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Abstract: The main purpose of this paper is to develop a bimodal pedotransfer function to obtain 10 

soil water retention (WRC) and hydraulic conductivity (HCC) curves. The proposed pedo-transfer 11 

function (PTF) extends the Arya and Paris (AP) approach, which is based on particle size 12 

distribution (PSD), by incorporating aggregate-size distribution (ASD) into the PTF to obtain the 13 

bimodal WRC. A bimodal porosity approach was developed to quantify the fraction of each of the 14 

porous systems (matrix and macropores) in overall soil porosity. Saturated hydraulic conductivity, 15 

K0, was obtained from WRC using the Kozeny-Carman equation, whose parameters were inferred 16 

from the behaviour of the bimodal WRC close to saturation. Finally, the Mualem model was applied 17 

to obtain the HCC. In order to calibrate the PTF, measured soil physical and hydraulic properties 18 

data were used, coming from field infiltration experiments from an irrigation sector of 140 ha area 19 

in the “Sinistra Ofanto” irrigation system in Apulia, southern Italy. The infiltration data were fitted 20 

by using both bimodal and unimodal hydraulic properties by an inverse solution of the Richards 21 

equation. The bimodal “measured” hydraulic properties were then used to calibrate the scaling 22 

parameter (αAP) of the proposed bimodal AP (bimAP) PTF. Similarly, for the sake of comparison 23 

with the bimodal results, the unimodal hydraulic properties were used to calibrate the αAP of the 24 

classical unimodal AP (unimAP) PTF. Compared to the unimAP PTF, the proposed bimAP 25 
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significantly improves the predictions of the mean WRC parameters and K0, as well as the 26 

prediction of the shape of the whole HCC. Moreover, compared to the unimodal approach, it also 27 

allows keeping the hydraulic parameters’ spatial variability observed in the calibration dataset. 28 

Multiple linear regression (MLR) was also applied to analyse the sensitivity of the bimodal αAP 29 

parameter to textural and structural features, confirming significant predictive effects of soil 30 

structure.  31 

Keywords: Pedotransfer functions, bimodal hydraulic properties, soil structure, hydraulic 32 

properties variability, soil water retention, soil hydraulic conductivity 33 

 34 

1. Introduction 35 

The basis for understanding and solving agro-environmental problems increasingly lies in the use 36 

of agro-hydrological models. Such models frequently rely on mechanistic descriptions of 37 

fundamental processes involved in water and solute transport in soils (Abrahamsen and Hansen, 38 

2000; Coppola et al., 2019; Šimůnek et al., 2008; Van Dam et al., 1997). Richards’ equation (RE) and 39 

the Advection-Dispersion equation (ADE) are generally used for water flow and solute transport, 40 

respectively. Solving RE requires that soil water-pressure head, (h), and hydraulic conductivity-41 

water content, K(), functions be specified at the space scale of concern. For large-scale 42 

applications, large hydraulic properties datasets are required to characterize the high spatial (and 43 

temporal) variability of soil hydraulic properties naturally found in extensive areas (Coppola et al., 44 

2009a; Sposito, 1998). This is one of the more frustrating problems for soil scientists and 45 

hydrologists, because direct measurements are cumbersome and expensive, and may represent the 46 

main limit to using mechanistic models for large scale applications. This is also the chief 47 

justification for the use of simpler approaches (bucket approach, for example) than the RE.  48 

In attempts to overcome this problem, in recent decades great efforts have been made to develop 49 

methods to estimate soil hydraulic properties from simpler data in the case of extensive direct 50 
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characterizations. Since hydraulic properties are affected by other physical, chemical and biological 51 

properties, which are considered easier and cheaper to measure, empirical relations to predict 52 

them have been proposed. Most of these expressions can be classified as pedotransfer functions 53 

(PTFs, after Bouma, 1987) as they translate “readily” available information into the properties 54 

needed to solve RE. Continuous PTFs (Rawls and Brakensiek, 1985; Minasny et al., 1999) that 55 

calculate hydraulic properties from particle size distribution and additional soil variables such as 56 

bulk density via a mathematical relationship are being constantly improved. Neural network 57 

analysis has also been used to generate empirical PTFs (Schaap and Bouten, 1996). Leij et al. (2004) 58 

extended the use of neural networks by introducing terrain attributes. Overviews of the current 59 

status of PTF approaches are given by Basile et al. (2019) and Pachepsky et al. (2004). 60 

Particle size distribution (PSD) data have also been used as a basis for estimating soil water 61 

retention using semi-physical PTFs (Haverkamp and Parlange, 1986). Arya and Paris (1981) 62 

significantly contributed to the expansion and spread of the approach. Their physico-empirical 63 

approach is mainly based on the similarity between shapes of the cumulative PSD and (h) curves. 64 

The model originally developed was refined (Arya et al., 1999a), also after later investigations (e.g., 65 

Basile and D’Urso, 1997), suggesting improvements pertaining to the limited flexibility of the 66 

formulation. Arya et al. (1999b) also derived an expression to compute K() directly from PSD, 67 

based on the same soil structure model leading to the (h) relationship (Arya et al., 1999a; Arya and 68 

Paris, 1981). Hereafter, such an approach will be referred to as an AP approach.  69 

Although the performance of PTFs for the retention curve has continuously improved, due also to 70 

increasing database size, they have still to be much improved on at least two interrelated issues: 1) 71 

ability to accurately predict saturated/unsaturated hydraulic conductivity; 2) ability to predict the 72 

spatial variability naturally found in measured soil hydraulic properties.  73 

1) As for the issue of saturated hydraulic conductivity, K0, Loague (1992) used textural-based K0 74 

estimates in a rainfall-runoff model to be applied in a small catchment and concluded that texture 75 
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was not a substitute for actual K0 field data. Sobieraj et al. (2001) compared the performance of 76 

nine PTFs for estimating K0 in modelling the storm flow generated in a rainforest catchment. They 77 

concluded that the PTFs used generally underestimated measured K0, thus inadequately predicting 78 

hydrograph attributes, and grossly overestimating total runoff and peak runoff for almost all the 79 

events they examined. Tietje and Hennings (1996) tested six different PTFs and found different 80 

accuracy in the results between soils from the US and soils from Germany. Their study also showed 81 

that the prediction of K0 using PTFs is inaccurate including the mean values of K0 and their 82 

geometric standard deviation, especially for clay and silt soils. Vereecken et al. (2010) studied the 83 

use of PTFs to estimate van Genuchten and Mualem parameters. Their results showed inaccuracy in 84 

estimating hydraulic conductivity parameters using texture-based PTFs. A likely reason for this 85 

failure is that saturated hydraulic conductivity is largely dependent on soil structure and that 86 

currently used PTFs do not adequately (or at all) account for macroporosity in soils. The 87 

characteristics of macropores (mostly interaggregate pores) are not related to soil texture, such 88 

that soils with similar texture may have completely different saturated hydraulic conductivity 89 

(Coppola et al., 2009b; Pachepsky et al., 2004; Vereecken et al., 2010). 90 

Besides on K0, excluding the macropore information in a PTF may have an impact even on the shape 91 

of the whole HCC, especially when models based on the Hagen-Poiseuille, such as Mualem’s 92 

conductivity model (Mualem, 1976), are used to predict hydraulic conductivity starting from the 93 

WRC. Actually, almost all of the existing PTFs assume pore systems with unimodal pore size 94 

distributions. This is justified by the fact that these PTFs have been calibrated by using datasets 95 

with either limited or no measurements at all close to saturation, which hold the information on the 96 

soil structure. The van Genuchten (1980) model is widely adopted to parametrize the unimodal 97 

WRC. Using the van Genuchten parameters in the Mualem model, estimation of the hydraulic 98 

conductivity is obtained by using the measured K0 as matching factor. By contrast, when data close 99 

to saturation are available, a macropore portion of the water retention curve becomes frequently 100 
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evident, which may require a bimodal model to be correctly described (Coppola, 2000; Coppola et 101 

al., 2009a, 2009b; Durner, 1994; Othmer et al., 1991; Ross and Smettem, 1993; Wilson et al., 1992). 102 

In all of the above papers, it has been shown that using either a unimodal or a bimodal model to 103 

describe WRC may induce significant changes in the prediction of the whole HCC. This is because, as 104 

discussed by Durner (1994) and shown experimentally by Coppola (2000), the formulation itself of 105 

Mualem’s conductivity model makes the model particularly sensitive to the slope of the retention 106 

curve near saturation. This subject has received considerable theoretical and experimental 107 

treatment which shows that relatively small variations in water content close to saturation may be 108 

amplified by the algorithm for determining hydraulic conductivity (Coppola, 2000; Van Genuchten 109 

and Nielsen, 1985; Vogel and Cislerova, 1988). 110 

2) As for the issue of spatial variability, which is strictly related to the issue described above, most 111 

of the studies around PTFs have focused more on the predictive capability of the mean values of 112 

hydraulic parameters than on their spatial variability. Much rarer are the attempts to evaluate the 113 

ability of PTFs to describe the spatial variability of soil hydraulic properties (Espino et al., 1996; 114 

Romano and Santini, 1997; Leij et al., 2004). Coppola et al. (2013) found that Rosetta PTF-based 115 

hydraulic parameters resulted in very low variability compared to the measured hydraulic 116 

parameters (see graphs 5 and 6 and tables 1 and 2 in their paper). This was especially true for the α 117 

and K0 parameters of the van Genuchten-Mualem model (van Genuchten, 1980), which are known 118 

to be the parameters mainly related to the soil structure. The authors ascribed this behaviour to the 119 

fact that even in a quite homogeneous soil from a textural perspective, the structure may induce a 120 

variability in the soil hydraulic parameters which cannot be reproduced by PTFs not including 121 

explicitly structural information. Additionally, for the reasons already discussed above, the use of a 122 

unimodal model to describe bimodal porous media may also contribute to flatten the variability 123 

observed in the measurements.  124 

Earlier efforts to properly account for macroporosity were mainly oriented to introducing 125 
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additional information in PTFs explicitly considering macropore sizes and counts (McKeague et al., 126 

1982; Nimmo et al., 2007). As also argued by Pachepsky and Rawls (2003), these studies showed 127 

that there is a potential usefulness in using aggregate size distribution in PTFs to improve water 128 

retention and hydraulic conductivity estimates. 129 

Based on these premises, the aim of this study was to propose a bimodal extension of the AP 130 

approach (hereafter bimAP), which incorporates information on aggregate size distribution, to 131 

improve the prediction of the hydraulic properties and their spatial variability for structured soils. 132 

A large dataset of in situ infiltration measurements was used to establish the bimodal nature of 133 

hydraulic properties. Compared to the original AP model (hereafter unimAP), the bimAP model 134 

requires additional measurements of aggregate size distribution (ASD) and single-aggregate bulk 135 

density. Also, the bimAP water retention estimates require fitting by a bimodal water retention 136 

model to obtain the bimAP scaling parameter. A multiple linear regression was applied to analyse 137 

the degree of dependence of this scaling parameter on the textural and structural information. All 138 

the estimates from the bimAP were compared to those from the unimAP, to show the effects of not 139 

considering the effects of the structure on the predictions of the hydraulic properties and their 140 

spatial variability. 141 

2. Materials and Methods 142 

2.1. Hydraulic property models  143 

In this paper, we use water retention models assuming pore systems with either unimodal or 144 

bimodal pore-size distributions. The van Genuchten (van Genuchten, 1980) model for unimodal 145 

porous systems is as follows: 146 

𝑆𝑒 =
𝜃 − 𝜃𝑟
𝜃0 − 𝜃𝑟

= [1 + |𝛼𝑉𝐺ℎ|
𝑛]−𝑚 h<0 

(1) 

𝜃 = 𝜃𝑠 h0 
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where h is the pressure head (h≤0), Se is effective saturation and  is the water content (s and r 147 

are the water content at h=0 and for h, respectively). VG (cm-1), n and m=1-1/n are shape 148 

parameters. The effective saturation, Se, may be considered a cumulative distribution function of 149 

pore size with a density function f(h) which may be expressed by: 150 

𝑓(ℎ) =
𝑑𝑆𝑒

𝑑ℎ
 

(2)

 

The presence of aggregates frequently results in a retention function curve with at least two 151 

inflection points. To represent such behaviour, a double porosity approach can be used which 152 

assumes that the pore space from r to s consists of two pore-size distributions, each occupying a 153 

fraction Wi of that pore space (Coppola, 2000; Durner, 1994). The model proposed by Durner 154 

(1994) is as follows: 155 

𝑆𝑒 = ∑𝛽𝑖 [
1

1+(𝛼𝑉𝐺,𝑖ℎ)
𝑛𝑖
]
𝑚𝑖

    0 < 𝛽𝑖 < 1  and  ∑𝛽𝑖 = 1    𝑖 = 1,2 (3) 

in which β1 and β2 are the weighting of the total pore space fraction to be attributed respectively to 156 

inter-aggregate pores (the macropores) and intra-aggregate pores (the micropores or matrix 157 

pores), and VG,i, ni and mi still represent the fitting parameters for each of the partial curves.  158 

The unsaturated hydraulic conductivity function is described by using the Mualem model (Mualem, 159 

1976). It is based on the capillary bundle theory and relates relative hydraulic conductivity, 𝐾𝑟, to 160 

the pore-size distribution function 𝑓(ℎ) with the equation: 161 

𝐾𝑟(ℎ) =
𝐾(ℎ)

𝐾0
= 𝑆𝑒

𝜏[𝜂(ℎ) 𝜂(0)⁄ ]2 

𝜂(ℎ) = ∫ ℎ−1𝑓(ℎ)𝑑ℎ
∞

−∞

 

(4) 

in which 𝜏 is a parameter accounting for the dependence of the tortuosity and the correlation 162 

factors on the water content. 𝜏 was fixed at a value of 0.5. The relative hydraulic conductivity is thus 163 

scaled using the saturated hydraulic conductivity, K0 (hydraulic conductivity at h=0), as matching 164 
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factor. 165 

In the case of the unimodal van Genuchten model and assuming m=1-1/n, Kr becomes  166 

𝐾𝑟(𝑆𝑒) =
𝐾(𝑆𝑒)

𝐾0
= 𝑆𝑒

𝜏 [1 − (1 − 𝑆𝑒
1
𝑚⁄ )

𝑚

]
2

 (5) 

In the case of bimodal Durner water retention, equation (5) becomes equation (6) (Priesack and 167 

Durner, 2006). 168 

𝐾𝑟(𝑆𝑒) =
𝐾(𝑆𝑒)

𝐾0
= (∑𝛽𝑖𝑆𝑒,𝑖

2

𝑖=1

)

𝜏

{
∑ 𝛽𝑖𝛼𝑖
2
𝑖=1 [1 − (1 − 𝑆𝑒,𝑖

1/𝑚𝑖)
𝑚𝑖

]

∑ 𝛽𝑖𝛼𝑖
2
𝑖=1

}

2

 (6) 

2.2. Developing the Bimodal Arya and Paris approach for soil water retention 169 

This section is devoted to describing in detail the bimAP approach. For the unimAP approach, the 170 

sequence of steps to obtain water retention curves by applying its classical concepts may be found 171 

in Arya and Paris (1981). We only recall here that it assumes cylindrical pores which are built by 172 

overlying the single particles (coming from the PSD) in a given size range. 173 

In developing the bimAP approach, the main assumption is that the unimAP approach may be 174 

extended also to the ASD. Specifically, in the bimAP case, the total porous system is assumed to be 175 

partitioned into structural pore space (macropores, arising from particle aggregation) and matrix 176 

pore space (micropores, the only pores classically considered by the unimAP). Similar to matrix, 177 

which in the unimAP are ideally cylindrical and come from the overlying of the single particles of 178 

the PSD, the pores of the structural part of the porous system are also assumed to be cylindrical and 179 

simply built by overlying the aggregates in a given size range. 180 

We will consider two cases: 1) the whole sample only consists of an ensemble of aggregates, 181 

without particle inclusions in the interspace among aggregates (see Figure 1a); 2) the whole sample 182 

consists of an ensemble of aggregates with particle inclusions in the interspace among aggregates 183 

(see Figure 1b). 184 



9 
 

Figure 1 185 

 186 

In the bimAP approach, the porosity of the soil sample was divided into two porosities: macropore 187 

porosity (or structural porosity) which occupies the space between the aggregates, and matrix 188 

porosity which occupies the space between soil particles.  189 

Below we give definitions and calculations, first for the single aggregate and then for the whole soil 190 

sample, which will be used in the bimAP approach applied to both the PSD and ASD.  191 

 192 

i) Single aggregate 193 

Let us start from the calculations for a single aggregate (one of the red clods in figure 1a and 1b). 194 

The aggregate will consist of solid particles and matrix pores (intra-aggregate pores). Below, the 195 

label ag is used for single aggregates. 196 

The volume of solid particles in a single aggregate, assuming that the particle density ρs=2.65 197 

g/cm3, is: 198 

𝑣𝑎𝑔,𝑝𝑟𝑡 = 
𝑤𝑎𝑔,𝑝𝑟𝑡

2.65
 (7) 

where 𝑤𝑎𝑔,𝑝𝑟𝑡  = dry weight of the aggregate = dry weight of the particles in the aggregate 199 

The total volume of the aggregate is: 200 

𝑣𝑎𝑔,𝑡 = 𝑣𝑎𝑔,𝑝𝑟𝑡 + 𝑣𝑎𝑔,𝑝  (8) 

 201 

where 𝑣𝑎𝑔,𝑝 = volume of pores in the aggregate (determined by the ethyl alcohol method, see 202 

section 2.4). 203 

The bulk density of the aggregate, which will be used in the calculations for the whole sample, is: 204 

𝑤𝑎𝑔,𝑝𝑟𝑡

𝑣𝑎𝑔,𝑡
= 𝜌𝑏,𝑎𝑔 (9) 

 205 
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Finally, the porosity of the aggregate is: 206 

𝑣𝑎𝑔,𝑝

𝑣𝑎𝑔,𝑡
= 𝜑𝑎𝑔 (10) 

 207 

ii) Sample (ensemble of aggregates, without particle inclusions in the interspace among aggregates) 208 

(figure 1a) 209 

In this case, it is assumed that all the sample weight consists of aggregates (no single particles 210 

leaving the finest sieve for aggregates). In the following, label S stands for sample. 211 

The bulk density, 𝜌𝑏,𝑆 and total porosity, Φ𝑆,𝑇 , of the sample are:  212 

𝜌𝑏,𝑆 =
𝑊𝑆,𝑇

𝑉𝑆,𝑇
 

 

Φ𝑆,𝑇 = 1 −
𝜌𝑏,𝑆
2.65

 

(11) 

 213 

where WS,T is the total dry weight of particles in the sample and VS,T the total volume of the soil 214 

sample. 215 

The volume occupied by the aggregates,  𝑉𝑆,𝐴𝐺 , and by the inter-aggregate pores, in the soil sample 216 

(respectively the red and blue parts in figure 1) is: 217 

𝑉𝑆,𝐴𝐺 =
𝑊𝑆,𝑇

𝜌𝑏,𝑎𝑔
 

 

𝑉𝑆,𝑀𝐶𝑝 = 𝑉𝑆,𝑇−𝑉𝑆,𝐴𝐺  

 

(12) 

In equation (12), note that we use the bulk density of the aggregates determined on the single 218 

aggregate. We assume that WS,T is also the weight of the aggregates in the soil sample (no particle 219 

inclusion). 220 
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The inter-aggregate porosity, Φ𝑆,𝑀𝐶𝑝, and the intra-aggregate or matrix porosity, Φ𝑆,𝑀𝑋𝑝,  are: 221 

Φ𝑆,𝑀𝐶𝑝 =
V𝑆,𝑀𝐶𝑝
𝑉𝑆,𝑇

 

 

Φ𝑆,𝑀𝑋𝑝 = Φ𝑆,𝑇 −Φ𝑆,𝑀𝐶𝑝 

(13) 

 222 

ϕS,MCp and ϕS,MXp will be used, respectively, as saturated water contents for the structural part and 223 

for the matrix part of the water retention curve obtained by the AP method applied to both the 224 

aggregates and the particles (see section iv. below bimAP approach for calculating the pore-spaces, 225 

capillary radius, pressure head and water contents for each class of particles or aggregates). 226 

The volume of the intra-aggregate pores (matrix pores), V𝑆,𝑀𝑋𝑝, and that of the solid particles, V𝑆,𝑝𝑟𝑡 , 227 

in the soil sample are: 228 

V𝑆,𝑀𝑋𝑝 = Φ𝑆,𝑇𝑉𝑆,𝑇 − V𝑆,𝑀𝐶𝑝 

 

V𝑆,𝑝𝑟𝑡 = 𝑉𝑆,𝑇 − V𝑆,𝑀𝐶𝑝 − V𝑆,𝑀𝑋𝑝 

(14) 

 229 

The matrix particle density, ρ𝑆,𝑝𝑟𝑡, and the aggregate density, ρ𝑆,𝐴𝐺 , are respectively: 230 

ρ𝑆,𝑝𝑟𝑡 =
𝑊𝑆,𝑇

𝑉𝑆,𝑝𝑟𝑡
  

 

ρ𝑆,𝐴𝐺 = ρ𝑏,𝑎𝑔 =
𝑊𝑆,𝑇

𝑉𝑆,𝐴𝐺
=

𝑊𝑆,𝑇

𝑉𝑆,𝑝𝑟𝑡 + V𝑆,𝑀𝑋𝑝
 

(15) 

 231 

Note that in equation (15), ρ𝑆,𝐴𝐺  corresponds to the density ρ𝑏,𝑎𝑔  determined on the single 232 

aggregates. 233 

Finally, from equations (14), one can define the void index of the whole sample, e𝑆, the void index 234 
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coming from the pores in the aggregates (intra-aggregate pores = micro-pores), e𝑆𝑀𝑋, and the void 235 

index from the pores among the aggregates (inter-aggregate pores = macro-pores), e𝑀𝐶: 236 

e𝑆 =
V𝑆,𝑀𝐶𝑝 + V𝑆,𝑀𝑋𝑝 

𝑉𝑆,𝑝𝑟𝑡
 

e𝑀𝑋 =
V𝑆,𝑀𝑋𝑝 

𝑉𝑆,𝑝𝑟𝑡
 

 

e𝑀𝐶 =
V𝑆,𝑀𝐶𝑝 

𝑉𝑆,𝑝𝑟𝑡
 

(16) 

 237 

iii. Sample (ensemble of aggregates with particle inclusions in the interspace between aggregates) 238 

(figure 1b) 239 

In this case, we assume that the inclusions (the orange particles) in the inter-aggregate space 240 

consist of single particles just occupying a part of this but without an inner porosity. The total 241 

weight of the sample does not correspond to the total weight of the aggregates. The latter 242 

corresponds to a fraction ε of the total weight. The inclusions occupy a space, VS,MCprt, which is the 243 

volume of solid particles included in the inter-aggregate space. 244 

In this case, the part of the total volume occupied by the aggregates in the soil sample (the red part 245 

in figure 1b) is: 246 

𝑉𝑆,𝐴𝐺 =
𝜀𝑊𝑆,𝑇

𝜌𝑏,𝑎𝑔
 (17) 

 247 

Note that, as in equation (12), we use the bulk density of the aggregates determined on the single 248 

aggregate. We assume that εWS,T is the weight of the aggregates in the soil sample. 249 

Now, the total volume of inter-aggregate pores is: 250 

V𝑆,𝑀𝐶𝑝 = V𝑆,𝑇 − V𝑆,𝐴𝐺 − V𝑆,𝑀𝐶𝑝𝑟𝑡 (18) 

 251 
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where 𝑉𝑆,𝑀𝐶𝑝𝑟𝑡 =
𝑊𝑆,𝑇−𝜀𝑊𝑆,𝑇

2.65
 = volume of the inclusions in inter-aggregate space. The remaining 252 

calculations for Φ𝑆,𝑀𝐶𝑝 and Φ𝑆,𝑀𝑋𝑝 are as for the no-inclusions case. 253 

iv. bimAP approach for calculating pore spaces, capillary radius, pressure head and water contents for 254 

each class of particles or aggregates 255 

As for the matrix pores, also the pores of the structural part of the porous system are assumed to be 256 

cylindrical and simply built by overlying the aggregates in a given size range. 257 

All the calculations require that PSD and ASD (both expressed as percentages) be divided into a 258 

number of N radius classes. 259 

Should only a negligible fraction of the air-dried soil sample be left in the smaller sieve for the 260 

aggregates, the case ii. Sample (ensemble of aggregates, without particle inclusions in the interspace 261 

among aggregates) will apply (this is our case in this paper). Of course, if this fraction were to be 262 

more significant, the approach would be simply extended by including its weight (1-) in the 263 

calculations (see case iii. Sample (ensemble of aggregates with particle inclusions in the interspace 264 

among aggregates).  265 

In case ii., the dry weight of the total number of single particles in the sample coincides with that of 266 

the total number of aggregates: 267 

 268 

𝑊𝑆,𝑇 = ∑ 𝑊𝑆,𝑇,𝑖𝑅<1 = ∑ 𝑊𝑆,𝑇,𝑖𝑅>1

𝑁𝐴𝑆𝐷

𝑖=1

𝑁𝑃𝑆𝐷

𝑖=1

 (19) 

 269 

where 𝑊𝑆,𝑇,𝑖𝑅<1 is the dry weight of the particles in the ith class of particles of radius R<1mm,  270 

𝑊𝑆,𝑇,𝑖𝑅>1is the dry weight of the aggregates in the ith class of aggregates of radius R>1mm, and 271 

NPSD and NASD are the number of classes into which the PSD and ASD distribution are divided.  272 

The volume of pores from the ith class of particles of radius R<1mm may be obtained as 273 
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 274 

𝑉𝑆,𝑃,𝑖𝑅<1 =
𝑊𝑆,𝑇,𝑖𝑅<1𝑒𝑀𝑋

ρ𝑆,𝑝𝑟𝑡
=
𝑊𝑆,𝑇,𝑖𝑅<1𝑒𝑀𝑋V𝑆,𝑝𝑟𝑡

𝑊𝑆,𝑇
 (20) 

 275 

where 

𝑊𝑆,𝑇,𝑖𝑅<1

𝑊𝑆,𝑇
 is the solid mass per unit sample mass in the ith particle-size range. It is obtained by 276 

taking the differences in cumulative percentages corresponding to successive particle sizes divided 277 

by 100, such that the sum of 
𝑊𝑆,𝑇,𝑖𝑅<1

𝑊𝑆,𝑇
 for all the n classes is unity. 278 

Similarly, the volume of pores from the ith class of aggregates of radius R>1mm is: 279 

𝑉𝑆,𝑃,𝑖𝑅>1 =
𝑊𝑆,𝑇,𝑖𝑅>1𝑒𝐴𝐺

ρ𝑆,𝐴𝐺
=
𝑊𝑆,𝑇,𝑖𝑅>1𝑒𝐴𝐺V𝑆,𝐴𝐺

𝑊𝑆,𝑇
 (21) 

 280 

where 

𝑊𝑆,𝑇,𝑖𝑅>1

𝑊𝑆,𝑇
 is the solid mass per unit sample mass in the ith aggregate-size range. Again, it is 281 

obtained by taking the differences in cumulative percentages corresponding to successive 282 

aggregate sizes divided by 100, such that the sum of the 
𝑊𝑆,𝑇,𝑖𝑅>1

𝑊𝑆,𝑇
 for all the n classes is unity. 283 

By using equations (20) and (21), it is possible to calculate the water content in the matrix pores, 284 

𝜃𝑆,𝑖𝑅<1 , and that in the macropores, 𝜃𝑆,𝑖𝑅>1 , as follows: 285 

𝜃𝑆,𝑖𝑅<1 =
∑ 𝑉𝑆,𝑃,𝑖𝑅<1
𝑖
𝑗=1

𝑉𝑆,𝑇
 

 

𝜃𝑆,𝑖𝑅>1 =
∑ 𝑉𝑆,𝑃,𝑖𝑅>1
𝑖
𝑗=1

𝑉𝑆,𝑇
 

(22) 

 286 

which are obtained respectively by progressively filling matrix (and macropore) volumes with 287 

water up to the selected ith 𝑉𝑆,𝑃,𝑖𝑅<1volume (ith 𝑉𝑆,𝑃,𝑖𝑅>1volume). 288 
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Now, the number of particles in the ith class of particles of radius Ri<1mm (all the particles in the 289 

range are assumed to form a single cylindrical pore of volume 𝑉𝑆,𝑃,𝑖𝑅<1) may be obtained as follows: 290 

 291 

𝑛𝑖,𝑝𝑟𝑡 =
3𝑉𝑆,𝑃,𝑖𝑅<1
4𝜋𝑅𝑖

3  (23) 

 292 

Similarly, the number of aggregates in the ith class of aggregates of radius Ri>1mm (all the 293 

aggregates in the range are assumed to form a single cylindrical pore of volume 𝑉𝑆,𝑃,𝑖𝑅>1) are 294 

calculated as: 295 

 296 

𝑛𝑖,𝐴𝐺 =
3𝑉𝑆,𝑃,𝑖𝑅>1
4𝜋𝑅𝑖

3  (24) 

 297 

 298 

The radius of the pores in the ith class of particles of radius Ri<1mm, 𝑟𝑖,𝑀𝑋, and the radius of the 299 

pores in the ith class of aggregates of radius Ri>1mm, 𝑟𝑖,𝐴𝐺 , are: 300 

𝑟𝑖,𝑀𝑋 = 𝑅𝑖
[4𝑒𝑀𝑋𝑛𝑖,𝑝𝑟𝑡

(1−𝛼𝑀𝑋)]
0.5

6
 

 

𝑟𝑖,𝐴𝐺 = 𝑅𝑖
[4𝑒𝑀𝐶𝑛𝑖,𝐴𝐺

(1−𝛼𝑀𝐶)]
0.5

6
 

(25) 

 301 

from which the pressure head for the radius of the pores in the ith class of particles of radius 302 

Ri<1mm, ℎ𝑖,𝑀𝑋, and that corresponding to the radius of the pores in the ith class of aggregates of 303 

radius Ri>1mm, ℎ𝑖,𝑀𝐶, may be calculated as follows: 304 
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ℎ𝑖,𝑀𝑋 =
2𝜎𝑐𝑜𝑠𝜗

𝜌𝑤𝑔𝑟𝑖,𝑀𝑋
 

 

ℎ𝑖,𝑀𝐶 =
2𝜎𝑐𝑜𝑠𝜗

𝜌𝑤𝑔𝑟𝑖,𝑀𝐶
 

(26) 

 305 

where σ is water-air surface tension, ϑ is contact angle, ρw is density of water, and g is gravity 306 

acceleration. 307 

αMX and αMC are scaling parameters for pore length, accounting for the fact that the actual soil 308 

particles and aggregates are not spherical. In their classical unimAP, Arya and Paris (1981) assumed 309 

the parameter αMX to be >1 under the hypothesis that each particle contributes a length greater 310 

than the diameter of an equivalent sphere. As a first approximation, in our bimAP approach, we will 311 

assume that this hypothesis extends to αMC and that the two parameters have the same value, such 312 

that αMX = αMC = αAP. Parameter αAP has to be estimated by fitting the AP estimates to measured 313 

water retention curves for both the unimAP and bimAP cases (see section 2.7 below. Fitting the AP 314 

estimates to the measured hydraulic properties to calibrate the αAP parameter). 315 

The matrix and the macropore parts of the water retention are simply obtained by combining pairs 316 

of 𝜃𝑆,𝑖𝑅<1- ℎ𝑖,𝑀𝑋 and 𝜃𝑆,𝑖𝑅>1- ℎ𝑖,𝑀𝐶. Total water retention is obtained by summing up the two partial 317 

contributions (see the symbols in Figure 2). 318 

 319 

Figure 2 320 

 321 

v. Using the information from bimAP to estimate K0  322 

Saturated hydraulic conductivity, K0, was obtained by using the following Kozeny-Carman equation 323 

(Kozeny, 1927; Carman, 1937): 324 
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 325 

𝐾0 = 𝜂𝜙𝑒
𝛾

 (27) 

 326 

where 𝜙𝑒 is the effective porosity, which is the difference between the saturated water content and 327 

the water content at field capacity (330 cm matric suction), and η and 𝛾 are constants. All these 328 

parameters were estimated from the curve obtained by fitting the water retention model (whether 329 

unimodal or bimodal) to the AP estimates. Obviously, all the parameters in the Kozeny-Carman 330 

equation will change depending on the approach used (unimAP or bimAP).  331 

In order to estimate the other parameters in equation (27), in our approach we used the version of 332 

the Kozeny-Carman equation proposed by Timlin et al. (1999): 333 

 334 

𝐾0 = 0.0131(
𝐹

𝑙
)
0.5

𝜑𝑒
2.5 

𝐹 = 0.148/ℎ𝑏 

𝑙 = 1.86(2 − 𝜆)5.34 

(28) 

 335 

where 𝐹 and 𝑙 are parameters related to the fractal dimensions of porosity (Rawls et al., 1993), 𝜆 is 336 

the pore size distribution index, and ℎ𝑏 is the air-entry potential in the Brooks and Corey water 337 

retention model (BC model) (Brooks and Corey, 1964): 338 

 339 

In the case of bimAP, since K0 is related to the water retention characteristics near saturation, λ and 340 

hb were obtained by fitting the BC model to the upper part of the bimAP WRC.  In the case of the 341 

unimAP approach, λ and hb were estimated by fitting the BC model to the whole water retention 342 

curve. 343 

𝑆𝑒 = (𝜃 − 𝜃𝑟)/(𝜃𝑠 − 𝜃𝑟) = (
ℎ

ℎ𝑏
)
𝜆

 (29) 
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 344 

2.3. The study area 345 

The study area is sector 6 of irrigation district 10 in the “Sinistra Ofanto” irrigation system, which is 346 

located on the left bank of the Ofanto river in Puglia, Southeast Italy (see figure 3). The study sector 347 

covers an area of 140 hectares of agricultural land and is irrigated with an on-demand pressurized 348 

network. The whole district covers 22,500 hectares of agricultural land. 349 

 350 

Figure 3 351 

 352 

2.4. Measurement of soil physical parameters 353 

The approach proposed in this paper assumes the bimodality of soil porosity. It requires 354 

measurement of the size distribution of the single particles (PSD), as well as the size distribution of 355 

the aggregates (ASD) present in an undisturbed soil sample.  356 

Undisturbed soil samples were collected using steel cylinders 7 cm in diameter and 7 cm high in 90 357 

sites selected in the study area (about 140 hectares). Additionally, some disturbed soil was also 358 

sampled to determine the average bulk density of single aggregates.  359 

After measuring the sample volume, the undisturbed soil was removed from the sampler and air-360 

dried for at least one week. Sieve analysis was carried out on each sample to obtain the ASD curve 361 

according to the dry-sieving method proposed by Nimmo & Perkins (2002). The sieve sizes used in 362 

this analysis were: 40, 31.5, 25, 20, 16, 10, 8, 5, 2 and 1 mm. All the soil remaining in a sieve was 363 

considered to consist of aggregates of a radius exceeding the sieve size. All the soil passing the 364 

narrowest sieve was kept. All the soil initially contained in a sampler was then oven-dried at 105 °C 365 

for 24 hours to determine bulk density, ρb, and thus PSD. Total porosity was calculated from the 366 

measured bulk density assuming that particle density was 2.65 g/cm3. PSD curves were obtained by 367 

using the hydrometer method combined with sieve analysis to characterize the range of particle 368 
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diameter from 2 up to 2000 m (Gee and Or, 2002). The dry soil was lightly crushed on a tray using 369 

a rolling pin to break up clods until the soil passed through a 2 mm sieve. Fifty grams of the sieved 370 

soil were pre-treated with 30% (w/v) hydrogen peroxide until no reaction was revealed to remove 371 

organic matter. After washing and air-drying of residual soil, chemical dispersion of soil particles 372 

was achieved by mixing the soil sample with a 5 g L-1 sodium-hexametaphosphate (HMP) solution 373 

adjusted to pH 8.5, allowing the soil to soak overnight. Physical dispersion was obtained with 374 

mechanical mixing with an electric stirrer working at 10000 rpm. Then soil samples were 375 

transferred to 1000-mL sedimentation cylinders. After thorough mixing of soil suspension, the 376 

suspension density was measured and recorded after 3, 10, 30, 60, 210, 1440 minutes with an 377 

ASTM 152H. The hydrometer readings were also made at the same times on a blank solution to 378 

correct for the density of HMP solution. At the end of readings, the contents of the cylinder were 379 

poured out through a 45-m sieve to retain coarser particles. The retained material was oven-dried 380 

for 24 h at 105 °C and sieved with a nest of sieves of 1000, 500, 250, 106, 53 m. The portion of 381 

sand retained on each sieve was weighed and annotated. Following the above procedure, we 382 

determined a particle size distribution curve composed by 11 experimental points for all of the soil 383 

samples. Sand, silt and clay contents were expressed as percentages by mass of the fine-earth 384 

fraction (<2 mm). According to the USDA soil classification, the texture of the soil samples in the 385 

examined dataset ranged from silty-clay-loam to sandy-loam (see figure 4). Overall, the above 386 

methods allowed 20 points to be obtained for PSDs and 10 for ASDs. 387 

 388 

Figure 4 389 

 390 

Both PSD and ASD curves were described by a parametric (van Genuchten-type) equation: 391 

𝑃 = 100 + (𝑇𝑠 − 100)(1 + (𝑇𝛼𝐷)
𝑇𝑛)−𝑇𝑚 (30) 

where P is the percentage of the particle or aggregate passing from a sieve size; D is the sieve size; 392 
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Ts, Tα, Tn and Tm are parameters similar to those of van Genuchten (1980) model, and Tm=1-1/Tn. 393 

The parameters were obtained by fitting equation (1) to the measured PSDs and ASDs (Figure 5). 394 

 395 

Figure 5 396 

 397 

The average bulk density of the single aggregates was determined using the disturbed soil samples. 398 

As with undisturbed soil samples, the soil was left to air-dry for a week. Aggregates of different 399 

sizes were then selected, whose porosity was determined by using the ethyl alcohol method 400 

proposed by Moret-Fernandez and Lopez (2019). First, the dry aggregate was weighed. Then it was 401 

immersed in ethanol in a beaker, which was covered well with biofilm to avoid ethanol evaporation. 402 

The bubbling was observed for at least 20 minutes until it stopped, indicating aggregate saturation 403 

with ethanol. After saturation, the aggregate was carefully taken from ethanol and placed on a 404 

paper filter for less than 10 seconds before measuring its new weight. At the same time, the 405 

temperature of the alcohol was measured using a mercury thermometer in order to determine the 406 

alcohol density. This process was done for several aggregates from different locations and with 407 

different sizes at room temperature set to be less than 25 °C. Thus, the volume of the pores, 𝑉𝑝,  was 408 

calculated as: 409 

𝑉𝑝 =
𝑊𝑎𝑔𝑔−𝑎𝑙 −𝑊𝑎𝑔𝑔

𝜌𝑎𝑙
 (31) 

where 𝑊𝑎𝑔𝑔−𝑎𝑙 is the weight of the aggregate after saturation with alcohol, 𝑊𝑎𝑔𝑔 is the dry weight of 410 

the aggregate, and 𝜌𝑎𝑙 is the alcohol density. The volume of the solid phase, 𝑉𝑠, in the aggregate was 411 

then calculated as: 412 

𝑉𝑠 =
𝑊𝑎𝑔𝑔

𝜌𝑠
 (32) 

where  𝜌𝑠 is the solid particle density, which can be assumed to be 2.65 g/cm3. Finally, the 413 

aggregate bulk density was calculated as follows:  414 
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𝜌𝑏,𝑎𝑔 = 𝑊𝑎𝑔𝑔 (𝑉𝑠 + 𝑉𝑝)⁄  (33) 

 415 

2.5. Direct measurement of soil hydraulic parameters  416 

Soil hydraulic parameters at each of the 90 studied sites were obtained using tension infiltrometers 417 

(Ankeny et al., 1988; Coppola et al., 2011). First, the soil surface was levelled. Then a ring was 418 

placed on the surface and a thin layer of homogeneous fossil sand was added to the soil surface to 419 

ensure good contact with the infiltrometer disc. At each site, infiltration experiments were carried 420 

out at four sequential water pressure head values (-15, -10, -5 and -1 cm). Water pressure was 421 

controlled by raising or lowering the tube in the bubble tower. A soil sample was taken before and 422 

after the infiltration process to measure the initial and final water content. 423 

The cumulative infiltration data were used as input in an inverse solution of the 3D Richards 424 

equation to obtain both the unimodal and bimodal hydraulic property parameters by a parameter 425 

estimation procedure. The van Genuchten-Mualem and Durner-Mualem models were used to 426 

describe unimodal and bimodal hydraulic properties, respectively. As for the unimodal properties, 427 

they were estimated by using DISC software (Šimůnek and van Genuchten, 1996). Inverse solution 428 

using bimodal properties was carried out by using the software HYDRUS 2D/3D (Rassam et al., 429 

2003; Šimůnek et al., 2008). In both cases, the saturated water content for each site was fixed at the 430 

total porosity, residual water content was fixed as zero, 𝜏 was fixed as 0.5, in order to minimize the 431 

number of variables to be optimized. Parameter m was assumed to be m=1-1/n for both the 432 

unimodal and the bimodal descriptions. The weight β1 in the Durner model was assumed to be 433 

equal to the fraction of macroporosity to total porosity Φ𝑆,𝑀𝐶𝑝/Φ𝑆,𝑇 . Eventually, the inverse 434 

solution would estimate the three parameters involved for the unimodal scenario (namely, α, n, and 435 

K0) and five parameters for the bimodal scenario (namely: α1, n1, α1, n1, and K0). 436 

  437 

2.6. Akaike Information Criterion (AIC) to test the bimodality of the porous medium 438 
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The goodness of fit from the inverse solution for both the unimodal and bimodal scenarios was 439 

compared in order to test the bimodality of soil pores. The root-mean-square error (RMSE) was 440 

used as a measure of the distance between the predicted and the measured infiltrated depths 441 

(equation 35). Unimodal and bimodal scenarios involve a different number of parameters. The 442 

Akaike Information Criterion (AIC) was used to balance the goodness of fit and the number of 443 

parameters involved: 444 

 445 

𝐴𝐼𝐶 = 𝑁𝑜 ln (
𝑅𝑀𝑆𝐸

𝑁𝑜
) + 2𝑘 (34) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑥 )2
𝑁𝑜
𝑖=1

𝑁𝑜
 (35) 

 446 

where No is the number of observations, k = the number of parameters + 1, xi is the variable 447 

obtained from field measurements and x̂i is the variable estimated from unimAP or bimAP. The 448 

lower the AIC, the better the fit. 449 

 450 

2.7. Fitting AP estimates to the measured hydraulic properties to calibrate parameter αAP 451 

The proposed model is physically-based with one unknown parameter (both for unimAP and 452 

bimAP), which is the scaling parameter (αAP). This parameter was estimated by fitting the unimAP 453 

and bimAP estimates to respectively the unimodal and bimodal measured water retention curves 454 

(see again the graph in figure 2). 455 

 456 

2.8. Evaluating the dependence of parameter αAP on textural and structural physical properties  457 

Multiple linear regression (MLR) was applied to relate the scaling parameter 𝛼𝐴𝑃 to texture and 458 

aggregate properties with a view to predicting 𝛼𝐴𝑃 with only physical properties available and with 459 
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no prior knowledge of the hydraulic parameters. The regression analysis included: 1) the 460 

parameters of the equations used to interpolate PSD and ASD (namely, Ts, Tn and Tα); 2) soil bulk 461 

density (ρb); 3) the fraction of the macropores from total porosity (β1). The regression model was 462 

developed by using the hydraulic parameters obtained from the field measurements.  463 

 464 

2.9. Schematic view of the approach used in the paper 465 

For easier interpretation of the results of the bimAP application, Figure 6 summarizes the steps 466 

followed in this paper to test the bimAP PTF and to compare it to the unimAP approach. On the one 467 

hand, inverse solution of tension infiltration experiments was used twice to obtain the unimodal 468 

van Genuchten (van Genuchten, 1980) and the bimodal Durner (Durner, 1994) hydraulic 469 

properties. Hereafter, they will be called the measured hydraulic properties. The Akaike 470 

Information Criterion (AIC) was used to establish the bimodality of the hydraulic properties. On the 471 

other, both the unimodal and bimodal AP approaches were used to obtain, respectively, unimAP 472 

and bimAP estimates of the WRC. These were fitted respectively to the unimodal and bimodal 473 

measured WRC to obtain the scaling parameter (αAP) for both the unimAP and bimAP approaches. 474 

Saturated hydraulic conductivity (K0) was then estimated from both unimAP and bimAP WRCs using 475 

the Kozeny-Carman equation (Carman, 1937; Kozeny, 1927), and was subsequently used to obtain 476 

K(h) curves (HCCs) using the Mualem model (Mualem, 1976; Priesack and Durner, 2006). Finally, 477 

multiple linear regression (MLR) was used to analyse the dependence of the scaling parameter, αAP, 478 

on soil physical parameters.  479 

 480 

Figure 6 481 

 482 

3. Results and Discussion 483 

3.1. Testing the bimodality of the measured hydraulic property dataset  484 
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Some results of the inverse solutions for three locations in the study area are shown in figure 7. The 485 

symbols represent the observed infiltration depths, while the solid lines represent the infiltration 486 

depths obtained from the inverse solution. Each plot on the left represents a unimodal inverse 487 

solution, whereas the corresponding right-hand plot represents the bimodal inverse solution for 488 

the same location. Figure 8 shows the results of AIC values for unimodal and bimodal inverse 489 

solutions for all 90 sites investigated. 490 

 491 

Figure 7 492 

 493 

 494 

Figure 8 495 

 496 

Looking at both the graphs in figure 7 and the AIC values in figure 8, fitting infiltrated depths by 497 

using the bimodal model frequently gives better results than the unimodal model. AIC analysis 498 

shows that the bimodal model provides better estimates in almost 73% of the locations in the study 499 

area. These results allowed us to conclude that the hydraulic property dataset is mostly bimodal 500 

and is thus appropriate for calibrating the proposed bimAP PTF. 501 

The first two columns in Table 1 show the average and the standard deviation of the parameters of 502 

the unimodal and bimodal hydraulic properties obtained from the measurements (subscript meas). 503 

It is worth noting that in the unimodal case the parameter K0 is on average higher than the bimodal 504 

K0, with also a much higher standard deviation. Moreover, the relatively high unimodal water 505 

retention parameter α would also indicate a quite low (in absolute value) air-entry pressure head, 506 

which is typical of sandy soils (which is not the case of the investigated soils). This behaviour may 507 

be ascribed to a fast infiltration rate observed during the infiltration experiments, which the 508 

unimodal model tries to capture by using relatively high values of α and K0. The variability of the 509 
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infiltration rate thus induces a high variability of the unimodal K0. By contrast, the bimodal model 510 

explicitly includes additional parameters (α1 and n1), which allow rapid infiltration to be described 511 

as a swift emptying of the structural pores without the need to increase the saturated hydraulic 512 

conductivity excessively. Actually, in the bimodal case the variability observed in the infiltration 513 

rate is now fulfilled by the relatively high standard deviation of α1 and n1, whereas the variability of 514 

the bimodal K0 remains quite limited. This should open a discussion on the real meaning of the high 515 

coefficient of variations generally found in the saturated hydraulic conductivity, especially when 516 

arising from inversion procedures, which could come partly from the inadequate model used for 517 

describing hydraulic properties in the presence of soil structure.   518 

 519 

3.2. Comparing measured hydraulic properties and unimAP and bimAP estimates  520 

The graphs in Figure 9 compare the measured WRC (solid lines - coming from the inversion of 521 

infiltration experiments) to those obtained by both the unimAP and bimAP (dashed lines) for three 522 

of the sites investigated. Figure 10 compares the corresponding HCCs. In both figures, the graphs on 523 

the left side show the comparison of unimodal measured and estimated curves, whereas those on 524 

the right compare the bimodal measured and estimated curves. All comparisons were carried out in 525 

terms of root-mean square error (RMSE). 526 

We recall that the AP estimates are obtained from the optimization of a single parameter, namely 527 

the αAP scaling parameter. Graphical results show that introducing the aggregate information in the 528 

bimAP significantly improves the ability of the approach to estimate soil water retention (with 529 

average RMSE values of 0.43 and 0.11 for unimAP and bimAP, respectively). Even more importantly, 530 

the WRC parameters obtained under the bimAP (the Durner parameters) and K0 from the Kozeny-531 

Carman model significantly improve hydraulic conductivity (with average RMSE values of 0.315 532 

and 0.28 cm/min for unimAP and bimAP, respectively) predicted by applying the Mualem model. 533 

The substantial enhancement of the K0 estimates is apparent in Figure 11, showing a comparison of 534 
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saturated hydraulic conductivity as measured and obtained by unimAP (empty triangles) and 535 

bimAP (solid triangles), with much smaller RMSE and scattering around the 1:1 line for the bimAP 536 

case (RMSE = 0.747) compared to unimAP (RMSE = 12.580).  537 

The third and fourth columns in Table 1 show the average and the standard deviation of the 538 

hydraulic property parameters obtained from the AP PTF estimates (subscript PTF). It is worth 539 

noting in the table that the unimAP is unable to obtain either the average value of the saturated 540 

hydraulic conductivity, or its variability. As discussed by Coppola et al. (2009a, 2009b), PTFs tend 541 

to flatten the variability generally found in measured hydraulic properties. This is mostly due to the 542 

information on the structure being overlooked, as well as using unimodal models to describe the 543 

hydraulic properties of structured soils, when developing PTFs. This is clearly demonstrated by the 544 

parameter values for the bimAP approach given in the table, showing that accounting explicitly for 545 

the structure in developing PTFs allows much better estimates of K0 and, importantly, its variability. 546 

The same may be said for all the parameters describing both the textural and structural parts of the 547 

water retention curve (see the average and standard deviations for n1, α2 and n2 in table 1).  548 

 549 

Figure 9 550 

 551 

 552 

Figure 10 553 

 554 

 555 

Figure 11 556 

 557 

3.3. Relationship between the scaling parameter, αAP, and soil physical properties 558 

Multiple linear regression was used to evaluate the degree of dependence of the scaling factor αAP 559 
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on soil physical parameters. This is especially important in view of using the bimAP PTF in soils 560 

where no references to measured hydraulic properties are available.  Table 2 summarizes the 561 

coefficients and the intercepts of soil physical parameters to predict αAP using MLR. The physical 562 

parameters used in the regression are: 1) the parameters of the PSD and ASD curves (see section 563 

2.4. Measurements of soil physical parameters), 2) soil bulk density, and 3) macropore fraction in the 564 

sample’s overall porosity (β1).  565 

The values in the table show a relatively strong correlation of the scaling parameter with bulk 566 

density and the slope of the PSD curve (both in unimAP and bimAP). However, when the structure is 567 

explicitly taken into account (the bimAP case), a clear correlation emerges between αAP and the 568 

aggregate parameters, namely Tα,ASD and the fraction of aggregate porosity to total porosity, β1, 569 

which cannot be detected when a unimodal approach without structure is considered.  570 

Improvement in the correlation with soil structural properties of bimAP is also apparent when 571 

plotting the αAP values obtained by the MLR against the original values of αAP for both the unimAP 572 

(white symbols) and bimAP (black symbols) approaches (see Figure 12). The RMSE is 0.418 and 573 

0.227 for unimAP and bimAP, respectively. That said, regardless of the better overall description of 574 

the curves, bimAP always appropriately captures the behaviour close to saturation, which is crucial 575 

for predicting hydraulic conductivity and hydraulic property variability. 576 

 577 

Figure 12 578 

 579 

Conclusions 580 

The main purpose of this paper was to develop a bimodal physically-based PTF to estimate soil 581 

hydraulic parameters. The proposed PTF (bimAP) is based on the principles of the Arya and Paris 582 

(1981) PTF, incorporating aggregate-size distribution to obtain bimodal soil hydraulic parameters. 583 

The proposed approach provides bimodal WRCs and HCCs starting from soil physical parameters: 584 
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PSD, ASD, sample bulk density, and single-aggregate bulk density.  585 

Overall, bimAP provides better estimates of soil hydraulic parameters and their variability 586 

compared to the unimAP PTF. K0, the whole shape of the HCC, as well as their variability, are better 587 

predicted by accounting for soil structure and bimodal porosity in the development of the PTF. In 588 

general, the bimAP approach produces hydraulic parameter estimates remaining within a more 589 

physically plausible region than in the unimAP approach. It also enhances the ability of MLR to 590 

predict the scaling parameter, αAP.  591 

Our results confirm that, in the perspective of PTF calibration for estimating K0 and, more generally, 592 

the hydraulic conductivity function, the relevant information on the bimodal character of the 593 

porous medium included in the soil water retention near saturation must be described in detail. 594 

Unfortunately, unimodal hydraulic functions are unable to describe the transition between pore 595 

systems frequently indicated by the retention data in aggregated soils. Consequently, if a unimodal 596 

water retention function is used to fit measured retention data with a bimodal behaviour and then 597 

to calibrate PTF parameters, a poor performance of the PTFs is expected when used to estimate 598 

hydraulic conductivities. 599 

From our data set, it may be observed that by introducing bimodality excellent AP estimates can be 600 

obtained for aggregated soils. Owing to the flexibility arising from the structural-matrix partition 601 

specifically built into the modified AP retention model, the bimAP estimates keep the fundamental 602 

information on soil aggregation in the measured soil water retention within the range of soil water 603 

potential near saturation, thus providing accurate predictions of pore size distribution and hence of 604 

the hydraulic conductivity curve.  605 

Of course, to be effectively and reliably applied the bimodal approaches always require that the 606 

predominant effects of the soil hydrological behaviour near saturation be supported by accurate 607 

and detailed experimental descriptions of the retention curve and hydraulic conductivity for high 608 

water contents, which would allow less uncertain identification of the processes and related 609 
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parameters involved.  610 
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Šimůnek, J., van Genuchten, M.T., Šejna M., 2008. Development and applications of the HYDRUS and 716 

STANMOD software packages and related codes. Vadose Zone J. 7(2), 587–600. 717 

https://doi.org/10.2136/vzj2007.0077 718 

Sobieraj, J.A., Elsenbeer, H., Vertessy R.A., 2001. Pedotransfer functions for estimating saturated 719 

hydraulic conductivity: implications for modeling storm flow generation. J. Hydrol. 251(3), 720 

202–220. https://doi.org/10.1016/S0022-1694(01)00469-3 721 

Sposito, G., 1998. Scale Dependence and Scale Invariance in Hydrology. Cambridge University Press, 722 

Cambridge. 723 

Tietje, O., Hennings V., 1996. Accuracy of the saturated hydraulic conductivity prediction by pedo-724 

transfer functions compared to the variability within FAO textural classes. Geoderma, 69(1), 725 



34 
 

71–84. https://doi.org/10.1016/0016-7061(95)00050-X 726 

Timlin, D.J., Ahuja, L.R., Pachepsky, Y., Williams, R.D., Gimenez, D., Rawls, W., 1999. Use of Brooks-727 

Corey parameters to improve estimates of saturated conductivity from effective porosity. Soil 728 

Sci. Soc. Am. J. 63(5), 1086–1092. https://doi.org/10.2136/sssaj1999.6351086x 729 

Van Dam, J.C., Huygen, J., Wesseling, J.G., Feddes, R.A., Kabat, P., Van Walsum, P.E., Groenendijk, P., 730 

Van Diepen, C.A., 1997. Theory Of SWAP Version 2.0; Simulation of Water Flow, Solute 731 

Transport and Plant Growth in the Soil-Water-Atmosphere-Plant Environment. Waginengen 732 

Agricultural University and DLO Winand Staring Centre, Waginengen. 733 

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of 734 

unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898. 735 

https://doi.org/10.2136/sssaj1980.03615995004400050002x 736 

van Genuchten, M.T., Nielsen, R., 1985. On describing and predicting the hydraulic properties. Ann. 737 

Geophys. 3(5), 615–628. 738 

Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G., van Genuchten, M.T., 2010. 739 

Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic 740 

properties: A review. Vadose Zone J. 9(4), 795–820. https://doi.org/10.2136/vzj2010.0045 741 

Vogel, T., Cislerova, M., 1988. On the reliability of unsaturated hydraulic conductivity calculated 742 

from the moisture retention curve. Transp. Porous Media. 3(1), 1–15. 743 

https://doi.org/10.1007/BF00222683 744 

Wilson, G. V., Jardine, P.M., Gwo, J.P., 1992. Modeling the hydraulic properties of a multiregion soil. 745 

Soil Sci. Soc. Am. J. 56(6), 1731–1737. 746 

https://doi.org/10.2136/sssaj1992.03615995005600060012x 747 

  748 



35 
 

Tables 749 

Table 1. Mean (μ) and standard deviations (σ) of measured (subscrip meas) and AP PTF (subscript 750 

PTF) hydraulic parameters obtained from unimodal and bimodal inverse models. The scaling 751 

parameter, αAP, is also reported only for the PTF case 752 

Parameter μmeas σmeas μPTF σPTF Scenario 

α 0.137 0.129 0.192 0.439 

Unimodal 
n 1.476 0.431 1.273 0.187 

K0 (cm/min) 2.367 15.062 0.171 0.193 

αAP - - 1.269 0.264 

α1 0.590 1.055 2.249 2.204 

Bimodal 

n1 2.569 2.160 3.127 2.522 

α2 0.049 0.042 0.042 0.126 

n2 1.496 0.423 1.539 0.126 

K0 (cm/min) 0.266 0.915 0.206 0.434 

αAP - - 1.156 0.311 

 753 

  754 
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Table 2: Results of MLR application to predict the αAP parameter from soil physical parameters. 755 

Subscript PSD and ASD stand for particle and aggregate size distribution, respectively 756 

MLR Parameter Coefficients Lower 95% Upper 95% Scenario 

Intercept 9.939 3.031 16.847 

Unimodal 

ρb (g/cm3) 0.480 -0.104 1.063 

𝑇𝑠,𝑃𝑆𝐷 0.007 -0.043 0.057 

𝑇𝛼,𝑃𝑆𝐷 0.002 -0.003 0.007 

𝑇𝑛,𝑃𝑆𝐷 -11.835 -20.893 -2.777 

Intercept -5.398 -15.139 3.105 

Bimodal 

ρb (g/cm3) 0.684 -0.056 1.424 

𝑇𝑠,𝑃𝑆𝐷 -0.028 -0.107 0.051 

𝑇𝛼,𝑃𝑆𝐷 0.000 -0.006 0.007 

𝑇𝑛,𝑃𝑆𝐷 9.902 -0.751 20.554 

𝑇𝑠,𝐴𝑆𝐷 -0.009 -0.034 0.016 

𝑇𝛼,𝐴𝑆𝐷 0.934 -1.430 3.298 

𝑇𝑛,𝐴𝑆𝐷 0.006 -0.025 0.037 

β1 -0.619 -1.552 2.790 

 757 



Abstract: The main purpose of this paper is to develop a bimodal pedotransfer function to obtain 

soil water retention (WRC) and hydraulic conductivity (HCC) curves. The proposed pedo-transfer 

function (PTF) extends the Arya and Paris (AP) approach, which is based on particle size 

distribution (PSD), by incorporating aggregate-size distribution (ASD) into the PTF to obtain the 

bimodal WRC. A bimodal porosity approach was developed to quantify the fraction of each of the 

porous systems (matrix and macropores) in overall soil porosity. Saturated hydraulic conductivity, 

K0, was obtained from WRC using the Kozeny-Carman equation, whose parameters were inferred 

from the behaviour of the bimodal WRC close to saturation. Finally, the Mualem model was applied 

to obtain the HCC. In order to calibrate the PTF, measured soil physical and hydraulic properties 

data were used, coming from field infiltration experiments from an irrigation sector of 140 ha area 

in the “Sinistra Ofanto” irrigation system in Apulia, southern Italy. The infiltration data were fitted 

by using both bimodal and unimodal hydraulic properties by an inverse solution of the Richards 

equation. The bimodal “measured” hydraulic properties were then used to calibrate the scaling 

parameter (αAP) of the proposed bimodal AP (bimAP) PTF. Similarly, for the sake of comparison 

with the bimodal results, the unimodal hydraulic properties were used to calibrate the αAP of the 

classical unimodal AP (unimAP) PTF. Compared to the unimAP PTF, the proposed bimAP 

significantly improves the predictions of the mean WRC parameters and K0, as well as the 

prediction of the shape of the whole HCC. Moreover, compared to the unimodal approach, it also 

allows keeping the hydraulic parameters’ spatial variability observed in the calibration dataset. 

Multiple linear regression (MLR) was also applied to analyse the sensitivity of the bimodal αAP 

parameter to textural and structural features, confirming significant predictive effects of soil 

structure.  
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Figure 1. Schematic view of an undisturbed sample consisting: a) only of aggregates, without 

particle inclusions in the interspace among the aggregates; b) of aggregates with particle inclusions 

(orange circles) in the interspace among the aggregates 

Figure 2. The bimAP WRC (symbols) and the  measured bimodal WRC (solid line). The structural 

and textural parts of the WRC are clearly visible in both the curves. The two horizontal dashed lines 

indicate the porosity of the structural and textural regions of the bimAP WRC 

Figure 3. The study area, the sector 6 of the district 10 in “Sinistra Ofanto” irrigation system 

Figure 4. USDA textures of the 90 soil samples considered in this paper 

Figure 5. Measured and fitted PSDs and ASDs for 7 of the samples used in the study. The divide 

between PSDs and ASDs is at 1 mm size. The symbols represent the measured data while the curves 

represent the curves fitted to equation (30). 

Figure 6. Schematic view of steps followed to develop bimAP WRCs, HCCs, and predict bimAP scaling 

parameters (αAP) 

Figure 7. Inverse solution results for three 3 locations in the study area. The symbols and solid lines 

represent the observed infiltration depths and the infiltration depths obtained from the inverse 

solution using DISC for the unimodal case (plots on the left) and HYDRUS 3D for the bimodal case 

(plots on the rigth) 

Figure 8. Akaike’s Information Criterion (AIC) value resulting from fitting measured infiltrated 

depths to Richard’s infiltration model using the unimodal van Genuchten model (blank bars) and the 

bimodal Durner model (black bars) in all the ninety sites. 

Figure 9. Comparison of the measured WRCs (solid lines - coming from the inversion of infiltration 

Figure captions



experiments) to those obtained by both the unimAP and the bimAP (dashed lines) for three of the 

sites investigated. The graphs on the left side compare unimodal measured and estimated WRCs, 

those on the right side compare bimodal measured and estimated WRCs.   

Figure 10. Comparison of the measured HCCs (solid lines - coming from the inversion of infiltration 

experiments) to those obtained by both the unimAP and the bimAP (dashed lines) for three of the 

sites investigated. The graphs on the left side compare unimodal measured and estimated HCCs, 

those on the right side compare bimodal measured and estimated HCCs.   

Figure 11. K0 obtained from bimAP and unimAP plotted against K0 obtained from bimodal and 

unimodal inverse solutions respectively. The empty triangles represent the unimodal scenario and 

solid triangles represent the bimodal scenario. The solid line is a 1:1 line. 

Figure 12. The αAP values obtained by the MLR against the original values of αAP for both the unimAP 

(white symbols) and bimAP (black symbols) approaches.  

 



Table 1. Mean (μ) and standard deviations (σ) of measured (subscrip meas) and AP PTF (subscript 

PTF) hydraulic parameters obtained from unimodal and bimodal inverse models. The scaling 

parameter, αAP, is also reported only for the PTF case 

Parameter μmeas σmeas μPTF σPTF Scenario 

α 0.137 0.129 0.192 0.439 

Unimodal 
n 1.476 0.431 1.273 0.187 

K0 (cm/min) 2.367 15.062 0.171 0.193 

αAP - - 1.269 0.264 

α1 0.590 1.055 2.249 2.204 

Bimodal 

n1 2.569 2.160 3.127 2.522 

α2 0.049 0.042 0.042 0.126 

n2 1.496 0.423 1.539 0.126 

K0 (cm/min) 0.266 0.915 0.206 0.434 

αAP - - 1.156 0.311 

 

Table 1 Click here to access/download;Table;Table 1.docx

https://www.editorialmanager.com/hydrol/download.aspx?id=1962797&guid=8e847760-8f55-464c-b581-c74985714837&scheme=1
https://www.editorialmanager.com/hydrol/download.aspx?id=1962797&guid=8e847760-8f55-464c-b581-c74985714837&scheme=1


Table 1: Results of MLR application to predict the αAP parameter from soil physical parameters. 

Subscript PSD and ASD stand for particle and aggregate size distribution, respectively 

MLR Parameter Coefficients Lower 95% Upper 95% Scenario 

Intercept 9.939 3.031 16.847 

Unimodal 

ρb (g/cm3) 0.480 -0.104 1.063 

𝑇𝑠,𝑃𝑆𝐷 0.007 -0.043 0.057 

𝑇𝛼,𝑃𝑆𝐷 0.002 -0.003 0.007 

𝑇𝑛,𝑃𝑆𝐷 -11.835 -20.893 -2.777 

Intercept -5.398 -15.139 3.105 

Bimodal 

ρb (g/cm3) 0.684 -0.056 1.424 

𝑇𝑠,𝑃𝑆𝐷 -0.028 -0.107 0.051 

𝑇𝛼,𝑃𝑆𝐷 0.000 -0.006 0.007 

𝑇𝑛,𝑃𝑆𝐷 9.902 -0.751 20.554 

𝑇𝑠,𝐴𝑆𝐷 -0.009 -0.034 0.016 

𝑇𝛼,𝐴𝑆𝐷 0.934 -1.430 3.298 

𝑇𝑛,𝐴𝑆𝐷 0.006 -0.025 0.037 

β1 -0.619 -1.552 2.790 

 

Table 2 Click here to access/download;Table;Table 2.docx

https://www.editorialmanager.com/hydrol/download.aspx?id=1962798&guid=dd75ad3d-b9c9-4e98-9b18-c1994613fc34&scheme=1
https://www.editorialmanager.com/hydrol/download.aspx?id=1962798&guid=dd75ad3d-b9c9-4e98-9b18-c1994613fc34&scheme=1

