-
based defenses. Notably, up to a 73× prototype reduction rate can be achieved for
NR and 20× for DNR without performance drops on both natural and adversarial
data for the MNIST dataset. The same holds for the other considered datasets:
FADER detector variants achieve up to a 50× and 82× prototype reduction rate
against original detectors for CIFAR10 and ImageNet10, respectively. This pro-
totype reduction rate has a substantial impact in terms of space complexity; in
particular, if we only consider the reference prototypes that are stored in memory
to perform classification, FADER variants allow us to save a considerable amount of
space. We quantify this in Tables 6.12, 6.13, and 6.14, considering a (conservative)
memory consumption estimate of just 8 bytes for each floating-point number.

Runtime Complexity. To effectively quantify the speedup induced at runtime by
FADER variants over the SVM-based detectors, a benchmark evaluation is consid-
ered here. Figure 6.14 reports the time spent by the undefended DNN and each
detector, executed on our workstation (as detailed in the experimental setup), to

100 CHAPTER 6. EXPERIMENTS

Detector # prototypes Accuracy

relu2 relu3 relu4 combiner total reduction memory

NR - - 736 - 736 - 188 KB 0.984
NR-RBF - - 10 - 10 ∼ 73× 3 KB 0.985

DNR 2304 2375 736 9152 11527 - 43 MB 0.961
DNR-RBF 250 250 50 10 560 ∼ 20× 4 MB 0.989

features 1600 576 32 30

Table 6.12: Comparison of the number of prototypes used by each component of
the rejection-based defense architectures (FADER in bold) on the MNIST dataset.
We also report the mean accuracy of each detector at ε = 0 and the memory
consumption related to the stored reference prototypes.

Detector # prototypes Accuracy

drop3 relu7 linear combiner total reduction memory

NR - - 5257 - 5275 - 22 MB 0.915
NR-RBF - - 100 - 100 ∼ 50× 410 KB 0.911

DNR 7198 3100 5257 10000 25555 - 311 MB 0.913
DNR-RBF 500 300 100 100 1000 ∼ 28× 22 MB 0.892

features 4096 2048 512 30

Table 6.13: Comparison of the number of prototypes used by each component of the
rejection-based defense architectures (FADER in bold) on the CIFAR10 dataset.
We also report the mean accuracy of each detector at ε = 0 and the memory
consumption related to the stored reference prototypes.

classify an increasing number of test samples, averaged over 10 repetitions, for each
dataset. As detailed in Section 5.2, the runtime complexity scales linearly with the
test set size. The results for the last point of the curve, corresponding to 5000 test
samples, are also reported in Table 6.15 (standard deviation in brackets) to better
quantify the time reduction. The expected speedup due to a reduced number of
prototypes is confirmed by the time measurements on all three datasets, reaching
up to 3.46× on CIFAR10.

To conclude, even though the reduction of time complexity is not as large as the pro-
totype reduction rates, FADER enables a significant reduction in space complexity,
which makes it well suited to low-power, embedded devices or edge-cloud systems.

6.3.3 Comparison with PGD

In this section, we compare the performance of our attack PGD-LS (Algorithm 2)
against the standard Projected Gradient Descent (PGD) with normalized step pro-
posed in Madry et al. (2018). The performance under the white-box (defense-aware)

6.3. IMPROVING THE EFFICIENCY OF PROTOTYPES-BASED DETECTORS 101

Detector # prototypes Accuracy

clf1 clf3 clf4 combiner total reduction memory

NR - - 4103 - 4103 - 134 MB 0.894
NR-RBF - - 50 - 50 ∼ 82× 2 MB 0.882

DNR 6729 6590 4103 1535 14854 - 571 MB 0.894
DNR-RBF 200 200 100 50 550 ∼ 27× 6 MB 0.874

features 4096 4096 4096 30

Table 6.14: Comparison of the number of prototypes used by each component of the
rejection-based defense architectures (FADER in bold) on the ImageNet10 dataset.
We also report the mean accuracy of each detector at ε = 0 and the memory
consumption related to the stored reference prototypes.

Classifier MNIST CIFAR10 ImageNet10

DNN 557± 4 1214± 1 15453± 280
NR 667± 6 2575± 5 20543± 750

NR-RBF 568± 7 (1.17×) 1263± 1 (2.03×) 15843± 639 (1.30×)
DNR 5281± 20 16927± 67 73336± 3324

DNR-RBF 2053± 32 (2.57×) 4891± 121 (3.46×) 50069± 615 (1.46×)

Table 6.15: Expected time ± standard deviation (in milliseconds) to classify 5000
samples, averaged over 10 runs. The reduction attained by each FADER detector
(in bold), computed as the ratio between the time spent by the SVM-based detector
and the corresponding FADER variant, is reported in parenthesis.

attack against MNIST, CIFAR10, and ImageNet10 datasets, using 1000 test samples
(500 for ImageNet10), is reported in Table 6.16. It is worth pointing out that PGD-
LS especially outperforms PGD when optimizing attacks becomes more challenging,
e.g., due to the presence of wide flat local optima, which are difficult to escape if the
step size is not sufficiently large. This happens when attacking NR and NR-BRF on
MNIST, and DNR on MNIST and CIFAR10. In these cases, PGD would only give a
false sense of security (i.e., induce one to think that such methods are more robust),
whereas PGD-LS successfully evades them with a higher probability, providing a
more reliable robustness evaluation (Athalye et al., 2018a; Carlini et al., 2019).

102 CHAPTER 6. EXPERIMENTS

Classifier MNIST (ε = 1.5) CIFAR10 (ε = 0.2) ImageNet10 (ε = 1.0)

PGD-LS PGD PGD-LS PGD PGD-LS PGD

DNN 0.20 0.25 0.42 0.38 0.23 0.24
NR 0.60 0.82 0.46 0.43 0.41 0.43

NR-RBF 0.59 0.84 0.46 0.40 0.40 0.51
DNR 0.71 1.00 0.53 0.95 0.55 0.58

DNR-RBF 0.62 0.74 0.45 0.40 0.55 0.56

Table 6.16: Classification accuracy under white-box attack at fixed values of ε for
the different classifiers (FADER in bold), MNIST data (ε = 1.5), CIFAR10 data
(ε = 0.2) and ImageNet10 data (ε = 1.0), using our PGD with Line Search (PGD-
LS, Algorithm 2), and a standard PGD with normalized step (Madry et al., 2018).
PGD-LS outperforms PGD when optimizing attacks is more challenging, e.g., when
attacking NR and NR-BRF on MNIST, and DNR on MNIST and CIFAR10.

6.3. IMPROVING THE EFFICIENCY OF PROTOTYPES-BASED DETECTORS 103

ε

ε

ε

ε

Figure 6.12: Security evaluation curves for MNIST data, under black-box (top) and
white-box (bottom) settings. Mean accuracy at increasing ℓ2-norm perturbation size
is reported in the top subplots, while the bottom subplots show the corresponding
rejection rates.

104 CHAPTER 6. EXPERIMENTS

ε

ε

ε

ε

Figure 6.13: Security evaluation curves for CIFAR10 data, under black-box (top) and
white-box (bottom) settings. Mean accuracy at increasing ℓ2-norm perturbation size
is reported in the top subplots, while the bottom subplots show the corresponding
rejection rates.

6.3. IMPROVING THE EFFICIENCY OF PROTOTYPES-BASED DETECTORS 105

100 200 500 1000 2000 5000
Number of test samples

0.03

0.12

0.50

2.00

Cl
as

sif
ica

tio
n

tim
e

(s
)

MNIST
DNN
NR
NR-RBF
DNR
DNR-RBF

100 200 500 1000 2000 5000
Number of test samples

0.1

0.2

1.0

4.0

16.0

CIFAR10

100 200 500 1000 2000 5000
Number of test samples

0.5

2.0

8.0

32.0

ImageNet10

Figure 6.14: Classification time (in seconds) against an increasing number of test
samples, averaged on 10 runs, using batches of 256 samples. Similar linear depen-
dencies are also found for batch sizes of 32, 64, 128, 512, and 1024. FADER gives a
consistent advantage over NR and DNR, as also quantified in Table 6.15.

106 CHAPTER 6. EXPERIMENTS

Chapter 7

Conclusions

In this thesis, we proposed different detection methods to increase the robustness
of machine learning models against adversarial examples, and we evaluated them
showing that, as for all the state-of-the-art defenses, they can be fooled by an at-
tacker that has full-knowledge of them and performs adaptive strategies, injecting
stronger perturbations.

We first investigated the role of domain knowledge in adversarial settings. Focusing
on multi-label classification, we injected knowledge expressed by First-Order Logic
in the training stage of the classifier, not only with the aim of improving its quality
but also as a means to build a detector of adversarial examples at no additional cost.
We proposed a multi-label attack procedure and showed that knowledge-constrained
classifiers could improve their robustness against both black-box and white-box at-
tacks, and, using the same knowledge, they can detect adversarial attacks. The
proposed adversarial example rejection scheme is based on the idea of dealing with
classifiers that fulfill the knowledge-related constraints over the space regions in
which the non-malicious data are distributed, not guaranteeing such fulfillment in
the rest of the space.

We then proposed Deep Neural Rejection (DNR), i.e., a multi-layer rejection mecha-
nism that, differently from other rejection approaches against adversarial examples,
does not require generating adversarial examples at training time, and it is less
computationally demanding. Our approach can be applied to pre-trained network
architectures to implement a defense against adversarial attacks at test time. The
base classifiers and the combiner used in our DNR approach are trained separately.
To properly evaluate DNR’s response to adversarial attacks, we also designed a
novel attack algorithm that takes into account the defense to avoid overestimating
the performance under attack.

As a follow-up of our work, we presented FADER (Fast Adversarial Example Re-
jection), i.e., a technique to speed up rejection-based defenses against adversarial
examples. FADER exploits RBF networks to control the number of reference pro-
totypes required for predictions, resulting in accuracy vs. detection time efficiency

108 CHAPTER 7. CONCLUSIONS

gain. In our experiments, we demonstrated a 73× prototypes reduction with re-
spect to analyzed detectors for the MNIST dataset, up to 50× prototypes reduction
for the CIFAR10 image recognition task, and up to 82× in the case of the Im-
ageNet10 dataset, while maintaining comparable performance on both clean and
adversarial data. This can have a strong impact on real-world scenarios involv-
ing adversarial-example detection on low-capability (e.g., edge) devices. We further
provided a comprehensive review of multiple detector-based adversarial detection
techniques from the literature, framing them in the form of a proposed adversarial-
example detection framework designed to accommodate both existing and newer
methods to come. Experimental results on different image classification tasks high-
light FADER-based defenses as more efficient solutions than original ones in terms
of required prototypes while maintaining comparable performances both on clean
data and under attack.

7.1 Limitations and Future Works

All the proposed defenses share a common limitation: against adaptive white-box
attackers, they are able to increase the robustness of DNNs against adversarial exam-
ples only with small amounts of adversarial perturbation, while their effectiveness
gradually decreases with higher perturbations. This makes our defenses effective
only under specific constraints, thus they might not always be useful. It is also
worth remarking that these results come from a worst-case evaluation, whereas in a
real-world application scenario, the attacker usually does not know the presence and
the behavior of the defense mechanism. It remains an open issue to understand how
hard for an attacker would be to infer them in practical cases, especially considering
the domain knowledge exploited in the first approach.

To improve the adversarial robustness of our defenses, we will consider combining
them with adversarial training. In particular, for the first approach, adversarial
training can be intermixed with knowledge constraints to strengthen the violation
of the constraints out of the distribution of the real data. Furthermore, we are also
interested in testing all the proposed approaches on the out-of-distribution samples
detection problem, for which the classifier could not provide sufficient confidence for
its decisions. In several application domains, it might be important to avoid the
system outputs such decisions, preferring to abstain.
Regarding the first proposed approach, we plan to design a learnable model that
decides whether to reject or not in function of the fulfillment of each specific logic
formula, going beyond a simple-but-effective threshold on the cumulative constraint
loss.
As an additional future work on DNR, it would be interesting to perform an end-
to-end training of the proposed classifier similarly to the approaches proposed in
Thulasidasan et al. (2019) and Geifman and El-Yaniv (2019). Another research
direction may be that of testing our defense against training-time poisoning at-

7.2. CLOSING REMARKS 109

tacks (Biggio et al., 2012; Jagielski et al., 2018; Xiao et al., 2015; Mei and Zhu,
2015; Biggio and Roli, 2018).
Moreover, we aim to improve FADER performance under attack by employing
proper input gradient regularization (Demontis et al., 2019; Simon-Gabriel et al.,
2019) and testing novel FADER architectural variants to further reduce the compu-
tational overhead of adversarial-example detection schemes.

7.2 Closing Remarks

To sum up, after presenting three detection methods for adversarial examples, we
provide insights into their effectiveness under worst-case scenarios. We believe that
these findings will contribute to understanding how to build more effective and effi-
cient adversarial examples detection mechanisms that can be combined with other
defense techniques. We also provide new adaptive optimization strategies to thor-
oughly evaluate them. Finally, we believe that the first proposed defense will open
the investigation of domain knowledge as a feature to further improve the robustness
of multi-label classifiers against adversarial attacks.

Acknowledgements

This work has been supported by BMK, BMDW, and the Province of Upper Austria
in the frame of the COMET Programme managed by FFG in the COMET Module
S3AI.

110 CHAPTER 7. CONCLUSIONS

Bibliography

S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon. Ganomaly: Semi-supervised
anomaly detection via adversarial training. In Asian Conference on Computer
Vision, pages 622–637. Springer, 2018.

J.-B. Alayrac, J. Uesato, P.-S. Huang, A. Fawzi, R. Stanforth, and P. Kohli. Are
labels required for improving adversarial robustness? In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein. Square Attack: A
Query-Efficient Black-Box Adversarial Attack via Random Search. In A. Vedaldi,
H. Bischof, T. Brox, and J.-M. Frahm, editors, Computer Vision – ECCV 2020,
pages 484–501, Cham, 2020. Springer International Publishing. ISBN 978-3-030-
58592-1.

A. Araujo, L. Meunier, R. Pinot, and B. Negrevergne. Robust Neural Networks
using Randomized Adversarial Training. arXiv preprint, arXiv:1903.10219, 2020.

A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In Proceedings of the
35th International Conference on Machine Learning, volume 80, pages 274–283.
PMLR, 10–15 Jul 2018a.

A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing robust adversarial
examples. In ICLR, 2018b.

R. Babbar and B. Schölkopf. Adversarial extreme multi-label classification. arXiv
preprint, arXiv:1803.01570, 2018.

P. Barbiero, G. Ciravegna, F. Giannini, P. Li’o, M. Gori, and S. Melacci. Entropy-
based logic explanations of neural networks. In AAAI, 2022.

M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. Can machine
learning be secure? In Proc. ACM Symp. Information, Computer and Comm.
Sec., ASIACCS ’06, pages 16–25, New York, NY, USA, 2006. ACM.

A. Bendale and T. E. Boult. Towards open set deep networks. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1563–1572, 2016.

112 BIBLIOGRAPHY

A. N. Bhagoji, D. Cullina, and P. Mittal. Dimensionality reduction as a de-
fense against evasion attacks on machine learning classifiers. arXiv preprint
arXiv:1704.02654, 2, 2017.

B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84:317–331, 2018.

B. Biggio, G. Fumera, I. Pillai, and F. Roli. Image spam filtering by content obscur-
ing detection. In Fourth Conference on Email and Anti-Spam (CEAS), Microsoft
Research Silicon Valley, Mountain View, California, 2-3 August 2007a.

B. Biggio, G. Fumera, I. Pillai, and F. Roli. Image spam filtering using visual
information. In 14th International Conference on Image Analysis and Processing,
pages 105–110, Modena, Italy, 10-14 September 2007b. IEEE Computer Society.

B. Biggio, G. Fumera, I. Pillai, and F. Roli. Improving image spam filtering us-
ing image text features. In Fifth Conference on Email and Anti-Spam (CEAS),
Mountain View, CA, USA, 21 August 2008.

B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector
machines. In J. Langford and J. Pineau, editors, 29th Int’l Conf. on Machine
Learning, pages 1807–1814. Omnipress, 2012.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and
F. Roli. Evasion attacks against machine learning at test time. In H. Blockeel,
K. Kersting, S. Nijssen, and F. Železný, editors, Machine Learning and Knowledge
Discovery in Databases (ECML PKDD), Part III, volume 8190 of LNCS, pages
387–402. Springer Berlin Heidelberg, 2013.

W. Brendel, J. Rauber, M. Kümmerer, I. Ustyuzhaninov, and M. Bethge. Accurate,
Reliable and Fast Robustness Evaluation. Curran Associates Inc., Red Hook, NY,
USA, 2019.

M. Brückner, C. Kanzow, and T. Scheffer. Static prediction games for adversarial
learning problems. J. Mach. Learn. Res., 13:2617–2654, September 2012.

J. Buckman, A. Roy, C. Raffel, and I. Goodfellow. Thermometer encoding: One
hot way to resist adversarial examples. In International Conference on Learning
Representations, 2018.

N. Carlini and D. Wagner. Adversarial examples are not easily detected: Bypass-
ing ten detection methods. In Proceedings of the ACM Workshop on Artificial
Intelligence and Security, pages 3–14, 2017a.

N. Carlini and D. A. Wagner. Defensive distillation is not robust to adversarial
examples. ArXiv, abs/1607.04311, 2016.

BIBLIOGRAPHY 113

N. Carlini and D. A. Wagner. Towards evaluating the robustness of neural networks.
In IEEE Symposium on Security and Privacy, pages 39–57. IEEE Computer So-
ciety, 2017b.

N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras, I. Good-
fellow, A. Madry, and A. Kurakin. On evaluating adversarial robustness. arXiv
preprint, arXiv:1902.06705, 2019.

Y. Carmon, A. Raghunathan, L. Schmidt, P. Liang, and J. C. Duchi. Unlabeled
data improves adversarial robustness. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems, pages 11192–11203, 2019.

F. Carrara, R. Becarelli, R. Caldelli, F. Falchi, and G. Amato. Adversarial examples
detection in features distance spaces. In The European Conference on Computer
Vision (ECCV) Workshops, September 2018.

O. Chapelle. Training a support vector machine in the primal. Neural Comput., 19
(5):1155–1178, 2007.

P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training
substitute models. In 10th ACM Workshop on Artificial Intelligence and Security,
AISec ’17, pages 15–26, New York, NY, USA, 2017. ACM.

Z. Chen and X. Huang. End-to-end learning for lane keeping of self-driving cars.
In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 1856–1860, June 2017.
doi: 10.1109/IVS.2017.7995975.

J. Chenou, G. Hsieh, and T. Fields. Radial basis function network: Its robustness
and ability to mitigate adversarial examples. In Proceedings - 6th Annual Con-
ference on Computational Science and Computational Intelligence, CSCI 2019,
pages 102–106. Institute of Electrical and Electronics Engineers Inc., dec 2019.
ISBN 9781728155845. doi: 10.1109/CSCI49370.2019.00024.

G. Ciravegna, F. Giannini, M. Gori, M. Maggini, and S. Melacci. Human-driven fol
explanations of deep learning. In C. Bessiere, editor, Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pages
2234–2240. International Joint Conferences on Artificial Intelligence Organization,
7 2020. doi: 10.24963/ijcai.2020/309. Main track.

M. Claesen, F. D. Smet, J. A. K. Suykens, and B. D. Moor. Fast prediction with
svm models containing rbf kernels. ArXiv, abs/1403.0736, 2014.

J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via ran-
domized smoothing. In International Conference on Machine Learning, pages
1310–1320. PMLR, 2019.

114 BIBLIOGRAPHY

F. Crecchi, D. Bacciu, and B. Biggio. Detecting adversarial examples through non-
linear dimensionality reduction. In ESANN ’19, 2019.

F. Crecchi, M. Melis, A. Sotgiu, D. Bacciu, and B. Biggio. Fader: Fast adversarial
example rejection. Neurocomputing, 470:257–268, 2022. ISSN 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2021.10.082. URL https://www.sciencedir

ect.com/science/article/pii/S0925231221015708.

F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensem-
ble of diverse parameter-free attacks. In International Conference on Machine
Learning, pages 1–12, 2020a.

F. Croce and M. Hein. Minimally distorted adversarial examples with a fast adaptive
boundary attack. In Proceedings of the 37th International Conference on Machine
Learning, volume 119, pages 2196–2205. PMLR, 13–18 Jul 2020b.

N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classifica-
tion. In Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 99–108, Seattle, 2004.

A. S. d’Avila Garcez, M. Gori, L. C. Lamb, L. Serafini, M. Spranger, and S. N. Tran.
Neural-symbolic computing: An effective methodology for principled integration
of machine learning and reasoning. Journal of Applied Logics - IfCoLog Journal,
6(4):611–632, 2019.

L. De Alfaro. Neural Networks with Structural Resistance to Adversarial Attacks.
Technical report, 2018. URL https://github.com/lucadealfaro/rbfi.

A. Demontis, M. Melis, B. Biggio, G. Fumera, and F. Roli. Super-sparse learning in
similarity spaces. IEEE Computational Intelligence Magazine, 11(4):36–45, Nov
2016.

A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giac-
into, and F. Roli. Yes, machine learning can be more secure! a case study on an-
droid malware detection. IEEE Transactions on Dependable and Secure Comput-
ing, 16(4):711–724, July 2019. ISSN 1545-5971. doi: 10.1109/TDSC.2017.2700270.

A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea, C. Nita-Rotaru,
and F. Roli. Why do adversarial attacks transfer? Explaining transferability of
evasion and poisoning attacks. In 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-
Scale Hierarchical Image Database. In CVPR09, 2009.

https://www.sciencedirect.com/science/article/pii/S0925231221015708
https://www.sciencedirect.com/science/article/pii/S0925231221015708
https://github.com/lucadealfaro/rbfi.

BIBLIOGRAPHY 115

L. Deng and X. Li. Machine Learning Paradigms for Speech Recognition: An
Overview. IEEE Transactions on Audio, Speech, and Language Processing, 21
(5):1060–1089, May 2013. doi: 10.1109/TASL.2013.2244083.

G. S. Dhillon, K. Azizzadenesheli, J. D. Bernstein, J. Kossaifi, A. Khanna, Z. C.
Lipton, and A. Anandkumar. Stochastic activation pruning for robust adversarial
defense. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=H1uR4GZRZ.

M. Diligenti, M. Gori, and C. Sacca. Semantic-based regularization for learning and
inference. Artificial Intelligence, 244:143–165, 2017.

I. Donadello, L. Serafini, and A. D. Garcez. Logic tensor networks for semantic
image interpretation. In Proceedings of the 26th International Joint Conference
on Artificial Intelligence, IJCAI’17, page 1596–1602. AAAI Press, 2017. ISBN
9780999241103.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto
the l1-ball for learning in high dimensions. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pages 272–279, New York, NY, USA,
2008. ACM.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience
Publication, 2000.

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song. Robust physical-world attacks on deep learning visual
classification. In CVPR, pages 1625–1634. IEEE Computer Society, 2018.

R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner. Detecting adversarial
samples from artifacts. arXiv preprint arXiv:1703.00410, 2017.

P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic blending
attacks. In USENIX-SS’06: Proceedings of the 15th conference on USENIX Secu-
rity Symposium, pages 241–256, Berkeley, CA, USA, 2006. USENIX Association.

Y. Geifman and R. El-Yaniv. Selective classification for deep neural networks. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30,
pages 4878–4887. Curran Associates, Inc., 2017. URL http://papers.nips.cc

/paper/7073-selective-classification-for-deep-neural-networks.pdf.

Y. Geifman and R. El-Yaniv. Selectivenet: A deep neural network with an integrated
reject option. In International Conference on Machine Learning, pages 2151–2159,
2019.

https://openreview.net/forum?id=H1uR4GZRZ
http://papers.nips.cc/paper/7073-selective-classification-for-deep-neural-networks.pdf
http://papers.nips.cc/paper/7073-selective-classification-for-deep-neural-networks.pdf

116 BIBLIOGRAPHY

A. Globerson and S. T. Roweis. Nightmare at test time: robust learning by feature
deletion. In W. W. Cohen and A. Moore, editors, Proceedings of the 23rd In-
ternational Conference on Machine Learning, volume 148, pages 353–360. ACM,
2006.

G. Gnecco, M. Gori, S. Melacci, and M. Sanguineti. Foundations of support con-
straint machines. Neural computation, 27(2):388–480, 2015.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

M. Gori and S. Melacci. Constraint verification with kernel machines. IEEE Trans-
actions on Neural Networks and Learning Systems, 24(5):825–831, 2013.

K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel. On the
(statistical) detection of adversarial examples. arXiv preprint, arXiv:1702.06280,
2017.

C. Guo, M. Rana, M. Cisse, and L. van der Maaten. Countering adversarial images
using input transformations. In International Conference on Learning Represen-
tations, 2018. URL https://openreview.net/forum?id=SyJ7ClWCb.

P. Habib Zadeh, R. Hosseini, and S. Sra. Deep-RBF Networks Revisited: Robust
Classification with Rejection. Technical report, 2019.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In The IEEE International
Conference on Computer Vision (ICCV), December 2015.

M. Hein, M. Andriushchenko, and J. Bitterwolf. Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the
problem. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 41–50, 2019.

D. Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In International Conference on Learning
Representations, 2017a. URL https://openreview.net/forum?id=Hkg4TI9xl.

D. Hendrycks and K. Gimpel. Early methods for detecting adversarial images.
In International Conference on Learning Representations, 2017b. URL https:

//openreview.net/forum?id=B1dexpDug.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82–97, 2012.

https://openreview.net/forum?id=SyJ7ClWCb
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=B1dexpDug
https://openreview.net/forum?id=B1dexpDug

BIBLIOGRAPHY 117

L. Huang, A. D. Joseph, B. Nelson, B. Rubinstein, and J. D. Tygar. Adversarial
machine learning. In 4th ACM Workshop on Artificial Intelligence and Security
(AISec 2011), pages 43–57, Chicago, IL, USA, 2011.

M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. Manipulating
machine learning: Poisoning attacks and countermeasures for regression learning.
In IEEE Symposium on Security and Privacy, SP ’18, pages 931–947. IEEE CS,
2018. doi: 10.1109/SP.2018.00057. URL doi.ieeecomputersociety.org/10.1

109/SP.2018.00057.

A. Jalal, A. Ilyas, C. Daskalakis, and A. G. Dimakis. The robust manifold defense:
Adversarial training using generative models. arXiv e-prints, pages arXiv–1712,
2017.

A. D. Joseph, B. Nelson, B. I. P. Rubinstein, and J. Tygar. Adversarial Machine
Learning. Cambridge University Press, 2018.

A. Joshi, A. Mukherjee, S. Sarkar, and C. Hegde. Semantic adversarial at-
tacks: Parametric transformations that fool deep classifiers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 4773–4783,
2019.

A. Kantchelian, J. D. Tygar, and A. D. Joseph. Evasion and hardening of tree
ensemble classifiers. In 33rd ICML, volume 48 of JMLR Workshop and Conference
Proceedings, pages 2387–2396. JMLR.org, 2016.

N. Kato, Z. M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, and K. Mizutani.
The Deep Learning Vision for Heterogeneous Network Traffic Control: Proposal,
Challenges, and Future Perspective. IEEE Wireless Communications, 24(3):146–
153, June 2017. ISSN 1536-1284. doi: 10.1109/MWC.2016.1600317WC.

E. P. Klement, R. Mesiar, and E. Pap. Triangular norms, volume 8. Springer Science
& Business Media, 2013.

A. Krizhevsky. One weird trick for parallelizing convolutional neural networks.
ArXiv, abs/1404.5997, 2014.

A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial machine learning at scale.
In ICLR, 2017. URL https://arxiv.org/abs/1611.01236.

A. Lamb, J. Binas, A. Goyal, D. Serdyuk, S. Subramanian, I. Mitliagkas, and
Y. Bengio. Fortified Networks: Improving the Robustness of Deep Networks
by Modeling the Manifold of Hidden Representations. 2018. URL http:

//arxiv.org/abs/1804.02485.

doi.ieeecomputersociety.org/10.1109/SP.2018.00057
doi.ieeecomputersociety.org/10.1109/SP.2018.00057
https://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1804.02485
http://arxiv.org/abs/1804.02485

118 BIBLIOGRAPHY

X. Li and F. Li. Adversarial examples detection in deep networks with convo-
lutional filter statistics. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 5775–5783, 2017. doi: 10.1109/ICCV.2017.615.

D. Lowd and C. Meek. Adversarial learning. In Proc. 11th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD), pages
641–647, Chicago, IL, USA, 2005a. ACM Press.

D. Lowd and C. Meek. Good word attacks on statistical spam filters. In Second
Conference on Email and Anti-Spam (CEAS), Mountain View, CA, USA, 2005b.

J. Lu, T. Issaranon, and D. Forsyth. Safetynet: Detecting and rejecting adversarial
examples robustly. In The IEEE International Conference on Computer Vision
(ICCV), 2017.

X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, G. Schoenebeck, M. E. Houle,
D. Song, and J. Bailey. Characterizing adversarial subspaces using local intrinsic
dimensionality. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=B1gJ1L2aW.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning
models resistant to adversarial attacks. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

S. Mei and X. Zhu. Using machine teaching to identify optimal training-set attacks
on machine learners. In 29th AAAI Conf. Artificial Intelligence (AAAI ’15), 2015.

S. Melacci and M. Belkin. Laplacian Support Vector Machines Trained in the Primal.
Journal of Machine Learning Research, 12:1149–1184, March 2011. ISSN 1532-
4435.

S. Melacci, A. Globo, and L. Rigutini. Enhancing modern supervised word sense dis-
ambiguation models by semantic lexical resources. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018),
2018.

S. Melacci, G. Ciravegna, A. Sotgiu, A. Demontis, B. Biggio, M. Gori, and F. Roli.
Domain knowledge alleviates adversarial attacks in multi-label classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 2021. doi:
10.1109/TPAMI.2021.3137564.

M. Melis, A. Demontis, B. Biggio, G. Brown, G. Fumera, and F. Roli. Is deep
learning safe for robot vision? Adversarial examples against the iCub humanoid.
In ICCVW Vision in Practice on Autonomous Robots (ViPAR), pages 751–759.
IEEE, 2017.

https://openreview.net/forum?id=B1gJ1L2aW
https://openreview.net/forum?id=rJzIBfZAb

BIBLIOGRAPHY 119

M. Melis, D. Maiorca, B. Biggio, G. Giacinto, and F. Roli. Explaining black-box
android malware detection. In 26th European Signal Processing Conf., EUSIPCO,
pages 524–528, Rome, Italy, 2018. IEEE, IEEE.

D. Meng and H. Chen. MagNet: a two-pronged defense against adversarial examples.
In 24th ACM Conf. Computer and Comm. Sec. (CCS), 2017.

J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff. On detecting adversar-
ial perturbations. In 5th International Conference on Learning Representations,
ICLR 2017 - Conference Track Proceedings, 2017.

D. J. Miller, Z. Xiang, and G. Kesidis. Adversarial learning targeting deep neu-
ral network classification: A comprehensive review of defenses against attacks.
Proceedings of the IEEE, 108(3):402–433, 2020.

T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smooth-
ing with virtual adversarial training. In International Conference on Learning
Representations, 2016. URL https://arxiv.org/pdf/1507.00677.pdf.

T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 41(8):1979–1993, 2018.

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate
method to fool deep neural networks. In IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pages 2574–2582, 2016.

P. Morgado and N. Vasconcelos. Semantically consistent regularization for zero-
shot recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6060–6069, 2017.

V. Munusamy Kabilan, B. Morris, and A. Nguyen. Vectordefense: Vectorization as
a defense to adversarial examples. 2018. arXiv preprint arXiv:1804.08529.

A. Najafi, S.-i. Maeda, M. Koyama, and T. Miyato. Robustness to adversarial per-
turbations in learning from incomplete data. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

M. M. Naseer, S. H. Khan, M. H. Khan, F. Shahbaz Khan, and F. Porikli. Cross-
domain transferability of adversarial perturbations. Neural Information Process-
ing Systems, 32, 2019.

A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan. Speech Recognition
Using Deep Neural Networks: A Systematic Review. IEEE Access, 7:19143–19165,
2019. doi: 10.1109/ACCESS.2019.2896880.

https://arxiv.org/pdf/1507.00677.pdf

120 BIBLIOGRAPHY

B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein, U. Saini,
C. Sutton, J. D. Tygar, and K. Xia. Exploiting machine learning to subvert your
spam filter. In LEET’08: Proceedings of the 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats, pages 1–9, Berkeley, CA, USA, 2008. USENIX
Association.

J. Newsome, B. Karp, and D. Song. Paragraph: Thwarting signature learning by
training maliciously. In Recent Advances in Intrusion Detection, LNCS, pages
81–105. Springer, 2006.

A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), pages 427–436. IEEE, 2015.

T. Pang, C. Du, and J. Zhu. Max-mahalanobis linear discriminant analysis networks.
In Proceedings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 4013–4022,
2018. URL http://proceedings.mlr.press/v80/pang18a.html.

N. Papernot and P. Mcdaniel. Deep k-nearest neighbors: Towards confident, inter-
pretable and robust deep learning. ArXiv, abs/1803.04765, 2018.

N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv preprint,
arXiv:1605.07277, 2016a.

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense to
adversarial perturbations against deep neural networks. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 582–597, May 2016b. doi: 10.1109/SP.2016.
41.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Prac-
tical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, ASIA CCS ’17,
pages 506–519, New York, NY, USA, 2017. ACM.

D. Park, H. Khan, A. Khan, A. Gittens, and B. Yener. Output randomization:
A novel defense for both white-box and black-box adversarial models. ArXiv,
abs/2107.03806, 2021.

S. Park, J. Park, S.-J. Shin, and I.-C. Moon. Adversarial dropout for supervised
and semi-supervised learning. In Thirty-Second AAAI Conference on Artificial
Intelligence, volume 32, Apr. 2018.

T. Pi, X. Li, and Z. M. Zhang. Boosted zero-shot learning with semantic correlation
regularization. In Proceedings of the Twenty-Sixth International Joint Conference

http://proceedings.mlr.press/v80/pang18a.html

BIBLIOGRAPHY 121

on Artificial Intelligence, IJCAI-17, pages 2599–2605, 2017. doi: 10.24963/ijcai.2
017/362. URL https://doi.org/10.24963/ijcai.2017/362.

I. Pillai, G. Fumera, and F. Roli. Multi-label classification with a reject option.
Pattern Recognition, 46(8):2256 – 2266, 2013.

M. Pintor, D. Angioni, A. Sotgiu, L. Demetrio, A. Demontis, B. Biggio, and F. Roli.
Imagenet-patch: A dataset for benchmarking machine learning robustness against
adversarial patches. Pattern Recognition, page 109064, 2022a. ISSN 0031-3203.
doi: https://doi.org/10.1016/j.patcog.2022.109064. URL https://www.scienc

edirect.com/science/article/pii/S0031320322005441.

M. Pintor, L. Demetrio, A. Sotgiu, A. Demontis, N. Carlini, B. Biggio, and F. Roli.
Indicators of attack failure: Debugging and improving optimization of adversarial
examples. Advances in Neural Information Processing Systems, 35, 2022b.

M. Pintor, L. Demetrio, A. Sotgiu, M. Melis, A. Demontis, and B. Biggio. secml:
Secure and explainable machine learning in python. SoftwareX, 18:101095, 2022c.
ISSN 2352-7110. doi: https://doi.org/10.1016/j.softx.2022.101095. URL https:

//www.sciencedirect.com/science/article/pii/S2352711022000656.

N. Popovic, D. P. Paudel, T. Probst, and L. V. Gool. Gradient obfuscation checklist
test gives a false sense of security. ArXiv, abs/2206.01705, 2022.

A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. A. Storer. Deflecting adversarial
attacks with pixel deflection. In CVPR, 2018.

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. Malware
detection by eating a whole exe. In AAAI Workshop on Artificial Intelligence for
Cyber Security, 2018.

Y. A. U. Rehman, L. M. Po, and M. Liu. Deep learning for face anti-spoofing:
An end-to-end approach. In 2017 Signal Processing: Algorithms, Architectures,
Arrangements, and Applications (SPA), pages 195–200, Sept. 2017. doi: 10.239
19/SPA.2017.8166863.

J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and E. Granger.
Decoupling direction and norm for efficient gradient-based l2 adversarial attacks
and defenses. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4322–4330, 2019.

A. S. Ross and F. Doshi-Velez. Improving the adversarial robustness and inter-
pretability of deep neural networks by regularizing their input gradients. In AAAI.
AAAI Press, 2018.

https://doi.org/10.24963/ijcai.2017/362
https://www.sciencedirect.com/science/article/pii/S0031320322005441
https://www.sciencedirect.com/science/article/pii/S0031320322005441
https://www.sciencedirect.com/science/article/pii/S2352711022000656
https://www.sciencedirect.com/science/article/pii/S2352711022000656

122 BIBLIOGRAPHY

S. Rota Bulò, B. Biggio, I. Pillai, M. Pelillo, and F. Roli. Randomized prediction
games for adversarial machine learning. IEEE Transactions on Neural Networks
and Learning Systems, 28(11):2466–2478, 2017.

P. Russu, A. Demontis, B. Biggio, G. Fumera, and F. Roli. Secure kernel machines
against evasion attacks. In 9th ACM Workshop on Artificial Intelligence and
Security, AISec ’16, pages 59–69, New York, NY, USA, 2016. ACM.

P. Samangouei, M. Kabkab, and R. Chellappa. Defense-GAN: Protecting classifiers
against adversarial attacks using generative models. In International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?id=

BkJ3ibb0-.

C. Saunders, A. Gammerman, and V. Vovk. Transduction with confidence and
credibility. In IJCAI International Joint Conference on Artificial Intelligence,
1999.

W. Scheirer, L. Jain, and T. Boult. Probability models for open set recognition.
IEEE Trans. Patt. An. Mach. Intell., 36(11):2317–2324, 2014.

W. J. Scheirer, A. Rocha, R. Michaels, and T. E. Boult. Meta-recognition: The
theory and practice of recognition score analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 33:1689–1695, 2011.

L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Madry. Adversarially robust
generalization requires more data. 31, 2018. URL https://proceedings.neur

ips.cc/paper/2018/file/f708f064faaf32a43e4d3c784e6af9ea-Paper.pdf.

L. Schott, J. Rauber, M. Bethge, and W. Brendel. Towards the first adversarially
robust neural network model on mnist. In International Conference on Learning
Representations, 2018.

A. Shafahi, W. R. Huang, C. Studer, S. Feizi, and T. Goldstein. Are adversarial
examples inevitable? In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=r1lWUoA9FQ.

G. Shafer and V. Vovk. A tutorial on conformal prediction. Journal of Machine
Learning Research, 2008. ISSN 15324435.

M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 1528–1540. ACM, 2016.

S. Shen, G. Jin, K. Gao, and Y. Zhang. Ape-gan: Adversarial perturbation elimi-
nation with gan. arXiv preprint arXiv:1707.05474, 2017.

https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=BkJ3ibb0-
https://proceedings.neurips.cc/paper/2018/file/f708f064faaf32a43e4d3c784e6af9ea-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f708f064faaf32a43e4d3c784e6af9ea-Paper.pdf
https://openreview.net/forum?id=r1lWUoA9FQ

BIBLIOGRAPHY 123

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 2016. ISSN 14764687. doi:
10.1038/nature16961.

C.-J. Simon-Gabriel, Y. Ollivier, L. Bottou, B. Schölkopf, and D. Lopez-Paz.
First-order adversarial vulnerability of neural networks and input dimension. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 5809–5817. PMLR, 09–15 Jun 2019. URL https:

//proceedings.mlr.press/v97/simon-gabriel19a.html.

Q. Song, H. Jin, X. Huang, and X. Hu. Multi-label adversarial perturbations. In
2018 IEEE International Conference on Data Mining (ICDM), pages 1242–1247,
2018.

Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman. Pixeldefend: Leveraging
generative models to understand and defend against adversarial examples. In
International Conference on Learning Representations, 2018. URL https://op

enreview.net/forum?id=rJUYGxbCW.

A. Sotgiu, A. Demontis, M. Melis, B. Biggio, G. Fumera, X. Feng, and F. Roli. Deep
neural rejection against adversarial examples. EURASIP Journal on Information
Security, 2020:1–10, 2020.

A. Sotgiu, M. Pintor, and B. Biggio. Explainability-based debugging of machine
learning for vulnerability discovery. In Proceedings of the 17th International
Conference on Availability, Reliability and Security, ARES ’22, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450396707. doi:
10.1145/3538969.3543809. URL https://doi.org/10.1145/3538969.3543809.

I. Steinwart. Sparseness of support vector machines. J. Mach. Learn. Res., 4(11):
1071–1105, 2003.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. In International Conference
on Learning Representations, 2014. URL http://arxiv.org/abs/1312.6199.

S. Teso. Does symbolic knowledge prevent adversarial fooling? arXiv preprint,
arXiv:1912.10834, 2019.

S. Thulasidasan, T. Bhattacharya, J. Bilmes, G. Chennupati, and J. Mohd-Yusof.
Knows when it doesn’t know: Deep abstaining classifiers. 2019. URL https:

//openreview.net/forum?id=rJxF73R9tX.

https://proceedings.mlr.press/v97/simon-gabriel19a.html
https://proceedings.mlr.press/v97/simon-gabriel19a.html
https://openreview.net/forum?id=rJUYGxbCW
https://openreview.net/forum?id=rJUYGxbCW
https://doi.org/10.1145/3538969.3543809
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=rJxF73R9tX
https://openreview.net/forum?id=rJxF73R9tX

124 BIBLIOGRAPHY

F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing ma-
chine learning models via prediction apis. In 25th USENIX Security Symposium
(USENIX Security 16), pages 601–618, Austin, TX, 2016. USENIX Association.
ISBN 978-1-931971-32-4.

F. Tramer, N. Carlini, W. Brendel, and A. Madry. On adaptive attacks to adversarial
example defenses. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 1633–1645. Curran Associates, Inc., 2020. URL https://proceedings.ne

urips.cc/paper/2020/file/11f38f8ecd71867b42433548d1078e38-Paper.pd

f.

L. Van Der Maaten and G. Hinton. Visualizing Data using t-SNE. Technical report,
2008. URL http://www.jmlr.org/papers/volume9/vandermaaten08a/vander

maaten08a.pdf.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

V. Vovk, A. Gammerman, and C. Saunders. Machine-learning applications of al-
gorithmic randomness. In Proceedings of the Sixteenth International Conference
on Machine Learning, ICML ’99, page 444–453, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc. ISBN 1558606122.

N. Šrndic and P. Laskov. Practical evasion of a learning-based classifier: A case
study. In Proc. 2014 IEEE Symp. Security and Privacy, SP ’14, pages 197–211,
Washington, DC, USA, 2014. IEEE CS.

P. H. Winston and B. K. Horn. Lisp. Addison Wesley Pub., Reading, MA, 1986.

G. L. Wittel and S. F. Wu. On attacking statistical spam filters. In First Conference
on Email and Anti-Spam (CEAS), Mountain View, CA, USA, 2004.

D. H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

E. Wong, L. Rice, and J. Z. Kolter. Fast is better than free: Revisiting adversarial
training. In International Conference on Learning Representations, 2019.

Y. Wu, D. Bamman, and S. Russell. Adversarial training for relation extraction. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 1778–1783, 2017.

C. Xiao, P. Zhong, and C. Zheng. Enhancing adversarial defense by k-winners-take-
all. In 8th International Conference on Learning Representations, 2020.

https://proceedings.neurips.cc/paper/2020/file/11f38f8ecd71867b42433548d1078e38-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/11f38f8ecd71867b42433548d1078e38-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/11f38f8ecd71867b42433548d1078e38-Paper.pdf
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

BIBLIOGRAPHY 125

H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli. Is feature selection
secure against training data poisoning? In F. Bach and D. Blei, editors, JMLR
W&CP - Proc. 32nd Int’l Conf. Mach. Learning (ICML), volume 37, pages 1689–
1698, 2015.

C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille. Mitigating adversarial effects
through randomization. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=Sk9yuql0Z.

X. Yin, S. Kolouri, and G. Rohde. Gat: Generative adversarial training for adver-
sarial example detection and robust classification. In ICLR, 2020.

M. Yu and M. Dredze. Improving lexical embeddings with semantic knowledge.
In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 545–550, 2014.

T. Yu, S. Hu, C. Guo, W. Chao, and K. Weinberger. A new defense against ad-
versarial images: Turning a weakness into a strength. In Proceedings of the 33rd
Conference on Neural Information Processing Systems (NeurIPS 2019), Oct. 2019.

H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li, D. Boning, and C.-J.
Hsieh. Towards stable and efficient training of verifiably robust neural networks.
In International Conference on Learning Representations, 2020. URL https:

//openreview.net/forum?id=Skxuk1rFwB.

https://openreview.net/forum?id=Sk9yuql0Z
https://openreview.net/forum?id=Skxuk1rFwB
https://openreview.net/forum?id=Skxuk1rFwB

126 BIBLIOGRAPHY

Appendix A

Adversarial Examples

In order to better support our experimental analysis, we show here several adver-
sarial examples generated against the considered defenses during their evaluation.
In particular, for the evaluation in Section 6.1.4, we report some samples generated
by the APGD-CE algorithm of the AutoAttack (Croce and Hein, 2020a) library,
ANIMALS dataset. In Figure A.1 and Figure A.2, we plot the two adversarial
examples with the highest supervision loss (and low constraint loss) and with the
highest constraint loss (and low supervision loss) (see also Figure 6.7 of the thesis).
No evident visual pattern is noticeable to distinguish the two cases.

Figure A.1: Adversarial examples with highest supervision loss (low constraint loss),
APGD-CE attack, ANIMALS dataset.

In Figure A.3 and Figure A.4, we show some adversarial examples computed respec-
tively on the MNIST and CIFAR10 datasets during the evaluation in Section 6.2.
Finally, we report in Figure aA.5 few ImageNet samples obtained using the two
considered attack algorithms for evaluation in Section 6.3 against the different de-
tectors, together with the relative induced adversarial perturbation: PGD-LS tends
to produce finer perturbation than standard PGD attack, yet being effective (Ta-
ble 6.16).

128 APPENDIX A. ADVERSARIAL EXAMPLES

Figure A.2: Adversarial examples with highest constraint loss (low supervision loss),
APGD-CE attack, ANIMALS dataset.

129

DNN NR DNR

7
attack

(rejected)
predicted class: 5

+ ε

true class: 0

DNN NR DNR

9 9predicted class: 9

+ ε

true class: 4

Figure A.3: Adversarial examples computed on the MNIST data to evade the un-
defended DNN, NR, and DNR. The source image is reported on the left, followed
by the (magnified) adversarial perturbation crafted with ε = 1 against each classi-
fier and the resulting adversarial examples. We remind the reader that the attacks
considered in this work are untargeted, i.e., they succeed when the attack sample is
not correctly assigned to its true class.

130 APPENDIX A. ADVERSARIAL EXAMPLES

DNN NR DNR

deer bird
predicted class:

deer

+ ε

true class:
bird

DNN NR DNR

truck truck
predicted class:

truck

+ ε

true class:
automobile

Figure A.4: Adversarial examples computed on the CIFAR10 dataset adding a per-
turbation computed with ε = 0.2. See the caption of FigureA.3 for further details.

131

label: chain saw

DN
N

perturbation = 1 label: chain saw perturbation = 1

label: chain saw

NR

perturbation = 1 label: chain saw perturbation = 1

label: chain saw

NR
-R

BF

perturbation = 1 label: chain saw perturbation = 1

label: chain saw

DN
R

perturbation = 1 label: reject perturbation = 1

label: golf ball

DN
R-

RB
F

perturbation = 1 label: golf ball perturbation = 1

PGD-LS PGD

Figure A.5: Perturbed samples from the ImageNet10 dataset produced by attacking
each classifier using PGD-LS (left columns) and PGD (right columns) algorithms.
The maximum size of the ℓ2 perturbation is equally set to ε = 1.

132 APPENDIX A. ADVERSARIAL EXAMPLES

Appendix B

Domain Knowledge

We report here the complete list of the domain-knowledge constraints available for
the considered datasets, for the approach described in Chapter 3.

Each dataset is composed of a set of classes that, for convenience, we associate with
logic predicates. Such predicates participate in First-Order Logic (FOL) formulas
that model the available domain knowledge. The FOL formulas that define the do-
main knowledge of the ANIMALS, CIFAR-100, and PASCAL-Part data are reported
in Table B.1, Table B.2, and Table B.4, respectively, where each predicate is indi-
cated with capital letters. In each table (bottom part) we also report those rules that
are about activating at least one of the classes of each level of the hierarchy. Follow-
ing the nomenclature used in the thesis, the main classes of the ANIMALS dataset
are ALBATROSS, GIRAFFE, CHEETAH, OSTRICH, PENGUIN, TIGER, ZEBRA, while the other cat-
egories are MAMMAL, HAIR, MILK, FEATHERS, BIRD, FLY, LAYEGGS, MEAT, CARNIVORE, POINT-

EDTEETH, CLAWS, FORWARDEYS, HOOFS, UNGULATE, CUD, EVENTOED, TAWNY, BLACKSTRIPES,

LONGLEGS, LONGNECK, DARKSPOTS, WHITE, BLACK, SWIM, BLACKWHITE, GOODFLIER. In the
case of the CIFAR-100 dataset, the main classes are the ones associated with the
predicates of Table B.2 that belong to the premises of the shortest FOL formulas
(i.e., the formulas in the form A(x) ⇒ B(x), where the main class is A). Formulas in
PASCAL-Part are relationships between objects and object parts. The same part
can belong to multiple objects, and in each object, several parts might be visible.
See Table B.4 for the list of classes (the main classes are in the premises of the
second block of formulas).

In ANIMALS and CIFAR-100, a mutual exclusion predicate is imposed on the main
classes. As a matter of fact, in these two datasets, each image is only about a
single main class. The mutual_excl(p_1, p_2, ..., p_n) predicate defined below
can be devised in different ways. The first, straightforward approach consists in

134 APPENDIX B. DOMAIN KNOWLEDGE

considering the disjunction of the true cases in the truth table of the predicate:

mutual excl(p1, p2, ..., pn) =
n∨

i=0

(
pi(x) ∧

n∧
j=0,j ̸=i

¬pj(x)

)
, i, j ∈M,

(B.1)

where M is the set of the main classes, with cardinality n and pi(x) is the logic
predicate corresponding to the i-th output of the network fi(x). This formulation of
the mutual_excl predicate is what we used in the ANIMALS dataset. When there
are several classes, as in CIFAR-100, this formulation leads to optimization issues
since it turned out to be complicated to find a good balance between the effect of this
constraint and the supervision-fitting term. For this reason, the mutual exclusivity
in CIFAR-100 was defined as a disjunction of the main classes followed by a set of
implications that are used to implement the mutual exclusion of the predicates,

mutual excl(p1, p2, ..., pn) =®∨n
i=0 pi(x),

pi(x)⇒ ∧n
j=0,j ̸=i ¬pj(x), ∀i ∈M,

(B.2)

that resulted easier to tune since we have multiple soft constraints that could even-
tually be violated to accommodate the optimization procedure.

In the case of the ANIMALS dataset, we also considered a noisy setting in which
we artificially altered the FOL rules of Table B.1 in order to make them not fully
coherent with the (real) domain knowledge. We describe the resulting noisy knowl-
edge bases in Table B.5, Table B.6, and Table B.7, reporting only the changes with
respect to Table B.1. The knowledge base of Table B.5 has been obtained by altering
four of the existing rules, while knowledge of Table B.6 is the outcome of adding
four new rules. In both cases, we considered two implications whose conclusions are
about main classes and two other implications whose conclusions are about auxil-
iary classes. Finally, Table B.7 is about a noisy knowledge base where we relaxed
the main-class-oriented conclusions of four implications. Such knowledge has been
created by manually extending the conclusions using the disjunction operator, thus
tolerating multiple configurations of the main classes.

135

Table B.1: Domain knowledge, ANIMALS dataset.

∀x HAIR(x) ⇒ MAMMAL(x)
∀x MILK(x) ⇒ MAMMAL(x)
∀x FEATHER(x) ⇒ BIRD(x)
∀x FLY(x) ∧ LAYEGGS(x) ⇒ BIRD(x)
∀x MAMMAL(x) ∧ MEAT(x) ⇒ CARNIVORE(x)
∀x MAMMAL(x) ∧ POINTEDTEETH(x) ∧ CLAWS(x) ∧ FORWARDEYES(x) ⇒ CARNIVORE(x)
∀x MAMMAL(x) ∧ HOOFS(x) ⇒ UNGULATE(x)
∀x MAMMAL(x) ∧ CUD(x) ⇒ UNGULATE(x)
∀x MAMMAL(x) ∧ CUD(x) ⇒ EVENTOED(x)
∀x CARNIVORE(x) ∧ TAWNY(x) ∧ DARKSPOTS(x) ⇒ CHEETAH(x)
∀x CARNIVORE(x) ∧ TAWNY(x) ∧ BLACKSTRIPES(x) ⇒ TIGER(x)
∀x UNGULATE(x) ∧ LONGLEGS(x) ∧ LONGNECK(x) ∧ TAWNY(x) ∧ DARKSPOTS(x) ⇒ GIRAFFE(x)
∀x BLACKSTRIPES(x) ∧ UNGULATE(x) ∧ WHITE(x) ⇒ ZEBRA(x)
∀x BIRD(x) ∧ ¬FLY(x) ∧ LONGLEGS(x) ∧ LONGNECK(x) ∧ BLACK(x) ⇒ OSTRICH(x)
∀x BIRD(x) ∧ ¬FLY(x) ∧ SWIM(x) ∧ BLACKWHITE(x) ⇒ PENGUIN(x)
∀x BIRD(x) ∧ GOODFLIER(x) ⇒ ALBATROSS(x)

∀x mutual excl(ALBATROSS(x), GIRAFFE(x), CHEETAH(x), OSTRICH(x), PENGUIN(x), TIGER(x), ZEBRA(x))
∀x MAMMAL(x) ∨ HAIR(x) ∨ MILK(x) ∨ FEATHERS(x) ∨ BIRD(x) ∨ FLY(x) ∨ LAYEGGS(x) ∨ MEAT(x)

∨ CARNIVORE(x) ∨ POINTEDTEETH(x) ∨ CLAWS(x) ∨ FORWARDEYS(x) ∨ HOOFS(x) ∨ UNGULATE(x)
∨ CUD(x) ∨ EVENTOED(x) ∨ TAWNY(x) ∨ BLACKSTRIPES(x) ∨ LONGLEGS(x) ∨ LONGNECK(x)
∨ DARKSPOTS(x) ∨ WHITE(x) ∨ BLACK(x) ∨ SWIM(x) ∨ BLACKWHITE(x) ∨ GOODFLIER(x)

136 APPENDIX B. DOMAIN KNOWLEDGE

Table B.2: Domain knowledge, CIFAR-100 dataset.

∀x AQUATIC MAMMALS(x) ⇒ (BEAVER(x) ∨ DOLPHIN(x) ∨ OTTER(x) ∨ SEAL(x) ∨ WHALE(x))
∀x BEAVER(x) ⇒ AQUATIC MAMMALS(x)
∀x DOLPHIN(x) ⇒ AQUATIC MAMMALS(x)
∀x OTTER(x) ⇒ AQUATIC MAMMALS(x)
∀x SEAL(x) ⇒ AQUATIC MAMMALS(x)
∀x WHALE(x) ⇒ AQUATIC MAMMALS(x)

∀x FISH(x) ⇒ (AQUARIUM FISH(x) ∨ FLATFISH(x) ∨ RAY(x) ∨ SHARK(x) ∨ TROUT(x))
∀x AQUARIUM FISH(x) ⇒ FISH(x)
∀x FLATFISH(x) ⇒ FISH(x)
∀x RAY(x) ⇒ FISH(x)
∀x SHARK(x) ⇒ FISH (x)
∀x TROUT(x) ⇒ FISH(x)

∀x FLOWERS(x) ⇒ (ORCHID(x) ∨ POPPY(x) ∨ ROSE(x) ∨ SUNFLOWER(x) ∨ TULIP(x))
∀x ORCHID(x) ⇒ FLOWERS(x)
∀x POPPY(x) ⇒ FLOWERS(x)
∀x ROSE(x) ⇒ FLOWERS(x)
∀x SUNFLOWER(x) ⇒ FLOWERS(x)
∀x TULIP(x) ⇒ FLOWERS(x)

∀x FOOD CONTAINERS(x) ⇒ (BOTTLE(x) ∨ BOWL(x) ∨ CAN(x) ∨ CUP(x) ∨ PLATE(x))
∀x BOTTLE(x) ⇒ FOOD CONTAINERS (x)
∀x BOWL(x) ⇒ FOOD CONTAINERS (x)
∀x CAN(x) ⇒ FOOD CONTAINERS (x)
∀x CUP(x) ⇒ FOOD CONTAINERS (x)
∀x PLATE(x) ⇒ FOOD CONTAINERS (x)

∀x FRUIT AND VEGETABLES(x) ⇒ (APPLE(x) ∨ MUSHROOM(x) ∨ ORANGE(x) ∨ PEAR(x)
∨ SWEET PEPPER(x))

∀x APPLE(x) ⇒ FRUIT AND VEGETABLES(x)
∀x MUSHROOM(x) ⇒ FRUIT AND VEGETABLES(x)
∀x ORANGE(x) ⇒ FRUIT AND VEGETABLES(x)
∀x PEAR(x) ⇒ FRUIT AND VEGETABLES(x)
∀x SWEET PEPPER(x) ⇒ FRUIT AND VEGETABLES(x)
∀x HOUSEHOLD ELECTRICAL DEVICES(x) ⇒ (CLOCK(x) ∨ KEYBOARD(x) ∨ LAMP(x)

∨ TELEPHONE(x) ∨ TELEVISION(x))
∀x CLOCK(x) ⇒ HOUSEHOLD ELECTRICAL DEVICES(x)
∀x KEYBOARD(x) ⇒ HOUSEHOLD ELECTRICAL DEVICES(x)
∀x LAMP(x) ⇒ HOUSEHOLD ELECTRICAL DEVICES(x)
∀x TELEPHONE(x) ⇒ HOUSEHOLD ELECTRICAL DEVICES(x)
∀x TELEVISION(x) ⇒ HOUSEHOLD ELECTRICAL DEVICES(x)

∀x HOUSEHOLD FURNITURE(x) ⇒ (BED(x) ∨ CHAIR(x) ∨ COUCH(x) ∨ TABLE(x) ∨ WARDROBE(x))
∀x BED(x) ⇒ HOUSEHOLD FURNITURE(x)
∀x CHAIR(x) ⇒ HOUSEHOLD FURNITURE(x)
∀x COUCH(x) ⇒ HOUSEHOLD FURNITURE(x)
∀x TABLE(x) ⇒ HOUSEHOLD FURNITURE(x)
∀x WARDROBE(x) ⇒ HOUSEHOLD FURNITURE(x)

∀x INSECTS(x) ⇒ (BEE(x) ∨ BEETLE(x) ∨ BUTTERFLY(x) ∨ CATERPILLAR(x) ∨ COCKROACH(x))
∀x BEE(x) ⇒ INSECTS(x)
∀x BEETLE(x) ⇒ INSECTS(x)
∀x BUTTERFLY(x) ⇒ INSECTS(x)
∀x CATERPILLAR(x) ⇒ INSECTS(x)
∀x COCKROACH(x) ⇒ INSECTS(x)

∀x LARGE CARNIVORES(x) ⇒ (BEAR(x) ∨ LEOPARD(x) ∨ LION(x) ∨ TIGER (x) ∨ WOLF(x))
∀x BEAR(x) ⇒ LARGE CARNIVORES(x)

137

∀x LEOPARD(x) ⇒ LARGE CARNIVORES(x)
∀x LION(x) ⇒ LARGE CARNIVORES(x)
∀x TIGER(x) ⇒ LARGE CARNIVORES(x)
∀x WOLF(x) ⇒ LARGE CARNIVORES(x)

∀x LARGE MAN-MADE OUTDOOR THINGS(x) ⇒ (BRIDGE(x) ∨ CASTLE(x) ∨ HOUSE(x) ∨ ROAD(x)
∨ SKYSCRAPER(x))

∀x BRIDGE(x) ⇒ LARGE MAN-MADE OUTDOOR THINGS(x)
∀x CASTLE(x) ⇒ LARGE MAN-MADE OUTDOOR THINGS(x)
∀x HOUSE(x) ⇒ LARGE MAN-MADE OUTDOOR THINGS(x)
∀x ROAD(x) ⇒ LARGE MAN-MADE OUTDOOR THINGS(x)
∀x SKYSCRAPER(x) ⇒ LARGE MAN-MADE OUTDOOR THINGS(x)
∀x LARGE NATURAL OUTDOOR SCENES(x) ⇒ (CLOUD(x) ∨ FOREST(x) ∨ MOUNTAIN(x)

∨ PLAIN(x) ∨ SEA(x))
∀x CLOUD(x) ⇒ LARGE NATURAL OUTDOOR SCENES(x)
∀x FOREST(x) ⇒ LARGE NATURAL OUTDOOR SCENES(x)
∀x MOUNTAIN(x) ⇒ LARGE NATURAL OUTDOOR SCENES(x)
∀x PLAIN(x) ⇒ LARGE NATURAL OUTDOOR SCENES(x)
∀x SEA(x) ⇒ LARGE NATURAL OUTDOOR SCENES(x)

∀x LARGE OMNIVORES AND HERBIVORES(x) ⇒ (CAMEL(x) ∨ CATTLE(x) ∨ CHIMPANZEE(x)
∨ ELEPHANT(x) ∨ KANGAROO(x))

∀x CAMEL(x) ⇒ LARGE OMNIVORES AND HERBIVORES(x)
∀x CATTLE(x) ⇒ LARGE OMNIVORES AND HERBIVORES(x)
∀x CHIMPANZEE(x) ⇒ LARGE OMNIVORES AND HERBIVORES(x)
∀x ELEPHANT(x) ⇒ LARGE OMNIVORES AND HERBIVORES(x)
∀x KANGAROO(x) ⇒ LARGE OMNIVORES AND HERBIVORES(x)

∀x MEDIUM MAMMALS(x) ⇒ (FOX(x) ∨ PORCUPINE(x) ∨ POSSUM(x) ∨ RACCOON(x)
∨ SKUNK(x))

∀x FOX(x) ⇒ MEDIUM MAMMALS(x)
∀x PORCUPINE(x) ⇒ MEDIUM MAMMALS(x)
∀x POSSUM(x) ⇒ MEDIUM MAMMALS(x)
∀x RACCOON(x) ⇒ MEDIUM MAMMALS(x)
∀x SKUNK(x) ⇒ MEDIUM MAMMALS(x)

∀x NON-INSECT INVERTEBRATES(x) ⇒ (CRAB(x) ∨ LOBSTER(x) ∨ SNAIL(x) ∨ SPIDER(x)
∨ WORM(x))

∀x CRAB(x) ⇒ NON-INSECT INVERTEBRATES(x)
∀x LOBSTER(x) ⇒ NON-INSECT INVERTEBRATES(x)
∀x SNAIL(x) ⇒ NON-INSECT INVERTEBRATES(x)
∀x SPIDER(x) ⇒ NON-INSECT INVERTEBRATES(x)
∀x WORM(x) ⇒ NON-INSECT INVERTEBRATES(x)

∀x PEOPLE(x) ⇒ (BABY(x) ∨ MAN(x) ∨ WOMAN(x) ∨ BOY(x) ∨ GIRL(x))
∀x BABY(x) ⇒ PEOPLE(x)
∀x BOY(x) ⇒ PEOPLE(x)
∀x GIRL(x) ⇒ PEOPLE(x)
∀x MAN(x) ⇒ PEOPLE(x)
∀x WOMAN(x) ⇒ PEOPLE(x)

∀x REPTILES(x) ⇒ (CROCODILE(x) ∨ DINOSAUR(x) ∨ LIZARD(x) ∨ SNAKE(x) ∨ TURTLE(x))
∀x CROCODILE(x) ⇒ REPTILES(x)
∀x DINOSAUR(x) ⇒ REPTILES(x)
∀x LIZARD(x) ⇒ REPTILES(x)
∀x SNAKE(x) ⇒ REPTILES(x)
∀x TURTLE(x) ⇒ REPTILES(x)

∀x SMALL MAMMALS(x) ⇒ (HAMSTER(x) ∨ MOUSE(x) ∨ RABBIT(x) ∨ SHREW(x) ∨ SQUIRREL(x))
∀x HAMSTER(x) ⇒ SMALL MAMMALS(x)
∀x MOUSE(x) ⇒ SMALL MAMMALS(x)
∀x RABBIT(x) ⇒ SMALL MAMMALS(x)
∀x SHREW(x) ⇒ SMALL MAMMALS(x)
∀x SQUIRREL(x) ⇒ SMALL MAMMALS(x)

138 APPENDIX B. DOMAIN KNOWLEDGE

∀x TREES(x) ⇒ (MAPLE TREE(x) ∨ OAK TREE(x) ∨ PALM TREE(x) ∨ PINE TREE(x)
∨ WILLOW TREE(x))

∀x MAPLE TREE(x) ⇒ TREES(x)
∀x OAK TREE(x) ⇒ TREES(x)
∀x PALM TREE(x) ⇒ TREES(x)
∀x PINE TREE(x) ⇒ TREES(x)
∀x WILLOW TREE(x) ⇒ TREE(x)

∀x VEHICLES1(x) ⇒ (BIKE(x) ∨ BUS(x) ∨ MOTORBIKE(x) ∨ PICKUP TRUCK(x) ∨ TRAIN(x))
∀x BIKE(x) ⇒ VEHICLES1(x)
∀x BUS(x) ⇒ VEHICLES1(x)
∀x MOTORBIKE(x) ⇒ VEHICLES1(x)
∀x PICKUP(x) ⇒ VEHICLES1(x)
∀x TRAIN(x) ⇒ VEHICLES1(x)

∀x VEHICLES2(x) ⇒ (LAWN MOWER(x) ∨ ROCKET(x) ∨ STREETCAR(x) ∨ TANK(x) ∨ TRACTOR(x))
∀x LAWN MOWER(x) ⇒ VEHICLES2(x)
∀x ROCKET(x) ⇒ VEHICLES2(x)
∀x STREETCAR(x) ⇒ VEHICLES2(x)
∀x TANK(x) ⇒ VEHICLES2(x)
∀x TRACTOR(x) ⇒ VEHICLES2(x)

∀x mutual excl(APPLE(x), AQUARIUM FISH(x), BABY(x), BEAR(x), BEAVER (x), BED(x), BEE(x),
BEETLE(x), BICYCLE(x), BOTTLE(x), BOWL (x), BOY(x), BRIDGE(x), BUS(x),
BUTTERFLY(x), CAMEL(x), CAN(x), CASTLE(x), CATERPILLAR(x) , CATTLE(x), CHAIR(x)
CHIMPANZEE(x), CLOCK(x), CLOUD(x) , COCKROACH(x), COUCH(x), CRAB(x),
CROCODILE(x) , CUP(x), DINOSAUR(x), DOLPHIN(x), ELEPHANT(x), FLATFISH(x),
FOREST(x), FOX(x), GIRL(x), HAMSTER(x), HOUSE(x), KANGAROO(x), KEYBOARD(x),
LAMP(x) , LAWN MOWER(x), LEOPARD(x), LION(x), LIZARD(x), LOBSTER(x), MAN(x),
MAPLE TREE(x) , MOTORCYCLE(x), MOUNTAIN(x), MOUSE(x), MUSHROOM(x),
OAK TREE(x), ORANGE(x), ORCHID(x), OTTER(x), PALM TREE(x), PEAR(x),
PICKUP TRUCK(x) , PINE TREE(x), PLAIN(x), PLATE(x), POPPY(x), PORCUPINE(x),
POSSUM(x), RABBIT(x), RACCOON(x), RAY(x), ROAD(x), ROCKET(x), ROSE(x), SEA(x),
SEAL(x), SHARK(x), SHREW(x), SKUNK(x) ∨ SKYSCRAPER(x), SNAIL(x), SNAKE(x),
SPIDER(x), SQUIRREL(x), STREETCAR(x), SUNFLOWER(x), SWEET PEPPER(x), TABLE(x),
TANK(x), TELEPHONE(x), TELEVISION(x), TIGER(x), TRACTOR(x), TRAIN(x), TROUT(x),
TULIP(x), TURTLE(x), WARDROBE(x), WHALE(x), WILLOW TREE(x), WOLF(x)
WOMAN(x), WORM(x))

∀x mutual excl(AQUATIC MAMMALS(x), FISH(x), FLOWERS(x), FOOD CONTAINERS(x),
FRUIT AND VEGETABLES(x), HOUSEHOLD ELECTRICAL (x), HOUSEHOLD FURNITURE(x),
INSECTS(x) , LARGE CARNIVORES(x), MAN-MADE OUTDOOR (x),
NATURAL OUTDOOR SCENES(x), OMNIVORES AND HERBIVORES(x), MEDIUM MAMMALS(x),
INVERTEBRATES(x) , PEOPLE(x) , REPTILES(x) , SMALL MAMMALS(x), TREES(x),
VEHICLES1(x), VEHICLES2(x))

139

Table B.4: Domain knowledge, PASCAL-Part dataset.

∀x SCREEN(x) ⇒ (TVMONITOR)
∀x COACH(x) ⇒ (TRAIN(x))
∀x TORSO(x) ⇒ (PERSON(x)∨ HORSE(x)∨ COW(x)∨ DOG(x)∨ BIRD(x)∨ CAT(x)∨ SHEEP(x))
∀x LEG(x) ⇒ (PERSON(x)∨ HORSE(x)∨ COW(x)∨ DOG(x)∨ BIRD(x)∨ CAT(x)∨ SHEEP(x))
∀x HEAD(x) ⇒ (PERSON(x)∨ HORSE(x)∨ COW(x)∨ DOG(x)∨ BIRD(x)∨ CAT(x)∨ SHEEP(x))
∀x EAR(x) ⇒ (PERSON(x)∨ HORSE(x)∨ COW(x)∨ DOG(x)∨ CAT(x)∨ SHEEP(x))
∀x EYE(x) ⇒ (PERSON(x)∨ COW(x)∨ DOG(x)∨ BIRD(x)∨ CAT(x)∨ HORSE(x)∨ SHEEP(x))
∀x EBROW(x) ⇒ (PERSON(x))
∀x MOUTH(x) ⇒ (PERSON(x))
∀x HAIR(x) ⇒ (PERSON(x))
∀x NOSE(x) ⇒ (PERSON(x)∨ DOG(x)∨ CAT(x))
∀x NECK(x) ⇒ (PERSON(x)∨ HORSE(x)∨ COW(x)∨ DOG(x)∨ BIRD(x)∨ CAT(x)∨ SHEEP(x))
∀x ARM(x) ⇒ (PERSON(x))
∀x MUZZLE(x) ⇒ (HORSE(x)∨ COW(x)∨ DOG(x)∨ SHEEP(x))
∀x HOOF(x) ⇒ (HORSE(x))
∀x TAIL(x) ⇒ (HORSE(x)∨ COW(x)∨ DOG(x)∨ BIRD(x)∨ SHEEP(x)∨ CAT(x)∨ AEROPLANE(x))
∀x BOTTLE BODY(x) ⇒ (BOTTLE(x))
∀x PAW(x) ⇒ (DOG(x)∨ CAT(x))
∀x AEROPLANE BODY(x) ⇒ (AEROPLANE(x))
∀x WING(x) ⇒ (AEROPLANE(x)∨ BIRD(x))
∀x WHEEL(x) ⇒ (AEROPLANE(x)∨ CAR(x)∨ BICYCLE(x)∨ BUS(x)∨ MOTORBIKE(x))
∀x STERN(x) ⇒ (AEROPLANE(x))
∀x CAP(x) ⇒ (BOTTLE(x))
∀x HAND(x) ⇒ (PERSON(x))
∀x FRONTSIDE(x) ⇒ (CAR(x)∨ BUS(x)∨ TRAIN(x))
∀x RIGHTSIDE(x) ⇒ (CAR(x)∨ BUS(x)∨ TRAIN(x))
∀x ROOFSIDE(x) ⇒ (CAR(x)∨ BUS(x)∨ TRAIN(x))
∀x BACKSIDE(x) ⇒ (CAR(x)∨ BUS(x)∨ TRAIN(x))
∀x LEFTSIDE(x) ⇒ (CAR(x)∨ TRAIN(x)∨ BUS(x))
∀x DOOR(x) ⇒ (CAR(x)∨ BUS(x))
∀x MIRROR(x) ⇒ (CAR(x)∨ BUS(x))
∀x HEADLIGHT(x) ⇒ (CAR(x)∨ BUS(x)∨ TRAIN(x)∨ MOTORBIKE(x)∨ BICYCLE(x))
∀x MOTORBIKE(x) ⇒ (WHEEL(x)∨ HEADLIGHT(x)∨ HANDLEBAR(x)∨ SADDLE(x))
∀x WINDOW(x) ⇒ (CAR(x)∨ BUS(x))
∀x PLATE(x) ⇒ (CAR(x)∨ BUS(x))
∀x ENGINE(x) ⇒ (AEROPLANE(x))
∀x FOOT(x) ⇒ (PERSON(x)∨ BIRD(x))
∀x CHAINWHEEL(x) ⇒ (BICYCLE(x))
∀x SADDLE(x) ⇒ (BICYCLE(x)∨ MOTORBIKE(x))
∀x HANDLEBAR(x) ⇒ (BICYCLE(x)∨ MOTORBIKE(x))
∀x TRAIN HEAD(x) ⇒ (TRAIN(x))
∀x BEAK(x) ⇒ (BIRD(x))
∀x POT(x) ⇒ (POTTEDPLANT(x))
∀x PLANT(x) ⇒ (POTTEDPLANT(x))
∀x HORN(x) ⇒ (COW(x)∨ SHEEP(x))

∀x TVMONITOR(x) ⇒ (SCREEN(x))
∀x TRAIN(x) ⇒ (COACH(x)∨ LEFTSIDE(x)∨ TRAIN HEAD(x)∨ HEADLIGHT(x)∨ FRONTSIDE(x)

∨RIGHTSIDE(x)∨ BACKSIDE(x)∨ ROOFSIDE(x))
∀x PERSON(x) ⇒ (TORSO(x)∨ LEG(x)∨ HEAD(x)∨ EAR(x)∨ EYE(x)∨ EBROW(x)∨ MOUTH(x)∨ HAIR(x)

∨NOSE(x)∨ NECK(x)∨ ARM(x)∨ HAND(x)∨ FOOT(x))
∀x HORSE(x) ⇒ (HEAD(x)∨ EAR(x)∨ MUZZLE(x)∨ TORSO(x)∨ NECK(x)∨ LEG(x)∨ HOOF(x)∨ TAIL(x)∨ EYE(x))
∀x COW(x) ⇒ (HEAD(x)∨ EAR(x)∨ EYE(x)∨ MUZZLE(x)∨ TORSO(x)∨ NECK(x)∨ LEG(x)∨ TAIL(x)∨ HORN(x))
∀x BOTTLE(x) ⇒ (BOTTLE BODY(x)∨ CAP(x))
∀x DOG(x) ⇒ (HEAD(x)∨ EAR(x)∨ TORSO(x)∨ NECK(x)∨ LEG(x)∨ PAW(x)∨ EYE(x)∨ MUZZLE(x)

∨ NOSE(x)∨ TAIL(x))
∀x AEROPLANE(x) ⇒ (AEROPLANE BODY(x)∨ WING(x)∨ WHEEL(x)∨ STERN(x)∨ ENGINE(x)∨ TAIL(x))
∀x CAR(x) ⇒ (FRONTSIDE(x)∨ RIGHTSIDE(x)∨ DOOR(x)∨ MIRROR(x)∨ HEADLIGHT(x)∨ WHEEL(x)

∨ WINDOW(x)∨ PLATE(x)∨ ROOFSIDE(x)∨ BACKSIDE(x)∨ LEFTSIDE(x))
∀x BUS(x) ⇒ (PLATE(x)∨ FRONTSIDE(x)∨ RIGHTSIDE(x)∨ DOOR(x)∨ MIRROR(x)∨ HEADLIGHT(x)

∨ WINDOW(x)∨ WHEEL(x)∨ LEFTSIDE(x)∨ BACKSIDE(x)∨ ROOFSIDE(x))
∀x BICYCLE(x) ⇒ (WHEEL(x)∨ CHAINWHEEL(x)∨ SADDLE(x)∨ HANDLEBAR(x)∨ HEADLIGHT(x))
∀x BIRD(x) ⇒ (HEAD(x)∨ EYE(x)∨ BEAK(x)∨ TORSO(x)∨ NECK(x)∨ LEG(x)∨ FOOT(x)∨ TAIL(x)∨ WING(x))
∀x CAT(x) ⇒ (HEAD(x)∨ EAR(x)∨ EYE(x)∨ NOSE(x)∨ TORSO(x)∨ NECK(x)∨ LEG(x)∨ PAW(x)∨ TAIL(x))
∀x MOTORBIKE(x) ⇒ (WHEEL(x)∨ HEADLIGHT(x)∨ HANDLEBAR(x)∨ SADDLE(x))
∀x SHEEP(x) ⇒ (HEAD(x)∨ EAR(x)∨ EYE(x)∨ MUZZLE(x)∨ TORSO(x)∨ NECK(x)∨ LEG(x)∨ TAIL(x)∨ HORN(x))
∀x POTTEDPLANT(x) ⇒ (POT(x)∨ PLANT(x))

∀x TVMONITOR(x)∨ TRAIN(x)∨ PERSON(x)∨ BOAT(x)∨ HORSE(x)∨ COW(x)∨ BOTTLE(x)∨ DOG(x)
∨ AEROPLANE(x)∨ CAR(x)∨ BUS(x)∨ BICYCLE(x)∨ TABLE(x)∨ CHAIR(x)∨ BIRD(x)∨ CAT(x)
∨ MOTORBIKE(x)∨ SHEEP(x)∨ SOFA(x)∨ POTTEDPLANT(x)

140 APPENDIX B. DOMAIN KNOWLEDGE

Table B.5: First noisy domain knowledge (K̃a), ANIMALS dataset, obtained by
altering the clean knowledge of Table B.1. We report only the altered rules, high-
lighting the changes that make them not-coherent with the ANIMALS domain.

∀x FEATHER(x) ⇒ BIRD(x) MAMMAL(x)
∀x MAMMAL(x) ∧ MEAT(x) BIRD(x) ⇒ CARNIVORE(x)
∀x CARNIVORE(x) ∧ TAWNY(x) ∧ DARKSPOTS(x) ⇒ CHEETAH(x)
∀x BLACKSTRIPES(x) ∧ UNGULATE(x) ∧ WHITE(x) ⇒ ZEBRA(x) TIGER(x)

Table B.6: Second noisy domain knowledge (K̃b), ANIMALS dataset, obtained by
adding new rules to the clean knowledge of Table B.1. We report only the added
rules, that were explicitly created to be not-coherent with the ANIMALS domain.

∀x FLY(x) ⇒ MAMMAL(x)
∀x MAMMAL(x) ∧ EVENTOED(x) ⇒ FEATHER(x)
∀x BLACKSTRIPES(x) ∧ WHITE(x) ⇒ PENGUIN(x)
∀x CARNIVORE(x) ∧ DARKSPOTS(x) ⇒ TIGER(x)

Table B.7: Third noisy domain knowledge (K̃c), ANIMALS dataset, obtained by
altering the clean knowledge of Table B.1. We report only the altered rules, high-
lighting the changes that make them not-fully-coherent with the ANIMALS domain.
They all involve main-class-oriented conclusions.

∀x CARNIVORE(x) ∧ TAWNY(x) ∧ DARKSPOTS(x) ⇒ (CHEETAH(x) ∨ GIRAFFE(x))
∀x UNGULATE(x) ∧ LONGLEGS(x) ∧ LONGNECK(x) ∧ TAWNY(x) ∧ DARKSPOTS(x) ⇒ (GIRAFFE(x) ∨ ZEBRA(x))
∀x BLACKSTRIPES(x) ∧ UNGULATE(x) ∧ WHITE(x) ⇒ (ZEBRA(x) ∨ TIGER(x))
∀x BIRD(x) ∧ ¬FLY(x) ∧ SWIM(x) ∧ BLACKWHITE(x) ⇒ (PENGUIN(x) ∨ OSTRICH(x))

Ringraziamenti

Grazie a tutte le persone che hanno condiviso con me anche solo una piccola parte
del percorso di vita in questi anni: quello che sono oggi lo devo soprattutto alle
esperienze vissute con loro, e già questo le rende speciali.

Grazie a Battista, che mi ha seguito costantemente motivandomi e trasmettendomi
sia la sua passione che le sue conoscenze, e tutte le persone con le quali ho avuto
occasione di collaborare durante il dottorato: Fabio, Ambra, Maura, Luca, Daniele
e gli altri membri del PRALab, Guido, Enrico, Luca, Stefania, Davide e gli altri
componenti del team di Pluribus One. Grazie anche a Giancarlo, Andrea, Gianluca
e alle altre persone che ho incontrato durante i sei mesi al CISPA. Se ripenso a questo
percorso, ho la sensazione di essermi divertito. La pandemia e altre vicissitudini mi
hanno costretto a lavorare quasi interamente da remoto, e il tempo per coltivare i
rapporti umani è stato davvero ridotto. Ma questo non mi ha impedito di trovare
delle persone fantastiche dalle quali, oltre che imparare tantissimo, ho ricevuto tanto.

Grazie a tutti i miei amici e alla mia grande famiglia, da cui ho ricevuto affetto,
supporto, aiuto e tanti bei momenti. In particolare, grazie ai miei genitori che mi
hanno sempre supportato in tutto, anche quando questo non era scontato.

Grazie a Giulia, che è sempre stata al mio fianco e mi ha sopportato e sostenuto
in ogni momento e in ogni modo, a volte prima che io stesso mi rendessi conto di
averne bisogno. E grazie a Giovanni che, ancor prima di nascere, ci riempie di gioia:
non vediamo l’ora di conoscerti.

The research reported in this PhD thesis has been partly supported by BMK,
BMDW, and the Province of Upper Austria in the frame of the COMET

Programme managed by FFG in the COMET Module S3AI.

	List of Figures
	List of Tables
	Symbols
	Introduction
	Contributions
	List of Publications

	Background
	Machine Learning
	Support Vector Machines
	Neural Networks and Deep Learning
	Adversarial Machine Learning
	Attacker Model
	Evasion Attacks
	Defenses against Evasion Attacks
	Security Evaluation of Defenses against Evasion Attacks

	Limitations and Open Issues

	Increasing Robustness with Domain Knowledge
	Learning with Domain Knowledge
	Exploiting Domain Knowledge against Adversarial Attacks
	Attacking Multi-label Classifiers
	Impact of Domain Knowledge and Main Issues

	Related Work

	Detecting Adversarial Examples in Inner DNN layers
	Deep Neural Rejection
	Attacking Deep Neural Rejection
	Related Work

	Improving the Efficiency of Prototypes-based Det.
	A Framework for Adversarial Example Detection
	Neural Reject
	Kernel Density Estimation
	DNN Binary Classifier
	Dimensionality Reduction
	Deep Neural Reject
	Deep k-Nearest Neighbour
	Generative Models

	Fast Adversarial Example Rejection
	FADER

	Related Work

	Experiments
	Increasing Robustness with Domain Knowledge
	Experimental Settings
	Experimental Results on Multi-label Classifiers
	In-depth Analysis on Multi-label Classifiers
	Experimental Results on Single-label Classifiers
	In-depth Analysis on Single-label Classifiers

	Detecting Adversarial Examples in Inner DNN layers
	Experimental setup
	Experimental Results

	Improving the Efficiency of Prototypes-based Detectors
	Experimental Setup
	Experimental Results
	Comparison with PGD

	Conclusions
	Limitations and Future Works
	Closing Remarks

	Bibliography
	Adversarial Examples
	Domain Knowledge

