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Abstract: Purpose: The role of erectile dysfunction (ED) has recently shown an association with the
risk of stroke and coronary heart disease (CHD) via the atherosclerotic pathway. Cardiovascular
disease (CVD)/stroke risk has been widely understood with the help of carotid artery disease
(CTAD), a surrogate biomarker for CHD. The proposed study emphasizes artificial intelligence-based
frameworks such as machine learning (ML) and deep learning (DL) that can accurately predict the
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severity of CVD/stroke risk using carotid wall arterial imaging in ED patients. Methods: Using the
PRISMA model, 231 of the best studies were selected. The proposed study mainly consists of two
components: (i) the pathophysiology of ED and its link with coronary artery disease (COAD) and
CHD in the ED framework and (ii) the ultrasonic-image morphological changes in the carotid arterial
walls by quantifying the wall parameters and the characterization of the wall tissue by adapting the
ML/DL-based methods, both for the prediction of the severity of CVD risk. The proposed study
analyzes the hypothesis that ML/DL can lead to an accurate and early diagnosis of the CVD/stroke
risk in ED patients. Our finding suggests that the routine ED patient practice can be amended
for ML/DL-based CVD/stroke risk assessment using carotid wall arterial imaging leading to fast,
reliable, and accurate CVD/stroke risk stratification. Summary: We conclude that ML and DL
methods are very powerful tools for the characterization of CVD/stroke in patients with varying
ED conditions. We anticipate a rapid growth of these tools for early and better CVD/stroke risk
management in ED patients.

Keywords: erectile dysfunction; pathophysiology; atherosclerosis; cardiovascular disease; carotid
artery disease; carotid ultrasound-based tissue characterization; machine learning; deep learning;
risk assessment

1. Introduction

Erectile dysfunction (ED) is a multi-factorial illness that is characterized by the pres-
ence of vascular atherosclerosis and hormonal, lifestyle, age, neurological, and physio-
logical factors, all occurring in a well-coordinated manner [1,2]. Among all of the listed
characteristics, vascular disease is the most common cause of ED [3]. Testosterone levels,
psychological concerns, such as performance anxiety, and iatrogenesis are all the variables
that contribute to ED development [4,5]. According to a variety of demographic studies, ED
affects up to 150 million men globally [6,7]. As the world’s population ages, the prevalence
of ED is expected to climb to 300 million men by 2025 [8,9]. Males aged 18–75 years in
Europe had a prevalence of 19%, but men in the same age range in the UK had a prevalence
of 39% for life ED and 26% for current ED [8,10,11].

ED has been linked to future cardiovascular events (CVE) in various studies [12,13],
showing a high mortality rate due to CVD and stroke. Various studies have shown that ED
patients had a considerably higher CVD risk than non-ED patients [14–16]. The most promi-
nent risk factors associated with ED and CVD are diabetes, dyslipidemia, hypertension,
smoking, and obesity, which lead to the development of oxidative stress, the primary cause
of endothelial dysfunction [11,17]. Due to the reduction in endothelium-dependent va-
sodilation, there have been changes in structural vascular abnormalities, such as increased
carotid intima-media thickness (cIMT) and the formation of atherosclerotic plaques [18–20].

Significantly, the majority of male sexual ED is now recognized to be arterial in origin,
with endothelial dysfunction serving as the common link [21,22]. The patient and his
spouse are both negatively affected by ED, stressing the need for addressing ED as soon
as feasible [23]. Figure 1 indicates the relationship between CVD risk factors and ED.
From the above, we conclude that “There is a clear correlation between ED and CVD.” A
comprehensive investigation of ED and CVD can be beneficial in the early diagnosis of
heart attacks, strokes, and other unfavorable CVE [24,25].

Several changes occur as a result of the advancement of ED, including the creation of
exudates, bleeding, and other symptoms [26]. These modifications have been implicated
in the development of CVD [16]. Patients in the more severe phases of ED have a higher
risk of CVD, and once a patient has been diagnosed with a CVD risk, coronary imaging
is indicated to stratify the risks [13]. Also essential for visualizing the plaque in COAD,
coronary artery imaging (CAI) is vital [27]. Intravascular ultrasonography and coronary
angiography are the most frequently used imaging modalities for the visualization of
coronary plaque [28,29].
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The imaging modalities are costly and difficult to get one’s hands on, especially in
underdeveloped nations [30]. As a result, it seems sensible to explore low-cost alterna-
tive imaging technologies that can still monitor CTAD in ED patients and risk-stratify
them [20,31]. Vascular imaging technologies are useful for the treatment and can save
lives before they become life-threatening [19]. Because the carotid artery and the coronary
artery have genetically similar compositions, B-mode carotid ultrasonography is a preferred
alternative for CTAD imaging of the carotid artery [32]. Image-based phenotypes such as
carotid intima-media thickness and carotid total plaque area can be used as CVD surrogates.
Further, accurate and automated carotid plaque burden quantification, risk stratification,
and early monitoring of atherosclerotic disease in ED patients is therefore required [33].

Artificial intelligence (AI)-based methods have recently played a vital role in computer-
aided diagnosis [34,35], especially in the detection and classification of several diseases [36,37].
Machine learning applications in medical imaging have just lately risen to prominence, such
as diabetes [38]; the risk stratification of cancer types such as thyroid [39], liver [37,40],
prostate [41,42], and ovarian [43]; vascular screening [44]; coronary artery disease risk charac-
terization [45,46]; and surrogate biomarker CTAD imaging and its risk stratification [47,48].
Previously, ML models were developed to predict CVD, as it contains a variety of features
from the CVD datasets [49–51]. Recently, the DL algorithms have been used to segment
the carotid plaque wall thickness [52,53] for CVD risk assessment. As a result, it may be
conceivable to use these AI-based solutions to handle CVD and stroke risk stratification in
ED patients. The objective of the proposed review study is to understand (a) the clinical
linking between ED and CVD and vice versa, along with the risk factors of CVD in ED
patients, and (b) the CVD risk stratification for the severity of heart failure and stroke in ED
patients based on AI. One can use the risk factors such as office-based biomarkers (OBBM),
laboratory-based biomarkers (LBBM), carotid ultrasound image phenotypes (CUSIP), and
medicine usage (MedUSE) combined with ED covariates for designing knowledge-based
systems for CVD prediction. Thus, ML and DL solutions can help in establishing the
early CVD risk assessment of ED patients who are at a high risk of CVD or ischemic and
hemorrhage stroke.

The following is an outline for the proposed review. Section 2 presents the PRISMA
model for selecting ED-CVD-based studies. Section 3 presents the evidence of a link be-
tween ED and CVD based on the clinical evidence of shared risk factors, while Section 4
explains the biological link between ED and CVD. An AI-based system for a CVD/stroke
risk assessment for ED patients is presented in Section. Section 4 presents the recommenda-
tions, manifestation, and treatment of ED. A critical 5discussion is presented in Section 5,
leading to conclusions in Section 6.

2. Search Strategy

The search approach was based on the PRISMA paradigm, as shown in Figure 2.
PubMed and Google Scholar are two major databases that were used to identify and
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screen relevant papers using keywords such as “cardiovascular disease”, “stroke”, “ED”,
“Stroke and CVD”, “Erectile Dysfunction and CVD”, “Erectile Dysfunction and Stroke”,
“carotid imaging”, “Erectile Dysfunction and artificial intelligence”, “atherosclerotic tissue
classification and characterization in Erectile dysfunction”, “artificial intelligence”, and
“Erectile Dysfunction and artificial intelligence”. When searching through the mentioned
databases, a total of 204 entries were initially discovered. Furthermore, 312 entries were
discovered through additional sources. Following the use of quality custom criteria such as
time and relevance, this was reduced to 412 articles. A total of 326 articles were assessed
for inclusion in this review, with the majority of them accepted. The three exclusion criteria
were as follows: (i) studies that were not connected, (ii) papers that were not relevant,
and (iii) research that had inadequate data. This resulted in the exclusion of 86, 71, and
24 studies, denoted by the letters E1, E2, and E3, respectively, resulting in a final selection
of 231 studies. These studies, which fall under category (i), are studies that are unrelated to
one another. These studies either do not include AI or do not demonstrate risk stratification
for CVD/stroke in people with ED.
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There were 86 studies that were excluded from the selection process, which are repre-
sented by the letter E1 in the PRISMA model. Non-relevant studies are the only ones that
do not fall under the umbrella term of ED, CVD, and stroke. They are not concentrating
their efforts on the ED–CVD–stroke area. In this study, we are solely interested in studies
that discuss the relationship between ED and cardiovascular disease and stroke. (ii) If
studies demonstrate a link between ED and diabetes, we will not consider it. There were
71 studies in this category, which is represented by the letter E2 in the PRISMA model.
These studies with insufficient data were those that did not provide enough information
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to be included in our analysis because they did not provide enough information. These
studies found no evidence of a relationship between ED and CVD or ED and stroke. There
were no attempts to have such conversations. There was no consideration given to the
relationship between ED and CVD risk factors, such as LBBM. Furthermore, they did not
have adequate AI, CVD, or stroke features from which to choose for analysis, as previously
stated. (iii) These AI characteristics may be utilized in the development of an architecture
for risk stratification in CVD and stroke. These AI features might be single deep learn-
ing (DL) models, hybrid deep learning (HDL) models, or neural network parameters for
CVD and stroke risk stratification. We discovered 24 studies with inadequate datasets,
represented by the letter E3 in the PRISMA model.

3. Erectile Dysfunction and Cardiovascular Disease Links: Clinical Evidence

The definition of a health risk is “a characteristic or incident that is associated with
a higher probability of a certain result, such as the occurrence of a disease.” [54]. The
Framingham Heart Study is a major milestone in terms of identifying risk factors for CVD.
The FHS’s work has considerably helped preventive medicine. As a result, the focus shifted
from treatment to prevention and education [55]. All combined atherosclerotic plaque risk
factors should be considered relevant to CVD [56]. Age, gender, a family background of
CVD, and ethnicity should be considered as non-modifiable CVD risk factors. Age is an
indicator of duration, and it is linked to CVD risk. Age is also the largest indicator affecting
cardiovascular outcomes [57,58]. Another well-known CVD risk factor is the male gender.
According to the FHS data, women’s CVD mortality is equivalent to that of males 10 years
younger [59]. Another well-established, non-modifiable risk factor is a first-degree relative
with a history of CVD [60,61]. This link is especially robust in younger people who have
a strong family history of premature illness [62,63]. Even though these risk variables are
non-modifiable, their identification is important in clinical treatment because it helps in
identifying individuals who require more stringent control of modifiable CVD risk factors.

In addition to ischemic heart disease, stroke, and peripheral artery disease, hyperten-
sion has been linked to several of the most significant atherosclerotic symptoms, including
peripheral artery disease (PAD) [64,65]. In the normal BP range (>115/75 mmHg), there is
no solid evidence of a risk threshold for CVD [65]. This link has been seen in people of all
ages, and it appears to be greater for systolic BP than diastolic BP [66,67]. Stroke and heart
disease fatalities increase more than multiple times for those aged 40–69 years who have an
increase in their blood pressure of 20 or 10 mm Hg [65].

Diabetes mellitus (DM) doubles or triples the risk of myocardial infarction or stroke,
as well as the risk of CVD mortality [68,69]. This risk rises in proportion to the degree
of glycemic change [70]. Intermediate carbohydrate metabolic anomalies have also been
linked to a higher CVD risk [71,72]. In contrast to diabetes, diabetic people have a higher
risk of CVD due to the existence of additional metabolic abnormalities [73].

ED is generally referred to as a vascular disease, and it is generally known that it shares
several health risks with CVD, including obesity [32,74], chronic renal disease [75], poor
socioeconomic status [58], low fruit and vegetable consumption [76], inadequate physical
activity [77], metabolic syndrome [78,79], and elevated C-reactive protein levels [80], which
are all well-known risk factors for CVD. In this context, a large prospective study evaluating
the effect of CVD risk variables on ED over 25 years showed that age, BMI, cholesterol,
and triglycerides were all highly associated with ED [79]. Smoking, BMI, hypertension,
cholesterol dietary consumption, and unsaturated fat intake have all been linked to an
increased risk of ED [78,81]. Figure 3 indicates the shared risk factors of ED.

Therefore, in connection, ED affects around 75% of diabetes patients over the age of 60
and grows proportionately with the severity of the condition [82]. It is possible that ED
and penile atherosclerosis are the common denominators between ED and diabetes [83].
However, the link between these two clinical diseases is complex, and additional patho-
physiologic processes, such as autonomic neuropathy and hormonal abnormalities, may be
involved in the development of these two clinical conditions [22,84].
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3.1. The Pathophysiologic Link between ED and CVD

The pathophysiology of ED is dependent on the integrity of the endothelium [85,86].
Sexual drive induces the production of NO and other endothelial mediators, resulting in
stimulating sympathetic stimulation in the veins feeding penile regions and an enhanced
blood flow to the penis while blocking the vein discharge [86,87]. These occurrences cause
blood to be trapped within the corpora cavernosa. This increase leads to system pressure
and an erection [88]. The carotid arteries hypothesized that ED and COAD have the same
involvement in the pathogenesis pathway [89]. ED and circulation stenosis may result
from exposure to known risk factors. Due to the systematic character of atherosclerosis,
all arterial pathways may be harmed to the same amount, but the onset of signs is linked
to arterial size [9,90]. Increased vascular tolerance for the same amount of endothelial
dysfunction and/or atherosclerotic burden is observed in bigger vessels when compared
to smaller arteries [91]. Alongside the more compact ones, penile veins are smaller than
other veins in the body [92]. Compared to coronary arteries, they are tiny, (1–2 mm) to
(3–4 mm), with endothelial dysfunction at the very same level, and atherosclerosis may
cause a greater decline in blood flow [9].

Consequently, the vascular system of the penile organ may serve as an early warning
system for a wide range of vascular conditions [93]. Individuals with chronic coronary
syndromes (CCS) are more likely to have ED than those without CCS, according to this
hypothesis. In this respect, Montorsi et al. [3] explained that for patients with chronic
coronary syndrome, ED is common before CAD symptoms appear. Most patients with
CCS begin to have sexual dysfunction three years before any cardiac symptoms appear.
This contrasts with the rarity of sexual dysfunction in those suffering from acute coronary
syndrome [3]. Appropriate arterial penile lesions were found in only 12.9% of the cases,
compared to a high frequency of 87% in the coronary system and 77% in the internal iliac
artery area [94]. Figure 4 shows the CVD risk factors linked with inflammation, androgen,
and endothelial dysfunction.



Diagnostics 2022, 12, 1249 7 of 32

A comprehensive reformulation of all available evidence revealed that, while the
artery-size theory is crucial to understanding the complicated relationship between ED
and COAD, vasculogenic ED is also connected with dynamic, macroscopically intangible
irregularities linked to endothelial dysfunction and neurogenic hyperactivity [42]. The
usual indications of cardiovascular problems are quite often disguised in diabetics, causing
a diagnostic lag of COAD and difficulty in altering the disease’s natural history [95]. In
diabetes patients, an individual relationship between ED and asymptomatic COAD has
indeed been described [96,97]. Endothelial functioning is affected by low-grade inflamma-
tory cytokines, which can lead to a thrombogenic state [98]. Several studies have linked
the development and intensity of ED to the elevated expression of inflammation biomark-
ers [44–47]. The major targets for androgen actions inside the penile and cardiovascular
pathways are endothelium and sleek cells, and congenital hypothyroidism is associated
with an increased risk of arteriosclerotic remodeling [99,100].
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As a result, it is found that people who have ED and risk factors for cardiovascular
disease are more likely to have a “silent COAD.” They should get a full CVD examination.
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Mechanism of Penile Erection

The mechanism of the male penile erection, as well as cross-section, is shown in
Figure 5A,B, where the aorta is directly connected to the penal artery. A significant blood
input is essential for successful sexual performance [101,102]. As previously stated, normal
penile erection is a neurovascular event that causes sexual stimulation and the release of
NO hormones from endothelial cells [103,104].
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As a result, strong blood flow from the heart to the penal muscle cells is required for a
proper erection [105,106]. All these processes cause blood to be caught inside the corpora
cavernosa (Figure 5B), resulting in intracavernous pressure and an erection [107].

3.2. The Effect of SARS-CoV-19 on Erectile Dysfunction

SARS-CoV-2, the interaction of the enhanced ACE2 and the transmembrane protease
serine 2 with a component of the spike protein, accelerates binding and transit into vascular
endothelium cells [108]. According to the studies, endothelial dysfunction is a significant
contributor to COVID-19 symptoms [109,110]. The Table 1 show the relationship between
ED with CVD or coronary artery disease. Direct viral invasion of testicular tissue via
ACE2 receptors, temperature-related testicular injury resulting from sustained high fever,
inflammatory and autoimmune responses, and viral infection-related oxidative stress are
some of the suggested causes of this damage [111,112]. Figure 6 explains the biological
link between ED and CVD/Stroke and Figure 7 validates the biological link between
SARS-CoV-19 with ED.



Diagnostics 2022, 12, 1249 9 of 32

Table 1. The studies show the relationship between ED with CVD or coronary artery disease.

SN Citations Relation * ME PS Outcome Treatment

1 Bonetti et al. [113]
(2002)

ED with
CVD LBBM 45

ED is a systemic disease that
contributes significantly to the

advancement of atherosclerosis and
its associated complications. There is

a need for direct evidence that
therapeutic improvements in

endothelial function resulted in
decreased CVE rates.

NR

2 Montorsi et al. [9]
(2005)

ED with
CAD LBBM 34

Because of the progressive or
simultaneous alterations in

microvascular and macrovascular
function, ED is fundamentally an

atherosclerotic disorder in its origin
and progression.

NR

3 Kirby et al. [16]
(2005)

ED with
CAD OBBM NR

ED and COAD are two distinct
clinical manifestations of the same
systemic illness, with pathological

causes and risk factors that are quite
similar to one another. Because of

increased understanding of the
emergency department as a barometer
for cardiovascular health, it is possible
to take early action to reduce future

CV risk.

NR

4
Vlachopoulos et al.

[114]
(2007)

ED with
CAD LBBM NR

ED, inflammation, and low
testosterone levels in the bloodstream

are all risk factors and
pathophysiological links that are

shared by cardiovascular disease and
erectile dysfunction.

NR

5 Diaconu et al. [115]
(2011)

ED with
CVD

OBBM,
LBBM 231

Both erectile dysfunction and CVD
are symptoms of the same illness. ED
symptoms often appear three to five

years before the onset of symptoms of
coronary artery disease, and they may
serve as an early warning indication

that CVD is on the verge of
manifesting itself. As a result, male

patients with CVD risk factors should
have their erectile dysfunction

checked regularly.

phosphodiesterase-
5 inhibitors,
alprostadil

(prostaglandin E1)
intracavernous

injections,
alternatives for the
management of ED.

6 Yannas et al. [54]
(2011)

ED with
CVD

OBBM,
LBBM NR

ED is a sign of cardiovascular disease.
As a result, guys with ED should be

thoroughly evaluated for
cardiovascular risk factors to avoid

future CVE (MACE).

NR
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Table 1. Cont.

SN Citations Relation * ME PS Outcome Treatment

7 Gandaglia et al.
[82] (2014)

ED With
CVD LBBM NR

ED and cardiovascular disease (CVD)
are two symptoms of the same

systemic illness. Atherosclerosis and
blood vessel constriction are caused
by the interplay of CV risk factors,

androgens, and chronic inflammation
in the blood vessels. Endothelial

dysfunction and autonomic
hyperactivity, for example, are both

isotropic alterations in the body.

NR

8 Lim et al. [13]
(2018)

ED with
CVD

OBBM,
LBBM 1757

Distinguishing between symptoms of
ED and cardiovascular disease (CVD)

demands a distinct strategy.
Atherosclerosis and vascular

constriction are associated with each
other, and this association is

generated by the combination of CV
risk factors, androgens, and chronic
inflammation. Atherosclerosis and
autonomic hyperactivity are both

apparent alterations that are isotropic.

NR

9 Roushias et al.
[116] (2018)

ED with
CVD

OBBM,
LBBM 1768

Endothelial dysfunction is a common
denominator in the pathophysiology

of both erectile dysfunction and
cardiovascular disease. ED is a

warning symptom of endothelial
dysfunction and a risk factor for

cardiovascular disease. Early
detection and assessment of ED

redefines the risk of cardiovascular
disease and allows for earlier

intervention. Patients with
cardiovascular disease should be

treated and monitored more closely if
they develop erectile dysfunction.

NR

10 Miner et al. [117]
(2019)

ED with
COAD LBBM 242

Angiographic studies show that ED
patients under the age of 60 had more

severe COAD. This connection is
independent of COAD and ED

risk factors.

NR

11 Sayadi et al. [118]
(2021)

ED with
COAD OBBM 100

COAD is an indicator of
atherosclerosis. As a result, the IIEF

questionnaire can help diagnose
COAD early on.

NR

12 Kałka et al. [119]
(2021)

ED with
COAD

OBBM,
LBBM 751

Sexual health concerns are crucial in
cardiac patients. ED predicts CVD

due to shared risk factors and
pathophysiology. Hypertension,
dyslipidemia, smoking, diabetes,

obesity, and a poor diet all contribute
to vascular endothelium dysfunction.

NR
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Table 1. Cont.

SN Citations Relation * ME PS Outcome Treatment

13 Inman et al. [120]
(2021)

ED with
COAD LBBM 1402

ED and CAD may be signs of the
same vascular illness. In young men,
ED increases the risk of future cardiac
incidents, but in older men, it appears

to have little predictive value.

NR

14 Imprialos et al.
[121] (2021)

ED with
CVD LBBM NR

Erectile dysfunction is a major health
condition that affects many people,

and it is more common in people with
cardiovascular risk factors or illnesses.

Both ED and CVD share
pathophysiological pathways.

Patients with or
without

cardiovascular
illness can use

phosphodiesterase
type 5 inhibitors as

first-line
ED treatment.

15 Rinkūnienė et al.
[122] (2021)

ED with
CVD LBBM 171

ED is common in guys who have had
a MI. Men with a history of MI had
greater traditional CVD risk factors.

Men with ED who have had a MI are
more prone to AH.

NR

* SN: serial number, RELATION: effect of ED on CVD, ME: method of evaluation, PS: patient size, OE: outcome,
TE: treatment, NR: not reported, MI: myocardial interaction, OBBM: office-based biomarker, LBBM: lab-based
biomarker, NR: not reported.

Endothelial cells infected with SARS-CoV-2 suffer endothelial damage, which causes
thromboembolic vascular lumen alteration in the endothelium, immune thrombosis, and
reversal in many organs [123]. These are the ultimate and noticeable consequences of the
cells taken by SARS-CoV-2 from the endothelium [124]. ED is one of the most common
symptoms of COVID-19, which is caused by endothelial dysfunction [123]. This can result
in circulatory problems in numerous organs [109,110]. This includes a reduction in blood
supply to the testicles, which can lead to ED. Natural nitric oxide (NO), generated by
healthy endothelial cells, is an essential cofactor in the endothelium-dependent phase
transition in the corpora cavernosa [125]. Endothelial dysfunction is caused by a decrease
in eNOS expression, which results in a decrease in NO production [126,127]. Increased
endothelium-bound cavernosal tissue vasodilation is associated with hypertension and
diabetes [128].

People were experiencing psychological trauma, as well as the overall feeling of a high
degree of uncertainty associated with the COVID-19 global epidemic [129]. The restrictive
measures that were implemented during this critical period, in the long term, influenced
interpersonal and intimate relationships [130]. Concerns about safe intimate/sexual in-
terplay, the forced separation of intimate partners, the escalation of marital disputes, and
degradation in contact are some of the most significant contributors to a person’s experience
of sexual troubles and sexual unhappiness at this age [130–132].

Sexual desire and expression differences, as well as a lack of privacy while confined,
have both been linked to the development of sexual difficulties and dissatisfaction [133,134].
COVID-19 infection, on the other hand, has the potential to negatively impact male sexual
function by inducing endothelial damage, which can result in erectile dysfunction, testicular
injury, and psychological alterations [134,135].



Diagnostics 2022, 12, 1249 12 of 32

Diagnostics 2022, 12, x FOR PEER REVIEW 12 of 33 
 

 

* SN: serial number, RELATION: effect of ED on CVD, ME: method of evaluation, PS: patient size, 

OE: outcome, TE: treatment, NR: not reported, MI: myocardial interaction, OBBM: office-based bi-

omarker, LBBM: lab-based biomarker, NR: not reported. 

 

Figure 6. The biological link between ED and CVD/Stroke. RoS: reactive oxides stress, NO: nitric 

oxide, Up Arrow: depicts increase, Down Arrow: depicts decrease. Figure 6. The biological link between ED and CVD/Stroke. RoS: reactive oxides stress, NO: nitric
oxide, Up Arrow: depicts increase, Down Arrow: depicts decrease.

We hypothesized that erectile dysfunction occurs more frequently in the presence of
heart issues when the endothelium and smooth muscle are dysfunctional. Endothelial
dysfunction impairs blood flow to the heart and the penis, contributing to the development
of atherosclerosis.
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4. Artificial Intelligence-Based System for CVD/Stroke Risk Assessment in
ED Patients

Machine learning is a powerful framework because it uses a knowledge-based model
to create a training system. Several ML-based applications have been developed in health-
care, spanning subfields of medicine, such as diabetes [38,136,137], neonatology [138],
gene analysis [139,140], COAD risk stratification [141,142], EEG-based signal classifica-
tion [143,144], and CTAD symptomatic vs. asymptomatic plaque classification [145–147].
When it comes to risk stratification, ML-based strategies have also dominated cancer imag-
ing paradigms, such as thyroid [148–150], breast [151], ovarian [41,152], prostate [153],
liver [154,155], and other forms of cancer, such as skin [148–150,156,157].
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The ability of ML to adjust the non-linearity between a set of risk factors (or covariates)
and the gold standard is the second major benefit of ML. Such evidence in the context
of CVD risk assessment has recently been introduced [28,158–161]. These risk factors
include (i) conventional office-based, (ii) laboratory-based covariates, and (iii) current drug
consumption, while the gold standard criteria are heart failure or stroke. In the CVD/stroke
risk paradigm, the inclusion of ED covariates can add value to the CVD risk stratification
in ED patients.

4.1. Machine and Deep Learning Framework for CVD Risk Assessment in ED Patients

The typical variables included the combination of OBBM, LBBM, CUSIP, and MedUSE [67].
For cost reasons, non-invasive protocols for carotid arteries [162] under minimal noise
conditions such as harmonic and compound imaging [47,163] are favored for atherosclerosis
imaging. The identification of plaque build-up is aided by automated carotid far-wall
segmentation [164,165]. Figure 8a shows the step-by-step approach for risk stratification
for CVD and stroke risk stratification in ED patients using the AI framework [166]. On the
left-hand side is shown the extraction of features using the training dataset, which is then
used for model generation using the conventional classifier, given the gold standard. On
the right-hand side of Figure 8a is shown the CVD/stroke risk prediction by transforming
the testing features based on the training model. Because the input gold standard consists
of multiple risk classes of coronary artery disease, the predicted CVD/stroke risk will also
be a CVD/stroke granular risk.

One can also use deep learning strategies such as LSTM for CVD risk assessment.
The main feature of LSTM is the ability to process multiple types of data points, such as
a single (image). The main component of the LSTM architecture is a cell, an update gate,
an output gate, and a forget gate (Figure 8b). During random intervals, the cell stores
the values, and the three gates control the flow of information or features into and out
of the cell [167]. LSTM took the place of the recurrent neural network (RNN), which can
address the limitation of the RNN (i.e., simple RNN associated with TensorFlow). LSTM is
better at formulating long-term dependencies in the data [168]. The LSTM architecture is
displayed in Figure 8b, where the LSMT unit has four fully connected dense layers stacked
together. The structural configuration of LSTM is similar to an RNN and well suits for
CVD risk stratification in ED patients [169,170]. Even though ML is a powerful paradigm,
it requires the features to be manually optimized, unlike in DL, where the features are
automatically optimized.
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4.2. Participating in Studies for CVD Risk Assessment Using AI

Tables 2 and 3 show six different independent studies for (a) CVD risk prediction and
(b) ED prediction, both using the AI framework. There were several different types of
ground truth employed in these CVD risk prediction studies, including death, stroke, CHD,
and CVD [171,172]. The risk factors that were used were OBBM, LBBM, and CUSIP derived
from carotid US scans which are marked as input covariates (IC) in Tables 2 and 3. As a
result, support vector machines (SVMs) were used for the classification, along with logistic
regression, a convolution neural network (CNN), an artificial neural network (ANN), a
random forest algorithm (RF), and a principal component analysis (PCA). Tables 2 and 3
contain more information on the characteristics of this classification technique.

Atherosclerosis is a systemic inflammatory disease. The plaque in the coronary artery
mirrors that in the carotid artery, especially in the bulb or bifurcation area [173]. Numerous
studies have shown cholesterol, fibrosis, fibrin, and calcium in both coronary and peripheral
arteries [141]. Several studies have found a strong link between carotid artery plaque
measures and the risk of COAD and CVD [56,174,175].

Table 2. Generalized studies for prediction of CVD in AI framework using input covariates.

SN Citations IC DS GT FE TOC ML vs. DL ACC AUC

1 Gorek et al.
[176] (1997)

OBBM,
LBBM 30 Diagnose ED NR CNN DL 80.79 0.80

2 Kellner et al.
[177] (2000)

OBBM,
LBBM 100 Diagnose ED NR CNN DL 72.79 NA

3 Glavaš et al.
[178] (2015)

OBBM,
LBBM 185 Diagnose ED NR LR, SVN, ANN ML 74.40 0.812

4 Chen et al.
[179] (2019) LBBM 5664 Predict ED NR LR, ANN,

SVM, RF HDL 76.65 0.817

5 Lingli et al.
[180] (2018)

OBBM,
LBBM 95 Diagnose ED DT SVM ML 96.7 NR

6 Jang et al.
[181] (2019)

OBBM,
LBBM 187 ED drugs therapy NR ANN DL 100.00 NR

SN: serial number, IC: input covariates, DS: data size, GT: ground truth, OBBM: office-based biomarker, LBBM:
laboratory-base biomarker, FE: feature extraction, TOC: type of classifier, ACC (%): percentage accuracy, US:
ultrasound, NR: not reported.

Table 3. Studies for ED prediction using the AI framework.

SN Citations IC DS GT Classifier TOC ML/DL ACC % AUC

1 Biswas et al. [182] (2018) OBBM, LBBM
(US) 407 Stroke, Diabetes NR CNN DL 99.61 0.99

2 Jamthikar et al. [158] (2019) OBBM, LBBM
(US) 395 CVD PCA RF ML 95.00 0.80

3 Kandha et al. [183] (2020) OBBM, LBBM 346 Death CNN NB, SVM,
KNN, DT DL 83.33 0.833

4 Jamthikar et al. [160] (2020) OBBM,
LBBM, CUSIP 202 CVD SVM LR, SVN,

ANN ML 92.53 0.92

5 Saba et al. [184] (2020) OBBM,
LBBM, CUSIP 246 Death

6
Mod-
els

SVM HDL 89.00 0.898

SN: serial number, IC: input covariates, DS: data size, GT: ground truth, OBBM: office-based biomarker, LBBM:
laboratory-based biomarker, FE: feature extraction, TOC: type of classifier, ACC: percentage accuracy, US: ultra-
sound, NR: not reported.

Multiple modalities have been used for imaging the carotid artery. A US is considered
more user-friendly, convenient, and cost-effective than an MRI [185]. Figure 9a,b show how
the carotid B-mode ultrasound acquisition system can be applied to ED patients [186].
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The Carotid IMT and carotid plaque area have been shown in clinical trials [187]
to be effective surrogate measures for coronary vascular disease. Additionally, in [188],
the authors employed the cIMT on the carotid and coronary arteries in concert with an
ultrasound framework. The authors in [189] demonstrated the maximum plaque height
(MPH) as a risk factor for COAD. Additionally, the authors in [190,191] demonstrated how
the carotid bulb may be used to estimate the risk of COAD.

In a comprehensive risk assessment, we need to be able to automatically and pre-
cisely quantify the CUSIP consisting of carotid intima-media thickness, ave., max., and
min (cIMTave, cIMTmax, cIMTmin), carotid intima-media thickness variability (cIMTV),
morphological total plaque area (mTPA), geometric total plaque area (gTPA), lumen diame-
ter (LD), inter-adventitia diameter (IAD) [184], and composite risk score (CRS) [192]. We
require a risk assessment system that can determine the severity of COAD in ED patients.
All ED investigations found an increase in cardiovascular illness, which is linked to an
increase in phenotypes, such as cIMT, gTPA, mTPA, and CRS [184]. This CUSIP is then
used as a covariate in the ML system (Figure 9).

4.3. Plaque Tissue Characterization Using Machine Learning/Deep Learning Paradigms

The presence of bad LDL deposits in the bulb over time due to ED raises plaque
load, generating wall sheer stress (WSS) in the artery walls, which can lead to plaque
rupture [193,194]. Low-intensity asymptomatic plaques are difficult to detect and can
rupture, resulting in death [195,196]. However, they cannot be seen with bare eyes, so
we need to find a technique that can characterize the plaque. Bright plaques are simple
to detect and identify, although calcium deposits can be deceiving [197,198]. It is quite
difficult for ultrasound technicians or radiologists to make rapid judgments on plaque
lesion characterization due to the time constraint [199,200]. As a result, there is a strong
relationship between COAD and CTAD, and it is simple to obtain image phenotypes using
a low-cost, non-invasive B-mode carotid longitudinal US scan.

Endothelium, the inner connecting of the arterial wall, and smooth muscle cells
are damaged by ED, resulting in damage to the arterial walls of the coronary artery,
causing cardiovascular problems [201]. As a result, normal plaque becomes vulnerable
or dangerous plaque over time [202]. Due to this, ED can be an important indicator for
symptomatic plaque. Furthermore, plaque growth is a multi-focal illness [203]. It does
not occur at a single location in space. As a result, the illness spreads intermittently all
over the artery’s sidewalls [204]. ML has been used to identify symptomatic plaque for



Diagnostics 2022, 12, 1249 18 of 32

stroke risk stratification, labeled as AtheromaticTM 1.0 (AtheroPoint LLC, Roseville, CA,
USA) [157,182].

4.3.1. PTC Using Machine Learning

To identify the severity of CVD risk in mild ED vs. severe ED patients, ML and
DL methodologies for carotid plaque tissue characterization (PTC) approaches are re-
quired [182,205]. In the clinical imaging area, popular classifiers such as random forest (RF),
support vector machine (SVM), decision tree (DT), and AdaBoost have been commonly im-
plemented. The PTC can serve diagnostic and therapeutic requirements while cutting costs
because of advancements in US technology. Saba et al. [206] utilized a polling-based PCA
approach in an ML framework to choose dominating characteristics for better performance.
International cardiologists mostly use ML for CHD risk stratification before stenting and
percutaneous coronary intervention treatments [207]. For CVD risk assessment, this study
used a technique that combined intravascular ultrasonography (IVUS) greyscale plaque
morphology and cIMT.

Vascular radiologists can promptly diagnose a patient by using the automated charac-
terization of the symptomatic and asymptomatic plaque from US pictures. Acharya et al. [47]
used 346 images of US plaques, and out of that, 196 were symptomatic and 150 asymp-
tomatic. Figure 10a,b illustrate two instances of symptomatic (a) and asymptomatic
plaque (b). To extract the features, the photos were pre-processed to eliminate noise,
and discrete wavelet transform (DWT) was used.
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A variety of studies have been conducted in the ML framework to predict the risk
of CTAD and COAD [147,184]. Additionally, ML was used to identify individuals with
COAD by analyzing the greyscale characteristics of left ventricular ultrasound data [208].
Recently, a deep learning-based technique for predicting the risk of COAD was developed
utilizing the carotid artery as a gold standard [183,209,210].
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4.3.2. PTC Using Deep Learning

With the help of deep learning, PTC can also be used to predict stroke risk. This
strategy can be used to predict coronary risk if the gold standard is taken from the coro-
nary artery. Figure 11 shows a convolution neural network-based deep learning used for
enhancing the features or extracting useful information from the input of either images or
signals. The feature extraction can be performed in two forms, namely 1D or 2D. The main
characteristics of the CNN technology are max pooling, convolution, non-linearity, and
classification [211].
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A thorough review of various studies reveals that ED patients have a higher risk
of CVD. Our observations on the hypothesis showed that “ED has a relationship with
CVD/stroke and holds via the vascular atherosclerotic pathway”. We further investigated
such a setup in the COVID-19 paradigm. As a result, a low-cost B-mode carotid longitudinal
US scan could be used for CVD screening in ED patients to prevent the CVD symptoms
from worsening to a cardiovascular event or cerebrovascular event.

4.3.3. Recommendations for ED Patients

With the help of an AI-based non-invasive model, these patients may be successfully
monitored, and long-term CVD effects can be prevented. We showed how ML and DL
can be integrated for CVD/stroke risk stratification with better sensitivity and specificity
for ED patients. Such a strategy will improve better statin control for monitoring the
CVD/stroke risk. This can be further customized and personalized for individual patients,
which is unique and valuable in today’s healthcare systems. This AI model may be used by
physicians to advise ED patients by giving further information on CVD and stroke risk.

4.3.4. Manifestation

ED treatment has changed dramatically since the discovery of sildenafil, a phosphodi-
esterase type 5 inhibitor, which has enabled many more men to seek assistance [213,214].
Three- and five-cyclic guanosine monophosphate, a second messenger for the relaxing
effects of nitric oxide on smooth muscle, is inhibited by phosphodiesterase type 5 inhibitors,
which have been shown to be effective in clinical trials [215,216]. As a result of sexual stimu-
lation, endothelial cells and nonadrenergic, noncholinergic neurons release NO, which aids
in the relaxation of the trabecular erectile tissues as well as dilation of the helicine artery
of the penis by increasing the formation of cyclic guanosine monophosphate [217,218]. In
response to the increased blood flow, the sinusoidal gaps of the corpora cavernosa grow
swollen and suffocate with blood. Because of the engorgement of the tunica albuginea, the
subtunical venules that drain the corpora are compressed, resulting in a decreased venous
outflow from the penis [219]. As a result, the penile blood pressure rises, leading to the
development of a physiological erection.
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As an oral erectile dysfunction medication, Tadalafil is a potent selective phospho-
diesterase type 5 inhibitor that is currently being researched and developed [217]. Back
discomfort, nasal congestion, myalgia, and flushing are among the most commonly re-
ported treatment-related adverse effects of tadalafil. When taken as needed before sexual
activity and with no restrictions on food or drink, the pharmaceutical tadalafil significantly
improved erectile function, according to the study. It was successful in restoring normal
erection function to a large number of people [220].

5. Critical Discussions
5.1. Principal Findings

We found that ED occurs more frequently in the presence of heart issues when the
endothelium and smooth muscle are dysfunctional. Endothelial dysfunction impairs blood
flow to the heart and the penis, contributing to the development of atherosclerosis. SARS-
CoV-2-infected endothelial cells suffer endothelial damage that results in thromboembolic
vascular lumen modification in the endothelium. Moreover, we obtain strong evidence that
smoking, BMI, hypertension, cholesterol dietary consumption, and unsaturated fat intake
have all been linked to an increased risk of ED. It is feasible to use an AI-based system
for the CVD and stroke risk stratification to find the severity of heart failure and stroke in
ED patients.

5.2. Benchmarking

Following the analysis of various studies, we discovered a few research studies that
examined the link between ED with CVD utilizing OBBM, LBBM, and MedUSE. Only a
few papers discuss the significance of AI in the diagnosis of CVD and ED independently.
Despite the proposed study, no other study uses the AI model to describe the severity of
CVD in the ED framework. Table 4 shows the benchmarking analysis of several studies.

Table 4. Comparative analysis of studies with CVD and stroke risk stratification in ED patients.

SN Citations Year Covariates CVD Stroke ED AI

1 Bonetti et al. [113] 2002 OBBM, LBBM % ! ! %
2 Montorsi et al. [9] 2005 OBBM, LBBM ! % ! %
3 Diaconu et al. [115] 2011 OBBM, LBBM % ! ! %
4 Gandaglia et al. [82] 2014 OBBM, LBBM ! % ! %
5 Miner et al. [117] 2019 OBBM, LBBM % ! ! %
6 Mouridsen et al. [221] 2020 OBBM, LBBM % % ! !
7 Jamthikar et al. [30] 2020 OBBM, LBBM ! % % !
8 Bikias et al. [222] 2021 LBBM ! % % %
9 Reva et al. [223] 2021 OBBM, LBBM ! % % !

10 Bermejo et al. [224] 2021 OBBM, LBBM ! ! % %
11 Proposed Study 2022 OBBM, LBBM, CUSIP % ! ! %

ED: erectile dysfunction, CVD: cardiovascular disease, AI: artificial intelligence, OBBM: office-based, LBBM:
laboratory-based, CUSIP: carotid ultrasound image phenotype,!: yes,%: no.

Bonetti et al. [113] explained the role of ED as a systemic disorder that plays an
important role in the progression of atherosclerosis and its consequences. Growing data
reveal that endothelial function is not only determined by the properties of currently
recognized cardiovascular risk factors. Endothelial integrity, on the other hand, is based
on the balance of all cardiovascular risk factors and vasculoprotective aspects in a specific
person, including unknown variables and hereditary susceptibility. Endothelial dysfunction
can be used as a predictor of an individual’s atherosclerosis risk. In support of this idea,
endothelial dysfunction in the coronary or peripheral circulation has been proven to be a
lone indicator of a poor cardiovascular outcome, offering predictive information beyond
that obtained through traditional risk factor evaluation.
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Montorsi et al. [9] focused on vascular illnesses where ED is a concern caused by
COAD, high blood pressure, cerebrovascular disease, peripheral arterial disease, and type 2
diabetes Notably, ED is also common in vascular syndromes, such as COAD, hypertension,
cerebrovascular disease, PAD, and diabetes mellitus (DM).). Endothelial dysfunction and
late obstructive alterations in the vascular system have been found in patients with ED
and other cardiovascular diseases. To explain the connection between ED and CTAD,
researchers recently proposed the artery-size hypothesis. Because atherosclerosis is a
long-term condition, the damage to the major artery beds should have been uniform.

Diaconu et al. [115] described ED as a symptom of vascular disease that is still in its
early stages. ED and CVD are both symptoms of the same illness. ED symptoms often
present three to five years earlier than indications of COAD and may serve as a warning
sign that CVD is on the way. As a result, male patients with cardiovascular risk factors
should be examined for ED regularly. In patients with ED, an aggressive treatment strategy
targeting the primary cardiovascular risk factors is indicated to avoid CVD complications
and improve their prognosis. Gandaglia et al. [82] showed that the systemic relationship of
ED with CVD should be treated as such. By the interaction of CVD risk factors, androgens,
and chronic inflammation, there is an increase in the formation of atherosclerosis and
flow-limiting stenosis. Endothelial dysfunction and autonomic hyperactivity, which are
macroscopically undetectable, may help to explain the complicated link between ED and
CVD. The diagnosis of ED frequently occurs before the onset of CVD, providing a golden
opportunity for risk mitigation. Patients with ED should have a complete cardiologic
examination and obtain comprehensive risk factor management, according to procedures
devised specifically for them.

Miner et al. described that the responsibility of physicians is stated as the requirement
to assess every man over the age of 40 for the presence or absence of ED, particularly those
men who are asymptomatic for COAD signs or symptoms. It is suggested for CVD risk
stratification in all men with vasculogenic ED. Another study by Rava et al. [225] provided
the first AI-based algorithms capable of reliably and effectively measuring collateral flow in
individuals suffering from androgen insensitivity syndrome. This automated technique for
evaluating collateral filling may improve clinical decision-making for selecting reperfusion-
eligible patients by speeding up the clinical process, reducing bias, and assisting in clinical
decision-making.

Mouridsen et al. [221] showed that the use of non-contrast CT and MRI can help
distinguish between ischemic and hemorrhagic strokes, which are difficult to distinguish
based on clinical symptoms alone. Although an MRI has better sensitivity in an emer-
gency, hypodensity on a CT and DWT and hyperintensity on an MRI detect irreversibly
harmed tissue. To our understanding, no study has provided significant useful insight into
CVD/stroke risk stratification in the ED paradigm.

5.3. A Short Note on Ultrasonography Examination for the Penile Pathology

Of all the causes of impotence, vasculogenic impotence accounts for more than 30%;
therefore, ultrasonography is widely preferred for the assessment of penile pathology [226].
Modern ultrasonic examination is based on high-resolution greyscale imaging, which may
be used alone or in conjunction with a color and pulsed-wave Doppler. For the examination
of vascular reasons in ED, the use of a pharmaceutical stimulant to achieve an erection is
currently the standard. Alprostadil (PGE1) and papaverine are the two most often used
intracavernous medicines to cause an erection. When phentolamine is combined with these
medicines, the amount of stimulant required is reduced, as is the risk of penile discomfort
that is occasionally related to PGE1 usage [25,227,228]. Dynamic color–duplex Doppler
ultrasonography has been recently proposed for testing high-dose sildenafil [229]. It has
fewer false-positive diagnoses and treatments of vascular leakage, but it is time-consuming
and requires confirmation in addition to audiovisual sexual excitement [229]. As a result,
penile ultrasonography is recommended for the diagnosis of erectile dysfunction.
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5.4. A Short Note on Bias in AI Systems

AI systems were introduced as an alternative to conventional CVD risk stratification
methods [95,114]. However, AI systems have several challenges, such as a tendency to focus
primarily on accuracy while ignoring scientific validation and clinical evaluation [45,49].
The disease severity ratio was determined incorrectly due to a lack of solid ground truth
selection, such as CVE, coronary CT score, or angiogram stenosis. It places an abundance
of emphasis on AI-system reliability while placing an underabundance of emphasis on
AI-system authenticity. It causes a bias in the AI system [49]. It is also worth noting that the
database contains specific regional patient features, and as a result, the model may produce
an under- or over-estimation of the CVD/stroke results for different ethnicities or comor-
bidities [230]. Thus, for an improvement in CVD/stroke risk stratification in ED patients, it
is vital to detect risk-of-bias (RoB) in AI systems [231] and correct CVD/stroke risk stratifi-
cation. The performance of the AI-based CVD risk stratification can be further improved
significantly by merging components such as mobile, cloud, and e-health infrastructure.

5.5. Strengths, Weakness, and Extensions of This Study

By identifying a correlation between ED with CVD and stroke, the overall cardio-
urologic healthcare systems can be improved. Treatment is certainly preferable to preven-
tion. Patients can be not only treated but also prevented from developing CVD severity
if they are (i) aware of the relationship between ED with CVD stroke/ and (ii) low-cost
screening using AI-based algorithms as well. One restriction we perceive is that no solid
AI-assisted strategy has been developed for treating ED patients with CVD and stroke as
variables, and additional research is needed in this area.

Although, there is no clear hypothesis that an AI system exists to forecast the risk of
CVD and stroke risk stratification in ED patients, several AI models tackle the challenge of
diagnosing CVD, stroke, and ED disorders individually. The lack of multi-center data on ED
with CVD and stroke as comorbidities is also a challenge. With the pandemic, it is vital to
think about how the SARS-CoV-2 virus may affect both diseases. More systematic reviews
of ED-based RoB with comorbidities, such as the SARS-CoV-2 virus, CVD, and stroke, are
expected. In the future, we would like to explore how understanding the function of large
data is critical for eliminating bias in AI models.

6. Conclusions

In this systematic study, the relevance of CVD and stroke risk stratification in ED
patients was explored. We also showed how ED problems might lead to vascular and
cerebral strokes. As a consequence, recognizing CVD issues in ED patients is crucial.
Carotid artery imaging ultrasound has also been found to be a low-cost, non-invasive
alternative to traditional imaging modalities for screening CVD and stroke in ED patients.
This low-cost B-mode ultrasonography can also be beneficial for the characterization
of plaque tissue in ED patients, allowing for better knowledge of CVD and stroke risk
stratification in these individuals. Additionally, we showed that AI-based approaches may
accurately predict CVD and stroke risk in ED patients. A realistic AI-based model for
CVD and stroke stratification in ED patients was described along with the risk of bias in
AI. Finally, we discussed the functions of ED in the COVID-19 paradigm, as well as the
significance of AI in this context. The study also presented the ED treatment options.
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Acronym Table

SN Abbreviation Definition SN Abbreviation Definition

1 ANS Autonomic nervous system 34 LBBM Laboratory-based biomarker

2 ANN Artificial neural setwork 35 LSTM Long short-term memory

3 ACE2 Angiotensin Converting Enzyme 2 36 MedUSE Medication use

4 AUC Area-under-the-curve 37 ML Machine learning

5 AI Artificial intelligence 38 MI Myocardial infarction

6 BMI Body mass index 39 MRI Magnetic resonance imaging

7 BP Blood pressure 40 MACE Major adverse cardiac events

8 CTAD Cortaid artery disease 41 NPV Negative predictive value

9 COAD Coronary artery disease 42 NB Naive byes

10 CAS Coronary artery syndrome 43 nOH Neurogenic orthostatic hypotension

11 CPD Chorionic pulmonary disease 44 NO Nitric oxide

12 CCS Chronic coronary syndromes 45 Non-ML Non-machine learning

13 CKD Chronic kidney disease 46 NN Neural networks

14 CT Computed tomography 47 OBBM Office-based biomarker

15 CUSIP Carotid ultrasound image phenotype 48 OH Orthostatic hypotension

16 CV Cross-validation 49 PAD Peripheral arterial disease

17 CVD Cardiovascular disease 50 PRISMA Preferred reporting items for systematic reviews and meta-analyses

18 CNN Convolution neural network 51 PD Parkinson disease

19 CHD Congenital heart defects 52 PE Premature ejaculation

20 CCS Chronic coronary syndromes 53 PPV Positive predictive value

21 DL Deep learning 54 PCA Principal component analysis

22 DM Diabetes mellitus 55 pCAD psoriasis computer-aided diagnosis

23 DT Decision tree 56 RA Rheumatoid arthritis

24 EMG Electromyography 57 RF Random forest

25 ED Erectile dysfunction 58 RoB Risk of bias

26 FHS Framingham Heart Study 59 ROC Receiver operating-characteristics

27 GT Ground truth 60 RoS Reactive oxygen species

28 HTN Hypertension 61 RNN Recurrent neural network

29 HDL Hybrid deep learning 62 SCORE Systematic coronary risk evaluation

30 HDLC High-density lipoprotein cholesterol 63 SMOTE Synthetic minority over-sampling technique

31 IMT Intima-media thickness 64 SVM Support vector machine

32 IHD Ischaemic heart disease 65 US Ultrasound

33 LDLC Low-density lipoprotein cholesterol 66 WSS Wall shear stress
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