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Transformation design of in-plane elastic cylindrical

cloaks, concentrators and lenses

Michele Brun1, Sébastien Guenneau2

Abstract

We analyse the elastic properties of a class of cylindrical cloaks deduced from

linear geometric transforms x → x′ in the framework of the Milton-Briane-

Willis cloaking theory [New Journal of Physics 8, 248, 2006]. More precisely, we

assume that the mapping between displacement fields u(x) → u′(x′) is such that

u′(x′) = A−tu(x), where A is either the transformation gradient Fij = ∂x′

i/∂xj

or the second order identity tensor I. The nature of the cloaks under review

can be three-fold: some of them are neutral for a source located a couple of

wavelengths away; others lead to either a mirage effect or a field confinement

when the source is located inside the concealment region or within their coated

region (some act as elastic concentrators squeezing the wavelength of a pressure

or shear polarized incident plane wave in their core); the last category of cloaks is

classified as an elastic counterpart of electromagnetic perfect cylindrical lenses.

The former two categories require either rank-4 elastic tensor and rank-2 density

tensor and additional rank-3 and 2 positive definite tensors (A = F) or a rank-4

elasticity tensor and a scalar density (A = I) with spatially varying positive

values. However, the latter example further requires that all rank-4, 3 and 2

tensors be negative definite (A = F) or that the elasticity tensor be negative

definite (and non fully symmetric) as well as a negative scalar density (A =

I). We provide some illustrative numerical examples with the Finite Element

package Comsol Multiphysics when A is the identity.
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1. Introduction

There has been a growing interest over the past years in the analysis of

elastic waves in thin plates in the metamaterial community with the theoretical

proposal [1, 2], and its subsequent experimental validation [3, 4] of a broadband

cloak for flexural waves. Square [5] and diamond [6] cloaks are based on an5

improved transformed plate model, while form-invariance of the transformed

equations in the framework of pre-stressed anisotropic plates is analized in [7,

8, 9].

There is currently a keen activity in transformation optics, whereby trans-

formation based solutions to the Maxwell equations expressed in curvilinear10

coordinate systems travel along geodesics rather than in straight lines [10]. The

fact that light follows shortest trajectories, the physical principle behind trans-

formation optics, was formulated by de Fermat back in 1662. This minimization

principle is applicable to ray optics, when the wavelength is much smaller than

the size of the diffraction object. Leonhardt has shown in 2006 [11] that this15

allows for instance the design of invisibility cloaks using conformal mappings.

Pendry, Schurig and Smith simultaneously reported that the same principle ap-

plies to electromagnetic waves, i.e. when the wavelength is in resonance with

the scattering object, by creating a hole in the curved space [12]. Interestingly,

the mathematicians Greenleaf, Lassas and Uhlmann proposed an earlier route20

to invisibility using an inverse problem approach in 2003 [13], and together with

Kurylev have been able since then to bridge the cloaking theory with Einstein

theory of relativity, thereby suggesting possible avenues towards electromagnetic

wormholes [14, 15]. Leonhardt and Philbin have further proposed an optical fi-

bre experiment [16] for an analogue of Hawking’s famous event horizon in his25

theory of black holes [17]. It seems therefore fair to say that transformation op-

tics offers a unique laboratory for thought experiments, leading to a plethora of

2



electromagnetic paradigms. However, this would remain some academic curios-

ity without the practical side effect since the advent of so-called metamaterials,

first introduced by Pendry in 1999 to obtain artificial magnetism in locally res-30

onant periodic structures[18].

The first realization of an electromagnetic invisibility cloak [19] is a meta-

material consisting of concentric arrays of split-ring resonators. This structured

material effectively maps a concealment region into a surrounding shell thanks

to its strongly anisotropic effective permittivity and permeability which further35

fulfil some impedance matching with the surrounding vacuum. The cloak thus

neither scatter waves nor induces a shadow in the transmitted field. Split ring

resonators enable to meet among others the prerequisite artificial magnetism

property, otherwise unobtainable with materials at hand [18]. This locally reso-

nant micro-structured cloak was shown to conceal a copper cylinder around 8.540

GHz, as predicted by numerical simulations [19].

The effectiveness of the transformation based invisibility cloak was demon-

strated theoretically by Leonhardt [11] solving the Helmholtz equation. Note

that this equation is not only valid to compute ray trajectories (geodesics) in the

geometrical optic limit, but also for matter waves in the quantum theory frame-45

work thanks to some mathematical correspondences between the Helmholtz and

Schrödinger equations. Zhang et al. used this analogy to propose a quantum

cloak based upon ultracold atoms within an optical lattice [20]. Greenleaf et

al. subsequently discussed resonances (so-called trapped modes) occurring at a

countable set of discrete frequencies inside the quantum cloak, using a spectral50

theory approach [21].

Using analogies between the Helmholtz and the Maxwell’s equations, Cum-

mer and Schurig demonstrated that pressure acoustic waves propagating in a

fluid also undergo the same geometric transform in 2D [22]. Chen and Chan fur-

ther extended this model to 3D acoustic cloaks [23], followed by an independent55

derivation of the acoustic cloak parameters in [24, 25]. Such meta-fluids require

an effective anisotropic mass density as in the model of Torrent and Sanchez-

Dehesa [26]. However, an acoustic cloak for linear surface water waves studied
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experimentally and theoretically in [27], only involves an effective anisotropic

shear viscosity.60

Nevertheless, transformation based invisibility cloaks cannot be applied in

general to elastodynamic waves in structural mechanics as there is a lack of one-

to-one correspondence between the equations of elasticity and the Maxwell’s

equations [28]. Bigoni et al. actually studied such neutral inclusions in the

elastostatic context using asymptotic and computational methods in the case of65

anti-plane shear and in-plane coupled pressure and shear polarizations [29], but

when one moves to the area of elastodynamics, geometrical transforms become

less tractable and neutrality breaks down: there are no conformal maps available

in that case, and one has to solve inherently coupled tensor equations.

More precisely, Milton, Briane and Willis have actually shown that there is70

no symmetric rank-4 elasticity tensor describing the heterogeneous anisotropic

medium required for an elastodynamic cloak in the context of Cauchy elasticity

[28]. However, so-called Willis’s equations, discovered by the British applied

mathematician John Willis in the early 80’s [30, 31], offer a new paradigm for

elastodynamic cloaking, as they allow for introduction of additional rank-3 and75

rank-2 tensors in the equations of motion that make cloaking possible.

Nevertheless, Brun, Guenneau and Movchan have shown [32] that it is pos-

sible to design an elastic cloak without invoking Willis’s equations for in-plane

coupled shear and pressure waves with a metamaterial described by a rank-4

elasticity tensor preserving the main symmetries, as well as a scalar density.80

Importantly, both elasticity tensor and density are inhomogeneous, and, at the

inner boundary of the cloak, Cθθθθ is singular while density ρ′ vanishes [32].

Some designs based on a homogenization approach for polar lattices has been

proposed by Nassar, Chen and Huang [33] and Garau et al. [34]. Achaoui et

al. have proposed an alternative design making use of elastic swiss-rolls [35].85

Diatta and Guenneau [36] have shown that a spherical elastodynamic cloak can

be designed using the same route as in [32], but the corresponding metamaterial

design remains an open problem. There is an alternative, pre-stress, route to

elastic cloaking proposed by Norris and Parnell that greatly relaxes constraints
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on material properties compared to the previous routes [37, 38, 39].90

In the present article, we further investigate cylindrical cloaks for in-plane

elastic waves using a radially symmetric linear geometric transform which de-

pends upon a parameter. Depending upon the value of the parameter, the

transform is applied to the design of neutral (invisibility) cloaks, elastic con-

centrators or cylindrical lenses. We discuss their underlying mechanism using95

a finite element approach which is adequate to solve the Navier equations in

anisotropic heterogeneous media.

2. Governing equations and elastic properties of cloaks

2.1. The equations of motion

The propagation of in-plane elastic waves is governed by the Navier equa-

tions. Assuming time harmonic exp(−iωt) dependence, with ω as the wave

frequency, allows us to work directly in the spectral domain. Such dependence

is assumed henceforth and suppressed, leading to

∇ ·C : ∇u+ ρω2u+ b = 0 , (1)

where, considering cylindrical coordinates (r, θ), u = (ur, uθ) is the in-plane100

displacement, ρ the density and Cijkl (i, j, k, l = r, θ) the fourth-order elasticity

tensor of the (possibly heterogeneous anisotropic) elastic medium. In eqn. (1)

b is the body force.

2.2. The transformed equations of motion

Let us now consider the radial linear geometric transform (r, θ) → (r′, θ′),

with θ′ = θ, shown in Fig. 1

r′=



















[(1+α)r1−αr0]
r
r0

for r′ ≤ r′0 (domain A),

(1+α)r1−αr for r′0 ≤r′≤ r′1 (domain B),

r for r′ ≥ r′1 (domain C),

(2)

where α = −(r′1 − r′0)/(r1 − r0) is a real parameter and r′0 = (1 + α)r1 − α r0,105

r′1 = r1. The transformation gradient is F = (dr′/dr)Ir + (r′/r)I⊥ where
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Ir = er ⊗ er is the second-order projection tensor along the radial direction

identified by the unit vector er, and I⊥ = I − Ir, with I second-order identity

tensor. Furthermore, J = detF is the Jacobian of the transformation.

Design of in-plane transformation-based elastic cloaks was discussed in [32]110

when α = −1 + r′0/r
′

1 (r0 = 0): in that case, (2) simplifies into the geometric

transform for an invisibility cloak r′ = r′0 +
r′
1
−r′

0

r′
1

r in the domain (B) [12, 13],

where r′0 and r′1, respectively, denote the inner and outer radii of the circular

cloak. However, other values of the parameter α lead to equally interesting

cloaks, such as neutral concentrators, first studied in the context of electromag-115

netism [40], and we would like to discuss these in the sequel.

We now need to consider two cases for the transformed equations of motion.

2.2.1. Gauge transform u′(r′, θ′) = u(r, θ)

By application of transformation (2) with the Gauge u′(r′, θ′) = u(r, θ) the

Navier eqns.(1) are mapped into the equations

∇′ ·C′ : ∇′u′ + ρ′ω2u′ + b′ = 0 , (3)

where u′(r′, θ′) and b′(r′, θ′) are the transformed displacement and body force,

respectively, and ∇′ = Ft∇ the gradient operator in the transformed coordi-

nates. In particular, we stress that we assume an identity gauge transformation[32,

41], i.e. u′(r′, θ′) = u(r, θ). The stretched density is the scalar field

ρ′ =



































[

(1+α)r′1 − r′0
αr′0

]2

ρ in A,

r′ − (1+α)r′1
α2r′

ρ in B,

ρ in C,

(4)

homogeneous in A and C. The transformed linear elasticity tensor has compo-

nents

C ′

ijkl = J−1CmnopFimFkoδjnδlp , (5)

where (i, j, k, l = r′, θ′), (m,n, o, p = r, θ), δjn is the Kronecker delta and the

usual summation convention over repeated indices is used. In particular, if
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Figure 1: Geometric transform of eqn. (2). (a) Representation of the transform r → r′ for

different values of the parameter α. The domains A (r′ ≤ r′
0
), B (r′

0
≤ r′ ≤ r′

1
) and C (r′ ≥ r′

1
)

are indicated. (b) Transformation of the geometry for α > 0, α < 1 and α = −1 + r′
0
/r′

1

(perfect cloak).
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before transformation the material is isotropic, i.e. Cijkl = λδijδkl + µ(δikδjl +

δilδjk) (i, j, k, l = r, θ), with λ and µ the Lamé moduli, the transformed elasticity

tensor C′ has non-zero cylindrical components

C ′

r′r′r′r′=
r′−(1+α)r1

r′ (λ+2µ), C ′

θ′θ′θ′θ′ = r′

r′−(1+α)r1
(λ+2µ),

C ′

r′r′θ′θ′ = C ′

θ′θ′r′r′ = λ, C ′

r′θ′θ′r′ = C ′

θ′r′r′θ′ = µ,

C ′

r′θ′r′θ′ =
r′−(1+α)r1

r′ µ, C ′

θ′r′θ′r′ =
r′

r′−(1+α)r1
µ ,

(6)

in B and C′ = C in A and C.

The transformation and the corresponding transformed density ρ′ and elas-120

ticity tensor C′ are broadband, they do not depend on the applied frequency

ω.

2.2.2. Gauge transform u′(r′, θ′) = F−tu(r, θ)

As noted in [28], by application of transformation (2) with the Gauge u′(r′, θ′) =

F−tu(r, θ), where F is the transformation gradient, the Navier eqns.(1) are

mapped into the equations

∇′ ·
(

C′′ : ∇′u′ +D′ · u′

)

+ S′ : ∇′u′ + ω2ρ′u′ + b′ = 0 . (7)

The transformed rank-4 elasticity tensor C′′ has components

C ′′

ijkl = J−1FimFjnCmnopFkoFlp , (8)

where (i, j, k, l = r′, θ′), (m,n, o, p = r, θ).

We note that C′′ in (8) has all the symmetries, unlike C′ in (6), which has125

the major but not the minor symmetries.

The rank-3 tensors D′ and S′ in (8) have elements

D′

ijk = J−1FimFjnCmnop
∂2x′

k

∂xo∂xp
= D′

jik , (9)

and

S′

ijk = J−1 ∂2x′

i

∂xm∂xn
CmnopFjoFkp = S′

jik . (10)

Finally, the transformed density ρ′ in (8) is matrix valued

ρ′ij = J−1ρFimFjm + J−1 ∂2x′

i

∂xm∂xn
Cmnop

∂2x′

j

∂xo∂xp
= ρ′ji . (11)
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These expressions were first derived in [28].

Now, if before transformation the material is isotropic, then the transformed

elasticity tensor C′′ has non-zero cylindrical components

C ′′

r′r′r′r′=
r′−(1+α)r1
r′(r1−r0)2

(λ+2µ),

C ′′

θ′θ′θ′θ′ = r′3

(r1−r0)2(r′−(1+α)r1)3
(λ+2µ),

C ′′

r′r′θ′θ′ = C ′′

θ′θ′r′r′ =
r′

(r1−r0)2(r′−(1+α)r1)
λ,

C ′′

r′θ′θ′r′ = C ′

θ′r′r′θ′ = C ′′

r′θ′r′θ′ = C ′′

θ′r′θ′r′ =
r′

(r1−r0)2(r′−(1+α)r1)
µ ,

(12)

in B and C′′ = C in A and C.

On the other hand, the rank-3 tensors D′ and S′ have non-zero cylindrical

components

D′

r′r′r′=
1

(r1−r0)2(r′−(1+α)r1)(r′+r1r0/(r1−r0))
λ = −S′

r′r′r′

D′

r′θ′θ′ = D′

θ′r′θ′ = 2 1
(r1−r0)2(r′−(1+α)r1)2

µ = −S′

θ′θ′r′ = −S′

θ′r′θ′

D′

θ′θ′r′ =
r′+r1r0/(r1−r0)

(r1−r0)2(r′−(1+α)r1)3
(2µ+ λ) = −S′

r′θ′θ′ .

(13)

Similar expressions can be derived for the transformed density. Expressions

in (12) and 13) are more intricate than those in (6); thus, in the sequel, we focus130

on the transformed equations of motion (3).

2.3. Interface conditions for Gauge u′(r′, θ′) = u(r, θ)

Perfect cloaking and perfect concentrator require additional conditions on

displacements and tractions at the interfaces between the domains with different

material properties introduced by the transformation (2). In the transformed

problem (3) there are two interfaces, between domains A and B, at r′ = r′0

and r = r0, and at the cloak’s outer boundary, between domains B and C,

at r′ = r = r1. Transformed equations (3) together with the assumption

u′(r′, θ′) = u(r, θ) assure that displacements and tractions in the inhomoge-

neous transformed domain at a point (r′, θ′) coincide with displacements and

tractions at the corresponding point (r, θ) in the original homogeneous problem

(1) where no interfaces between different materials are present. In particular,
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if we introduce the Cauchy stress tensors σ′ = C′ :∇′u′ and σ = C :∇u for

the transformed and original problem, respectively, it is verified the following

equality between tractions

σ′ · e′r = σ · er, (14)

at r′ = r′0, r = r0 and at r′ = r = r1. Equality (14) can be easily demonstrated

by using Nanson’s formula [42] e′r = JF−ter for the radial unit vectors.

Note that the matching is independent on the particular value assumed by135

α.

2.4. Perfect cloak. Singularity at the inner interface

We note that for the perfect cloak [32], i.e. r0 = 0 and α = −1+r′0/r
′

1, a point

at r = 0 is mapped into a disk of radius r′0. This is a singular transformation and,

at the cloak inner boundary, r′ − (1+α)r1 → 0. Therefore, at r′ = r′0, from (4)140

and (6) one can see that ρ′ → 0, C ′

r′r′r′r′ , C
′

r′θ′r′θ′ → 0, while C ′

θ′θ′θ′θ′ , C ′

θ′r′θ′r′ →

∞.

Similarly, at r′ = r′0, from (12) and (13) one can see that C ′′

r′r′r′r′ → 0,

while C ′′

θ′θ′θ′θ′ , C ′′

r′r′θ′θ′ = C ′′

θ′θ′r′r′ , C
′′

r′θ′θ′r′ = C ′

θ′r′r′θ′ = C ′′

r′θ′r′θ′ = C ′′

θ′r′θ′r′ → ∞.

Moreover, one notes that the rate of divergence is faster for C′′ than C′, and145

thus anisotropy is even more extreme in the neighborhood of the inner boundary

for C′′. All expressions in (13) diverge when r′ − (1 + α)r1 → 0.

The required extreme anisotropy physically means that pressure and shear

waves propagate with an infinite velocity in the azimuthal θ′-direction and zero

velocity in the radial r′-direction along the inner boundary, which results in150

a vanishing phase shift between a wave propagating in a homogeneous elastic

space and another one propagating around the coated region.

Clearly the presence of unbounded physical properties poses limitations on

possible realizations and numerical implementation of the model; regularization

techniques have been proposed introducing the concept of near cloak [43, 44, 45],155

but the realization of such elastodynamic cloaks remains a challenge.
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2.5. General transformation

We now wish to extend first the proposal of Rahm et al. [40] of an omni-

directional electromagnetic concentrator to the elastic setting and second to

consider a more general transformation including folded transformed geometries,160

as proposed for quasi-static equations of electromagnetism by Milton et al. [46].

We recall that the transformation (2) compresses/expands a disc with radius r0

at the expense of an expansion/compression of the annulus between r0 and r1.

The inner disk is expanded for −1 < α < −1 + r′0/r
′

1 with the limiting cases

α = −1 corresponding to an identity (r′0 = r0) and α = −1 + r′0/r
′

1 to perfect165

cloaking. On the contrary the disk is compressed, namely r′0 > r0, for α < −1

and α > 0. Additionally, when α > 0, r0 > r1 and a folding of the original

geometry is obtained.

The material remains homogeneous and isotropic in the inner disk A where

only the density is changed. In the annulus region B the material is hetero-170

geneous and elastically anisotropic. Consistently with Brun et al. [32] and

differently from Milton et al. [28] the density remains a scalar field (see also

[41]). We stress that the heterogeneity is smoothly distributed and the material

is functionally graded with the absence of any jump in the material properties

leading to possible scattering effects. As detailed above, the interface conditions175

are automatically satisfied and do not introduce any scattering.

It is important to note that, excluding the perfect cloaking case, for bounded

values of α all the elastic rigidities and the density are bounded leading to

possible physical and numerical implementation of the metamaterial structure.

2.6. The radial field concentrator. Unbounded α180

The limiting cases α → ±∞, where r0 = r1, correspond asymptotically to

the radial transformation

r′ =



















r
r1

in A,

r1 in B,

r in C.

(15)
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In such a case in the annulus region B C ′

θ′θ′θ′θ′ , C ′

θ′r′θ′r′ → ∞, ρ′ → ∞ and

all the other elastic rigidities components are unchanged. In such material,

independently on the external field impinging the metamaterial region r′ ≤ r′1,

the elastic fields in B are radially independent and depend only on the azimuthal

coordinate θ′. However, the harmonic behavior cannot be reached in a finite185

time after the transient regime since the density ρ′ is unbounded.

3. Numerical results and discussion

In this section, we report the finite element computations performed in the

COMSOL multiphysics package. Normalized material parameters are used. A

cloak of density ρ′ (4) and elasticity tensor C′ (5,6) is embedded in an infinite190

isotropic elastic material with normalized Lamé moduli λ = 2.3 (GPa) and

µ = 1 (GPa), that corresponds to a Poisson ratio ν = 0.3485 and a Young’s to

shear modulus ratio E/µ = 2.6966, and mass density ρ = 1 kg/m3. The cloak

has inner and outer radii r′0 = 0.2 (m) and r′1 = 0.4 (m), respectively. The

disc inside the cloak consists of the same elastic material as the outer medium195

but different density. We further consider a harmonic unit concentrated force

applied either in the direction x1 or x2 which vibrates with a normalized angular

wave frequency ωd/cs = 40, where cs is the shear wavespeed (m/s) and d is a

unit length (m). This force is sometimes located outside the cloak (cf. Fig.

2-4), sometimes inside the coating (cf. Fig. 5) or within the central disc (cf.200

Fig. 6), depending upon whether we are looking for some neutrality feature,

lensing/mirage effect or some localization.

Before we start looking at the cloak’s features depending upon the ranges

of values of the parameter α, we briefly discuss the implementation of elastic

perfectly matched layers (PMLs), in the framework of transformation elasticity.205

3.1. Implementation of elastic cylindrical PMLs

A perfectly matched layer has been implemented in order to model the infi-

nite elastic medium surrounding the cloak (cf. outer ring in Figs. 2-6); this has
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been obtained by application of the geometric transform [47],

x′′

i = (1 + a)x̂i − axi, i = 1, 2, (16)

for |xi| > |x̂i|, where a is now a complex number whose imaginary part accounts

for the decay of the elastic waves and x̂i = ±1 in Fig. 2-6. The corresponding

(complex) density ρ′′′ and elasticity tensor C′′′ are still given by (4) and (6).

The accuracy of the PMLs has been numerically validated when a = i − 1, by210

comparison with the Green’s function in homogeneous elastic space (cf. Eq. 17

and Fig. 2b, c).

We can therefore confidently carry out computations with these PMLs. We

start by the study of an invisibility cloak for in-plane elastic waves, whereby the

point source considered in [32] now lies in the close vicinity of the cloak (intense215

near field limit when the acoustic ray picture breaks down).

3.2. Neutrality for a point source outside the cloak

We report in Fig. 2 and Fig. 3 the computations for a point force applied

at a distance r = 0.42d away from the center of the cloak and close to the cloak

itself of outer radius r′1 = 0.4d. The force is applied in the horizontal direction220

in Fig. 2 and in the vertical direction in Fig. 3. In both upper panels (a), we

clearly see that both the wave patterns of the magnitude of the displacement

field are smoothly bent around the central region within the cloak (where the

magnitude is uniform).

The comparative analyses between panels (a) and (b) of Fig. 2 shows that

the wave patterns in the external homogeneous domain are not perturbed by the

presence of the inclusion and cloaking interface. This is verified quantitatively

in Fig. 2 panel (c) and in Fig. 3 panel (b) where the numerically computed

wave pattern is compared with the Green’s function in the homogeneous elastic

space

G(x)=
i

4µ

{

H
(1)
0 (ksr)I−

Q

ω2
∇∇

[

H
(1)
0 (ksr)−H

(1)
0 (kpr)

]

}

, (17)

with H
(1)
0 the Hankel function, I the second order identity tensor, ∇ the gra-225

dient operator, kp = ω/cp, ks = ω/cs, Q = (1/c2p + 1/c2s)
−1(λ + µ)/(λ + 2µ),
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Figure 2: Elastic field generated by an horizontal unit force applied in the external homogenous

region; α = −1 + r′
0
/r′

1
= −0.5, ωd/cs = 40, source x0 = (−0.42, 0)d. Magnitude u =

√

u2

1
+ u2

2
of the displacement field in the system with (a) inclusion and cloaking and (b) in

a homogenous system. (c) Comparison between the displacement magnitude u computed in

Comsol for a cloaked inclusion (black line) and the analytical Green’s function in an infinite

homogeneous linear elastic and isotropic material (gray line), see Eq. (17).
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Figure 3: Elastic field generated by a vertical unit force applied in the external homogeneous

region. α = −1 + r′
0
/r′

1
= −0.5, ωd/cs = 40, source x0 = (−0.42d, 0). (a) Magnitude u of

the displacement field; (b) Comparison between the displacement magnitude u computed in

Comsol for a cloaked inclusion (black line) and the analytical Green’s function in an infinite

homogeneous linear elastic and isotropic material (gray line).

cp =
√

(λ+ 2µ)/ρ, cs =
√

µ/ρ. The plots are reported along the horizontal

line x2 = 0 passing from the point of application of the force. The absence

of forward or backward scattering is demonstrated by the excellent agreement

between the two fields in the external homogeneous domain r > 0.4. Clearly,230

the profile is much different when the coating is removed and the inner disc is

clamped or freely vibrating. We also see that the field in the cloaking region

has the same amplitude as the one in homogeneous case, but shifted following

the transformation r′(r); in the inner disk the field is homogeneous. Finally the

effectiveness of the PML domains can also be appreciated.235
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In Fig. 4 the deformation fields are also reported for both cases, where the

force is applied in horizontal (first column) and vertical (second column) direc-

tion. In the upper (a,b) and central (c,d) panels the skew-symmetric nature of

the components ε11 and ε22 of the deformation tensor reveals the tensor nature

of the problem. The component ε12 leads to a non-intuitive pattern whereby240

fully-coupled shear and pressure components create the optical illusion of in-

terferences. Again, the effect of the cloaking is shown and also for deformation

fields waves are bent around the cloaking region without backward and forward

scattering.

3.3. Mirage effect for a point source in the coating245

In this section, we look at the case of a point force located inside the coating.

In a way similar to what was observed for an electromagnetic circular cylindri-

cal cloak [48], we observe in Fig. 5 a mirage effect: the point force seems to

radiate from a location shifted towards the inner boundary (further away from

an observer) as given by

r =
(1 + α)r1 − r′

α
, θ = θ′ , (18)

as also shown in panel (b).

Importantly, the profile of the shifted point source in homogeneous elastic

space is superimposed with that of the point source located inside the coating,

but only outside the cloak. In the invisibility region i.e. the disc at the center of

the cloak, the field is constant and this suggests that the central region behaves250

as a cavity. We study this cavity phenomenon in the next section.

The example in Fig. 5 reveals that any object located inside the coating

would appear as a different elastic material with a different shape to an observer.

3.4. Confinement for a point source in the central region

We now consider a point force inside the invisibility region. Interestingly,255

a point source located in the invisibility zone always radiates outside the cloak

as if it was located at the origin and this is quite natural as the central disc is
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Figure 4: Elastic deformation fields generated by a unit force applied in the the external

homogeneous region. α = −1 + r′
0
/r′

1
= −0.5, ωd/cs = 40, source= (−0.42, 0)d . (a), (c), (e)

Force applied in the horizontal direction x1. (b), (d), (f) Force applied in the vertical direction

x2. (a), (b) Component ε11 = ∂u1

∂x1
; (c), (d) Component ε22 = ∂u2

∂x2
; (e), (f) Component

ε12 = ε21 = 1

2
( ∂u1

∂x2
+ ∂u2

∂x1
).
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simply the image of the origin via the geometric transform (18), as shown in

Fig. 6. The fact that the central disc behaves as a closed cavity is also intuitive,

as the elasticity tensor C′ is singular on the boundary of the disc. We refer260

the reader to [21] for a discussion of almost-trapped eigenstates in a similar

configuration for matter waves.

3.5. Squeezing the wavelength with an elastic concentrator

We report the effects associated to an increase in the magnitude of the

parameter α describing the linear transformation (2). In Fig. 7 the effect265

of the cylindrical coating on the inclusion is given for a pressure plane wave

u = (A exp(ikpt), 0) propagating in the horizontal direction x1. A decrease

of α from α = −1 + r′0/r
′

1 = −0.5 introduces wave propagation within the

inclusion with progressive shorter wavelengths while the amplitude of the wave

remains unchanged. From Fig. 7 panel (d) it is evident that, when α < −1,270

the interface acts as an energy concentrator within the inclusion increasing the

energy flux. The energy crossing the inclusion region r ≤ r′0 = 0.2d equals the

energy crossing the larger region r ≤ r0, in a homogeneous material. In the

interval −1 > α > −∞, r′0 < r0 < r′1.

We also note that, when α ̸= −0.5 the transformation is regular and material275

parameters remain bounded indicating additional advantages in technological

and numerical implementations of the model. Last but not least, the field in

the external domain remains unchanged.

3.6. Folding transformation. Superconcentration of an elastic wave with a cylin-

drical lens280

We finally report in Fig. 8 an enhanced energy concentration effect obtained

from a folding transformation (α > 0). In such a case all the energy crossing

a circular region larger than the region delimited by the cloaking interface is

concentrated into the core. In Fig. 8, α = 0.94 and the radius of the circular

region in the homogenous space is 3.06 times the radius of the inner inclusion.285

Again, such an effect is obtained by an increase in the energy flux, due to
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the shrinking of the wavelength, leaving unperturbed both the wave amplitude

and the fields in the external region. At the interfaces between the core and

the shell and between the shell and the matrix, we also note perturbations of

the displacement field, associated to the anomalous resonance induced by the290

negative definite constitutive tensor C′ in the shell [46, 49, 50]. Interestingly,

space folding allows for a whole range of physical effects, such as superlensing

effect [51, 52, 53, 54, 55, 56] and external cloaking in conjunction with anamolous

resonances [57, 49, 58, 59, 46, 60].
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Figure 5: Elastic field generated by a vertical unit force applied in the cloaking region.

α = −1+ r′
0
/r′

1
= −0.5, ωd/cs = 40, source x0 = (−0.3, 0)d. (a) Magnitude u of the displace-

ment field; (b) Comparison between the displacement magnitude u computed in Comsol for a

cloaked inclusion (black line) and the analytical Green’s function in an infinite homogeneous

linear elastic and isotropic material (gray line), corresponding to a force applied to a shifted

source point x0 = (−0.2, 0)d.
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Figure 6: Elastic field generated by a vertical unit force applied in the internal inclusion. α =

−1+ r′
0
/r′

1
= −0.5, ωd/cs = 40, x0 = (−0.17, 0)d. (a) Magnitude u of the displacement field;

(b) Comparison between the displacement magnitude u computed in Comsol for a cloaked

inclusion (black line) and the analytical Green’s function in an infinite homogeneous linear

elastic and isotropic material (gray line). The sources are located at x0 = (−0.17, 0)d for the

cloaked inclusion and at x0 = (0, 0)d for the homogeneous system.
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Figure 7: Elastic field generated by a pressure plane wave u = (A exp(ikpt), 0) with ωd/cs =

60. Left column: magnitude u of the displacement field. Right column: comparison between

the displacement magnitude u computed in Comsol for a cloaked inclusion (black line) and

the pressure plane wave in an infinite homogeneous linear elastic and isotropic material (gray

line), results are plotted along an horizontal line passing from the center of the inclusion. (a)

α = −0.5, (b) α = −0.6, (c) α = −1, (d) α = −5
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Figure 8: Elastic field generated by a pressure plane wave u = (A exp(ikpt), 0) with ωd/cs = 60

and α = 0.94. (a) Magnitude u of the displacement field. (b) Displacement magnitude u

computed in Comsol for a cloaked inclusion plotted along an horizontal line passing from the

center of the inclusion.
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4. Conclusion295

We have proposed to use stretched coordinates in order to design an elas-

tic cloak bending the trajectory of in-plane coupled shear and pressure waves

around an obstacle, concentrating them in its core, or focussing them. We

investigated the transformed equations of motion for the Milton-Briane-Willis

transformation gauge u′(r′, θ′) = F−tu(r, θ) and the Brun-Guenneau-Movchan300

gauge u′(r′, θ′) = u(r, θ) (see [41]). The former leads to Willis’s equations with

more extreme anisotropic parameters in the cloak than for the latter. However,

the latter requires a transformed elasticity tensor without the minor symmetries,

which is another hurdle for a metamaterial design.

We have studied various limiting cases for the value of a parameter in the305

considered radially symmetric linear geometric transforms. These transforms

are applied to the design of neutral (invisibility) cloaks, elastic concentrators or

cylindrical lenses.

We have numerically explored all the above for the gauge u′(r′, θ′) = u(r, θ)

leading to a non-fully symmetric transformed elasticity tensor, and have notably310

shown that a source located inside the anisotropic heterogeneous elastic coating

seems to radiate from a shifted location, and can also lead to anamorphism.

We believe that our space folding based design of elastic cylindrical lenses can

lead to an in-plane counterpart of the external cylindrical cloak for anti-plane

shear waves introduced in [60] and applied periodically in [50].315

We hope our results might open new vistas in cloaking devices for elas-

todynamic waves. Whereas their governing equations do not generally retain

their form under geometric transforms, unlike for electromagnetic and acoustic

waves, one can choose specific gauges that can make the transformed equations

of motions easier to handle.320
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