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Abstract—Despite the large body of academic work on machine

learning security, little is known about the occurrence of attacks

on machine learning systems in the wild. In this paper, we

report on a quantitative study with 139 industrial practition-

ers. We analyze attack occurrence and concern and evaluate

statistical hypotheses on factors influencing threat perception

and exposure. Our results shed light on real-world attacks on

deployed machine learning. On the organizational level, while

we find no predictors for threat exposure in our sample, the

amount of implement defenses depends on exposure to threats

or expected likelihood to become a target. We also provide a

detailed analysis of practitioners’ replies on the relevance of

individual machine learning attacks, unveiling complex concerns

like unreliable decision making, business information leakage,

and bias introduction into models. Finally, we find that on the

individual level, prior knowledge about machine learning security

influences threat perception. Our work paves the way for more

research about adversarial machine learning in practice, but

yields also insights for regulation and auditing.

Index Terms—Adversarial Machine Learning, Machine Learn-

ing Security, Quantitative User Study.

I. INTRODUCTION

A large body of academic work focuses on machine learning
security or adversarial machine learning (AML) [1]–[11].
These works investigate how machine learning (ML) can be
circumvented and exploited by an attacker. For example, an
attacker can tamper with the training data, yielding a model
inferior in performance or that is sensitive to attacker specified,
small parts of the input [4]. Alternatively, the attacker slightly
alters test data to change the output of an ML model [5], [10].
In addition, an ML model may leak the used training data [12]
or can easily be copied when freely exposed [11].

Many of the settings studied in ML security can be criticized
for being rather artificial. However, already these settings are
hard to solve [4], [13]. One possible cause is that even though
the current usage of ML in security and threat modelling have
been criticised [14], [15], there is little work on ML security in
the real world. In the first work in this direction, by Kumar et
al. [16] investigated which AML threats are feared in practice
by interviewing 28 organizations whose largest concern were
poisoning attacks. Mirsky et al. [17] reported that the 22
interviewed organizations perceived 24 of 33 offensive AI
techniques as a significant threat. Moreover, Bieringer et
al. [18] found evidence for rudimentary attacks on AI in the
wild in their 15 qualitative interviews with ML practitioners.

First two authors contributed equally. K. Grosse is with the EPFL;
L. Bieringer with QuantPi; T.R. Besold with Eindhoven University of Tech-
nology; K. Krombholz with CISPA Helmholtz Center of Information Security;
and B. Biggio with the University of Cagliari.

Boenisch et al. [19] found that in their 83 participants, security
and ML security awareness of ML practitioners was overall
low. In contrast to these previous works, our sample with 139
participants is larger and more diverse. Our focus only on ML
security (not considering privacy, or offensive AI) allows us
further to study threat concern in depth, and to run statistical
tests on our participant’s replies. Finally, we are the first to
publish an estimate about ML security incidents from the real
world but not covered in media.

More specifically, to shed light on the state of AML in
practice and the factors influencing organizations’ approach
to ML security, we conduct a quantitative survey among ML
practitioners. Inspired by prior work [17], we investigate which
threats are dreaded and why. Furthermore, we control for
variables like application area [19], how long ML has been
used in production, data type, and prior knowledge [18]. All
these questions and variables form part of our anonymous
questionnaire for ML-practitioners. Our 139 participants help
us to shed light on the following topics:
AML in practice. We find that there are occurrences of AML
attacks, more specifically evasion and poisoning, in practice.
However, non-ML security threats (e.g., access control, bot-
nets, resource theft, etc.) are also prevalent and (still) seem to
pose a larger concern, together with organizational challenges,
privacy and benign ML challenges.
AML within organizations. We find that exposure to AML
threats is not related to organization size, time that ML is
used in production, or organization area. Yet, some of these
factors, together with exposure, influence strongly how many
mitigations an organization has in place. Furthermore, we
investigate why practitioners deem an AML attack as relevant,
and find a complex array of reasons, including business or
financial, even ethical concerns. When an attack is judged as
irrelevant, this is often a consequence of an application or
deployment setting that makes the attack infeasible.
AML for practitioners. We find that self reported prior
knowledge, in particular in AML, increases the concern re-
ported for individual attacks. Concerning gender, we find
that two of the five attacks tested are rated significantly less
important by women, the remaining threats are rated similarly.

Our results open the avenue of more in depth studies that
encompass application and deployment when studying vulner-
ability. Our results also shed light on the relationship between
knowledge and threat perception. Our insights are furthermore
valuable when regulating and auditing ML systems, as we a)
analyze the underlying reasons for relevance or irrelevance of
specific AML attacks and b) show that security and safety are
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conflated by our participants. The latter refer to the difference
of benign system failures (safety) and attacker induced failures
(security), as used in system analyses [20]. We finally deduce
that ML security incidents in practice are not as common as for
example non-AML security, but that monitoring ML security
might be beneficial.

II. BACKGROUND

Before we describe our questionnaire and the methodology
of our study, we would like to provide background on ML
security or AML, as we confronted participants with the most
relevant attacks discussed in AML theory [2] and practice [16].
More concretely, we focus on the six most relevant attacks
in the industrial ranking by Kumar et al. [16]. We now give
a rough overview of these attacks, and refer the interested
reader to Bieringer et al. [18] or recent surveys [2], [4]. To
ease understanding of the below attacks, we first define ML
formally. In ML, a by ! parametrized function f is optimized
during training to fit the training data X , Y . After training,
f(X,!) = Y , and we expect the classifier to generalize to
unseen test data, e.g. f(Xt,!) ⇡ Yt. We further write X

⇤

when an attacker has altered, or perturbed, the benign data X .
Poisoning. Poisoning affects, via the training data, the clas-
sifier at test time to reduce the overall performance or accu-
racy. To this end, the attacker manipulates samples X

⇤ [21],
labels Y

⇤ [22] or both before training. Poisoning defenses
are, compared to most attacks, well understood in terms of
trade-offs, for example when it comes to attack strength and
detectability [4]. We also investigate backdoors, a variant of
poisoning which affects, via the training data {X⇤

, Y
⇤}, a

specific subset of the test data {Xt, Yt} [3].
Evasion. Evasion or adversarial example affect, via the per-
turbed test data X

⇤
t , the classifier f and forces it to output

either a predefined or a wrong output for an input, hence
f(X⇤

t ,!) 6= Yt. To this end, the attacker changes the test input
of a trained classifier carefully based on the classifier [5], [10].
Most evasion defenses are caught in an arms-race [13].
Membership inference. While the previous attacks harmed
performance, this attack harms the privacy of the training
data X . More specifically, the attacker queries the model at
test time to deduce whether a point was used in training,
e.g. x 2 X [12]. Against these attacks, defenses have been
proposed [23], but they are not as well understood as poisoning
or evasion, for example.
Model stealing. Finally, in model stealing, the attacker harms
the intellectual property of the model owner by copying the
model f without consent. To perform this attack, the attacker
queries the model with the goal to use the obtained data to
steal the model [11]. For this attack as well, defenses have
been introduced [24], nut no consensus has been reached so
far on a standard defense.

Kumar et al. [16] distinguish model stealing and model
extraction, a distinction that we avoided to decrease the risk of
confusion for our participants. Beyond evidence by Bieringer
et al. [18], Lin and Biggio [25] and Kumar et al. [16], few
works have studied the relevance of these attacks in practice.

III. METHODOLOGY

Given this limited knowledge about AML in practice, we
opted to design an questionnaire study that allows to reach
many participants, yet still allows to process open text answers
concerning for example the relevance of attacks. In this
section, we describe our initial estimates on participants and
how we designed our questionnaire.

Power analysis. Before we started designing our question-
naire, we needed to know how many participants we required:
few participants would allow a longer questionnaire, more
required a shorter. Many of our research hypotheses were
testable with ordinal regression, as we planed to investigate
how ordinal factors like organization size or organization
maturity influence exposure to threats, for example. To use
this regression with a power of 0.8, a medium effect and a
significance level of 0.05, we would need, depending on the
number of predictors, between 67 (2 predictors) and 97 (6
predictors) participants. Green’s rule of thumb provides similar
results. An alternative for two nominal variables is the Mann-
Whitney-U test. This test assume as H0-hypothesis that the
two samples follow the same distribution, and is sufficiently
powerful already for small sample sizes of 20 [26].

A. Questionnaire design

Given the required sample size of roughly 100, we opted
for an anonymous survey with in total 32 questions. The
questionnaire contained open-ended questions, multiple choice
questions, checkboxes, and relevance rankings based on a
Likert scale. For checkboxes and multiple choice questions, the
order of all replies was randomized to avoid order bias [27].
Questions, descriptions as well as the wording of answer
options for multiple choice questions were based on prior
research. In the following, we detail references used for the
questionnaire along it’s three parts, (1) AML in practice, (2)
organizational background of participants, and (3) individual
background of participants. The complete questionnaire can
be found in App. A.

We decided not to pay our participants to avoid money-
driven participation. Furthermore, To not restrict our partic-
ipants to ML specifically, we used the term artificial intelli-
gence (AI) throughout the questionnaire, although our analysis
focuses on ML security.

Questionnaire–AML in practice. The first part of our ques-
tionnaire addressed security within participants’ AI workflows,
products or systems. This included an open-ended question
about the most pressing security challenges in participants’
daily work and an indication on whether they had already
experienced a circumvention of AI based workflows, products
or systems [18]. In addition, we asked participants to estimate
their risk to become a victim of attacks on their AI based
systems during the next 12 months and to provide information
about their organization’s approaches towards AI security [28].
Choice and concrete wording of measures for AI security
have been based on prior research [29], dictionaries,1 recent

1https://www.merriam-webster.com

https://www.merriam-webster.com
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regulatory approaches,2 and auditing frameworks.3 Following
Huaman et al. [28], we further inquired the relevance of the
previously discussed relevant ML attacks [2], [16]. For each
attack and a made-up sanity threat, participants were shown a
description (see App. A) to assess the attack’s relevance.
Questionnaire–organizational background. We also queried
information on participants’ organizations and their AI prac-
tices. This included basic information like the number of
employees [30] or industry area [16]. With regards to AI prac-
tices, we queried information with regards to organizations’
primary data analysis type (supervised/unsupervised learning,
reinforcement learning) and input data (images, program code,
etc.) and labels (real valued, discrete, etc). In addition, we
asked for the status of AI projects in the organization, for
example “evaluating use cases” or how many years the orga-
nization had already models in production. This is commonly
referred to as an organization’s AI maturity4. We also asked
participants for goals within their organizations ML-model
checklist [31], [32].
Questionnaire–demographics. The last part of the survey
was about the individual background of our participants. It
covered basic demographic questions, but also a description of
participants’ roles within their teams to address practitioners
with formal and instrumental knowledge [33], and to include
a broader AI audience [34]. To test for a possible relevance
of field related expertise, we also queried participants’ self-
reported knowledge in ML and asked whether they had taken
any lecture in ML, security or AML [18].

B. Pretests and recruiting

We implemented the questionnaire using Google Forms and
ran a total of four rounds of pretests once there was the initial
version of our questionnaire. The first three rounds with in
total eight participants encompassed the full questionnaire. In
the final round with three participants, we double-checked
wording of some questions that were not sufficiently clear
in the previous pretests. In this last round of feedback, no
more necessary changes for the questionnaire emerged. Once
pretests had been completed and the final questionnaire imple-
mented, we started recruiting participants in the direct network
of the first two authors of this paper. In doing so, we aimed
to enable any necessary final adjustments to the questionnaire
itself and to the way we approached participants before the
study was widely advertised on social media channels.

However, we found that direct messaging to both known and
unknown possible participants came with higher conversion
rates than general social media postings. Therefore, we joined
several online communities for ML practitioners (e.g., R-Team
for Data Analysis, Watson Developer Community, adversarial
robustness toolbox, Data.Talks.Club) to approach potential
participants via direct message on Slack. In doing so, we

2e.g. Artificial Intelligence Act by European Commission
3e.g. AI Cloud Service Compliance Criteria Catalogue by German Federal

Office for Information Security, AI Auditing Catalogue by Fraunhofer IAIS
4https://info.algorithmia.com/hubfs/2019/Whitepapers/

The-State-of-Enterprise-ML-2020/Algorithmia 2020 State of Enterprise
ML.pdf, page 8.

continuously monitored our sample with regard to represen-
tativeness to the overall target population. For example, the
initial share of female participants in our study was below
reported shares, and we therefore explicitly targeted female
communities. Our initial power analysis required more than
97 participants. Taking into account that not all participants
reply to all questions, and having reached 104 participants
after two and a half months, the authors decided to recruit
>125, yielding the eventual sample size of 139.

IV. SAMPLE AND DATA PRE-PROCESSING

We now discuss our sample encompassing the 139 par-
ticipants and the pre-processing of the free-text replies. We
first review the individual background of our participants,
and discuss gender, age, education and the professional role.
We then focus on the organizational background, and discuss
organization areas, organization location, size, and concrete AI
usage. Afterwards, we discuss the detailed procedure how we
analysed and encoded the free-text replies and the agreement
that we obtained across the two coders.

A. Sample description
A total of 139 participants filled our questionnaire, with

additional 5 participants submitting empty forms (total 144).
In addition, nine participants whom we contacted reported
to have had a look at the questionnaire but did not want to
participate as they felt they did not have enough knowledge,
had not been exposed to the topic or felt the topic was not
relevant in their area. One additional participant denied to take
part due to confidentiality reasons.
Individual background of participants. Of our 139 par-
ticipants, more than two-thirds (71.2%) were male, 14.4%
female, the remainder did not reply or did not want to disclose
their gender. Albeit the sample is largely male, the percentage
of female participants is comparable to reports studying the
larger ML practitioner population [35]. The distribution of
participants’ year of birth was mostly between 1974 and
1996 (median 1986, see Fig. 1), and is also similar [35].
Also the distribution of academic degrees, with the largest
group of master degrees (45.3%) roughly mirrors this distri-
bution [35]. Beyond general education, only few participants
self-reported none or little knowledge in ML (5.7%). Many
reported moderate (39.5%) or high knowledge (40%). More
specifically, in a question asking for ML, AML and security
knowledge, over three quarters of our participants reported ML
knowledge (82%), only a third reported to be knowledgeable
in security (34.5%) and even less in AML (28.7%). Less than
a fifth reported knowledge in all three areas (17.3%). The
most frequent combination was ML and security (30.2%),
then AML and ML (28%), then AML and security (18%).
Finally, the most frequent role in team is ML engineer, which
almost a fourth (23.7%) indicated. The two second largest
groups, both roughly one fifth, were ML researchers (20.9%)
and data scientists (20.1%). Our sample also encompasses a
few rather less technical roles, including nine domain experts
(6.5%), five auditors (3.5%), and three product owners (2%).
Roughly a fifth of the participants (18%) preferred to specify

https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
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Fig. 1: The age distribution (years of
birth) of our participants.
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Fig. 2: Grouping our participants’ orga-
nizations according to size.
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Fig. 3: Self-reported AI maturity of
participants’ organizations.

their own role, and named for example roles like “consumer”,
“technologist”, “consultant”, or “CEO”.
Organizational background of participants. These roles
were filled in organizations of overall diverse areas, with the
largest two groups being healthcare (12.9%) and IT security
(10.8%). Further areas included, but were not limited to
marketing (6.5%), computer vision (5.7%), and finance and
insurance (5%). Albeit most of the participants’ organizations
were located in US and Europe (69%), our survey covered
organizations from at least 26 countries (roughly nine out of
ten participants (87%) provided a country). More than a fifth
of organizations participating in this study had 1-49 employ-
ees (22%) while 45 (32.3%) participants were working for
organizations with more than 500 employees (see also Fig. 2),
similar to existing industry surveys in ML [35]. With regards to
the AI maturity of their organizations, 24 (17.2%) participants
stated that their organization was starting to develop models
whereas 32 (23%) reported that their organization was getting
developed models into production. Albeit 42 (36.6%) partici-
pants reported that their organization had models in production
for 1-4 years, relatively few subjects (5.7%) reported that
their organization had ML models in production for more
than 5 years (see Figure 3). Concerning the concrete usage
of ML techniques, more than half of our participants stated
they used supervised learning (56.8%). Significantly less,
about a fifth, used semi-supervised learning (19.4%), less
unsupervised learning (14.4%) and few reinforcement learning
(6.5%). Even fewer reported to work with all four categories
of learning (3%). Related to the previous question, two thirds
of our participants used categorical labels (67.6), roughly half
structured labels like bounding boxes (51%) or real valued
labels (49%). Less worked with unlabelled data (41.7%), and
almost a fifth reported to work with all kinds of labels (18%).

B. Data pre-processing

Our questionnaire encompassed several possibilities for
participants to reply with free text, for example in the question
about dreaded threats or threat relevance questions. To analyse
these replies, the first two authors of this paper applied four
rounds of open coding. In each round, each coder assigned one
or several codes to each participants statements, which were
then discussed alongside with open or arising questions. We
then performed Strauss and Corbin’s descriptive axial coding

TABLE I: Inter-coder agreement of text replies. We compute
Spearman correlation (⇤) and Cohens Kappa (†) for the most
feared threat (Q1) and the replies of high/low relevance of
the four investigated AML attacks. Total codes refers to the
maximum number of codes given from either coder.

Agree- Total # dis-
ment codes agreeing # replies

Q1 Most feared threat .96⇤ 232 37 136
high .79† 86 6 69

Q8 Poisoning low .65† 61 8 51

high .77† 67 7 54
Q10 Evasion low .69† 63 8 49

high .67† 54 8 45
Q16 Membership low .53† 47 11 45

high .62† 53 10 45
Q18 M. Stealing low .55† 47 9 40

to group our data into categories and selective coding to relate
these categories to our research questions [36]. Throughout
the coding process, we used analytic memos to keep track of
thoughts about emerging themes. The final sets of codes are
listed in App. C.

After coding, we computed annotator agreement. Given one
document with many small text fragments, we opted for the
Spearman correlation coefficient as a measure for annotator
agreement [37], [38] for the questions about most concerning
threats. This correlation coefficient, while not encompassing
random overlap, allowed us to take into account how often
each code was used within the single document. For the
relevance coding, we instead computed Cohen’s kappa [39],
as we encoded high and low relevance for each of the five
attacks separately, yielding several documents with varying
code assignments. We report the detailed agreement measures
and code numbers in Table I. We drop one attack, Q12, as it
is similar to poisoning and does not yield additional insights.
Given the semi-technical nature of our codebook, we consider
our agreement substantial. In the following, we refer to the
number of codes assigned in agreement by both coders.

V. RESULTS

We now report the results of our study by analyzing our par-
ticipants’ responses and running statistical tests. The detailed
statistical results including all test and sample statistics can be
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TABLE II: Summary of tested statistical hypothesis and find-
ings. Primary variables are in the columns, and are tested
against secondary variables in the rows. A 3denotes that the
relationship is statistically significant, if there are brackets,
some attacks are statistically significant. X, means there re-
lationship is not statistically significant and ⇤ denotes results
which are not discussed in this paper.

Estimated Threat Number of Attack
exposure exposure mitigations concern

Organizational Area X⇤ X, X⇤ (3)
AI maturity X⇤ X, 3, X⇤

Company size X⇤ X, X, X⇤

Techn./non techn. X, X, X⇤ X,
AML knowledge X, X, 3, 3,
ML knowledge X, X, X⇤ (3)

Estimated Exposure X⇤ 3, (3)
Threat Exposure X⇤ 3, X,

found in App. D. We analyze our sample on three layers that
emerge in the context of our research questions. The first one
are insights related to the occurrence of attacks in practice,
the second influential factors and risks at the organizational
respectively third at the individual level.
AML attacks in practice. We find evidence for AML cir-
cumventions (Sect. V-A1). Although some participants are
concerned about AML and name corresponding threats explic-
itly (Sect. V-A2), we also find that non-AML security (e.g.
access control, botnets, resource theft, etc), and privacy are
encountered threats and concerns. Finally, participants name
generic ML (i.e., data drift) and organizational (i.e., security
awareness) challenges.
AML within organizations. In Sect. V-B1, we find no
statistical significant predictors for threat exposure. At the
other hand, the organization area does influence risk perception
and implemented mitigation depends on exposure and concern.
We also find that the reasons for threat concern are highly
complex (Sect. V-B2): Our participants consider both a wider
range of impacts of an attack (financial or business, up to
ethics) when deciding if an attack is relevant. We find that
furthermore, when an attack is perceived as irrelevant, often
it is described as infeasible given deployment or use-case, or
usage of the model. However, in some cases, attacks are rather
seen as benign failure cases.
AML for practitioners. In Sect. V-C, we find that prior
knowledge (largely in AML, but also in ML) leads to a
higher concern about individual threats. Furthermore, gender
sometimes influences threat perception, but not consistently.

We give a summary of all statistical results in Table II.

A. AML attacks in practice

We start with the discussion of witnessed attacks and then
discuss the dreaded attacks by our participants.

1) Encountered AML threats: We first consider the esti-
mated likelihood to become victim of an attack (Q3). Less
than a fifth (17.2%) of our participants estimate the likelihood
of an AML attack within the next 12 months as high or very

high. Instead, roughly half (49.6%) estimate the likelihood
as low or very low—indicating that exposure might not be
very high. Hence, we had asked participants whether they had
encountered a circumvention of their AI based workflows or
systems (Q2). This was confirmed by less than a fifth (17.3%)
of our participants. More concretely, seven participants (5%)
witnessed one circumvention, six (4.3%) two, one (0.5%)
three, two participants (1.4%) four circumventions and eight
(5.7%) more than four. To obtain more in depth knowledge,
we asked participants to briefly describe the circumvention in
a free text field, which we now discuss.
AML in the wild. Of all replies, five (3.6%) were AML
threats. Three (2.1%) described an evasion attack. The first
reply was in relation to HR (“users spam to optimize their
strategy for job search”), the second two related to autonomous
vehicles (“autonomous vehicle image recognition errors lead-
ing to dangerous path planning”). In the case of the latter two,
participants doubted “an ’intentional’ circumvention.” Further-
more, there were two (1.4%) cases of poisoning. Whereas one
remains vague, writing about “ML systems being retrained
to provide false outputs”, the second one was very detailed,
reporting that “partner employees tasked with labeling train-
ing data feel threatened by automation, and either stall or
sabotage the labeling effort, harming the models.”
Unclear replies. Further nine replies (6.5%) contained no text,
or replies like “no details” or “brute force attacks”, that do
not allow to deduce the exact nature of the circumvention.
An additional six replies (4.3%) were data breaches. Whereas
some referred on a high level to “data privacy” or “incorrect
data access,” others were slightly more detailed: “acquiring
the data for training AI systems”). In these cases, we assume,
but cannot be sure, that they are not ML related.
Circumventions not directly related to ML. In total four
(2.8%) descriptions were not ML related security threats,
including resource theft (2, i.e., “we got hit by crypto-miners
pretty hard [...]”), man-in-the-middle attacks (1, “a man in
the middle attack between two workflows [...]”) and botnets
(1, “botnet communication”).
Attacks mentioned in relevance reasoning. We later inquired
about the relevance of specific AML attacks. In these replies,
some participants reasoned that they had witnessed the threat
already. One participant wrote for example, in the context
of poisoning, “however, something kind of like a poisoning
attack happened, but was because of an over-prevalent family
of malware that warped the model into performing worse than
the last one. This did impact the deployment, but was because
of a poorly configured filter not an attack.” Another participant
reported to “[...] [have] evidenced during a penetration test
scenario” poisoning, and evasion. Another participant reports
in the context of membership inference: “we have seen users
try to figure out what content will trigger our different abuse
and spam identification models by trying different comment
inputs and sharing these thoughts with others to help them
bypass the potential identification.”
Conclusion. There were occurrences of ML attacks in prac-
tice, namely poisoning and evasion. However, it was not
always clear whether circumventions are security or safety
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issues, in other words benign or attacker based failures. Fur-
thermore, almost a third of our participants’ replies remained
vague, not allowing to understand the exact nature of an attack.
Almost another third of replies were data breaches, privacy
leaks, or other non-AML security issues.

2) Concerns about AML: We further aimed to understand
what AML challenges practitioners face (Q1). To avoid prim-
ing, we had asked this before mentioning any specific AML
attack. Of all participants, almost all (93.5%) provided a reply,
and more than a fifth (22.9%) provided more than one concern.
In the following text, as more than one code could be assigned
to a reply and the total number of assigned codes is not equal
to the number of participants, we report no percentages.

We tagged 21 times security challenges that were directly
related to the AML, for example “data poisoning” or “under-
standing the threats and associated risks of AI (and especially
ML) - specific attack.” Several concrete AML attacks we
later queried about, including poisoning (7), evasion (3), and
model stealing (1) were named by our participants. However,
most replies did not (only) contain AML threats. A few
challenges, 10, were related to ML, for example “explainable
ML/NN” or “concept drift”. There were also 16 challenges
related to privacy. These encompassed “data protection, legal
data collection, GDPR, information security”, in other words
both general privacy (10) concerns as also the challenge to
be compliant with legislation (6). Several (20) challenges
concerned security in organizations. Corresponding replies are
for example “convincing stakeholders of the risks”, “protecting
intellectual property” or “achieving security guarantees while
reducing false-positives”. They outline that challenges in AI
can also encompass communication of risks (8), protecting in-
tellectual property (7) or trade-offs that arise when both several
factors are balances against each other (4). Furthermore, there
were 35 challenges related to non-AML security, including
“user access control”, or “open source supply chain (ie - NPM
/ Log4J vulnerabilities)”. One participant reasoned: “hard to
say but the traditional cybersecurity attacks are generally
applicable in AI and those still seem to be most prevalent.
[...] The adversarial scenarios as presented by evasion or
poisoning are not as prevalent”, thus explaining why these
replies are not about AML although we explicitly asked about
it. The largest used group of assigned codes (52) was related
to data. While some of these replies were vague (11, “data
leak”; 17, “data security”), some were related to sensitive data
(17, “PHI/HIPPA”) or challenges when sharing data (8, “the
biggest difficulty is safely sharing data with others”). In theory,
almost all AML threats can be seen as attacks through data
(through training for poisoning, through test data for evasion,
membership inference and model stealing). However, threats
caused by data could also include non-AML security, data
quality, privacy, etc. We thus leave more detailed research on
this question for future work.

Conclusion. There were few, but some concrete mentions of
AML. Although we had explicitly asked for AML, participants
also raised non-AML security and privacy concerns, reasoning
that these were more pressing than AML. Concerns also
encompassed organizational challenges related to ML itself or

risk communication or assessment. Finally, participants often
reasoned vaguely about data security, leaving open whether
they refer to data quality, privacy, or AML issues.

3) Conclusion: We find that AML threats did occur in
practice, and that some participants were explicitly concerned
about AML. At the same time, it remains sometimes (for
example in evasion) unclear whether an incident is a security
or safety issue. Furthermore, concerns encompass non-AML
security, privacy, organizational challenges and ML problems
such as dataset shift, for example.

B. AML within organizations

In this subsection, we examine AML in practice from an
organizational perspective. To this end, we first relate different
questions via statistical tests, and then analyze the arguments
about individual attack relevance from our participants.

1) Organizations approaches to ML security: We first ana-
lyze whether the organization area influences threat perception,
and then attempt (but fail) to find factors from our question-
naire that predict threat exposure. Finally, we investigate which
factors influence the implementation of mitigations.
Organization area and threat perception. We assumed that
the area an organization operates in affects threat perception.
For example healthcare is based on sensitive data, thus health-
care workers may be more concerned about related threats,
in this case membership inference. Our sample contains two
large industry groups (Q25): IT security (15 participants) and
healthcare (18 participants). We tested for both groups whether
there were threats perceived as more relevant compared to
the rest of the sample. We divided the sample into one
subgroup fulfilling the criteria and the rest of the sample,
and used a Mann-Whitney-U test to determine if concern
deviated in a statistical significant manner. For healthcare,
we investigated membership inference but found no statistical
significance (p = 0.7). In the case of security companies,
the relevance of backdoor attacks was statistically significant
(p = 0.002), as well as evasion (p = 0.02) and membership
inference (p = 0.026). Other threats did not exhibit statistical
significance.
Predicting threat exposure. When it comes to threat ex-
posure, we assumed that both the organization area plays
a role as well as the amount of exposed AI technology
of the organization and its visibility. In our questionnaire,
these were the organization area as defined in the previous
paragraph, AI maturity (Q24) and organization size (Q18). The
organization area was tested with a Mann-Whitney-U test, the
latter two with an ordinal regression model. We did not find
any statistically significant relations.
Predicting threat concern. We expected that the individual
threat concern may depend on both threat exposure (Q2) and
estimated exposure (Q3), and thus tested both with an ordinal
regression model. In terms of threat exposure, we could find
no statistical significant relationship to any attack. In case of
estimated exposure, we do find that it statistically significantly
predicts both concern in case of poisoning (p = 0.002) and
evasion (p = 0.003).
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Predicting the amount of implemented mitigations. We
asked our participants about the number of implemented mit-
igations (Q4, for example approaches like “documentation”,
“fail safe plans”, or “incident response”). We assumed that
the implementation of these mitigations depends on factors
such as previous exposure to threats, estimated risk to become
victim of an attack, organization size (how much personnel
can be dedicated to securing models), or how long models are
in production. More concretely, we tested if the number of
implemented mitigations (0-7) was influenced by factors like
exposure to threats (Q2), estimated risk to become a target of
an AI circumvention (Q3), organization size (Q18), and AI
maturity (Q25). We used an ordinal regression to model these
relationships and found that exposure (p = 0.012), estimated
risk (p = 0.013) and AI maturity (p = 0.004) were statistically
significant predictors.

Conclusion. We found that while the organization area affects
the perception of some threats significantly, there were no sta-
tistically significant variables for threat exposure. The amount
of implemented mitigations was however statistically related
to threat exposure, estimated risk, and AI maturity.

2) Concern about AML threats: In this subsection, we
analyze the arguments provided by our participants when
reasoning that a threat is relevant or irrelevant. Previous work
studied factors on threat concern such as the ease to attack and
defend, or possible benefit of carrying out the attack [17]. We
instead asked our participants without priming to give a short
reason for the relevance or irrelevance of an AML threat given
a two sentence description (but not the name) of the attack.
More concretely, we asked our participants how relevant they
thought poisoning (Q8), evasion (Q10), membership inference
(Q16) and model stealing (Q18) was. In this version of the
paper, we do not discuss backdoors (Q12), as they are similar
to poisoning. We also asked about one additional sanity-
check threat (“altering training data to delete an untrained
model. In other words, the training data contains a pattern
that will delete the model after training.”, Q14). Although
some participants reported high concern, the threat was rated
statistically significantly less relevant compared to all other
threats5. We thus omit the sanity threat in the following
discussion, where we first discuss the high relevance of each
poisoning, evasion, membership inference, and model stealing.
The same order is used for the discussion of irrelevance
replies. A summary of our results is depicted in Table III,
and we plot the numerical relevance ratings in Figure 4.

Poisoning–high relevance. The most frequently coded reply
reasoning for relevance, occurring 10 times, was the relevance
within the applications setting of the participant (“we use AI
for security purposes, tampered training data is one of the best
ways for attackers to evade the system”). Following up codes
were associated with relevance without argument (9, “yes”),
and two codes associated with model performance (9 and 9).
Participants also reasoned that an attacker was credible (5,
“sharing data across multiple users makes this a threat that
needs to be considered”), or that they understood the attack

5Mann-Whitney-U test with [1.4e�10 < p < 1.2e�16].

(7). Finally, some participants reported exposure to the attack
(3), which is rarely the case for other attacks.

Furthermore, we found that 4 times, participants found
the threat relevant as it would cause wrong decision making
(“models inform our decisions. Wrong models imply wrong
decisions.”). They furthermore reasoned that poisoning caused
financial loss (3, “altering training data could result [...] in
catastrophic increased spending”) for their organization or
harmed fairness by potentially introducing bias (3).

Evasion–high relevance. The most frequent reply for high
relevance of evasion was impact on model performance (11
times). At the same time, 6 participants reasoned that although
evasion is relevant, it is not a security issue (6 times, “it may
be a case of overfitting”). Further reasons included that evasion
was easy to carry out (4), hard to defend (4), a threat relevant
in the given application (3, “attackers targeting our systems in
this way may break them”), or assumed to be relevant without
providing an argument (4, “it is”).

As in poisoning, participants also reasoned that evasion
affects decision making in their companies (4), or negatively
affects fairness, bias, or ethics (3, “brings in bias”).

Membership inference–high relevance. Most participants
argued that they were concerned about the resulting data
breach (21, “the possibility of de-anonymizing data would
be a concern that can’t be understated”). Some participants
understood the underlying mechanism (4, “it allows someone
to reverse engineer the inputs and potentially identify where
the data came from as well as who or what is/isn’t included”),
other reasoned that the threat was relevant in their specific use-
case (3, “especially our model could be queried to generate
training data”) or did not give additional arguments (3).

Our participants also reasoned that membership inference
causes business information leakage (3, “could be relevant
because it would allow our clients to get information about the
competition they would normally not have.”) or noncompliance
with existing regulations (3, “GDPR requires that I don’t
accidentally leak data that was supposed to remain private”).

Model stealing–high relevance. Most participants stated that
model stealing results in a loss of their intellectual property
(8, “stealing IP”). Further, participants reasoned that the attack
was easy to do (4), was relevant in their application setting
(3, “it might lead to our models being reverse-engineered by
clients.”) or the attacker had a motivation to carry out the
attacks (3, “when scraping enough data one could probably
“copy” our models”). Practitioners also reasoned based on
their understanding of the attack (4, “technically its no brainer
- it’s very much possible”).

Compared to other attacks, much more participants remark
on the impact of model stealing. Several participants mention
general business consequences (5, “threat to the business”),
whereas others address profit for a competitor (5, “would
allow competitors to achieve our better results with minimum
efforts.”), financial loss (4, “it costs a lot of money to train
giant networks, hence the problem is very relevant in terms
of investment”), and business information leakage (3, “could
give unfair insights in our decision making”).
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Fig. 4: Reported relevance for the all five attacks we tested. The Likert-scale provided had four items ranging from “irrelevant”
to “very relevant.”

Poisoning–low relevance. The most frequent code (14) for
irrelevance of poisoning attacks was that the data was not
accessible to 3rd parties or the outside of the organization (“no
one can access the training samples”). Additional frequent
codes were that the threat is not relevant under the use case
(9 times, “our training data comes [...] from clinical studies
we conduct ourselves [...] so chances that someone interfere
with the data gathering process are very low”) or doubting the
attacker (8, “we do not think any actor would be sufficiently
motivated to attempt it”). While some participants stated that
their human in loop (5, “the training data is curated by us”)
or another defense they implemented (5, “very few publicly
available data used for training”) prevented the attack. Finally,
some (3) also reason that the attack is hard to carry out.

Evasion–low relevance. Most participants (11) arguing
against the relevance of evasion denied that an attacker could
access the required test data. Almost as many reasoned based
on their specific use cases (10, “the podcast audio is stored
with a number of distributors [...]. The corruption would
have to occur amongst multiple distributors [...].”). Many
participants also doubted the attacker’s motivation (7, “[...]
there would not be enough benefit to the actor”). Further
reasons included that the attack was hard to do (3), or that
a defense was implemented (4, “[...] the attack surface to
alter data is minimized by multifactor access, role based
access controls, time based tokens, logging, monitoring, and
encryption.”). Finally, we tagged some replies (5) as confused
threat models because participants referenced training data
(“training data is usually high quality”).

Membership inference–low relevance. To reason for the ir-
relevance of membership inference, participants often referred
to their specific use case (10, “we work on new data in
news and the probability of that happening since our models
are trained in old data is very unlikely”) or directly stated
they were dealing with non-sensitive data (9, “the training
data is publicly available anyway”). In addition, participants
sometimes did not provide an additional argument (4), doubted
the attacker (3, “for our use cases, I can’t (yet) see how anyone
would stand to gain from this”) or reasoned their model was
not accessible at test time (3, “the model cannot be queried
directly by the users”).

Model stealing–low relevance. Most participants (13) that
deemed model stealing irrelevant reasoned based on their use-
case (“the use of the model requires domain knowledge so

TABLE III: Participants’ argumentation for the relevance of
attacks. For each attack we present the five most frequent (ties
broken randomly) arguments (and their frequency).

RELEVANCE IRRELEVANCE

Po
is

on
in

g Relevant in application (10) (14) No data access
Impact on safety (9) (9) Not relevant in application

Impact on performance (9) (8) Doubting attacker
Relevance without argument (9) (5) Human in the loop defense

Hard to defend (7) (5) Some defense implemented
Ev

as
io

n
Impact on model performance (11) (11) No data access

Impact on safety (6) (10) Not relevant in use case
Impact on decision making (4) (7) Doubting attacker

Easy to do (4) (4) Some defense implemented
Hard to defend (4) (3) Hard to do

M
em

be
rs

hi
p Data breach (21) (10) Not relevant in use case

Relevance without argument (3) (9) No sensitive data
Business information leakage (3) (4) Irrelevance without argument

Regulatory compliance (3) (3) No query access
Relevant in application (3) (3) Doubting attacker

M
.S

te
al

in
g Impact on intellectual property (8) (13) Not relevant in use case

General business impact (5) (7) No query access
Profit for competitor (5) (4) Hard to do

Financial loss (4) (3) Doubting attacker
Attacker credible (3) (3) Model shortlived

it’s unlikely that someone outside the organization would be
able to make a correct interpretation of it’s functionality”).
Otherwise, participants remarked that their models were not
accessible (7, “we don’t offer API’s to our models.”), or were
replaced often and copying them yielded no benefit (3, “model
is continuously updated, and previous models don’t have much
value”). Participants also reasoned that the attack was hard to
carry out (4), or generally irrelevant (3, “this is a business
model issue, not a technical issue”). Participants also doubted
that an attacker might benefit (3, “the value of copying [our
models] would be quite small for someone else”), or reasoned
that the attack does not apply in their use case or way to deploy
ML (3, “the model is likely to be deployed on edge devices so
it will be anyway known to the potential attacker.”).
Conclusion. Our analysis shed light on the complexity of
AML in practice. While poisoning was the only attack to
be witnessed in practice by several participants, other threats
were deemed relevant due to their (potential) impact. Such
impact was very diverse, and ranged from decreased model
performance, wrong decision making, to business implications
like leak of information, financial loss and leakage of intel-
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lectual property. When an attack was deemed irrelevant, the
attacker often would not have access to the required data. In
this sense, both application and deployment are orthogonal
factors influencing vulnerability: One use-case may be security
critical only when deployed in a certain way, otherwise not.
Finally, sometimes the difference between security and safety
was not well distinguished.

3) Conclusion: Practitioners from IT security companies
were significantly more concerned about AI threats. At the
same time, in our sample, exposure to threats was not a
factor of organization size or AI maturity. The amount of
implemented mitigations did, on the other hand, depend on
previous threat exposure, but also on expected risk, and AI
maturity. Our participants, when reasoning about attack rele-
vance, encompassed not only feasibility or the ease to mitigate
an attack, but considered direct impacts like financial loss,
information leakage, or business harm. Furthermore, decision
making based on ML or practical encounters fuel concern.
When threats were deemed irrelevant, this was usually based
on specifics of the use-case or deployment and/or inaccessibil-
ity or the required resources or data for the attacker. Finally,
in some cases, attacks were perceived as safety issues, or in
other words benign failure cases.

C. AML for practitioners
In this section, we investigate individual factors that may

influence threat exposure, estimated threat exposure or threat
perception. Such individual factors are the role in team, prior
knowledge in AML, ML, prior education in general, or gender.
Role in team. Assuming that an ML engineer is closer to
model deployment than a product manager, we may assume
that technical roles in teams are more exposed to threats.
We thus investigated the reported role within a team (Q30)
in relation to threat exposure (Q2), expected exposure, and
perceived attack relevance. To this end, we split our sample
into technical (48 participants, for example “ML Engineer”,
“ML Scientist”, “data architect”, etc) and non-technical (91,
for example “product owner”, “auditor”,“domain expert”, etc).
We found, using a Mann-Whitney-U test, that threat expo-
sure was not different for technical and non-technical roles
(p = 0.15), and there was no difference in expected exposure
(p = 0.8). Furthermore, we tested using a Mann Whitney-
U test whether the concern of these two groups differed
statistically. For no threat, this was the case (0.4 < p < 0.8).
Prior knowledge in AML. Another possible individual factor
is knowledge of AML. Knowledge means understanding, thus
potentially raising threat concern and also motivating coun-
termeasures or mitigations. In Q32, we asked our participants
to self-report their knowledge in AML. We split our sample
into two groups (knowledgeable 40, not knowledgeable 99)
and tested for statistical significance in concern about threats,
exposure to threats (Q2) and the number of mititgations
implemented (Q32) using the Mann-Whitney-U test. There
was no statistically significant difference between these two
groups for threat exposure (p = 0.15) or general threat concern
(p = 0.5). However, participants who reported knowledge of
AML were significantly more concerned about AML threats

(except sanity, 0.006 < p < 0.018). We found finally that self-
reported prior knowledge lead to a statistically significantly
increased number of implemented mitigations (p = 0.0024).
ML knowledge and education. Given the high relevance
of AML knowledge, we also tested the influence of general
ML knowledge and education (e.g., Highschool, Bachelor,
PhD) on both exposure (Q2), expected exposure (Q3), and
threat concern. While we expected ML knowledge to have an
influence on exposure and threat concern (most AML attacks
are based on ML mechanisms), we did not expect general
education to influence concern. We tested our hypotheses
with an ordinal regression model, and found no statistical
significance for exposure. For the individual threats, we found
that only ML knowledge significantly influenced concern for
evasion (p = 0.025) and membership inference (p = 0.025),
but for no other threat (p > 0.5).
Gender. We further investigated whether gender influences
expected threat exposure or threat concern. We expected
that women were similarly or more concerned, in line with
previous findings [40]. To test this hypothesis, we divided
our sample into female (20 participants) and male (99 par-
ticipants) and computed a Man-Whitney-U test on the replies
for estimated exposure (Q3) and threat concern. Gender did
not statistically influence the overall estimated risk (p = 0.43).
For most threats, there was no significant difference (p > 0.15)
either. However, for model stealing (p = 0.021), we found that
women are less concerned, contrary to our expectations. A
possible explanation could be that women work with different
applications and deployment settings, but our data did not
allow to investigate this profoundly.
Conclusion. In this subsection, we investigated factors specific
to individual practitioners and their relation to threat exposure
or perception. We find that prior knowledge (largely in AML,
but also in ML) lead to a higher concern about individual
threats. We furthermore find that gender influences threat
perception, too, but not consistently.

VI. LIMITATIONS

In this section, we discuss limitations in our study that affect
the generalizability of our results. We first describe limitations
within the sample, then within the questionnaire, and finally
within the statistical approach.
Sample limitations. Our sample is limited to English speaking
practitioners, and biased towards the global north. Further-
more, we had initially planned to compare opinions from
industry and academia, but got feedback early on that our
questionnaire was too industry specific for academics. More
specifically, some participating academics reported back to
us to have filled the survey from the perspective of recent
industry experience. In contrast to our expectations, the in-
dustry area does not allow to deduce which participants are
from academia, making it hard to understand the influence
academics could have had on the results. Due to the usage
of different links to monitor recruiting strategies, however, we
know that less than a quarter (35) of participants are pure
academics without industry experience. Still, we might under-
estimate the occurrence of threats in the wild (Sect. V-A1).
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Questionnaire limitations. We did only consider self reported
knowledge, and did not asses our participants’ knowledge.
Independently, we failed to observe statistically significant
results for type of learning (supervised, unsupervised), kind of
labels (none, categorical, real), and type of data (vision, video,
etc.). A possible cause for this, apart from the conclusion of
indeed no relation, is that participants for example work in
several projects. This diversity was not foreseen by us when
designing the questionnaire.
Methodological limitations. We performed a sample size
estimation upfront before designing the questionnaire (see
Sect. III). However, the Mann-Whitney-U test’s sample size
is dependent on factors such as mean and variances of both
samples, factors that are impossible to approximate upfront.
While in most cases, differences indicate that our sample size
is enough, we cannot exclude that in some cases, the test re-
turns a too conservative result (e.g., masking significance when
there is indeed an effect in the data). These cases were when
testing threat concerns for the role in team (Sect. V-C), and
when testing whether healthcare workers are more concerned
about threats like membership inference (Sect. V-B1). These
effects should be re-evaluated in future work with a different
design or more participants.

VII. IMPLICATIONS AND FUTURE WORK

Despite these limitations, our research yields practical im-
plications for a better understanding of attack relevance, more
granular risk assessments and an improved communication
of AML risks. We now concretise these implications and
conclude the paper by discussing open research questions that
could be addressed by future work.
Better understanding of general attack relevance. For each
of the attacks we tested for, participants’ argumentation for
relevance involved reasoning about the validity of a threat
in a certain application, deployment, or use case (Table III).
More specifically, not all attacks apply in all applications
or forms of deployment. This finding is highly relevant for
risk management in the real-world and implies that threat
modelling should always consider the specific context of
an AI system. To this regard, further research is needed
to investigate which attacks should be considered in which
application scenarios, and which deployment is prevalent in
which application. Somewhat orthogonal, a quantification of
the impact incurred by an attack (in terms of financial loss, for
example) based on attack type and application would benefit
a deeper understanding of risks related to ML in the wild.
More granular risk assessments of AI systems. Our findings
in Section V-B help to understand which factors should be
taken into account when threat modelling an AI application.
This is relevant for risk assessments of real-world applications.
According to international standards for information security
management such as ISO/IEC 27001, these assessments should
evaluate the likelihood of threats and the potential impact if
they materialize. Our code book that evolved based on partic-
ipants’ statements on attack relevance confirms this approach
(Table V). In addition, the concrete codes for ‘relevance’
and ‘impact’ that we found in developing our codebook

can be used as an orientation for practitioners in trying to
concretize likelihood and impact within risk assessments of
AI systems. For example, we show that an AI auditor should
evaluate concrete implications of ‘financial loss’ or ‘business
information leakage’ in order to assess the potential impact
of an AI risk that might materialize. Thus, our findings allow
risk assessments of AI systems to become more granular.
Improved communication of AML risks. We provide in-
sights into why practitioners think specific attacks are relevant
or irrelevant (Sect. V-B2). These insights into the rationale of
relevance for attacks could be a starting point for educational
measures to increase AML awareness in organizations that
deploy AI. More concretely, our results could help educating
business stakeholders that they, for example, have to hedge
against model stealing because it is a potential target for IP
theft, or that they should consider the tangible risk of poisoning
as it may affect their decision-making regarding technology
setups or engineering processes. This unveiling of rationales
behind attacks might ease the communication of AML risks.
Open research questions. As we have seen in the previous
section, our study comes with some limitations that can
be overcome in future work. For example the dimensions
knowledge, role in team and the application area deserve to
be studied more in depth. Along these lines, we found that not
only the application, but also the deployment is a crucial factor
determining the vulnerability of an ML system (Sect. V-B2).
Both factors need to be monitored and can then jointly, for
example together with exposure and AI maturity, be used to
assess risks in practice. Such an assessment is also helpful to
understand how high the risk of an AML attack is truly—as
our 16% exposure does not take into account cases where an
attack would be virtually impossible due to the deployment
setting, for example.

Also, some aspects of the relationship between knowledge
and concern about threats (Sect. V-C) remain unclear. This
relationship is similar to a chicken-egg problem: more knowl-
edge might imply more sensitivity towards threats, but at the
same time more concern also brings about the need for more
information, (hopefully) leading to the acquisition of more
knowledge. A clear understanding of cause and effect here
would benefit regulation and AI in practice.

VIII. RELATED WORK

In this section, we first put our findings in relation to other
surveys that address AML in practice. Afterwards, we discuss
works that are overall less related, yet provide important
findings in relation to our insights.

As there is no other survey with a similar amount of
participants and thus depth and statistical findings, we instead
discuss specific findings from previous works that our larger
sample either confirms or contradicts. For example, Kumar et
al. [16] found that poisoning is the most feared AI security
threat by companies, a finding we confirm (Fig. 4). Our
findings also support, analogous to their reports, that practi-
tioners are still very much concerned with traditional security
(Sect. V-A2) [16]. Kumar et al. [16] furthermore state that
AML is generally perceived as “futuristic”. We can not confirm
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this, however have to emphasize that there are 2-3 years
between our surveys. Boenisch et al. [19] find that their ML-
security score is overall low, but is increased when participants
are developing, and not only applying, ML. We can not
confirm these results (Sect. V-C), however have to emphasize
that while we measure direct concern for one ML attack or
concern of AML attacks in general, Boenisch et al.’s [19]
score entails also cybersecurity, and ML in general.They [19]
furthermore study privacy, which we only consider in the sense
of membership inference. Mirsky et al. [17] also conducted
a survey that aims to understand offensive AI. Specifically
for AML, they asked participants how profitable, harmful,
detectable and achievable attacks are. We go a step further
in our survey and allow our subjects to freely reason why (or
why not) they believe an attack to be relevant (Sect. V-B2).
Finally, Mirsky et al. [17] expect offensive AI techniques to
manifest within the next 12 months, a finding our sample does
not support (Sect. V-A1).

More loosely related is the work by Bieringer et al. [18]
who conducted semi-structured interviews with industrial AI
practitioners. They find that malicious ML circumventions
already take place in industry, which we confirm (Sect. V-A1).
Our study answers their question about the importance of
education in the affirmative (Sect. V-C). Finally, we inves-
tigated the influence of gender on (ML) security perception,
as prior works found that women are overall more concerned
about non-AML security [40]. While we do not find an
overall difference, some specific attacks are rated differently
(Sect. V-C), possibly a consequence of women working in
slightly different applications [41].

Finally, our finding of conflated security and safety con-
cepts (Sect. V-A2 and Sect. V-B2) has been reported in the
cybersecurity domain: For example, Gross and Rosson [42]
found in their study that end users do not distinguish system
failure from external attacks, and reason that this is a valid
level of abstraction for consumers. Moreover, early work
from 1992 in non-AML security by Loch et al. [43] showed
that managers, when introducing information systems to their
organizations, ranked intentional security lower than safety.
Both works, albeit carried out on different populations than
our study, help contextualise our findings (Sect. V-A2 and
Sect. V-B2): a similar gap between tomorrow’s reality and
today’s understanding might also apply for AML.

IX. CONCLUSION

To overcome the lack of knowledge on AML in practice, we
conducted a survey of 139 industrial practitioners opinions on
ML security and attack relevance. We found evidence for AML
attacks, more specifically evasion and poisoning, in practice.
However, it remains often unclear whether an incident is a
security or safety issue. In addition, also privacy, ML, and
organizational challenges like data drift are of importance
to our participants. In terms of the organizational aspects of
AML we find that companies from some industry areas like
IT security are more concerned about some ML attacks. We
find no variable that is statistically related to threat expo-
sure. Exposure, together with expected risk and AI maturity,

however predicts the amount of implemented mitigations. We
furthermore find that the presence or absence of concern
for an AML attack is complex, encompassing factors such
as financial loss, ethical concerns, decision making, but also
application setting and the way in which ML is deployed.
Finally, on the individual level, we find that self reported
knowledge, in particular in AML, increases attack concern.
Our results yield important insights for regulators and auditors
as we analyze relevance and irrelevance, and point out that the
boundary between safety and security is not always clear. We
are further confident that we are contributing towards more
research eliciting when ML systems are vulnerable and which
factors influence vulnerability and threat perception.

ACKNOWLEDGMENTS

The authors are deeply grateful to all our pre-testers and par-
ticipants. We would further like to thank Beat Busser, Federico
Marengo, Brian Pendleton, and Jessica Rose for supporting our
recruitment. The research reported in this paper has been partly
funded by BMK, BMDW, and the Province of Upper Austria
in the frame of the COMET Programme managed by FFG in
the COMET Module S3AI; and by Fondazione di Sardegna
under the project “TrustML: Towards Machine Learning that
Humans Can Trust”, CUP: F73C22001320007.

REFERENCES

[1] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can
machine learning be secure?” in CCS, 2006, pp. 16–25.

[2] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Patt. Rec., vol. 84, pp. 317–331, 2018.

[3] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks
on deep learning systems using data poisoning,” arXiv, 2017.
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APPENDIX A
QUESTIONNAIRE

Part I - Security of AI within your organization

Q1: In your daily work and your organization’s AI workflows,
products or systems - what are the most pressing security
challenges? [text field]
Q2: Did you already experience a circumvention of your AI
based workflows, products or systems? [yes/no]
IF YES: Q2.1: How many circumventions of your AI based
workflows, products or systems have you experienced?
[1,2,3,4,>4]
Q2.2: Please describe the most severe circumvention of your
AI based workflows, products or systems. [text field]
Q3: How high do you estimate the risk of becoming a victim
of an attack related to your AI based workflows, products, or
systems within the next 12 months? [1 (very low) to 5 (very
high)]
Q4: Which of the following approaches does your organization
implement in terms of the security of your AI based
workflows, products, or systems? [None, Documentation,
Guidelines, Mitigations, Fail safe plans, human in the loop,
incident response, security testing, other]

You will now be confronted with descriptions of specific
threats to the security of AI. Please think about how these
threats might take effect in your AI workflows, products, or
systems.
Q5: Do you consider the following threat scenario relevant in
your work?
(placeholder for attacks, see below) [very relevant; relevant;
not very relevant; irrelevant; I don’t know; I don’t understand
threat scenario]
Q6: Why do you think this threat scenario is (placeholder for
previous selection)? [text field]
These 2 questions are repeated iteratively all attacks:

a) Q7,8: Altering training data to harm model performance
during deployment. In other words, the model is op-
timized on tampered training data, which affects the
resulting model.

b) 9,10: Altering test data to harm model performance
during deployment. In other words, the trained model
is presented with specially crafted inputs that lead to
wrong predictions.

c) 11,12: Altering training data so that the model outputs a
chosen class whenever a particular pattern is present in
the input data. In other words, altering the training data
to contain a certain association between a pattern and a
label, the resulting model contains a backdoor.

d) 13,14-Sanity: Altering training data to delete an un-
trained model. In other words, the training data contains
a pattern that will delete the model after training.

e) 15,16: Given input data and the predictions of a model,
determine whether the given data sample is part of the
training data. In other words, the model is queried to
obtain crucial information about the used training data.

f) 17,18: Given an API / black box access to a model,
copy its functionality. In other words, repeatedly observe

https://storage.googleapis.com/kaggle-media/surveys/Kaggle's%20State%20of%20Machine%20Learning%20and%20Data%20Science%202021.pdf
https://storage.googleapis.com/kaggle-media/surveys/Kaggle's%20State%20of%20Machine%20Learning%20and%20Data%20Science%202021.pdf
https://storage.googleapis.com/kaggle-media/surveys/Kaggle's%20State%20of%20Machine%20Learning%20and%20Data%20Science%202021.pdf
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TABLE IV: Codes used to encode the first question, where participants describe their current AI security concerns.

Group Code Group Code Group Code Group Code

AML General NonAMLSec General Privacy General ML General
Poisoning Libraries Regulations Explainability
Evasion Access Bias
Model Stealing CustomerIsRisk Data General Concept drift
Performance impact CodeBreach Data sharing
Robustness 3rdParty Provider Breach Organization Complexity
TestTime Precise threat Sensitive data IP
TrainingTime Cloud Classify if sensitive TradeOffs
ModelItself SecurityAwareness

Human Harm

TABLE V: Codes used for the attack relevance, where participants argue why (or why not) an AML attack is relevant or not.

Group Code Group Code Group Code

Relevance General relevance Impact General business Defense Easy to defend
General irrelevance Financial loss Hard to defend
Easy to do Business information leakage Data access control
Hard to do Profit for competitor Model acccess control
Has encountered threat Intellectual Property No sensitive data
Has not encountered threat Reputational damage Model shortlived
Attacker credible Regulatory compliance Human in the loop
Doubting attacker Data breach Implemented
relevant in application setting Wrong decision making
not relevant in use case Human harm
not relevant for deployment Ethics/Fairness/Bias Perception Did not understand threat scenario
Understands attack mechanism Confusion across threat models
Theoretical exposure to threat Externalization of responsibility
Other threat more likely
Safety

input and output pairs from the model to reproduce its
functionality.

Part II - AI within your organization

Q17: In which country is your organization headquartered?
[drop down with all countries]
Q18: What is the number of employees at your organization?
[<10, 10-49, 50–99, 100–249, 250–499, >500]
Q19: Which industry area describes your organizations best?
[Customer Service & Support, IT Security, Production, Mar-
keting, Computer Audition, Research, Forecasting, Computer
Linguistics, Computer Vision, Agriculture Forestry & Fishing,
Finance & Insurance, Arts Entertainment & Recreation, Man-
ufacturing, Water & Waste, Healthcare, Retail & Commerce,
Transportation & Mobility, Other]
Q20: What kind of data analysis do you work with primarily?
[supervised learning, unsupervised learning, semi-supervised
learning, reinforcement learning, other]
Q21: What do you use AI for primarily (e.g. sentiment
analysis, object detection, malware classification)? [text field]
Q22: What input data do you work with primarily? (tick most
specific) [Images, Videos, Speech/Audio, Text/Documents,
Network traffic, Social media data, Files/Source Code, Other:]
Q23: What kind of labels do you work with primarily?
[unlabelled, categorical, real valued, structured data, other]
Q24: What is the status of the ML projects you work on?

Indirect usage (e.g. certification, auditing)
Evaluating use cases
Starting to develop models

Getting developed models into production
Models in production, for 1-2 years
Models in production, for 2-4 years
Models in production, for >5 years

Q25: Which of these goals are part of your organization’s
ML-model checklist? [Performance, fairness, explainability,
security, privacy, ethics, system response, other]
Part III - Demographics and your AI background

Q26: In which year were you born? [1935-2021]
Q27: What gender do you identify with? [Female, male,
other, I do not want to disclose]
Q28: In which country are you located? [drop down with all
countries]
Q29: What is your level of education? Please specify
the highest. [Highschool, Bachelor, Master/Diploma,
Training/Apprenticeship, PhD, Other]
Q30: What is your role in your team? [ML Engineer, ML
researcher, Data scientist, Domain Expert, Product Owner,
Auditor, Other]
Q31: Please complete the following sentence. When it comes
to machine learning, I believe I have. . . [No knowledge, a
little/some/moderate/high knowledge]
Q32: In which of these areas have you taken a lecture
or intense course? [None, Machine learning, Security,
Adversarial Machine Learning]
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APPENDIX B
DETAILED COMPARISON WITH THE KAGGLE SAMPLE

As we write in Sect. IV-A in the sample description, our
sample matches roughly the numbers from the Kaggle re-
port [35], modulo that the report has a larger sample (¿25,000
participants) and has made slightly different design choices
concerning the questions. In this Appendix, we redraw and
reordered the plots from the report to be able to roughly
compare them to our data in table VI.

APPENDIX C
COMPLETE SETS OF CODES

We here depict the full sets of codes for most feared
threat/the first question in Table IV. The codes for the attack
relevance coding are listed in Table V.

APPENDIX D
DETAILED RESULTS OF STATISTICAL TESTS

We here report the detailed results for all statistical tests in
the main paper in the order of appearance or mentioning.

A. Statistical tests from Section V-B1
We first review the tests from Section V-B1 about the

participant’s organization in the order of the paragraphs in
the main paper.
Organization Area and threat perception. In this part, we
depict the detailed results of the organization area and threat
relevance ratings. The table takes organizational area (Q19),
and splits according to Healthcare / Security the provided
rating (e.g., participants working in a healthcare setting vs all
other participants). We depict mean (± standard deviation)
and the sample size for each subgroup (left/sample I: works
in specified industry, right/sample II: remaining participants)
as well as the test statistic and the p-value.

Sample I Sample II

µ (±sdt.) # µ (±sdt.) # U p

Healthcare: Membership Rating (Q13)
1.67 (± 1.49) 18 1.71 (± 1.85) 121 1030.0 0.71

Security: Poisoning Rating (Q5)
3.0 (± 0.97) 15 2.3 (± 1.38) 124 1200.0 0.06

Security: Evasion Rating (Q7)
2.73 (± 1.44) 15 1.9 (± 1.61) 124 1262.0 0.02

Security: Backdoor Rating (Q9)
3.0 (± 0.97) 15 1.6 (± 1.74) 124 1372.5 0.0

Security: Sanity Rating (Q11)
0.4 (± 2.06) 15 0.24 (± 1.82) 124 953.0 0.88

Security: Membership Rating (Q13)
2.6 (± 1.5) 15 1.6 (± 1.81) 124 1251.5 0.03

Security: M. Stealing Rating (Q15)
2.13 (± 1.5) 15 1.65 (± 1.81) 124 1047.0 0.42

Predicting threat exposure. Analogous to the
previous tests, we again divide according to

company area (Q19) and now test for exposure.

Sample I Sample II

µ (±sdt.) # µ (±sdt.) # U p

Security: exposure (Q2)
0.44 (± 1.21) 18 0.51 (± 1.32) 121 1079.0 0.93

Healthcare: exposure (Q2)
1.0 (± 1.86) 15 0.44 (± 1.21) 124 1038.5 0.27

We furthermore ran a regression model optimized with bfgs,
with the predictors AI maturity (Q24) and company size (Q18).
The obtained log-likelihood of the model was �96.907, the
AIC 207.8 and the BIC 228.4. The model had 132 residuals
and 7 degrees of freedom.

coef std err z P> |z| [0.025 0.975]

AI maturity 0.1 0.074 1.33 0.19 -0.05 0.24
Comp. size 0.01 0.061 0.13 0.9 -0.11 0.13
0.0/1.0 1.36 0.374 3.64 0.0 0.63 2.09
1.0/2.0 -1.5 0.364 -4.11 0.0 -2.21 -0.78
2.0/3.0 -1.38 0.393 -3.51 0.0 -2.15 -0.61
3.0/4.0 -2.97 0.991 -3 0.0 -4.91 -1.03
4.0/5.0 -2.15 0.695 -3.1 0.0 -3.52 -0.79

Predicting amount of implemented mitigations. To gain
insights on the amount of implemented mitigations, we ran
a regression model optimized with bfgs. The predictors were
AI maturity (Q24), company size (Q18), exposure (Q2) and
estimated risk of exposure (Q3). As predicted variable, we
determine the number of implemented mitigations (min. 0,
maximum 7). The obtained log-likelihood was �266.99, the
AIC 556 and the BIC 588.3. The model had 128 residuals and
11 degrees of freedom.

coef std err z P> |z| [0.025 0.975]

AI maturity 0.15 0.051 2.84 0.00 0.045 0.246
Comp. size 0.01 0.043 0.17 0.87 -0.08 0.09
Exposure 0.18 0.071 2.5 0.01 0.04 0.32
Est. risk 0.2 0.079 2.5 0.01 0.04 0.35
0.0/1.0 -0.06 0.316 -0.18 0.86 -0.68 0.56
1.0/2.0 -0.57 0.211 -2.7 0.01 -0.98 -0.15
2.0/3.0 -0.57 0.179 -3.2 0.00 -0.92 -0.22
3.0/4.0 -0.68 0.180 -3.8 0.00 -1.03 -0.32
4.0/5.0 -0.91 0.220 -4.1 0.00 -1.34 -0.47
5.0/6.0 -1.02 0.273 -3.7 0.00 -1.56 -0.49
6.0/7.0 -1.24 0.362 -3.4 0.00 -1.95 -0.53

Comparing attack ratings. As reported in the main paper, the
Sanity threat (see App. A) is rated statistically significantly
different than the other attacks. We here report the detailed
results from the attack vs attack ratings. Here, we use the two
samples with the numeric inputs for one attack as one input
sample. The statistics (µ,std., number of samples) are reported
for each attack. we encode replies without rating as well.

In addition to the statistical significance for sanity, we also
observe statistical significance for poisoning. We do not report
this, as we were not able to randomize the order of the attacks,
and we assume this is an effect of our participants getting
tired. An alternative explanation is that as reported by Kumar
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TABLE VI: Detailed comparison with the Kaggle report [35]. We reordered the original information to enable an easier
comparison. The AI maturity data is from the Kaggle report from 2020, as the report from 2021 does not contain this
information. Units of plots do not match and have not been adjusted.

Our sample Kaggle [35]
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et al. [16], poisoning is indeed the most feared threat (and thus
rated higher then other attacks). In addition, the test statistic is
also higher when testing against santity for any attack, showing
that this effect is stronger.

Attack I Attack II

µ (±sdt.) # µ (±sdt.) # U p

Poisoning (Q5) Evasion (Q7)
2.37 (± 1.36) 139 1.99 (± 1.61) 139 10908 0.05

Poisoning (Q5) Backdoor (Q9)
2.37 (± 1.36) 139 1.76 (± 1.73) 139 11557 0.0

Poisoning (Q5) Sanity (Q11)
2.37 (± 1.36) 139 0.26 (± 1.85) 139 15796 0.0

Poisoning (Q5) Membership (Q13)
2.37 (± 1.36) 139 1.71 (± 1.81) 139 11622 0.0

Poisoning (Q5) M. Stealing (Q15)
2.37 (± 1.36) 139 1.71 (± 1.79) 139 11566 0.0

Evasion (Q7) Backdoor (Q9)
1.99 (± 1.61) 139 1.76 (± 1.73) 139 10327 0.31

Evasion (Q7) Sanity (Q11)
1.99 (± 1.61) 139 0.26 (± 1.85) 139 14669 0.0

Evasion (Q7) Membership (Q13)
1.99 (± 1.61) 139 1.71 (± 1.81) 139 10441 0.23

Evasion (Q7) M. Stealing (Q15)
1.99 (± 1.61) 139 1.71 (± 1.79) 139 10383 0.27

Backdoor (Q9) Sanity (Q11)
1.76 (± 1.73) 139 0.26 (± 1.85) 139 14065 0.0

Backdoor (Q9) Membership (Q13)
1.76 (± 1.73) 139 1.71 (± 1.81) 139 9789 0.84

Backdoor (Q9) M. Stealing (Q15)
1.76 (± 1.73) 139 1.71 (± 1.79) 139 9728 0.92

Sanity (Q11) Membership (Q13)
0.26 (± 1.85) 139 1.71 (± 1.81) 139 5551 0.0

Sanity (Q11) M. Stealing (Q15)
0.26 (± 1.85) 139 1.71 (± 1.79) 139 5420 0.0

Membership (Q13) M. Stealing (Q15)
1.71 (± 1.81) 139 1.71 (± 1.79) 139 9616 0.95

B. Statistical tests from Section V-C

We first consider the results from Section V-C about our
participants as in the order of the paragraphs in the main paper.

Role in team We now split our data according to whether
a participant has a technical role (left side) or not (right side).

Non-technical Technical

µ (±sdt.) # µ (±sdt.) # U p

Exposure (Q2)
0.34 (± 1.02) 91 0.81 (± 1.68) 48 1970 0.15

Poisoning Rating (Q5)
2.46 (± 1.26) 91 2.21 (± 1.51) 48 2370 0.39

Evasion Rating (Q7)
1.92 (± 1.7) 91 2.12 (± 1.41) 48 2135 0.83

Backdoor Rating (Q9)
1.79 (± 1.7) 91 1.69 (± 1.77) 48 2290 0.63

Sanity Rating (Q11)
0.03 (± 1.78) 91 0.69 (± 1.92) 48 1756 0.05

Membership Rating (Q13)
1.73 (± 1.74) 91 1.67 (± 1.93) 48 2151 0.89

M. Stealing Rating (Q15)
1.79 (± 1.78) 91 1.54 (± 1.79) 48 2340 0.48

Prior Knowledge in AML. We now divide our sample along
the self-reported knowledge of AML (present, Sample I, not
present: Sample II). For the security approaches(Q4), we en-
code the replies using the amount of implemented approaches
(e.g., 0-7).

Sample I Sample II

µ (±sdt.) # µ (±sdt.) # U p

Exposure (Q2)
0.52 (± 1.3) 40 0.49 (± 1.31) 99 1991 0.94

Security approaches (Q4)
3.45 (± 2.02) 40 2.72 (± 2.05) 99 2403 0.05

Estimated Risk (Q3)
5.5 (± 2.26) 40 4.93 (± 2.35) 99 2227 0.25

Poisoning Rating (Q5)
2.88 (± 0.95) 40 2.17 (± 1.44) 99 2533 0.01

Evasion Rating (Q7)
2.65 (± 1.22) 40 1.73 (± 1.67) 99 2580 0.0

Backdoor Rating (Q9)
2.38 (± 1.58) 40 1.51 (± 1.72) 99 2567 0.01

Sanity Rating (Q11)
0.52 (± 1.96) 40 0.15 (± 1.79) 99 2183 0.33

Membership Rating (Q13)
2.4 (± 1.51) 40 1.42 (± 1.84) 99 2581 0.0

M. Stealing Rating (Q15)
2.35 (± 1.28) 40 1.44 (± 1.89) 99 2460 0.02

ML knowledge and education. We now divide our
sample along the self-reported knowledge of ML
(present, Sample I, not present: Sample II). For the
security approaches(Q4), we encode the replies using
the amount of implemented approaches (e.g., 0-7).
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Sample I Sample II

µ (±sdt.) # µ (±sdt.) # U p

Poisoning Relevance (Q5)
2.55 (± 1.08) 114 1.56 (± 2.04) 25 1738.0 0.07

Evasion Relevance (Q7)
2.16 (± 1.49) 114 1.24 (± 1.9) 25 1811.0 0.03

Backdoor Relevance (Q9)
1.88 (± 1.64) 114 1.2 (± 1.96) 25 1685.0 0.15

Sanity Relevance (Q11)
0.27 (± 1.83) 114 0.2 (± 1.96) 25 1480.0 0.76

Membership Relevance (Q13)
1.87 (± 1.74) 114 0.96 (± 1.93) 25 1811.5 0.03

Model Stealing Relevance (Q15)
1.85 (± 1.71) 114 1.04 (± 1.97) 25 1769.5 0.05

To gain insights on the influence of education, we ran
a regression model optimized with bfgs. The predictor was
education (Q29), the predicted variable exposure (Q2). The
obtained log-likelihood was �96.77, the AIC 205.5 and the
BIC 223.1. The model had 133 residuals and 6 degrees of
freedom.

coef std err z P> |z| [0.025 0.975]

Education 0.133 0.096 1.38 0.17 -0.06 0.32
0.0/1.0 1.447 0.395 3.66 0.00 0.67 2.22
1.0/2.0 -1.5 0.364 -4.12 0.00 -2.22 -0.79
2.0/3.0 -1.373 0.393 -3.49 0.00 -2.14 -0.6
3.0/4.0 -2.956 0.991 -2.98 0.00 -4.9 -1.01
4.0/5.0 -2.147 0.694 -3.09 0.00 -3.51 -0.79

We used an analogous model to test the influence of
education on estimated risk. The obtained log-likelihood was
�210.71, the AIC 433.4 and the BIC 451. The model had 133
residuals and 6 degrees of freedom.

coef std err z P> |z| [0.025 0.975]

Education 0.046 0.057 0.81 0.42 -0.07 0.16
-1.0/1.0 -2.023 0.342 -5.91 0.00 -2.69 -1.35
1.0/2.0 0.321 0.199 1.61 0.11 -0.07 0.71
2.0/3.0 -0.175 0.135 -1.29 0.2 -0.44 0.09
3.0/4.0 -0.086 0.132 -0.65 0.51 -0.34 0.17
4.0/5.0 -0.452 0.234 -1.93 0.05 -0.91 0.01

Gender. In this section, we divided the sample into female
(left) and male (right) participants.

Female Male

µ (±sdt.) # µ (±sdt.) # U p

Estimated Risk (Q3)
2.7 (± 0.95) 20 2.46 (± 1.26) 99 1098 0.43

exposure (Q2)
0.4 (± 1.16) 20 0.6 (± 1.43) 99 945 0.64

Poisoning Rating (Q5)
2.1 (± 1.34) 20 2.48 (± 1.24) 99 846 0.28

Evasion Rating (Q7)
1.65 (± 1.53) 20 2.11 (± 1.59) 99 811 0.19

Backdoor Rating (Q9)
0.55 (± 1.63) 20 1.99 (± 1.62) 99 517 0.0

Sanity Rating (Q11)
-0.15 (± 1.53) 20 0.31 (± 1.91) 99 867 0.37

Membership Rating (Q13)
1.25 (± 1.76) 20 1.83 (± 1.79) 99 793 0.16

M. Stealing Rating (Q15)
0.85 (± 1.96) 20 1.94 (± 1.72) 99 673 0.02
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