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Abstract

The co-existence of two scenarios, “the massive amount of unstructured text data that
humanity produces” and “the scarcity of sufficient training data to train language mod-
els,” in the healthcare domain have multifold increased the need for intelligent tools
and techniques to process, interpret and extract different types of knowledge from the
data. My research goal in this thesis is to develop intelligent methods and models to
automatically better interpret human language and sentiments, particularly its struc-
ture and semantics, to solve multiple higher-level Natural Language Processing (NLP)
downstream tasks and beyond.

This thesis is spread over six chapters and is divided into two parts based on the con-
tributions. The first part is centered on best practices for modeling data and injecting
domain knowledge to enrich data semantics applied to tackle several classification tasks
in the healthcare domain and beyond. The contribution is to reduce the training time,
improve the performance of classification models, and use world knowledge as a source
of domain knowledge when working with limited/small training data. The second part
introduces the one of its kind high-quality dataset of Motivational Interviewing (MI),
AnnoMI, followed by the experimental benchmarking analysis for AnnoMI. The con-
tribution accounts to provide a publicly accessible dataset of Motivational Interviewing
and methods to overcome data scarcity challenges in complex domains (such as mental
health). The overall organization of the thesis is as follows:

The first chapter provides a high-level introduction to the tools and techniques ap-
plied in the scope of the thesis.

The second chapter presents optimal methods for (i) feature selection, (ii) elimi-
nating irrelevant and superfluous attributes from the dataset, (iii) data preprocessing,
and (iv) advanced data representation methods (word embedding and bag-of-words) to
model data.

The third chapter introduces the Language Model (LM), K-LM, a combination of



Generative Pretrained Transformer (GPT)-2 and Bidirectional Encoder Representations
from Transformers (BERT) that uses knowledge graphs to inject domain knowledge for
domain adaptation tasks. The end goal of this chapter is to reduce the training time
and improve the performance of classification models when working with limited/s-
mall training data.

The fourth chapter introduces the high-quality dataset of expert-annotated MI (An-
noMI), comprised of 133 therapy session transcriptions distributed over 44 topics (in-
cluding smoking cessation, anxiety management, weight loss, etc.), and provides an
in-depth analysis of the dataset.

The fifth chapter presents the experimental analysis with AnnoMI, which includes
(i) augmentation techniques to generate data and (ii) fairness and bias assessments of
the employed Classical Machine Learning (CML) and Deep Learning (DL) approach to
develop reliable classification models.

Finally, the sixth chapter provides the conclusion and outcomes of all the work pre-
sented in this thesis. The scientific contributions of this thesis include the solution to
overcome the challenges of scarce training data in complex domains and domain adap-
tation in LMs. The practical contributions of the thesis are data resources and the lan-
guage model for a range of quantitative and qualitative NLP applications.

Keywords: Natural Language Processing, Domain Adaptation, Motivational Inter-
viewing, AI Fairness and Bias, Data Augmentation, GPT, BERT, Healthcare.
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Chapter 1

Introduction

The past decade has seen an explosion in the amount of digital information generated
within the healthcare domain. This digital data or information exists in images, video,
speech, transcripts, electronic health records, clinical records, and free text. The infor-
mation encoded in digital data is of innumerable use to create content-based services
to assist patients and medical practitioners [145, 15, 51, 37, 29, 128, 52, 141, 82]. For
instance, the knowledge extracted from the data can be used to provide new health-
care services globally, addressing the problems related to people’s social or economic
status. But, the analysis and interpretation of healthcare data is a daunting task, and
it demands a great deal of time, resources, and human effort. Therefore, the need for
intelligent tools and reliable systems to tackle the complexity of the healthcare domain
has increased multi-fold. It has also drawn the interest of a wide research community
from healthcare [67, 32, 79, 66], including mental health and its subdomains such as
depression, anxiety or substance abuse [70]. Apart from data privacy issues, domain
complexity, rigorous accuracy and reliability standards and data scarcity [57, 25, 61] are
the key challenges that hamper the real-world application of clinical NLP. While hu-
mans have the innate ability to elicit previously acquired knowledge and conveniently
integrate it with newly learned concepts to solve tasks at hand, language models sig-
nificantly fail to do. Therefore, they are limited in scalability and are very task-specific.
This thesis aims to address the challenges mentioned above in the real-world application
of NLP. It is a blueprint for building intelligent NLP systems capable of understanding
the domain peculiarities and semantics applied to healthcare and beyond.

1.1 Thesis Organization

This thesis cumulatively presents the diverse research work with a unifying goal of de-
veloping reliable classification systems for better semantic interpretation in the health-
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care domain and beyond. The thesis is presented in two parts. The first part, comprising
the following two chapters, focuses on best practices for modeling data, feature engi-
neering, and injecting domain knowledge to enrich data semantics applied to tackle
several classification tasks in the healthcare domain and beyond.

The second part, comprising of Chapters 4 and 5, presents the high-quality dataset
of expert-annotated MI (AnnoMI), its in-depth analysis, augmentation techniques to
generate data, and fairness and bias assessments of the AnnoMI and datasets created
through employing augmentation techniques on AnnoMi. Due to the diversity of re-
search questions, representations, and methodologies, the chapters are self-contained,
i.e., each chapter includes its own literature, motivation, methodology, experiments,
and results analysis. Finally, I conclude the thesis with a summary of contributions and
a detailed discussion of future work that considers more practical applications of the
proposed methods and how LMs can help in domain adaptation. The chapters are or-
ganized as follows:

Part I: NLPPractices andDomainAdaptation for IdentifyingMorbidity from
Electronic Health Records

Chapter 2 provides fine-grained discussion on the impact of feature selection, fea-
ture representation, stopwords, and different strategies of data preprocessing in classi-
fication tasks. Our propositions are validated after conducting a large number of exper-
iments and experimental results in the healthcare domain.

• Challenges: Unbalanced and limited training data size are major problems that
prevent the classification models from optimal and reliable classification.

• Contribution: I have used CML and DL approaches with five pre-trained word
embedding and four bag-of-words representations coupled with different feature
selection algorithms to identify morbidity conditions within clinical notes. The
experimental results prove that single classifiers obtain unstable performances in
the presence of small datasets. In contrast, ensemble approaches mitigate this
instability and, simultaneously, increase the accuracy of the overall classification.

Chapter 3 introduces a languagemodel (K-LM) to inject domain knowledge directly
in the form of triples to solve diverse NLP downstream tasks.

• Challenges: The conventional method uses knowledge graph embedding to in-
fuse domain knowledge which at times is not able to capture the semantics.

• Contribution: A LM for using world knowledge in the form of triples to solve
domain adaptation problems.
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Part II: Generating Motivational Interviewing Dataset and its Benchmark-
ing Evalutaion

Chapter 4 introduces AnnoMI - An expert annotated dataset of mental health do-
main.

• Challenges: Mental health is considered a complex domain in healthcare for the
real world application of NLP. Due to the lack of publicly accessible data onmental
health, it becomes even more difficult to access the reliability of NLP approaches.

• Contribution: Thefirst ever public dataset inMI consists of high and low-quality
counseling therapy and its in-depth analysis.

Chapter 5 explains the augmentation techniques used along with fairness and bias
assessment of AnnoMI.

• Challenges: Insufficient training data is a major problem that prevents CML and
DL approaches from reliable performance.

• Contribution: Provide heuristics methods to augment the AnnoMI dataset and
analysis of newly created datasets post augmenting AnnoMI.

1.2 Publications

The work in this thesis primarily relates to the following peer-reviewed articles.
Journal

1. Zixiu Wu, Balloccu S, V. Kumar, Rim Helaoui, Reiter E., Diego Reforgiato Re-
cupero and Daniele Riboni, “Creation, Analysis and Applications of AnnoMI, a
Dataset of Expert-Annotated Counselling Dialogues”. Future Internet 2023, 15,
110. https://doi.org/10.3390/fi15030110.

2. V. Kumar, D. R. Recupero, R. Helaoui and D. Riboni, “K-LM: Knowledge Aug-
menting in LanguageModelswithin ScholarlyDomain” in IEEEAccess 2022. DOI:
10.1109/ACCESS.2022.3201542.

3. V. Kumar, D. R. Recupero, D. Riboni and R. Helaoui, “Ensembling Classical Ma-
chine Learning and Deep Learning Approaches for Morbidity Identification from
Clinical Notes,” in IEEE Access 2020. DOI: 10.1109/ACCESS.2020.3043221.

Conference/Workshop Publications
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4. Kumar, Vivek, et al. ”How do you feel? Information Retrieval in Psychotherapy
and Fair Ranking Assessment” - Accepted in European Conference of Information
Retrieval (ECIR), Dublin, Ireland -2023. (Presented and Under Final Publication)

5. Kumar, V.; Balloccu, S.; Wu, Z.; Reiter, E.; Helaoui, R.; Recupero, D. and Riboni,
D. (2023). Data Augmentation for Reliability and Fairness in Counselling Quality
Classification. In Proceedings of the 1st Workshop on Scarce Data in Artificial
Intelligence for Healthcare - SDAIH, ISBN 978-989-758-629-3, SciTePress, pages
23-28. DOI: 10.5220/0011531400003523

6. Zixiu Wu, Balloccu S, Vivek Kumar, Rim Helaoui, Reiter E., Diego Reforgiato
Recupero and Daniele Riboni (2022). “Anno-MI: A Dataset of Epert Annotated
Counselling Dialouges.” In The International Conference on Acoustics, Speech,
and Signal Processing (ICASSP) 2022, Singapore.

7. Zixiu Wu, Rim Helaoui, Vivek Kumar, Diego Reforgiato Recupero and Daniele
Riboni (2020). “Towards Detecting Need for Empathetic Response in Motiva-
tional Interviewing.” In SAMIH’20Workshop of International Conference onMul-
timodal Interaction ( pp. 497-502) 2022 ACM ICMI-MLMI.

8. Dessì, D., Helaoui, R., Kumar, V., Reforgiato Recupero, D., and Riboni, D. (2020).
“TF-IDF vs word embedding for morbidity identification in clinical notes: An ini-
tial study.” In 1stWorkshop on Smart Personal Health Interfaces, ACM IUI, Smart-
Phil 2020 (Vol. 2596, pp. 1-12) CEUR-WS.
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Chapter 2

Leveraging NLP approaches for better
semantic understanding of text in
healthcare domain

2.1 Introduction

In the last years, we have observed a rise in life expectancy, which has also increased
the risk of long-term diseases such as diabetes, cognitive impairment, and many other
severe health issues [130, 95, 9, 119]. A further downside of a longer lifespan is that
people can be affected by more than one disease at a time, leading to the likelihood
of under-standard quality of life. An individual with long-term diabetes, for example,
has a higher risk of hypertension, high cholesterol levels, blockage of the arteries or
veins. According to the World Health Organization report [82], 40% of the population
is exposed to at least one long-term health condition, and 25% of the population suf-
fers from multimorbidity in a developed country. According to [82], given that 25% of
the world population is already suffering from multimorbidity, its early identification
is paramount for preventing the severe health issues which can happen in the future to
patients. Therefore, this work aims to automatically identify the multimorbidity factors
indicated in the patient’s clinical records. Morbidity identification is of great signifi-
cance in assisting healthcare personnel with several downstream tasks involving han-
dling large volumes of electronic health records. For the experiments, a dataset is used
that contains the clinical records of patients, indicating the presence of one ormoremor-
bidity factors. In addition, DL models and advanced word embedding representations
have recently proven to be state-of-the-art for many NLP tasks and are popularly used
within many healthcare problems. Hence, in order to exploit their advantages, the rep-
resentation of clinical records by methods such as word embedding and bag-of-words

6



2.2. RELATED WORK

in combination with feature selection techniques using CML and DL approaches are
used. The work focuses on discovering whether patients suffer from single or multiple
morbidity conditions by studying their past clinical records.

2.2 Related Work

This section briefly reviews the existing artificial intelligence (AI), and NLP methods
within the healthcare domain and shows the contribution of the feature selection tech-
niques and word embedding representation.

2.2.1 Artificial Intelligence in Healthcare

The use of DL techniques to identify multimorbidity in clinical reports have been ex-
tensively studied in recent years. For instance, DL models in [153] are fed by word and
entity embedding to the following two layers, Convolutional Neural Network (CNN)
and second Max Pooling. The model improved the results that are obtained during the
i2b21 obesity challenge in 2008. Another work [108] proposed DL based approaches
for morbidity status identification. It is focused on automatic learning from the clinical
records and feature discovery to disengage hand-crafted feature selection using single
and multi-channel CNN models. The single-channel CNN model used an embedding
layer to train the model, whereas the multi-channel model employed multiple CNN
models in parallel, as an ensemble of CNN models, where each used different hyper-
parameters. One more work [77] investigated the performances of long-short term
memory (LSTM) networks for entity recognition based on character and word-level
representations. The proposed LSTM model outperformed traditional state-of-the-art
methods, such as the conditional random field for entity recognition. Authors in [135]
uncovered the implementation of sentiment analysis techniques for patient discharge
summaries classification. The proposed hybrid model used a semi-supervised technique
based on the vector space model and statistical methods in conjunction with an extreme
learning machine auto-encoder. The goal is to examine and evaluate the treatment qual-
ity based on the discharge summaries. The work presented in [138] investigated the DL
approaches, which used pre-trained language models on relation extraction from clin-
ical records. The authors applied pre-trained and fine-tuned BERT, showing that the
fine-tuned method performed better than the feature-based method.

1https://www.i2b2.org/NLP/Obesity/
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2.2.2 Word embedding Models

Clinical records are mostly in the form of free text, which is unstructured, contains ty-
pographical errors, and is comprised of healthcare domain-specific terminologies [71].
The representation of these clinical records in a way that they can be used effectively
by CML and DL approaches remains one of the top challenges within the healthcare
domain. The work in [63] provides a guide for training word embedding on clinical
text data. It discusses the different types of word representations, clinical text corpora,
available pre-trained clinical word vector embeddings, intrinsic and extrinsic evalua-
tion, applications, and limitations of these approaches. Authors in [151] leveraged the
infused elementary distance matrix to update the topic distributions for calculating the
corresponding optimal transports. This strategy provides the update of word embedding
with robust guidance, improving the algorithmic convergence. As an initial study, the
paper [33] presented a comparative analysis of CML and DL approaches with different
types of feature representations, such as Term Frequency-Inverse Document Frequency
(TF-IDF) and word embeddings.

2.2.3 Feature Selection

Feature engineering in NLP involved creating specific numerical functions to represent
salient aspects of the text it requires significant domain knowledge and efforts to iden-
tify meaningful features. Feature selection is extensively used to reduce data by elimi-
nating irrelevant and superfluous attributes from the dataset [127, 53]. This technique
enhances the data interpretation, improves data visualization, reduces the training time
of learning algorithms, and improves prediction performances [58]. The work in [74]
mentions the effectiveness of feature selection algorithms in several applications and
highlights the challenges faced due to the unique characteristics of data. In work per-
formed in [56], the authors aimed to achieve an affordable, fast, and objective diagnosis
of the genetic variant of oligodendroglioma by combining the feature selection with
ensemble-based classification. In addition, the work in [46] presented a method called
FREGEX, which is based on regular expressions to extract features from biomedical, and
clinical notes. It is used as a substitute for the n-grams-based feature selection method
and employed the algorithms Smith-Waterman and Needleman-Wunsch for sequence
alignment. The three datasets used to evaluate the proposed method’s performances are
manually annotated and contained information on smoking habits, obesity, and obe-
sity types. The features extracted by FREGEX based on regular expressions improved
the performance of SVM and Naive Bayes based classifiers. The work in [133] used a
modified differential evolution algorithm to perform feature selection for cardiovascu-
lar disease and optimization of selected features. It also evaluated several performance
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measures for the prediction of heart disease to combine the modified differential evo-
lution algorithm with a feed-forward neural network and fuzzy analytical hierarchy
process.

2.3 Problem Formulation, Dataset, and Preprocessing

This section provides the formulation of the problem addressed, the used dataset, and
the related preprocessing steps applied for CML and DL models.

2.3.1 Problem Formulation

This work aims at a multi-label classification problem to identify morbidity conditions
from patients’ clinical records. In literature, several approaches exist to tackle the multi-
label classification problem [31]. A straightforward and widely used one is to decom-
pose the multi-label problem into multiple binary classification tasks known as binary
relevance method in the literature [109]. Another approach is to transform the multi-
label problem into a single-label multi-class classification problem in which the classes
are all label combinations. Since I address the recognition of 16 morbidities in this work,
the number of possible classes (i.e., co-morbidities) would be 216 = 65, 536. Therefore,
this approach is ruled out, as the number of classes would be too large with respect to
the size of the training set. Other more complex solutions exist, including using a multi-
label ensemble classifier built from a committee of (single-label) multi-class classifiers
or customized machine learning (ML) algorithms adapted to the multi-label problem.
Since this work’s primary goal is to comprehensively compare different ML approaches
and feature extraction techniques, I have adopted a broad and straightforward classifi-
cation strategy, i.e., the binary relevance method in which the multi-label classification
task is decomposed into sixteen binary classification problems.

2.3.2 Dataset Description

The research study is performed on the n2c22 dataset released for the i2b2 obesity and
co-morbidity detection challenge in 2008. The dataset is completely anonymized by re-
placing the personal and sensitive information of patients with surrogates. The dataset
contains clinical records of patients, and these records indicate that patients may have
one or more morbidity conditions from a range of sixteen morbidity conditions (dis-
eases). The sixteen morbidity conditions are Asthma, CAD, CHF, Depression, Diabetes,
Gallstones, GERD, Gout, Hypercholesterolemia, Hypertension, Hypertriglyceridemia, OA,

2https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
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Obesity, OSA, PVD, and Venous Insufficiency. Originally the n2c2 dataset contains six
documents, out of which Training Textual Judgments, Training Intuitive Judgments,
Test Textual judgments, and Test Intuitive Judgments are annotated. The remaining
two documents, namely Training Obesity Patients Records and Test Obesity Patients
Records, contain the clinical records and a unique id associated with them. The textual
judgment documents contain all sixteen morbidity conditions, and within each mor-
bidity condition, there is a specific number of ids and labels associated with them. The
labels in textual judgment documents can obtain values in {Y, N, U, Q}, where ”Y” means
yes, the patient has the morbidity, ”N” means no, the patient does not have the mor-
bidity, ”U” means the morbidity is not mentioned in the record, and ”Q” stands for
questionable whether the patient has the morbidity. Besides, intuitive judgment docu-
ments represent clinical records where domain experts (doctors) are able to infer if those
are indicative of having one or more morbidity conditions for the underlying patients.
Hence, possible intuitive judgments are limited to labels ”Y,” ”N,” and ”Q” because ”U” is
irrelevant as an intuitive judgment. The length of the clinical records is in the range of
500 to 1200 words. A sample of each of the six annotated documents of the morbidity
condition Asthma is shown in Table 2.1.

2.3.3 Data Preprocessing

The n2c2 dataset used for experiments contains abbreviations, some typos, punctua-
tion, stopwords, etc., so some preprocessing steps are thus necessary. In this work, I
have used two types of feature representations, namely bag-of-words and word embed-
dings. For bag-of-words, I have employed TF-IDF, whose vector representation relies
on the word’s occurrence frequency. On the other hand, the word embeddings’ work-
ing principle is based on capturing the semantic relationships among words. The works
in [68, 36] discuss the process and impact of document preprocessing in NLP tasks. Ac-
cordingly, the preprocessing steps are performed for transforming the input dataset to
be used with the bag-of-words models and are reported below:

• Lower-casing the text to represent the same words of different cases such as
Asthma and asthma as one, i.e., asthma.

• Tokenization of text to build a function f , where for each word w, the function f

is associated with an integer index i.

• Punctuation and numeric values removal from the text.

• Lemmatization of the tokens.
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Table 2.1: Sample data of n2c2 for class Asthma

Training Documents Test Documents
Training Data-Textual Judgments
<diseases source=”intuitive”>
<disease name=”Asthma”>
<doc id=”1” judgment=”U”/>
<doc id=”2” judgment=”Y”/>
<doc id=”10” judgment=”U”/>

Test Data-Textual Judgments
<diseases source=”intuitive”>
<disease name=”Asthma”>
<doc id=”3” judgment=”Y”/>
<doc id=”5” judgment=”U”/>
<doc id=”8” judgment=”U”/>

Training Data-Intuitive Judgments
<diseases source=”intuitive”>
<disease name=”Asthma”>
<doc id=”1” judgment=”N”/>
<doc id=”4” judgment=”N”/>
<doc id=”10” judgment=”Q”/>

Test Data-Intuitive Judgments
<diseases source=”intuitive”>
<disease name=”Asthma”>
<doc id=”3” judgment=”Y”/>
<doc id=”5” judgment=”N”/>
<doc id=”9” judgment=”Y”/>

Training-Obesity Patients Records
<doc id=”1”>
<text>
490646815 | WMC | 31530471 | | 9629480 |
11/23/2006 12:00:00 AM |
ANEMIA | Signed | DIS |
Admission Date: 11/23/2006 Report
Status: Signed\break\
Discharge Date: 6/20/2006\break\
ATTENDING: TRUKA, DEON XAVIER M.D.
SERVICE: BH .anList Medical Center.
PRIMARY DIAGNOSIS:
Congestive heart failure…

Test-Obesity Patients Records}
<doc id=”3”>
<text>
470971328 | AECH | 09071283 |
| 6159055 | 5/26/2006 12:00:00 AM |
PNUEMONIA | Signed | DIS |
Admission Date: 4/22/2006 Report
Status: Signed
Discharge Date: 7/27/2006
ATTENDING: CARINE , WALTER MD
SERVICE: PRINCIPAL DIAGNOSIS:
Anemia and GI bleed….
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• TF-IDF matrix generation from input data to transform each clinical note into
feature vectors.

In order to study the impact of stopword removal for the experiments with word
embedding representation, I have preprocessed the input data to generate two sets of
feature vectors. One set of feature vectors contains the stopwords, while the other
set does not. In the second case, stopwords removal has been performed by using the
NLTK3 library. Furthermore, these two feature vectors are separately used to train the
CML models to observe the impact of stopwords on the classifier’s performance.

Transforming input data for training of DL models

The dataset must be in integer encoded format to employ DL models and word em-
bedding representation, where a unique integer represents each word. Therefore, to
model the data for DL models, the input data is also padded to have symmetrical length
throughout, in addition to integer encoding as mentioned below:

• Encoding the input texts into numeric integer representations using vocabulary-
index relation. For instance, consider the sentence s: the patient is asthmatic, and
a function f that maps the to ”5”, patient to ”34”, is to ”10” and asthmatic to ”87”.
Then, the resulting integer-encoded sentence sencoded will be [5, 34, 10, 87].

• Padding each of the input text (integer encoded) to a length equivalent to (average
+ standard deviation) number of tokens. Most clinical texts are around the average
length for the dataset, and the remaining few clinical texts are too long. In this
work, I have computed the padding length equal to the sum between the average
and the standard deviation of the number of tokens each input text had. This
formula has been found empirically on the data and turned out to be a good trade-
off between the size of the padding and the length of the document. For example,
for four clinical records with 25, 39, 44, and 80 tokens, respectively, the average
length is avg=47, and the standard deviation is std = 20.29. Hence, the length
that is considered for padding is 67.

2.4 Features Representations

This work used bag-of-words TF-IDF and word embedding representations to gener-
ate feature vectors. On the one hand, TF-IDF has served as a baseline for many NLP
tasks [156] for decades and has proven to be very useful. On the other hand, word em-
bedding is the current state-of-the-art due to their innate capability of capturing the

3https://www.nltk.org/
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semantics and contextual information for textual features representation of words and
text sequences [90, 64].

2.4.1 Term Frequency and Inverted Document Frequency

To generate the feature vectors using bag-of-words TF-IDF representation, I have used
the TF-IDF Vectorizer4 from the scikit-learn library. The experiments are performed
with four types of feature vectors using the TF-IDF representations: All Features
(where feature selection is not applied) and the ones obtained by applying three fea-
ture selection algorithms: ExtraTreesClassifier, InfoGainAttributeEval, and Selec-
tKBest. The reason for limiting the number of features is to reduce the computational
time for training the models by keeping only those features that contribute most in
distinguishing the instances of the different classes.

• ExtraTreesClassifier is essentially an ensemble learning method that concep-
tually shares a similar working principle as that of Random Forest (RF). The only
difference is the method for constructing decision trees. For a given set of m
features, which are selected randomly from the features set of the input data, Ex-
traTreesClassifier5 selects the top features based on their importance (it can be
typically calculated by the Gini Index [22]). These random samples of features
are further used to create mutually correlated decision trees. This process helps
to minimize the chances of overfitting and ranks the features in descending order.

• InfoGainAttributeEval is used for feature selection based upon measuring how
each feature contributes to decreasing the overall entropy [50]. Entropy is basi-
cally a measure of the impurity degree in the dataset. The data is characterized
as less impure when the entropy is closer to zero. Hence, the usefulness of an
attribute is identified by its contribution to reducing the overall entropy. It can
be represented by:

InfoGain(Class, Attribute) = H(Class)−H(Class|Attribute)

Where H is the information entropy.

• SelectKBest takes the score function as a parameter, which is applied to a pair
(m, y) where m corresponds to the features of the input data and y to the cor-
responding labels. The score function returns an array of scores, one for each
feature m[:, i] of m. SelectKBest6 then simply retains the first k features of m

4https://tinyurl.com/y8jqmscd
5https://tinyurl.com/ybnzo8rh
6https://tinyurl.com/y5c7w6bo
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with the highest scores.

The parameter vocabulary of the TF-IDF vectorizer should be provided with a custom
list of words (vocabulary) to use the feature selection algorithms from the Python li-
brary. This custom vocabulary contains the words (features) in ranked order provided
by feature selection algorithms based on the features’ information gain. The configura-
tion is set tomax_features=600 and vocabulary=custom_vocab, where custom_vocab
is the vocabulary of ranked features selected by applying the feature selection algo-
rithms. This setting generates the feature vectors matrix of {n×600} dimension, where
n is the number of text documents (clinical notes).

2.4.2 Word Embeddings

This section describes the general working principle of theword embedding, followed by
the details of all the word embedding used for the experiments: pre-trained word2vec,
domain-trained, GloVe, fastText, and USE embeddings. They are reported below. Word
embedding are distributed representations that model words’ properties into vectors
of real numbers in a predefined vector space, capturing features and preserving their
semantic relationships. As an outcome of this representation, the words having similar
meanings have a similar representation. Figure 2.1, presents the visualization of 300-
dimensional word embedding of 18586 words generated from n2c2 dataset using the
word2vec model in high dimensional space using Tensorboard7. From the visualization,
one can note how the words are mapped near to those whose word embedding have a
similar meaning. For instance, in the case of the word diabetes, the words diabetic and
insulinotherapy are represented in the close semantic space, notable by their scores 0.772
and 0.777.

• Pre-trainedWord2Vec: Word2Vec is an algorithm invented by Google for train-
ing word embedding that relies on the distributional hypothesis [85]. The distri-
butional hypothesis uses skip-gram or Continuous Bag of Words (CBOW) algo-
rithms. In the CBOW model, for a given context, the objective is to predict the
focal word. The CBOW model with a softmax loss function is essentially a log-
linear classification model. The aim is to determine the most likely parameters of
the embedding vectors, which can be represented by Equation 2.1:

P (wf |wc) =
exp(wT

f wc)∑V
i=1 exp(w

T
f wc)

(2.1)

7https://projector.tensorflow.org/
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Figure 2.1: Visualizing the semantic relationships between words by Word2Vec word
embedding representation.

wherew_c is the context (one or more words), w_f is the focal word, and V is the
vocabulary size. On the other hand, the skip-gram model can be considered as
a complementary model to the CBOW model in terms that its objective involves
predicting a context word given a single focal word [63]. The skip-gram model is
represented by Equation 2.2:

P (wf |wc) =
C∑
c=1

exp(wT
f wc)∑V

i=1 exp(w
T
f wc)

(2.2)

The Word2Vec algorithm aims to detect the meaning and semantic relations by
studying the co-occurrences among words in a given corpus. In this work the
pre-trained Word2Vec8 model is used, which is trained on the part of the Google
News dataset (about 100 billion words). This pre-trained model contains vectors
of three million words and phrases, which are represented in 300-dimensional
space.

• Domain-trained Word2Vec: The domain-trained word embedding are gener-
ated by using theWord2Vec algorithm on the n2c2 dataset. The rationale for using
these embeddings is their advantage in representing the out-of-vocabulary words
due to training on the target domain (in our case, healthcare). For this work, word
embedding of 300 dimensions with 10 epochs and a window size of 5 by using
the Gensim9 library is generated.

8https://code.google.com/archive/p/word2vec/
9https://radimrehurek.com/gensim/
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• GloVe: generator algorithm was developed as an open-source project at Stanford
in 2014 [98]. For a given context, to identify how frequently the words appear,
GloVe utilizes a statistics-based matrix to compute the vectors’ scores based on
the co-existence of words within the context. Unlike the Word2Vec algorithm,
GloVe uses both the skip-gram model, which is a local context window and the
latent semantic analysis method, which belongs to the global matrix factorization
methods. For this work, the pre-trained GloVe6B10 embedding model, trained by
the Stanford NLPGroup on 600 billion tokens ofWikipedia11 and Gigaword12 with
dimension 300 is used.

• fastText: One drawback of Word2Vec and GloVe algorithms is the fact that they
are not able to handle out-of-vocabulary words. To overcome this limitation,
Facebook proposed fastText13, which is essentially an extension of the Word2Vec
algorithm [62, 10, 84]. FastText extends theWord2Vec skip-grammodel by consid-
ering internal sub-word information. Basically, words are represented as n-gram
of characters instead of learning vectors for words directly. For instance, for n=3,
the word apple consists of app, ppl, and ple. FastText does not consider the internal
structure of the word and represents a bag-of-words model with a sliding window
over a word. Also, as long as the characters are contained in the window, it is un-
affected by the order of the n-grams. This approach helps the model to compute
word representations of out-of-vocabulary words and allows the model to under-
stand suffixes and prefixes because it is very likely that some of the n-grams also
appear in other words.

• Universal Sentence Encoder (USE): While the common practice with word em-
bedding focuses on representing theword, the technique to represent the sentence
through a single vector is unclear. To address this, Google introduced pre-trained
embedding models known as USE, which are optimized to train with a longer
text sequence than a single word such as phrases, sentences, and short para-
graphs [21, 28]. The pre-trained USE14 model is trained on several domains with a
variety of data sources to accommodate a wide variety of natural language under-
standing tasks dynamically. It transforms the text into high-dimensional vectors
by performing an encoding. It comes with two variations, i.e., one trained with a
transformer encoder and the other trained with the deep averaging network. For
this work, I have used the deep averaging network pre-trained USE, which takes

10https://nlp.stanford.edu/projects/GloVe/
11https://dumps.wikimedia.org/enwiki/
12https://catalog.ldc.upenn.edu/LDC2011T07
13https://fastText.cc/docs/en/english-vectors.html
14https://tfhub.dev/google/universal-sentence-encoder/4
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2.5. CLASSIFICATION MODELS

Figure 2.2: The architecture of the pipeline for morbidity detection in clinical records
using TF-IDF representations with CML and DL approaches.

variable-length English texts as input and outputs 512-dimensional vectors.

2.5 Classification Models

This work has employed two types of classification models based on CML and DL ap-
proaches with each type of feature representation mentioned in Section 2.4. Figure 2.2
shows the generalized architecture of the pipeline used for the classification of clini-
cal records using TF-IDF representations with CML and DL approaches. The pipeline
consists of training and testing phases. Prior to the training stage, the preprocessing is
applied to the clinical records, as mentioned in Section 2.3.3. After that, classifiers are
trained on the feature vectors derived from the training samples. After creating feature
vectors, the previously trained classifiers predict each clinical record label in the testing
sample. Finally, the performances of different classifiers are evaluated by calculating
standard metrics such as precision, recall, and F-1 score. The CML and DL models and
their architectures are mentioned below.
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CHAPTER 2. LEVERAGING NLP APPROACHES FOR BETTER SEMANTIC
UNDERSTANDING OF TEXT IN HEALTHCARE DOMAIN

2.5.1 Classical Machine Learning Models

Experimental results reported in this paper are obtained using standard implementa-
tions of CML algorithms provided by the Weka toolkit using Python Weka-Wrapper15

interface with Java Virtual Machine16 environment. I have employed Support Vector
Machine (SVM) [30], k-Nearest Neighbours (kNN) [1], Naive Bayes [60], Random For-
est [14], Random Tree [106], J-48 [118] and J-Rip [27].

2.5.2 Deep Learning Models

The DL models have used two types of representations, one with word embedding and
the other with bag-of-words.

• Deep Learning Models Used with Word Embeddings: The DL model used in
this work for word embedding representations is the network with an embedding
layer, two Bidirectional Long Short-Term Memory (BiLSTM) layers, a dense layer
followed by an output layer for the binary classification task. Figure 2.3 presents
the related architecture. The embedding layer is initialized by the following four
inputs:

– input_dim (size of the vocabulary);

– output_dim: (dimension of the dense embeddings);

– weights (embeddings_matrix), and

– input_length (length of input sequences).

The input_dim represents the length (V ) of the unique vocabulary created from
the input data (clinical records). The inputmatrix (integer encoded vectors) has di-
mension {n×m}, with n equal to the number of clinical records and input_length
corresponding tom, which is the maximum number of tokens considered for each
text. The embeddings_matrix is the vector representation of the corresponding
words of the vocabulary and has dimension {V × x}, where x represents the
output_dim. Specifically, output_dim for all the embedding is 300 except USE,
which has a value of 512. The output of the embedding layer is passed to two
hidden layers that implement BiLSTM neural networks [78]. LSTM is a particu-
lar kind of recurrent neural network that can store the history of the input data
and has already proven to be able to find patterns in data where the sequence of
the information matters [24]. By using the bidirectional version, the models can

15https://pypi.org/project/python-weka-wrapper/
16https://pypi.org/project/javabridge/
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2.5. CLASSIFICATION MODELS

Figure 2.3: The architecture of DL models to use word embedding representation

learn from the input data both backward and forward. Finally, the output of the
BiLSTM layer is fed to a fully connected dense layer to predict the labels.

• Deep Learning Models used with Bag-of-words representation: For the
bag-of-words model TF-IDF representation is used, in conjunction with the em-
ployed feature selection algorithms. The differences between this and the above-
mentioned DL model are the following:

– This model does not have an embedding layer and the input is directly fed
to the BiLSTM layer.

– Secondly, in this model the input data do not undergo the preprocessing
steps such as integer encoding and padding when used with TF-IDF repre-
sentation.

The input to the BiLSTM layer, in this case, is the TF-IDF matrix, which is gener-
ated by the TF-IDF vectorizer and has dimension {n × 600}, with n the number
of text documents (clinical records). Figure 2.4 presents the architecture of the
DL network used with TF-IDF representation.
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Figure 2.4: The architecture of DL models to use TF-IDF representation.

2.6 Experiments and Results

The specifications of computational resources to run the experiments are summarized
in Table 2.2.

Table 2.2: Server Specifications.

Item Specification
CPU Intel Core i3-7100 (-HT-MCP-) CPU @ 3.90 GHz
GPU NVIDIA GP102 [TITAN X], 12 GB memory
Graphic
driver

NVIDIA graphic driver version 440.33.01

CUDA Version 10.2
OS Ubuntu (17.10)
Python Version 3.6.6

The experiments are performed with CML and DL approaches using the bag-of-
words applied to feature selection algorithms and word embedding representations.
Ensemble learning is also employed over a large number of combinations of classifiers
to improve the single model performances and obtain stable results. To ensure the ro-
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2.6. EXPERIMENTS AND RESULTS

bustness of performance estimation and avoid the bias of the single ML models, 10-fold
cross-validation is used [65]. The performances of different classifiers and feature rep-
resentations are measured in terms of F-1 score (F-1) using micro and macro averaging
over 10 folds provided by the scikit-learn17 library. The formulas to calculate accuracy,
precision, recall, and F-1 score are given by:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2× Precision×Recall

Precision+Recall

where TP, FP, and FN represent each label’s true positive, false positive, and false nega-
tive, respectively. The experiments that have been carried out can be divided into three
groups for ease of understanding, which are mentioned below:

1. In the first set of experiments, CML and DL approaches are used with bag-of-
words representations coupled with feature selection algorithms using TF-IDF
representation, as mentioned in Section 2.4.1.

2. In the second set of experiments, CML and DL approaches are used with word
embedding generated by pre-trained models of word2vec, domain-trained with
word2vec, GloVe, fastText, and USE embeddings. The feature vectors generated
by these pre-trained word embedding to train CML classifiers are generated from
the same input data by either keeping or removing the stopwords. The purpose
of generating two sets of feature vectors is to study the relatedness of stopwords
with the context of the text and their impact on the classifier’s performance. The
DL models are trained only with the feature vectors of the input data with stop-
words as the standard experiment.

3. As the last set of experiments, the ensemble learning approach is implemented
on a large number of combinations of classifiers to improve the single model per-
formances.

The following subsections describe the three sets of experiments.
17https://tinyurl.com/y4mt646z
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UNDERSTANDING OF TEXT IN HEALTHCARE DOMAIN

2.6.1 Experimental Results with bag-of-words coupled with fea-
ture selection algorithms

This subsection provides the details of the experiments performed with CML and DL
approaches with bag-of-words coupled with feature selection algorithms using TF-IDF
representations. TF-IDF evaluates the importance of a feature based on its frequency.
Identifying features that contribute the most to distinguish the classes is useful for im-
proving the models’ performances. Thus this work has adopted three feature selection
algorithms, namely ExtraTreesClassifier, InfoGainAttributeEval, and SelectKBest, along
with the All Features. Table 2.3 depicts the results of CML classifiers with All Fea-
tures using TF-IDF representations. Tables 2.4, 2.5, and 2.6 illustrate the results of CML
Classifiers with feature selection algorithms ExtraTreesClassifier, SelectKBest, and In-
foGain, respectively. Finally, Table 2.7 includes the results of the DL models with the
four bag-of-words applied to feature selection algorithms using TF-IDF representations.
The key observations from the performed experiments are listed below:

• In general, the feature selection algorithms have improved the performance of
CML classifiers (typically by 1%). The two best-performing classifiers with All
Features are SVM and RF with 98.45 and 98.1 micro F-1 scores, respectively (as
shown in Table 2.3). Using the ExtraTreesClassifier as the feature selection algo-
rithm has improved the micro F-1 score of RF to 98.82 and SVM to 99.26 (shown
in Table 2.4), which is the best performance of CML classifiers among all the ex-
periments.

• In contrast, the Naive Bayes classifier used with All Features has the best per-
formance with a Micro F-1 score of 89.31 (as shown in Table 2.3) than with any
feature selection algorithms.

• In the case of DL approaches, All Features using TF-IDF has been outperformed
by the feature selection algorithms achieving up to 13% of F-1 score (shown in
Table 2.7).

• The reason for the low performance of DL models with All Features using TF-
IDF is because that TF-IDF selects the features based on the frequency of the
words, which is not useful to distinguish the morbidity classes. Feature selection
algorithms identify the most important features that allow the DLmodels to learn
clinical records’ context, further improving classification performances.

• From the experimental results, it turned out that using feature selection algo-
rithms has shown more benefit on DL models than on CML algorithms. In fact,
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2.6. EXPERIMENTS AND RESULTS

with All Features, the micro F-1 score of DL models is 76.47, whereas, with the
usage of ExtraTreesClassifier, it has improved to 89.63 (as shown in Table 2.7).

• As far as the computational time and resource requirements are concerned, the
CML models have proven to be computationally faster and less demanding. The
training time of the CML models seen so far is up to 600 seconds while of the DL
models it is much higher (a couple of hours) using the same machine mentioned
in Table 2.2 (DL approaches employed both the CPU and the GPU whereas the
CML models just the CPU).
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2.6. EXPERIMENTS AND RESULTS

2.6.2 Experimental Results With Word Embeddings

In this group of experiments, the CML and DL approaches are trained with the em-
bedding generated by the pre-trained word2vec and domain-trained with word2vec,
fastText, GloVe, and USE models. The results of the experiments are summarized in Ta-
bles 2.8, 2.9, 2.10. In particular, Tables 2.8 and 2.9 present the results of CML classifiers
using the word embedding representation with the input data without the removal of
stopwords (raw) and with the input data not containing the stopwords (pre-processed),
respectively. The best performances of CML classifiers with word embedding repre-
sentations extracted from Tables 2.8 and 2.9 are shown in Figure 2.7. Moreover, for
ease of understanding, Figure 2.8 represents the performance of the CML and DL clas-
sifiers with bag-of-words coupled with feature selection algorithms. Figure 2.9 shows
the CML and DL classifiers’ plots with word embedding representation. The winning
configurations are highlighted for each kind of used representation.

The key observations from the performed experiments are listed below:

• The CML classifiers have performed only slightly better (less than 1% of differ-
ence) with embedding when the input data do not contain the stopwords. The
case when the input data contain the stop words has lower performances, where
the domain-trained and USE embedding are the exceptions.

• Given the small size of the used dataset and the minimal difference between the
two kinds of CMLmodels (with and without stopwords), any concrete conclusion
can not be made for their performance based on the presence of stopwords in
the dataset. However, it can be assumed that, given the technical terminology
used within the clinical notes, stopwords should not play an important role while
preprocessing the dataset. A more detailed analysis of them is out of the scope of
this work and will be investigated in a future direction.

• In the case of DL models, the use of word embedding has further improved their
performance with respect to the bag-of-words representation coupled with fea-
ture selection algorithms. The best performance of the DL model is observed
when GloVe word embedding are employed with 94.3 average micro F-1 scores
(Table 2.10) against the average micro F-1 score of 89.63 when used with bag-
of-words representation (Table 2.7). Besides, the former corresponds to the best
performance of DL models for all sets of experiments.

• Generally, it is expected that the domain-specific word embedding will perform
better (due to the absence of out-of-vocabulary words) than pre-trained word em-
beddings, but it does not happen if the training data is small. The small amount

29



CHAPTER 2. LEVERAGING NLP APPROACHES FOR BETTER SEMANTIC
UNDERSTANDING OF TEXT IN HEALTHCARE DOMAIN

Table 2.8: Performances (averaged over all themorbidity classes) of CML classifiers with
Word embedding when input data contain stopwords.

Domain-Train fastText GloVe Word2Vec USE

Classifier Micro
F-1

Macro
F-1

Micro
F-1

Macro
F-1

Micro
F-1

Macro
F-1

Micro
F-1

Macro
F-1

Micro
F-1

Macro
F-1

J-48 92.21 87.79 93.34 89.65 92.95 88.84 92.62 86.39 93.42 89.8
J-Rip 86.12 77.87 90.16 85.49 89.16 83.7 88.76 80.92 89.56 83.83

Naive Bayes 58.14 51.5 65.89 63.83 63.51 60.84 61.96 60.47 68.13 60.33
Random Forest 97.92 96.95 98.03 96 97.98 95.9 96.63 92.85 98.06 97.1
Random Tree 97.19 95.69 97.5 96.33 97.1 95.68 95.87 92.88 96.98 95.52

SVM 79 51.2 89.08 78.07 86.13 70.78 87.31 71.85 90.06 85.31
KNN (k=1) 97.18 95.74 97.51 96.07 97.18 95.82 95.95 93.04 97.31 95.95
KNN (k=5) 81.79 65.52 84.12 68.14 83.38 66.76 83.13 65.71 83.16 68.4

of data, in fact, jeopardize the chances of learning the subtle peculiarities of the
domain and will lead to the high variance estimation of the model’s performance.
For such a reason, the performances of the DL models with domain-trained em-
bedding are worse than those of the other four pre-trained embeddings. In con-
trast to the DL models, the performance of CML models using domain-specific
word embedding is only slightly affected by the small size of the dataset.

• Regarding the computational time, the CML models have again turned out to be
computationally fast and less resource exhaustive as compared to the DL models.
The training time of the CML models ranges between 80 and 600 seconds. The
reason for the reduced training time with respect to the CML models employing
bag-of-words is the lower dimension of the embedding vectors (typically 300-
dimensional for all types of word embeddings except USE, which has 512).

• Different from the CML classifiers, the training time of the DL classifiers has in-
creased up to 40 hours. The reason for this higher computational cost lies within
the employment of new layers of deep neural networks.

The comparison of the training time between the CML and DL models is presented
in Figures 2.5 and 2.6. Finally, Table 2.10 presents the results of DL models with the
word embedding representation.
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2.6. EXPERIMENTS AND RESULTS

Figure 2.5: The training time of CML models with different representations.

Table 2.9: Performances (averaged over all themorbidity classes) of CML classifiers with
Word embedding when input data do not contain stopwords

Domain-Train fastText GloVe Word2Vec USE

Classifier Micro
F-1

Macro
F-1

Micro
F-1

Macro
F-1

Micro
F-1

Macro
F-1

Micro
F-1

Macro
F-1

Micro
F-1

Macro
F-1

J-48 91.79 87.09 93.44 89.59 93.65 89.85 93.36 89.91 92.53 87.91
J-Rip 85.09 75.21 89.78 84.43 89.86 85.53 89.91 84.62 88.34 81.77

Naive Bayes 57.5 52.25 69.25 66.96 66.5 64.48 65.71 63.93 51.55 47.02
Random Forest 97.8 96.83 98.13 97.24 98.05 95.93 98.12 96.08 97.9 96.09
Random Tree 97.25 95.84 97.2 95.74 96.99 95.64 97.41 96.07 97.01 96.61

SVM 79.43 51.65 90.27 81.32 89.49 79.17 89.83 79.91 89.9 84.42
KNN (k=1) 97.13 95.54 97.54 96.3 97.22 96.26 97.43 96.02 97.43 96.19
KNN (k=5) 81.67 64.27 84.57 69.12 84.3 68.44 84 68 84.05 69.69
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CHAPTER 2. LEVERAGING NLP APPROACHES FOR BETTER SEMANTIC
UNDERSTANDING OF TEXT IN HEALTHCARE DOMAIN

Figure 2.6: The training time of DL models with different representations.

Figure 2.7: Best performances of CML classifiers using embedding with and without
stopwords taken from Tables 2.8 and 2.9.
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2.6.3 Experimental Results With Ensemble Approach

In this final group of experiments, the ensemble learning approach is discussed. En-
semble learning works by first training each single machine learning model and then
combining their predictions. The rationale behind ensemble learning is to take the best
from a given set of algorithms by combining their outputs. Given the large number
of classifiers employed in this study, it is not feasible to experiment with all possible
combinations of employed machine learning algorithms. For this reason, the most ef-
fective DL and CML algorithms are selected for applying the ensemble approach. For
the ensemble approach, four bag-of-words models with feature selection and five types
of pre-trained word embedding are used with eight CML algorithms and BiLSTM-based
DL models. Hence, a total of 9 × 9 = 81 classification models in total are considered
for the ensemble. Considering the formula 2a − (a + 1), with a ≥ 2 equal to the
number of models, for calculating the total number of possible ensembles constituted,
would account for a total of (281 − 82) possible combinations. Computing all the pos-
sible ensembles resulting from the formula above would be unfeasible. Therefore, the
number of models for generating the configurations of ensembles is limited. As per
the hypothesis, combining CML and DL classifiers in the same ensemble configuration
would increase the model’s stability without decreasing accuracy. Hence, for this work,
the 6 top-performing CML models and the 5 top-performing DL models from the pool
of classifiers are included in the ensemble configurations. The ensemble combinations
are generated based on r, where r is an odd number between 3 and 11. The choice
of using 11 classifiers corresponded to 1013 different ensemble configurations, which
is a reasonable number for this experiment. The classifiers selected for the ensemble
configurations are listed below:

1. Random Forest classifier used with SelectKBest feature selection algorithm.

2. SVM classifier used with ExtraTreesClassifier feature selection algorithm.

3. kNN classifier (where k=1) used with ExtraTreesClassifier feature selection algo-
rithm.

4. kNN classifier (where k=1) used with fastText word embedding representation.

5. Random Forest classifier used with USE word embedding representation.

6. Random Forest classifier used with fastText word embedding representation.

7. DL model used with USE word embedding representation.

8. DL model used with GloVe word embedding representation.
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9. DL model used with fastText word embedding representation.

10. DL model used with InfoGain feature selection algorithm.

11. DL model used with ExtraTreesClassifier feature selection algorithm.

The performance of all the above-mentioned 1013 ensemble combinations is computed,
and the results of the six best-performing combinations among them are summarized
in Table 2.11. Out of the top six ensemble models, ensembles 1, 3, and 5 consist of five
classification models, while 3 classification models constitute ensembles 2, 4, and 6.
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The structure of the top six ensemble combinations is listed below:

• Ensemble-1. The number of constituting classifiers for Ensemble-1 is 5, which
are: DL models with (fastText and GloVe) word embeddings, SVM with Extra-
TreesClassifier algorithm, RandomForestwith SelectKBest algorithm, and kNN(k=1)
with fastText word embeddings.

• Ensemble-2. The number of constituting classifiers for Ensemble-2 is 3, which
are: DL model with GloVe word embeddings, SVM with ExtraTreesClassifier, and
kNN(k=1) with fastText word embeddings.

• Ensemble-3. The number of constituting classifiers for Ensemble-3 is 5, which
are: DL models with (fastText and GloVe) word embeddings, SVM with Extra-
TreesClassifier algorithm, and kNN(k=1)with ExtraTreesClassifier algorithm, and
kNN(k=1) with fastText word embeddings.

• Ensemble-4. The number of constituting classifiers for Ensemble-4 is 3, which
are: DL model with fastText word embeddings, SVM with ExtraTreesClassifier,
and kNN(k=1) with fastText word embeddings.

• Ensemble-5. The number of constituting classifiers for Ensemble-5 is 5, which
are: DL models with (fastText and GloVe) word embeddings, SVM with Extra-
TreesClassifier algorithm, Random Forest with fastText word embeddings, and
kNN(k=1) with fastText word embeddings.

• Ensemble-6. The number of constituting classifiers for Ensemble-6 is 3, which
are: DL model with GloVe word embeddings, Random Forest with SelectKBest
algorithm, and kNN(k=1) with fastText word embeddings.

To get the final predictions of the ensembles, the majority voting technique is used,
which is generally used for these kinds of tasks [16]. In this technique, multiple models
are used to make predictions for each clinical record, and predictions by each model are
considered as a ”vote.” For instance, for a document (a clinical record), if three classi-
fiers have predicted the class of a sample as 1, 0, and 1, then the final predicted label
will be 1, as it secures more than half the votes. The experimental results are summa-
rized in Table 2.12 for ease of understanding. The first section of Table 2.12 presents the
average performances of the eight CML algorithms with each of the four bag-of-words
models coupled with feature selection algorithms and the five-word embeddings. The
second section of Table 2.12 presents the average performances of the nine DL models
used with each of the two representations, i.e., the four bag-of-words models represen-
tations and the five-word embedding representations. Lastly, the third section shows
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the average performances of all the ensemble models, which are tested with 3, 5, 7, and
9 constituents.
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The comparison of the aforementioned performances has been done in terms of the
average micro F-1 score, best micro F-1 score, and standard deviation. Note that values
in each row of the table are averaged over all the morbidity classes and settings within
the underlying model. The best performer among them gives an F-1 score of 99.27, with
an average of 97.97 and a standard deviation of 0.96. From the results, it is evident that
the CML and DL classifiers’ performances are lower than the presented ensembles.

2.7 Conclusion and Future Work

The performance variations of CML and DL classifiers with the different feature vec-
tor representations are holistically analyzed. First, the performances of CML classifiers
with word embedding with or without stopwords are discussed. The results indicate
that the performances of CML classifiers are slightly better when input data do not
include the stopwords in general when used with different embeddings, with domain-
trained and USE embedding being the exception. Unlike the other word embedding
approaches that take a word as input to generate the feature vectors, the input to USE
is a sentence. Therefore, the embedding produced by USE for the sentence captures
the context of the sentence and the mutual relatedness of words within it. Removing
stopwords can change the sentence’s meaning, negatively impacting the predictions. In
the case of CML classifiers used with bag-of-words representation, the performances
of CML classifiers have improved with the ExtraTreesClassifier feature selection algo-
rithm, i.e., SVM with the F-1 score of 99.26, which is the best performance for all the
performed experiments. Overall, the CML classifiers have performed better with the
feature selection algorithms. Furthermore, in the case of DL approaches, the used fea-
ture selection algorithms have substantially improved the model’s performance. The
F-1 score of 76.25 withAll Features has increased to 89.63 when ExtraTreesClassifier is
used. In the case of the DL approaches used with different word embeddings, GloVe has
achieved the best results. In the context of training time, the CML models have proven
to be computationally lighter and faster to train. Conversely, the DL models have a long
training time, which increases while switching from experiments with bag-of-words to
word embedding representations. Finally, the integration of CML and DL approaches
by employing the ensemble technique to produce ensemble models has improved the
single best classification model’s performances. While the best performances of the DL
models are achieved with GloVe word embedding obtaining a micro F-1 score of 94.3,
the top 989 out of 1013 ensembles got a higher score than it. Although the best ensemble
score of 99.27 is only slightly better than the best performance of a single CML model,
99.26, the efficacy of ensemble models can be appreciated by their high average and
low standard deviation values. The average micro F1 scores of ensembles made of 3,

40



2.7. CONCLUSION AND FUTURE WORK

Figure 2.8: Experimental results of CML and DL models with and without the employ-
ment of feature selection algorithms.

5, 7, and 9 classification models are greater than the average of each single representa-
tion technique used for experiments. In addition, while the CML classifiers suffer from
a high standard deviation value, the ensembles are much more stable with a standard
deviation, which decreases from 2.35 when using 3 classifiers to 0.27 when using 9 clas-
sifiers. Despite being computationally intensive, the ensemble method proved to be a
viable technique. Indeed, for a highly imbalanced and small dataset like the used in this
work, the prediction stability of the model is quintessential. In general, for the minority
class, the classification models tend to achieve lower precision or recall scores. Using
the ensemble approach, can not only deal better with the prediction of the minority
class but also reduce the variance of predictions and, thus, the generalization error. In
the context of future work, techniques like data augmentation and state-of-the-art word
embedding representations exploiting transformer architecture such as BERT, ELMO,
XLNet, etc., can be employed to deal with the constraints of small datasets in order to
improve the performances of DL models and the overall ensemble. Moreover, a detailed
analysis of the benefits of removing or not the stopwords from the clinical notes will be
carried out to understand when they are useful or not in the underlying domain.
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Figure 2.9: Experimental results of CML and DL models with word embeddings.
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Chapter 3

Knowledge augmenting practices for
domain adaptation using knowledge
graphs

3.1 Introduction

Humans have the innate ability to elicit previously acquired knowledge and integrate it
with newly learned concepts to solve tasks at hand. However, we have made remark-
able progress in developing intelligent systems to mimic human-like abilities in recent
times; still, these systems are limited in scalability and are very task-specific. For in-
stance, the transfer learning [96] approach has left a mark in cross-domain adaptation,
but it is limited to interrelated domains application. Similarly, the general LM, BERT
fromTransformers [38], pre-trained onWikipedia1 and BookCorpus2, has given promis-
ing results on specific NLP downstream tasks. But in the case of cross-domain adapt-
ability, it lacks task-specific and domain-related knowledge, and hence more detailed
fine-tuning strategy analyses are necessary to further improve the performance [73].
To overcome the constraint of domain-adaption, approaches based on augmenting ad-
ditional knowledge to LMs have turned out to be effective. One way to inject general
world knowledge is represented by Knowledge Graphs (KGs), which are well-known
interlinked structured knowledge, comprised of triples [42]. A semantic triple, or RDF
triple or triple, is the atomic data entity in the RDF data model. As the name indicates,
a triple is a set of three items, subject (s), predicate (p), and object (o), that encodes the
semantic data (e.g., <Deep Learning, sub-domain, Machine Learning>). The triples are
represented as (s, p, o), where the predicate (p) is the relationship between the subject

1https://www.wikipedia.org/
2https://huggingface.co/datasets/bookcorpus
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and the object. A few of the popular general knowledge bases available in the public
domain include WordNet3 [86], Cyc4 [81], DBpedia5 [5], YAGO6 [124], Freebase7 [11],
NELL8 [20], and Wikidata9 [134]. The existing methods for injecting the world knowl-
edge into the classification models use KGs in the form of Knowledge Graphs Embed-
ding (KGE). KGEs are low-dimensional representations of knowledge graph’s entities
and relations while preserving their semantic meaning [136] and are useful for tasks
such as KG completion [137], relation extraction [139, 113], entity classification [93, 94],
entity resolution [93, 12], etc. In the existing literature, a plethora of knowledge repre-
sentation approaches such as TransE [13], TransH [137], TransR [75], DistMult [120],
ComplEx [129], RotatE [125], HolE [92], ConvE [121], ConvKB [91], DKRL [150] are
available to transform triples into KGE. KGE has proven to be useful in incorporating
world knowledge, but it is still debatable if the KGEs sufficiently capture KGs seman-
tics [59]. Analyses from this work indicate that leveraging KGEs for semantic inter-
pretability (as in the case of word embeddings) may seem intuitive, but this is not al-
ways the case because the performance of KGE is limited and is heavily dependent on
the characteristics of the dataset. This conclusion is based on the evaluation of the se-
mantic representation of KGEs. It is observed that for given KG entities, KGEs can learn
certain semantic features, but this learning is non-uniform due to the varying quality
of semantic representation across different entities within the dataset. These findings
raise questions about the applicability and efficacy of KGEs for semantic capturing and
link prediction [2, 116, 117] and triple completion. Two of the available existing works
tackled the challenge of semantics capturing associated with KGE, by using RDF triples
as a direct source of knowledge [76, 3]. However, these works are far from mature
and lack to answer some crucial knowledge fronts. For instance, they do not discuss
the quantification of knowledge injection for achieving optimal classification perfor-
mances. They also do not discuss the impact of using general KGs in domain-specific
tasks. These limitations motivated our investigation of using triples as the source of
semantic knowledge, and the challenges that arise in domain-specific and open-domain
NLP downstream tasks. This work proposes an LM (K-LM), which is the combination
of BERT [114] and GPT-2 [17, 107] for text classification. K in K-LM stands for knowl-
edge, and LM is the languagemodel. K-LM leverages world knowledge by incorporating
additional knowledge in the form of triples to mitigate the prevalent knowledge gap sce-
narios. The experiments are performed on the scholarly domain using KGs of the same

3https://wordnet.princeton.edu/
4https://cyc.com/
5http://downloads.dbpedia.org/wiki-archive/
6https://yago-knowledge.org/
7https://developers.google.com/freebase/
8http://rtw.ml.cmu.edu/rtw/
9https://www.wikidata.org/wiki/Wikidata:Main_Page
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domain. Furthermore, Deterministic and Non-deterministic strategies
are also introduced to seed the triples in the proposed LM for achieving optimal results
in domain-specific and open-domain classification tasks.

3.2 Related Work

This section briefly reviews the existing state-of-the-art techniques for augmenting knowl-
edge in the form of triples for domain-specific and open-domain tasks. The pre-trained
BERTmodel trained on cross-domain text corpora such as BookCorpus10 andWikipedia11

has achieved significant performance on several NLP downstream tasks. Despite this
improvement, the transformermodel lacks task-specific and domain-related knowledge,
which can contribute to further improvements. To address the limitations of domain
knowledge gaps in cross-domain knowledge-driven NLP tasks, the work proposed a
BERT-based text classification model called BERT4TC [154]. The proposed model fo-
cuses on constructing auxiliary sentences and converting the original classification task
into a sentence pair with a binary set of new categorical labels. Another work proposed
a knowledge-enabled language representation model of BERT (K-BERT) with KGs [76].
The triples are used in the sentences as domain knowledge along with soft-position and
a visible matrix to limit the impact of knowledge to tackle the domain. The purpose
of the visible matrix is to control the flow of a huge amount of knowledge (also called
Knowledge Noise (KN)), as it may lead to a change in the sentence from its actual mean-
ing. Structurally, the English language operates on tokens or word-level embeddings,
while the model proposed in this work used character-level embeddings; therefore, this
constraint limits its application to NLP tasks in the Chinese language. Furthermore, a
severe limitation of the work is that it did not provide any evaluation method to de-
termine the suitability of triples and order them according to the given context. The
work performed in [3] proposed an attention mechanism-based DL model that could
use knowledge graphs as knowledge support for the task at hand. It can also be consid-
ered the first work that attempted to incorporate the KGs in the form of triples directly.
It is about a convolution-based model that learns representations of knowledge graph
entities and relation clusters by reducing the attention space. The outcome of this work
shows that the proposed model is suitable for the classification tasks at hand while
being trained on significantly less training data when it has access to world knowl-
edge resources such as KGs. However, the works mentioned above provide methods
to use world knowledge, but they significantly lack on several knowledge fronts, such
as novel methods to select best-fit triples based on context, quantification of triples in-

10https://huggingface.co/datasets/bookcorpus
11https://en.wikipedia.org/wiki/Main_Page
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jection, and challenges of KN associated with knowledge injection. To bridge these
knowledge gaps, my approach introduces a robust pipeline to select and inject triples,
starting from the input sentences themselves. Our work also takes into account the
“context-aware” and “context-unaware” dependencies of the LM and their impact on
the knowledge integration process. I also implement novel approaches that allow to
custom feed and rank the input triples to address this challenge. My approaches are
comprised of Non-deterministic and Deterministicmethods, which help
in quantifying knowledge injection and generalization of direct integration of triples
for optimal knowledge injection in the LM. In the context of generalization, I have used
two KGs as a source of domain knowledge and performed experiments with incremen-
tal integration of triples to draw conclusions about the relevance of the used KGs for
the task at hand.

3.3 Problem Formulation, Dataset and Preprocessing

This section presents the problem statement tackled in this work, the details of the used
dataset, the preprocessing strategies, and the KGs employed to carry out the experi-
ments.

3.3.1 Problem formulation

Themain goal of this work is to infuse domain knowledge in pre-trained language mod-
els to equip the models with additional knowledge available in the form of KGs and
leverage the added knowledge to achieve higher accuracy in the classification tasks. I
have used the K-LM model to tackle a binary classification task in this work. More pre-
cisely, for a given text t and a target class c, the objective is to infer a function f(t, c) →
l that computes 1 if t belongs to the class c, 0 otherwise. Here l is the binary label that
can only take values in {0, 1}. To inject the domain knowledge in K-LM, two KGs have
been used, namely AI-KG and AI-KG-Small. The details of K-LM and KGs are provided
in subsequent sections. This work introduces novel methods of using world knowledge
and different processes of integrating the domain knowledge, which is fundamentally
different from transfer learning. This work also aims to benchmark the quantity of
knowledge injection and introduce novel methods for filtering the triples to inject into
classification models.

3.3.2 Dataset Description

The research study is performed on the Scholarly Domain. We have named it Schol-
arly Domain for ease of understanding and it is used throughout the paper. Scholarly
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Domain indicates Goggle Scholar12 that provides a simple way to search for scholarly
literature (research papers/articles/books). The experimental dataset is comprised of
30,023 abstracts of research papers in Computer Science from 2001 to 2019. The labels
1 and 0 represent if the underlying research paper belongs to the AI domain or not.
The distribution of the dataset is: Label-0 = 9,720, Label-1 = 20,303. From the given
distribution of the scholarly dataset, it is evident that it is unbalanced, and the majority
class is label 1, representing that most of the papers belong to the AI domain. Standard
preprocessing steps such as lowercasing the text, special characters removal, and tok-
enization [67, 68, 36, 131, 32] are adopted to prepare the textual data. The input dataset is
further divided into the train, validation, and test sets. The train set is used to fine-tune
the model, while the model’s performance evaluation is done on the validation and test
sets. The distribution of test, validation and train sets of the dataset is 60%, 20%, and
20%, respectively. For ease of understanding, the notations used throughout the paper
are listed in Table 3.1.

Table 3.1: Notations Used

Uni-sub-triple Triple extracted from AIKG and AI-KG-Small whose subject is a un-
igram (one word).

Bi-sub-triple Triple extracted from AIKG and AI-KG-Small whose subject is a bi-
gram (two words).

Tri-sub-triple Triple extracted from AIKG and AI-KG-Small whose subject is a tri-
gram (three words).

AI-KG The Artificial Intelligence Knowledge Graph used as the source of
world knowledge.

AI-KG-Small The subset of Artificial Intelligence Knowledge Graph.
Full KG When all the triples of an entire input KG, are used.
K-LM The Language Model proposed in the paper which is a combination

of GPT-2 and BERT.
N The total number of triples present in the given KG (AI-KG and AI-

KG-Small in our case).
U The total number of unique triples present in the given KG. Unique

triples are defined as the triples having distinct ‘subject’ entities.
L The length of the entity ‘subject’ of the triples. It is measured by the

number of words present in the subject. For {l = 1, 2, 3} a given
triple is called Uni-sub-triple, Bi-sub-triple and Tri-sub-triple, respec-
tively.

TIT For a given KG and dataset used for our experiments, the total in-
jectable triple is the number of triples that can be injected into the
input sentence while fine-tuning K-LM. A triple is considered ‘in-
jectable’ when its subject is present in the input sentence.

12https://scholar.google.com/
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3.3.3 Knowledge Graphs

For our work, KGs are used as a medium to infuse world knowledge for Scholarly Do-
main and the details of the used KGs are mentioned below.

• AI-KG- The Artificial Intelligence Knowledge Graph (AI-KG) is an automatically
generated large-scale knowledge graph comprised of 857,658 research entities.
AI-KG consists of 1,2 million statements and 14million triples which are extracted
from 333K research publications belonging to the AI domain. AI-KG describes
5 types of entities namely methods, metrics, materials, tasks and others linked
by 27 relations. AI-KG is a rich source of world knowledge and is designed to
support various intelligent services for analyzing and making sense of research
dynamics, supporting researchers in their day-to-day work, and informing the
decision of founding bodies and research policymakers. In this work, AI-KG is
used as a source of domain knowledge to infuse task-specific knowledge in the
domain-adaptation scenario. AI-KG is generated by using the automatic pipeline
mentioned in [34, 35] before doing the transitive closure and linking the entities
to Wikidata and CSO. The AI-KG dump can be downloaded in .ttl format from
https://scholkg.kmi.open.ac.uk/.

• AI-KG-Small- It is the reduced version of AI-KG that is generated by post-processing
of AI-KG by linking the entities to Wikidata and CSO. AI-KG-Small contains
12,094 triples, and the purpose of using AI-KG-Small is to study the “quantity
vs. relevance” effect of triples for the given dataset.

3.4 Knowledge-Language Model

This section provides in detail the concepts related to K-LM, followed by the framework
and implementation of K-LM. At last, the techniques developed to feed the triples in the
K-LM are described.

3.4.1 Concepts Related To K-LM

This subsection describes the concepts and terminologies associated with K-LM used
throughout the rest of the chapter.

• Unique Triples- For a given KG having N triples, U is defined as the triples
having a distinct “subject” entity. Inherently, the triples are arranged in key-
value pairs where key → s and value → {p, o}. Consider the sentence - ”Italy is
home of culture and cuisine”, and a set of triples (Italy, Country, Europe), (Italy,
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famous, Pizza), (Italy, famous_for, Roman Architecture), and (Amsterdam, Capi-
tal_of, Netherlands). In the process of knowledge injection, when token Italy is
queried, the look-up table returns all the triples with the “subject” Italy, and they
are organized as follows: (‘Italy’, [‘country, Europe’, ‘famous, Pizza’, ‘famous_for,
Roman Architecture’]). In this example {N=4} & {U=2}. Generating a KG aims
at holistically covering the scope of the domain. But all the triples contained
within the KG are not necessarily useful for a specific dataset. In this context, U
is proposed as the parameter to measure the relevance of the KG to the dataset.
Quantitatively, the less the difference between N and U is, the more relevant the
KG is.

• Max Entity- It is the parameter that controls the number of branches that can be
associated with the tokens in the input sentence while injecting knowledge. For
{Max_Entity = 1} one triple is associated with the corresponding token of the
input sentence and for {Max_Entity = 2}, two triples will be associated with
the same token, and so on. Note that even if {Max_Entity ≥ 2}, the number of
triples associated with a particular token solely depends upon the triples’ avail-
ability in the KG. Should the number of available triples for a particular token
be less than the value of Max_Entity, only the available triple(s) will be associ-
ated. This trivial case is demonstrated in Figure 3.1. Consider the input sentence
in Figure 3.1 and the tokens within; graph, and embedding. It is assumed that
only one triple is available for token graph andmore than two triples are available
for token embedding for triples injection. Therefore, for {Max_Entity = 2} the
resulting input sentence has only one triple (graph, uses, human scientific creativ-
ity) associated with the token graph while the token embedding has two triples
associated, i.e., (embedding, represents, vectors in high-dimensions) and (embed-
ding, are, compressed representation). However, a sentence tree can have multiple
branches, i.e., several values of Max_Entity, but its depth is fixed to one, which
means the entity names in triples will not further derive branches iteratively. For
our experiments, Max_Entity ∈ {1, 2, 3, 4, 5} is used.

3.4.2 Architecture of K-LM

Implementation of K-LM is a two-stage process and is executed by the K-LM Triple
Selection and K-LM Classification Modules. The architecture of K-
LM is presented in Figure 3.1. The objective of the K-LM Triple Selection
Module is to filter and rank (if applicable) the triples provided in AI-KG or AI-KG-
Small through a well-defined pipeline. The objective of the second module is to use the
triples selected through the K-LM Triples Selection Module for injecting
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knowledge into the input sentences and then performing the classification task on the
provided dataset. The K-LM Classification Module of K-LM takes inspi-
ration from the LM model proposed in [76], which was used for binary classification
tasks, such as the classification of online reviews for books, hotels, and shopping in the
Chinese language. As mentioned before, K-LM is the combination of GPT-2 and BERT.
The GPT-2 is used in the K-LM Triples Selection Module for ranking the
triples, while BERT is used in the K-LM Classification Module. The central
idea of this work is to use the available world knowledge, independent of a particular
experimental dataset; therefore, GPT-2 is not used for generating triples for this work
because that will lead to knowledge injection based on the used dataset.

1. K-LM Triples Selection Module-This module performs the selection, filtering,
and ranking of the triples, which are further used in the K-LM Classifi-
cation module, for knowledge injection. The pipeline of the K-LM Triple
Selection module as shown in Figure 3.1 is comprised of four sub-modules
which are explained below.

• Input Triples- This sub-module is provided with the randomly distributed
triples from the input KGs, i.e., AI-KG or AI-KG-Small.

• Triples Categorization-This sub-module performs categorization for gen-
erating input triples for the Triples Injection Methods. Four distinct cate-
gories of triples are produced by this sub-module, namely Uni-sub-triple, Bi-
sub-triple, Tri-sub-triple, and Full KG13. While Full KG contains all the triples
of the input KG, Uni-sub-triple, Bi-sub-triple, and Tri-sub-triple are catego-
rized based on the L of the input triples.

• Triples Injection Methods- This sub-module implements two methods,
Forward and Reverse Injection for triples selection. The output of this sub-
module consists of disordered triples. The Forward Injectionmethod employs
four techniques: Uni-sub-triple Injection, Bi-sub-triple Injection, Tri-sub-triple
Injection and Full KG Injection. The Reverse Injection method uses the Rever-
sion Full KG Injection technique to select the triples. At this stage, the disor-
dered triples have two possibilities:
a. They are either injected directly into the K-LM Classification
Module or
b. They are sent to the sub-module Triples Ranking to generate the ordered
triples.
This scenario leads to the development of two approaches, namely Non-
deterministic and Deterministic in the pipeline, representing the uniqueness

13Refer to Table 3.1 for the definition of Uni-sub-triple, Bi-sub-triple, Tri-sub-triple triples and Full KG.
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Figure 3.1: K-LM architecture that contains two modules (a) K-LM Triples Selection and
(b) K-LM Classification module. Module (a) performs the selection and categorization
of the triples and ranks them by employing Non-deterministic and Deterministic ap-
proaches. Further, the processed triples are used as the source of domain knowledge in
module (b) for the classification task.

and added advantage of K-LM. For ease of understanding, the Forward and
Reverse Injection and the Non-deterministic and Determinis-
tic approaches are explained separately in subsection 3.4.3.

• Triples Ranking- The ranking of triples finds extensive uses when the ex-
perimental dataset is small and the input KG is sparsely related to the given
dataset. Therefore, this sub-module serves the purpose of infusing the triples
based on the context of input sentences for optimal domain knowledge in-
tegration. This sub-module takes the disordered triples as input from the
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Triples Injection Methods and outputs the ranked triples. The process of
ranking the triples is explained below in detail. The triples within the KGs
(AI-KG and AI-KG-small) are stored in the look-up table and are fetched to
the sub-module Triples ranking. GPT2LMHeadModel14 is used to rank the
triples, which is the GPT-2 Model transformer with a language modeling
head on top, and the GPT-2 Tokenizer15. The GPT-2 model has about
1.5 billion parameters trained on a dataset of 8 million web pages, which
makes it very useful to predict the most likely word by interpreting a given
sequence of words. In our case, for the given set of triples and context,
GPT-2 takes as input each triple iteratively and inserts it in the input sen-
tence providing a score for each sentence thus formed16. The outputs are the
scores for each sentence used with each triple, known as probability score
P. The value of P is related to the suitability of the underlying triple in the
given context of the sentence. More precisely, for a given input sentence
is = {wo, w1, w2, ..., wn}, where {wi} are the words of is and the set of
triples t = {w0, p0, o0}, {w0, p1, o1}, {w0, p2, o2}; the score function is given
by fs(is, t

n
0 ) → {P0, P1, ..., Pn}, where P0, ..., Pn are the probability scores

for each triple ∈ t. Hence, in the above-mentioned set of triples t, {w0}
represents the common subject (and is also present in is) while {p0, p1, p2}
and {o0, o1, o2} are the respective predicates and objects of the three triples.
In this case, the score function fs thus returns three probability scores (for
each of the three triples having a common subject) P0,P1, and P2. Based on
the obtained probability scores of the sentence, the triples are ranked (or-
dered) in decreasing value of relevance, i.e., the first triple in the ranking is
the best fit for the input sentence. The relevance of triples for the input KG
is measured by TIT. The higher the value of TIT is, the more relevant the
KG is to the dataset.

2. K-LM Classification Module- It consists of four elements, i.e., knowledge layer
for injecting triples, embedding layer, seeing layer, and masked-transformer en-
coder. For an input sentence, the Knowledge Layer for Injecting Triples first injects
the triples processed from the K-LM Triples Selection Module. The
triples are injected in the form of (s, p, o). The injection of triples transforms the
input sentence into a sentence tree equipped with domain knowledge. The sen-

14https://huggingface.co/transformers/model_doc/gpt2.html#
gpt2lmheadmodel

15https://huggingface.co/transformers/model_doc/gpt2.html#
gpt2tokenizer

16https://github.com/huggingface/transformers/issues/1009
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tence tree thus generated is simultaneously fed to both the embedding and the
seeing layers. The embedding layer generates the embedding representation of
the flattened input sentence tree, while the seeing layer generates a visible matrix.
The visible matrix contains the semantic information of the actual input sentence
and provides control over the extent of mutual interaction between the tokens
within the input sentence. This mechanism prevents the deviation and false se-
mantic changes from the actual meaning of the original sentence by minimizing
the semantic interference and KN caused by triples injection. K-LM is built on
top of the BERT (transformer) model; therefore, it uses the same token, position,
and segment embedding approach to generate the embedding representation. The
difference between the embedding layer of K-LM and BERT is the input type, i.e.,
K-LM takes sentence tree as input instead of token sequences. Further, the cumu-
lative outputs of embedding and seeing layers are fed to the masked-transformer
encoder (which is a modified BERT model in this case), that executes the binary
classification task at hand, i.e., predict each input data point as “paper belongs to
AI-domain” or not.

3.4.3 Triples Selection Techniques

The core idea of the K-LM Triple Selection Module is to provide the
K-LM Classification Module with selected triples for knowledge integra-
tion. This subsection looks at the K-LM Triple Selection Module at the
fine-grained level and provides further details about the internal mechanism of its sub-
modules; Triples Injection Methods and Triples Ranking. The selection of triples follows
the pipeline presented in Figure 3.2, where the input triples are first passed to Triples
Categorization. In this sub-module, the triples are categorized based on the size L of the
triples. The categorized triples are further processed in the sub-module Triples Injection
Methods following Forward and Reverse Injection. These two methods uncover the be-
havior of K-LM in terms of integrating triples. the techniques developed for the optimal
selection of triples Forward and Reverse Injection methods and their interdependencies
with the other sub-modules are explained below.

1. Forward Injection- Inherently K-LM injects the triples based on the “sequence of
occurrence” of words/tokens in the input sentence for a given set of input triples.
For instance, consider the input sentence “graph embedding representation is
the transformation of property of graphs to a vector or a set of vectors” and the set
of triples:

(a) <graph, uses, human scientific creativity>
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Figure 3.2: Fine-grain demonstration of K-LM Triples Selection Module. The module
performs the categorization of triples and further uses them in (a) Forward and (b) Re-
verse Injection methods.

(b) <embedding, represents, vector in high-dimensions>

(c) <graph embedding, uses, semi-supervised learning strategy>

(d) <graph embedding representation, incorporates, structural and topological
feature>

In the knowledge injection process, when the K-LM queries the tokens of the in-
put sentence in the look-up table, it first takes into account the token graph fol-
lowed by embedding based on their “sequence of occurrence”. Since the triples
with the subject graph and embedding are already available as input triples, the
K-LM automatically integrates these two triples in the sentence. The injection of
these triples does not leave any further possibility to inject the triples with sub-
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jects < graph embedding > or < graph embedding representation >. This is
the default behavior of K-LM in which the priority of triples decreases through
Uni-sub-triple, Bi-sub-triple and Tri-sub-triple triples. In simple words, the triples
having the subject comprised of unigram get the highest priority. The advantage
of this method is that it ensures the injection of the highest number of Uni-sub-
triple triples because the existing number of Uni-sub-triple triples in AI-KG and
AI-KG-Small is far more than Bi-sub-triple and Tri-sub-triple triples. The injection
of the highest number of Uni-sub-triple triples is not always the optimal solution
for incorporating domain knowledge, and it is obvious that the Bi-sub-triple and
Tri-sub-triple triples capture more context and meaning. Therefore, having them
at a lower priority can make the knowledge injection process prone to KN in
the presence of general-purpose KG. Hence, to harness the maximum contextual
knowledge from the KGs in the knowledge injection process, four distinct heuris-
tic techniques are designed within the Forward Injection method, namely Full KG
Injection Uni-sub-triple Injection, Bi-sub-triple Injection, and Tri-sub-triple Injection
to mitigate the impact of KN. These four techniques are explained below:

(a) Full KG Injection- When the entire KG (containing Uni-sub-triple, Bi-sub-
triple, and Tri-sub-triple triples) is used as the input source for the knowledge
injection, it is termed as Full KG Injectionmethod. In this method, the triples
are injected in the order as follows: Uni-sub-triple, Bi-sub-triple, and then
Tri-sub-triple triples, i.e., based on increasing ”L” as shown in Figure 3.2.
Therefore, this technique of injecting triples prioritizes the triples so that
the injection pipeline first gets Uni-sub-triple, then Bi-sub-triple, and finally
Tri-sub-triple triples for injection. Prioritizing the triples here refers to the
selection of specific triples from the used KGs.

(b) Uni-sub-triple Injection- It is the process of injecting only the Uni-sub-
triple triples by filtering the Uni-sub-triple triples from the KGs used for the
experiments.

(c) Bi-sub-triple Injection- It is the process of injecting only the Bi-sub-triple
triples by filtering the Bi-sub-triple triples from the KGs used for the exper-
iments.

(d) Tri-sub-triple Injection- It is the process of injecting only the Tri-sub-
triple triples by filtering the Uni-sub-triple triples from the KGs used for the
experiments.

2. Reverse Injection-The opposite process of the Forward Injection, i.e., prioritizing
the triples in the order Tri-sub-triple, Bi-sub-triple, and Uni-sub-triple is named
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Reverse Injection. This method takes Reverse Full KG as input that has exactly
the opposite priority order as compared to the Full KG. The downside arrows in
Figure 3.2 corresponding to Full KG Injection and Reverse Full KG Injection show
the decreasing priority of the triples. The advantage of this method is that it firstly
selects Tri-sub-triple triples, which are semantically rich in this case, for injection
and thus substantially reduces the number of triples required for enhancing K-
LM’s performance.

Considering the examples (input sentence and the set of triples) used in the Forward
Injection method; Figure 3.3 illustrates the sentence tree structure thus generated af-
ter employing the Forward and Reverse Injection methods using the Full KG as input
triples. The vital point to note here is that Forward and Reverse Injection methods are
the mandatory steps through which the triples have to pass and they are independent of
the next sub-module Triples ranking. Depending upon the type of input triples required
for knowledge injection, i.e., disordered or ordered (ranked) and are explained below.

Figure 3.3: Sentence tree formation after using Forward and Reverse Injection methods
for the listed triples. The priority order of triples in Forward Injection is Uni-sub-triple
> Bi-sub-triple > Tri-sub-triple and vice-versa for the Reverse Injection.
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1. Non-deterministic Approach-The triples received from the sub-module Triples
Injection Methods are selected through the techniques as shown in Figure 3.2. At
this stage, their distribution in the look-up table remains random and they are
independent of the ”context” of the input sentences. Therefore, due to the varying
order of triples’ arrangement, this random seeding of triples is termed as Non-
deterministic approach. In this approach, the triples are injected directly
into the K-LM Classification Module.

2. Deterministic Approach- On the other hand, another possibility is to send the
triples to the sub-module Triples Ranking. If this option is chosen, Triples Rank-
ing ranks the input triples based on the probability score using GPT-2. Further,
the ranked triples are organized in the look-up table using the ranking, and this
ordered arrangement of triples is constant throughout the fine-tuning and infer-
ence stage. Triples ranking finds extensive uses when the experimental dataset is
small and KG is sparsely related to the given dataset. This approach is termed as
Deterministic and it is “context-dependent”.

In other words, the above two methods can also be looked at as context-aware and
context-unaware approaches to seed triples in the knowledge injection process. The
rationale behind developing these methods is finding a trade-off between “relevance of
KG” and “computational complexity” and maximizing the generalization of triple’s in-
jection. Hence, while the Deterministic approach gives an edge over the number
of triples injections required to enhance the classification model’s performance, ran-
domly seeding the triples is more aligned to make the knowledge injection process in-
dependent of the dataset.

3.5 Experiments and Results

The computational resource used to develop our methods and perform the experiments
is mentioned in Table 2.2. The K-LM Classification Module of K-LM takes
inspiration from the LM model proposed in [76] and the source code is available at
Git-hub17.

3.5.1 Experiments

In this paper, experiments are conducted within the Scholarly Domain to tackle a binary
classification task by using the KGsAI-KG and its variant AI-KG-Small. The experiments
performed can be summed up as a combination of approaches as below mentioned:

17https://github.com/vsrana-ai/K-LM
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• Ranking the triples- Deterministic and Non-deterministic ap-
proaches are used to perform the experiments with Max_Entity ∈ {1, 2, 3, 4, 5}.

• Forward and Reverse Injection- The experiments with five methods of knowl-
edge injection namely, Full KG Injection,Uni-sub-triple, Bi-sub-triple, Tri-sub-triple,
and Reverse Full KG Injection are performed. Here Full KG Injection is the default
mode of seeding the triples, while the remaining four techniques proposed in this
work allow to custom feeding the triples.

• Knowledge resources- As the source of domain knowledge, AI-KG and AI-KG-
Small are used to inject the additional knowledge to perform all the experiments.

• Bert Base- When K-LM is not provided with any KG, then it is equivalent to a
general-purpose pre-trained BERT model. Hence, in this paper, the experiment
"K-LM Without KG" signifies the baseline approach of the BERT model.

• Baselines- For the baseline comparison, Naive Bayes and Random Forest clas-
sifiers are employed as CML and a two BiLSTM layers-based network with pre-
trained GLoVe18 and fastText19 word embedding as DL approaches.

3.5.2 Experimental results

This sub-section presents the results obtained from the experiments conducted in this
work. To make all the employed classification approaches comparable; the same dis-
tribution of test, validation, and train sets of Scholarly dataset is used, which are 60%,
20%, and 20% respectively. The baseline approaches have tackled the problem of binary
classification using CML and DL approaches which do not use any additional domain
knowledge, i.e., is independent of KGs. The results of the baselines of CML and DL
approaches along with K-LM are summarized in Table 3.2.

Table 3.2: Performance of CML and DL approaches with Scholarly dataset

Approach Accuracy F-1 Score
Naive Bayes (22,000 Features) 59.60 58.93

Random Forest (26,661 Features) 74.21 62.45
Bi-LSTM (Pre-Trained GloVe) 73.78 73.23
Bi-LSTM (Pre-Trained fastText) 74.88 73.48

BERT Base 78.12 75.05
K-LM using GPT-2 (Deterministic) 81.98 79.55

K-LM random seeding (Non-deterministic) 81.78 79.50

18https://nlp.stanford.edu/projects/glove/
19https://fasttext.cc/docs/en/english-vectors.html/
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Tables 3.3 and 3.4, summarize the results of fiveNon-deterministicmodes of
triples injection with Max_Entity acquiring values from 1 to 5. Tables 3.5 and 3.6, sum-
marize the results of fiveDeterministicmodes of triples injectionwithMax_Entity
acquiring values from 1 to 5. Finally, Tables 3.7 and 3.8 summarizes the comparative
distribution of N, U, and the actual number of triples injected for each approach used
in the experiments.

Table 3.3: Performance of K-LM on the Scholarly dataset with AI-KG-Small (Non-
deterministic triples seeding) using the proposed five modes of triples injection

Exper-
iment

Full KG
Injection

Uni-sub-triple
Injection

Bi-sub-triple
Injection

Tri-sub-triple
Injection

Reverse Full
KG Injection

Max
Entity Acc. F-1 Acc. F-1 Acc. F-1 Acc. F-1 Acc. F-1

1 74.49 71.55 79.53 76.60 81.78 79.50 81.82 79.45 81.07 79.11
2 72.74 66.90 79.23 75.60 81.13 78.85 81.77 79.05 81.05 78.80
3 71.37 66.75 77.75 73.60 81.12 78.65 81.52 78.80 80.72 77.75
4 71.22 65.60 77.44 74.00 81.02 77.60 81.45 79.45 80.85 78.40
5 70.64 63.80 76.42 72.55 80.52 78.25 81.53 79.35 80.62 72.55

Table 3.4: Performance of K-LM on the Scholarly dataset with AI-KG (Non-deterministic
triples seeding) using the proposed five modes of triples injection

Exper-
iment

Full KG
Injection

Uni-sub-triple
Injection

Bi-sub-triple
Injection

Tri-sub-triple
Injection

Reverse Full
KG Injection

Max
Entity Acc. F-1 Acc. F-1 Acc. F-1 Acc. F-1 Acc. F-1

1 70.05 60.80 79.68 76.55 80.25 76.90 80.87 77.75 80.48 77.20
2 69.46 61.40 78.35 74.95 80.28 76.80 81.32 78.50 80.60 77.30
3 68.68 57.40 77.44 73.35 78.80 74.80 80.80 77.35 79.48 75.50
4 67.34 56.20. 76.09 72.80 78.40 74.20 80.60 77.20 79.48 75.50
5 66.28 55.45 76.10 70.95 77.90 73.60 80.40 77.05 80.12 77.20

3.5.3 Results analysis

In this subsection, insights from the experimental results and in-depth analyses of the
outcomes are provided.

• The methods proposed to custom feed the triples into K-LM have shown superior
performance and have outperformed the baselines, BERT base, and Full KG In-
jection significantly. The best performance from baselines is observed by BERT
Base with an accuracy of 78.12, while K-LM has outperformed BERT Base with
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Table 3.5: Performance of K-LM on the Scholarly dataset with AI-KG-Small (Determin-
istic triples seeding) using the proposed five modes of triples injection

Experiment Full KG
Injection

Uni-sub-triple
Injection

Bi-sub-triple
Injection

Tri-sub-triple
Injection

Reverse Full
KG Injection

Acc. F-1 Acc. F-1 Acc. F-1 Acc. F-1 Acc. F-1
Max_Entity

= 1 75.55 69.85 80.25 76.50 81.25 78.15 81.98 79.05 80.72 77.90

Max_Entity
= 2 72.79 67.50 79.33 75.00 80.47 77.35 81.82 78.90 80.80 77.40

Max_Entity
= 3 72.87 67.15 78.70 75.35 80.68 77.30 80.87 77.80 80.05 77.20

Max_Entity
= 5 71.92 66.80 77.19 73.50 80.60 77.20 81.68 78.55 80.58 77.40

Max_Entity
= 5 71.12 64.80 76.57 72.65 80.45 76.80 81.52 78.45 79.93 76.95

Table 3.6: Performance of K-LM on the Scholarly dataset with AI-KG (Deterministic
triples seeding) using the proposed five modes of triples injection

Experiment Full KG
Injection

Uni-sub-triple
Injection

Bi-sub-triple
Injection

Tri-sub-triple
Injection

Reverse Full
KG Injection

Acc. F-1 Acc. F-1 Acc. F-1 Acc. F-1 Acc. F-1
Max_Entity

= 1 70.47 66.15 80.67 78.20 80.95 78.50 80.98 78.15 81.35 79.20

Max_Entity
= 2 70.12 64.12 78.65 75.30 80.22 77.20 81.58 79.55 80.43 77.75

Max_Entity
= 3 69.89 59.10 77.44 73.85 79.62 76.85 81.30 79.55 80.7 78.30

Max_Entity
= 5 68.22 57.31 76.72 73.30 79.13 76.00 81.42 79.15 80.52 77.65

Max_Entity
= 5 67.47 54.22 76.37 71.55 78.93 75.55 81.72 79.25 80.07 77.25

Table 3.7: Triples distribution of AI-KG-Small for each experiment with Scholarly
dataset.

KG Full Kg Uni-sub-triple
(Top-1000) Bi-sub-triple Tri-sub-triple Reverse

Full KG
AI-KG-Small

(Total) 12904 2027 1719 325 2148

AI-KG-Small
(Unique) 2397 113 401 82 498

AI-KG-Small
(Injected) 360 113 324 66 408
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Table 3.8: Triples distribution of AI-KG for each experiment with Scholarly dataset.

KG Full Kg Uni-sub-triple
(Top-1000) Bi-sub-triple Tri-sub-triple Reverse

Full KG
AI-KG
(Total) 1877453 37387 402845 85206 273096

AI-KG
(Unique) 735884 201 35876 11248 40862

AI-KG
(Injected) 16695 201 23753 7263 25575

all the five knowledge injection methods; the highest accuracy being 81.98 when
used with Tri-sub-triple Injection.

• Except for Tri-sub-triple Injection the remaining four techniques observe a con-
sistent decline in the model’s accuracy when Max_Entity increases from 1 to 5.
There are two reasons behind this. First, Tri-sub-triple triples are very less in
number as compared to Uni-sub-triple and Bi-sub-triple triples, which highlight
the unique association of Tri-sub-triple triples with the context of the input sen-
tence. Secondly, Tri-sub-triple triples are semantically rich and they capture more
context as compared to Uni-sub-triple and Bi-sub-triple triples. So, when more
Tri-sub-triple triples are injected, they relate to a large part of the input sentence
and enhance the semantics of the input sentence with relevant knowledge that
helps the classifier to predict classes. On the other hand, injecting too many Uni-
sub-triple and Bi-sub-triple triples increases the chances of introducing irrelevant
knowledge along with domain knowledge in the given context and hence makes
the classifier prone to KN. The KN is inversely proportional to the model’s ac-
curacy; hence, K-LM’s accuracy decreases with the increase in KN. Therefore, it
can be concluded that {Max_Entity = 1} is the optimal value for knowledge
injection when Uni-sub-triple and Bi-sub-triple triples are used.

• The experimental findings show that in the “quantity vs. relevance” of triples,
the relevance of triple is of utmost importance, and it directly influences the K-
LM’s performance. It can be understood by the fact that {Max_Entity = 1}
allows the injection of only one triple per token of the input sentence. For such
an arrangement of input sentences in the sentence tree, the size of KGs becomes
irrelevant as the performance of K-LM becomes dependent on U, TIT and its rel-
evance to the semantic context. The results mentioned in the Tables 3.7 and 3.8
validate the propositions:
a) too much knowledge injection makes the K-LM prone to KN.
b) KGs with a low N/U ratio are a better fit for knowledge injection, and so is the
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AI-KG-Small for the experiments in this work.
c) Tri-sub-triple Triples injection requires significantly less number of triples in-
jection, and that directly relates to less training time and resource requirement to
conduct the experiments.

3.6 Conclusion and Future Work

Knowledge injection is a very delicate process; while too much knowledge injection
makes the LM prone to noise and leads to false semantic changes, insufficient knowl-
edge hardly improves the LM’s efficacy. In this work, the LM, K-LM, and a well-defined
pipeline to integrate world knowledge directly in the form of triples from available
world knowledge is presented. In the pipeline, first, methods such as Forward and Re-
verse Injection are implemented to select and filter the triples for the knowledge inte-
gration process. In the later stage, Non-deterministic and Deterministic
approaches are employed to tackle the “relevance vs. quantity” juxtaposition. The
results show the efficacy of the proposed knowledge injection methods, as each of them
has significantly outperformed the CML and DL baselines. The results demonstrate that
K-LM is a potential choice to solve knowledge-driven tasks by using a few triples and
helps in the presence of small training data. This work can be extended to other domains
in real-life scenarios to achieve optimal classification models’ performances by only us-
ing a few triples as a source of external domain knowledge. Since this is the first work
towards quantifying the knowledge injection and implementing a pipeline to select and
filter the triples, there is further scope for improvement in developing a more intelligent
and optimized LM. Some limitations of the current work can be narrowed down to the
manual selection of theMax_Entity parameter (used to control the number of triples as-
sociated per token of input sentences to mitigate the KN), the test of the K-LM for Schol-
arly Domain only, and the usage of one KG for the target domain (more KGs within the
scholarly domain should be tested for a wider and more comprehensive analysis). Each
of the proposed methods of injecting triples has outperformed the baseline approaches,
with no method being a clear winner for all the values of Max_Entity ∈ {1, 2, 3, 4, 5},
used for the experiments. Therefore, it is an interesting future direction to automate
the selection of the Max_Entity parameter by taking into account its dependency on
the variables, such as Unique Triples of the input KG, context, and text length of input
data, for an optimal knowledge injection. To generalize the use of K-LM, the future
direction of the work is also set to field-test K-LM beyond the Scholarly Domain in NLP
downstream tasks [7]. In this regard, the target is mental health and its sub-domains,
which are considered complex research domains in healthcare, where the integration of
external domain knowledge can lead to increased reliability of the classification models.
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I also intend to use other state-of-the-art LR models such as Elmo [104], XLNet [152],
etc. Further, I aim to develop novel techniques to generate KGs relevant to the available
datasets of given domains to tackle more efficiently the problem of imbalanced datasets.
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Chapter 4

Anno-MI: Generating dataset of
counselling therapy

4.1 Introduction

Patient health can be significantly improved by changes in behaviour, such as reduc-
ing alcohol consumption [115]. Counsellors, however, may have difficulty convincing
patients to adopt such changes. Thus, MI [88] has been developed as an effective coun-
selling approach that evokes motivation for change from the client1 themselves. Corre-
spondingly, coding systems such as Motivational Interviewing Skill Code (MISC) [87]
and Motivational Interviewing Treatment Integrity (MITI) [89] are commonly used to
identify MI codes and aspects related to therapist and client. Recent years have seen
significant interest in the research of linguistic and statistical MI analysis. The first
computational model for identifying reflection, a key skill in MI, was introduced [18].
More broadly, the modelling of MI-related aspects such as codes and therapist empa-
thy has been approached with methods based on classical machine learning [147, 4, 49]
(e.g. support-vector machines) and deep learning [48, 148, 47, 19] (e.g. recurrent neural
networks). In terms of data resources [102], recently published a corpus of high- and
low-quality MI dialogues taken directly from online video-sharing platforms and anal-
ysed the linguistic features that capture the differences between high- and low-quality
MI.

Despite the progress, NLP forMI has been hindered by the lack of publicly accessible
MI dialogue data and annotations, owing to privacy-related restrictions. As research in
this field has been conducted primarily on private/undisclosed annotated MI dialogues,
it has been challenging to replicate and build on previous findings. Previously, to the

1A client receiving therapy may not have an illness, thus the term “client” is used in lieu of “patient”
in this work.
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best of our knowledge, the only publicly and freely available MI dataset was created
by [102], consisting of transcripts of MI videos on YouTube/Vimeo obtained through
automatic speech recognition (ASR). However, the transcript quality is compromised
by the substantial ASR noise and frequent wrongly assigned interlocutor labels (client
utterances labelled as therapist utterances, and vice versa) that cause difficulty in under-
standing. In the paper [102] the authors have also analysed two MI codes — reflection
and question — based on the dataset annotations from trained students, but those an-
notations are unavailable at the time of writing.

To address the scarcity of publicly available resources for MI-related NLP research
and broaden access to this area, we introduce Anno-MI presented in [142], a dataset
of 133 MI-adherent2 and non-adherent therapy conversations that a) are professionally
transcribed from MI demonstration videos on YouTube & Vimeo b) are built with ex-
plicit consent from the video owners that allows dataset creation, public release and use
for research purposes, and c) are annotated on key MI aspects by experienced MI prac-
titioners. In addition to above mentioned, the key contribution of this work is summed
up below:

1. Detailed, visualised statistical analyses of the Anno-AugMI to examine its pat-
terns and properties and

2. Two Anno-MI-based utterance-level prediction tasks with potential for real-
world applications, and experiment with different machine-learning models as
baselines to facilitate comparison with future methods.

3. Performance analysis of Anno-MI-based utterance-level classifiers on different
topics as well as their generalisability to new topics.

4.2 Background & Related Work

4.2.1 MI Coding

Thegold standard for examining counsellor adherence to therapy protocols is behavioural
observation and coding [6], which provides feedback and evaluation of therapy ses-
sions. During the coding process, trained annotators assign labels to therapist skills/be-
haviours such as reflection and client behaviours such as change talk. Session-level rat-
ings on qualities such as empathy are often also included. A variety of coding schemes
have been proposed, including the MISC [87] and the MITI [89]. However, as manual

2In this work, “MI-adherent” is used as a synonym of “high-quality” and similarly “MI non-adherent”
as a synonym of “low-quality”. These terms are not related to video quality or transcription quality.
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coding is costly and time-consuming, automatic coding of utterance-level behaviour
and related tasks such as the automatic rating of therapist empathy have garnered sig-
nificant research interest in recent years.

4.2.2 Available Resources

MI conversation resources are scarce. As real-world therapy often contains sensitive
topics and information, counselling dialogues are mostly privately owned or propri-
etary (e.g. therapy transcripts from Alexander Street3). As for resources, annotated MI
corpora such as [99] have been built from sources such as wellness coaching phone calls
and leveraged for tasks like utterance-level code prediction [101] and empathy predic-
tion [100], but they mostly remain publicly inaccessible. To the best of our knowledge,
the only freely and publicly available MI corpus to date is [102], created based on auto-
matic transcripts of MI videos on YouTube/Vimeo. The paper [102] also collected anno-
tations with respect to reflections and questions for the corpus and conducted related
analyses, but those annotations are not available at the time of writing. Also, consider-
able ASR noise and wrong interlocutor labels exist in the corpus 4.3.2, thus limiting the
quality of the dataset.

4.2.3 Text-Based Approaches to MI Analysis

In terms of text-based approaches to automatic coding, [18] used n-grams and similarity
features to develop the first model for identifying reflection, while the work in [4] used a
labelled topic model to generate MI codes. More recently, deep-learning-based models
have been utilised. For example, studies in [148] and [126] used RNNs for behaviour
prediction, followed by [47] who did so under amulti-label multi-task setting to improve
the performance as well [19] who also investigated forecasting the codes of upcoming
utterances. For therapist empathy modelling, an early approach is from [147] with an n-
gram language model. In [49], authors leveraged language features inspired by psycho
linguistic norms, while [48] used LSTMs to produce turn-level behavioural acts further
processed to predict empathy. Separately [144, 143] explored leveraging links between
therapeutic and general-conversation empathy to tackle therapist empathy prediction
in low-resource scenarios.

3https://alexanderstreet.com/products/counseling-and-
psychotherapy-transcripts-series
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4.2.4 Speech-Based & Multimodal Methods for MI Analysis

For utterance-level code prediction [122], proposed an LSTM-based [54] end-to-end
model that directly predicts codes given speech features without using ASR. Most other
works leveraging speech features for code prediction exploit multi-modal features, such
as [23] and [123] where LSTMs with joint prosodic and lexical features are utilised.
For session-level therapist empathy modelling, more speech-only methods have been
proposed, including [146] which studied prosodic features such as jitter and shimmer
from speech signals as well as [149] which investigated speech rate entrainment.In ad-
dition [45] proposed an automatic rating tool of MI sessions using speech and language
features, predicting a range of session-level codes including empathy and MI spirit in
addition to utterance-level codes.

4.3 Creating Anno-MI

Considering the scarcity/absence of publicly available conversation datasets of real-
life MI and their privacy-related legal and ethical restrictions, the dependency is on
demonstrations of MI-adherent and non-adherent therapy from online video-sharing
platforms, in a similar vein to [102]. In this work, after obtaining explicit consent from
the video owners, professional transcripts of the demonstrations are generated and MI
experts are recruited to annotate the transcripts following a scheme covering key MI
elements.

4.3.1 MI Demonstration Videos

As a trade-off between therapy authenticity and privacy-related constraints, only MI
conversations from online video-sharing platforms (YouTube/Vimeo) are considered.
With an exhaustive keyword search (such as “effective MI” and “using MI” for MI-
adherence and “ineffective MI” and “bad MI counselling”) and building on [102], 346
demonstrations ofMI-adherent and non-adherent therapywere identified. According to
the literature on client-centered counselling [88], in a high-quality session, the therapist
centers on the client and expresses empathy, while in a low-quality session they mostly
provide instruction and suggestions. Each video is labeled as high- or low-quality MI
based on its title (e.g. “Motivational Interviewing - Good example”, “The Ineffective
Physician: Non-Motivational Approach”) aswell as descriptions and narrator comments
(e.g. “This is · · · video · · · where I demonstrate how to use motivational interview-
ing · · · ”). Those labels are considered to be automatically validated since the video
uploaders are professional therapists and established institutions dedicated to positive
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Table 4.1: Dataset overview

High-Quality MI Low-Quality MI

#Conversations 110 (82.7%) 23 (17.3%)
#Utterances 8839 (91.1%) 860 (8.9%)

Table 4.2: Dialogue excerpts from high- & low-quality MI where the goal is smoking
cessation/reduction. Therapist: therapist; Client: client.

High-Quality MI

Therapist: Mm-hmm. So it’s kind of surprising to you that something you’ve
been doing and you’ve been doing more and more of it is actually pretty bad for
you.
Client: Oh, yes. I checked the box on your form when you asked if I use tobacco,
I checked “No” because I never thought of myself as a smoker.
Therapist: Mm-hmm. What do you kind of make of that now that you realize
that you’re actually a tobacco user and that you might actually be causing some
pretty serious health effects?

Low-Quality MI

Therapist: So you’re gonna quit then?
Client: Uh, maybe.
Therapist: What do you mean, maybe? I just told you how bad it is for you. It’s
messing up yourmouth, you’re putting yourself at risk for all these other diseases.
This is really important. You need to quit.

behaviour change. To generate Anno-AugMI, the video owners are contacted for ob-
taining their explicit consent4 to use their videos to create, analyse and publicly release
the transcript-based MI dialogue dataset. Explicit permissions are obtained to use 1195

of those videos, which contained 133 complete conversations — a video may contain
multiple dialogues. 110 of the dialogues showcase high-quality MI and the other 23 low-
quality MI (Table 4.1). A pair of high- and low-quality MI session excerpts, both about
smoking cessation/reduction, are presented in Table 4.2. The imbalance with respect to
high- and low-quality MI dialogue volumes can be attributed to a) fewer low-quality
MI video owners responding to the request or consented; b) low-quality MI videos are
relatively scarce on Youtube/Vimeo, possibly because MI-adherence demonstrations are
deemed more valuable as “good examples” and thus filmed and uploaded more.

4The consent of the individuals in the videos was gathered together with that of the content owner
where applicable.

542 of the 119 videos are overlapped with [102].
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4.3.2 Transcription

Using a professional transcription service6, fluent and faithfully transcribed MI conver-
sations were collected from the videos, whereas the transcripts of [102] were produced
by automatic captioning. While a step of verifying video content-caption matching
is reported in [102], in practice, it was found that a considerable number of incorrectly
transcribed words/phrases and mismatched interlocutor (therapist/client) labels exist in
the corpus of [102] that can significantly hinder text understanding. Table 4.3 presents
the excerpts from [102] and Anno-MI of the same video to exemplify the marked dif-
ference in transcription quality between the two datasets. Anno-MI is also free from
other noises such as narrations but retains context-relevant details, including “hmm”,
“right” and interlocutor sentiment/emotion [111, 41, 110] indicators such as “[laugh]”.

4.3.3 Expert Annotators & Workload Assignment

As MI annotation requires specialised knowledge, only experienced MI practitioners
are engaged to annotate the transcripts. Specifically, 10 therapists found through the
Motivational Interviewing Network of Trainers7, an international organisation of MI
trainers and a widely recognized authority in MI, are recruited for the task. All the an-
notators had high proficiency in English and prior experience in practicing and coding
MI. 7 transcripts with different lengths and MI qualities are assigned to every expert
to facilitate inter-annotator agreement (IAA) computation, while each of the other 126
transcripts is randomly assigned to exactly one expert. Overall, each expert annotated
19 to 20 transcripts with total lengths of around 144 minutes in terms of the total dura-
tion of the original 19 to 20 videos. The 7 IAA transcripts are about 45 minutes in length
in total, and no expert was aware that those transcripts would be used to compute the
IAA. The IAA results of Anno-MI are not directly comparable with those of other an-
notated MI corpora, since the former is calculated based on the annotations from 10
experts while the latter often come from much fewer (e.g. 2 or 3) annotators, and it is
usually less likely to reach the same or higher level of IAA with more annotators. This
also means that the attributes of Anno-MI that do have good IAAs are indeed reliably
annotated.

4.3.4 Anno-MI and “Real-World” MI

For Anno-MI to be useful for real-world applications, it is crucial that its dialogues
reflect both high- and low-quality MI in the real world. Therefore, the annotators af-

6https://gotranscript.com/
7https://motivationalinterviewing.org/trainer-listing
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Table 4.3: Transcription quality comparison between Anno-MI and Pérez-Rosa et.al.
Color code to locate the differences are: incorrectly transcribed word (red); omitted
words/phrases(blue); words from the other interlocutor that should have started a new
utterance (orange ); missing client/therapist utterance (cyan).

Anno-MI

Client: Right. Well, it would be good if I knew, you know, that my kids are taken
care of too-
Therapist: Yeah.
Client: so I’m not worried about them while I’m at work.
Therapist: Right. Yeah. Because you’re- you’re the kind of parent that wants to
make sure your kids are doing well.
Client: Right.
Therapist: Yeah. Um, so tell me, what would it take to get you to like a five in
confidence, to feel a little bit more confident about getting work?
Client: Well, I mean, being able to make the interviews would be the priority.
Therapist: Okay, Yeah.
Client: Um, so chi- you know, taking care, having some childcare, having-
Therapist: Mm-hmm.
Client: - having someone I trust that I can call when I know I’ve got an interview.
Therapist: Yeah. Because you definitely need to go to an interview in order to
get the job.
Client: Right. Yeah.
Therapist: So having taken care of that part, having some reliable childcare
would definitely help.
Client: Yeah.

[102]

Client: one it would be good if I knew you know that my kids are taking care of
(“too”) - yeah so I’m not worried about them law in the work right yeah
Therapist: because you’re you’re the kind of parent that wants to make sure your
kids are doing well great ({C}) yeah um so tell me what would it take to get you to
like a five in confidence to feel a little bit more confident (“about”) getting work
Client: well I mean being able to make the interviews would be the priority again
({T}) um so try you know taking care having some child care I mean having ({T})
someone I trust that I can call when I you know what that interview because you
definitely need to go to an interview of in order to get three (“the job”)
Therapist: yeah yeah so having taken care of that part having some reliable child
care (“would definitely help”)
Client: yeah definitely not

ter they completed their tasks, were asked whether they felt the Anno-MI dialogues
resembled real-world MI or else. As shown in Figure 4.1, 83% of the responses “agree”
or “somewhat agree” that the therapist utterances and the dialogues overall reflect real-
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Figure 4.1: Results of survey for annotators regarding whether Anno-MI reflects real-
world high- and low-quality MI.

world MI, and the figure is 66% for the client utterances. The clear majority in each case
shows that Anno-MI indeed sufficiently captures the characteristics of real-world MI,
even though the dialogue sources are demonstrations. It is noted that researchers, es-
pecially those in corporate environments, are faced with a very challenging legal and
regulatory landscape in the field of NLP for counselling, due to privacy-related concerns
and rules in different jurisdictions. Therefore, a dataset like Anno-MI can be used sig-
nificantly more broadly, since it does not have any privacy implications or legal issues
concerning different jurisdictions.

4.4 Annotation Scheme

To generate Anno-MI, a detailed annotation scheme is designed to study therapist and
client behaviours, based on the MI literature, existing coding protocols (MISC/MITI),
and feedback from therapists. At the conversation level, the annotators were asked to
briefly describe the dialogue goal, e.g., “smoking cessation”. Thus, in Table 4.4 the top 10
topics are summarized in terms of a) the number of conversations that have those topics,
and b) the total number of utterances in those conversations. At the utterance level,
the annotation scheme is shown in Table 4.5. Each annotator was asked to annotate
all utterance-level attributes and to select only one from the range of labels for each
attribute. When annotating an utterance, an annotator could also see the preceding and
subsequent utterances for more contextual reference.

4.4.1 Therapist Utterance Attributes

(Main) Behaviour

Asking, Informing and Listening are three basic but important communication skills in
MI that enable efficient and effective counselling [115]. Based on this principle and
relevant parts of mainstream MI coding systems,Question, Input, and Reflection are
established as threemajor therapist behaviours for analysingAsking, Informing and Lis-
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Table 4.4: Top 10-topics in Anno-MI in terms of 1) number (percentage) of conver-
sations that have those topics, and b) total number (percentage) of utterances in those
conversations.

Topic #Dialogues

Reducing alcohol consumption 28 (21.1%)
Smoking cessation 21 (15.8%)

Weight loss 9 (6.8%)
Taking medicine / Following medical procedure 9 (6.8%)

More exercise / Increasing activity 9 (6.8%)
Reducing drug use 8 (6.0%)
Reducing recidivism 7 (5.3%)

Compliance with rules 5 (3.8%)
Asthma management 5 (3.8%)
Diabetes management 5 (3.8%)

Other 33 (24.8%)
Topic #Utterances

Reducing alcohol consumption 1914 (19.7%)
Reducing recidivism 1303 (13.4%)
Smoking cessation 1106 (11.4%)

Diabetes management 709 (7.3%)
Reducing drug use 578 (6.0%)

Taking medicine / following medical procedure 574 (5.9%)
More exercise / increasing activity 525 (5.4%)

Weight loss 396 (4.1%)
Avoiding DUI 394 (4.1%)

Changing approach to disease 315 (3.2%)
Other 2107 (21.7%)

tening, respectively. In cases where more than one behaviour is present in an utterance,
e.g. a question after input, the expert is asked to select the main behaviour. Other
as a fourth behaviour is also considered in this design, where no Question, Input, or
Reflection is shown in the utterance. Question, Input and Reflection are listed as
separate attributes of therapist utterances in order to investigate their sub-types, as laid
out in the sections below. It is to note that this work is more focused on the use of Ask-
ing, Informing and Listening in the Anno-MI dialogues8, therefore it does not seek to
compare directly with previous work that uses the complete MISC/MITI for annotation.

8For the same reason, the original annotation scheme was more ambitious and had several non-
MITI/MISC annotation fields, but they are not included in this paper due to their very low IAAs (Fleiss’
kappa) and the space limit, and this is why the annotation scheme presented in this section may look like
a subset/regrouping of MISC to some readers.
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Table 4.5: Utterance-level multi-choice annotation scheme. (+) implies presence of ut-
terance attribute (e.g. “Simple reflection“ entails that Reflection exists in utterance),
while (-) indicates absence thereof (e.g. “No reflection” label implies Reflection is not
present in utterance).

Therapist Utt. Attrib. Label

(Main) Behaviour

Question
Input

Reflection
Other

Question
Open question (+)
Closed question (+)

No question (-)

Input

Information (+)
Advice (+)
Options (+)

Negotiation/Goal-Setting (+)
No input (-)

Reflection
Simple reflection (+)

Complex reflection (+)
No reflection (-)

Client Utt. Attrib. Label
Negative

Talk Type
Change
Neutral
Sustain

Question

Therapists use Asking to develop an understanding of the client and their problems.
Therefore, we include Question as a therapist behaviour and define any question as
open or closed in accordance with mainstream MI coding conventions. The definition
of open/closed is similar to that of open-ended/closed-ended questions except for some
nuanced differences (e.g. “Tell memore about it.” is considered an open question). Some
examples are given in Table 4.69.

Input

Informing is the primary manner of communicating knowledge to the client. To include
awide range of conveyed knowledge, the term Input is used and list advice, information,

9All the labelling examples are for illustration purposes and are not actual dialogues from the dataset.
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Table 4.6: Example Labelling for therapist Question

Utterance Question Type

Did you use heroin this week? Closed
On a scale from 1 to 10, howmo-
tivated are you to quit? Closed

How do you feel about that? Open
Tell me about your smoking. Open

Table 4.7: Example Labelling for therapist Input

Utterance Input Type

Your blood pressure was ele-
vated when the nurse took it
this morning

Information

You could try this respiration
exercise to calm down when
you’re anxious

Advice

Do you want to stay where
you’re at, quit, or cut down? Options

Would it be doable for you
to cut down on your smoking
by 2 packs of cigarettes?

Negotiation/Goal-setting

giving options and negotiation/goal-setting as its types. Some examples are given in
Table 4.7. When an utterance contains more than one type of Input, the annotators
choose the “main” type of Input to make the labels mutually exclusive and facilitate
utterance-level NLP applications.

Reflection

A crucial way of Listening is reflective listening, as it shows listening, hearing and un-
derstanding the client and can thus be effective in helping people change (lead by change
talk). Following MISC, two reflection types are considered in this annotation scheme:
simple & complex. Simple reflection conveys an understanding of what the client has
said but with little additional meaning, e.g. repeating. In comparison, complex reflec-
tion shows a deeper understanding of the client’s point of view and adds substantial
meaning to their words, using techniques such as metaphors, exaggeration, and sum-
mary [115]. A pair of simple & complex reflections of the same client utterance are
shown in Table 4.8.
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Table 4.8: Example Labelling for therapist Reflection

Interlocutor Utterance Reflection Type

Client
At one time I was
pretty much anti any-
thing but marijuana

Therapist
1

Marijuana was OK Simple

Therapist
2

That’s where you drew
the line Complex

Table 4.9: Example Labelling for client Talk Type

.

Utterance Talk Type

My doc told me I’m gonna lose
my leg if I don’t start checking my
blood sugars

Change

I hate a night without a buzz Sustain
Uh huh Neutral

4.4.2 Client Utterance Attributes

Talk Type

As pointed out inMI literature [115], clients usually feel ambivalent about adopting pos-
itive behaviour change, and thus an essential objective of MI is for clients to convince
themselves to change if it is compatible with their personal values and aspirations. Such
talks for change are known as “change talks”. Conversely, “sustain talks” show resis-
tance to change and a desire to preserve the status quo. Finally, “neutral talks” indicate
no preference for or against change. Hence, change talk, sustain talk and neutral talk
are used in this work as the three types of the client Talk Type attribute. Table 4.9
presents some examples of those talk types.

4.5 Inter-Annotator Agreement (IAA)

4.5.1 Default Measure: Fleiss’ Kappa at Utterance-Level

Fleiss’ kappa [43] is used as the default measure for calculating utterance-level inter-
annotator agreement (IAA) over the annotations on the 7 transcripts. Considering 3
ways of calculation: All, All(StRict), and BinaRy. All applies to all the utterance
attributes, while the other two modes apply to Input, Reflection and Question only.
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Specifically, since those three attributes have a default “absence” option (i.e., No
input, No reflection and No question, as shown in Table 4.5); a two-class presence-vs.-
absence (i.e. BinaRy) IAA is computed for them in addition to the fine-grained all-class
IAA (i.e. All). When computing All-IAA for Question, for example, we consider the
original label space: {Open question (+), Closed question (+), No question (-)}, where (+)
means there is a question in the utterance and (-) means there is not. Conversely, only
the presence-vs.-absence {(+), (-)} space is considered when calculating BinaRy-IAA.

All(StRict)-IAA, is also calculated which computes IAA within the original la-
bel space but on a more challenging subset of utterances, motivated by the observa-
tion that it is substantially easier to distinguish between the presence (+) labels than
between presence (+) and absence (-). For example, differentiating between “Simple
reflection (+)” and “Complex reflection (+)” is harder than between Reflection and
non-Reflection. Therefore, we compute All(StRict) on the utterances where at least
one annotator chose a presence (+) option. For Reflection, for example, we calculate
All(StRict)-IAA on the utterances where at least one annotator selected “Simple reflec-
tion (+)” or “Complex reflection (+)”.

4.5.2 Results of Default IAA Measure

All Fleiss’-kappa-based IAAs are listed in Table 4.10. Following [69], the IAAs are
grouped as slight (0.01-0.20), fair (0.21-0.40), moderate (0.41-0.60), substantial (0.61-0.80)
and almost perfect (0.80-1.00) agreement scale. An attribute is considered predictable
if its IAA shows moderate or better agreement. It is observed that the utterance at-
tributes where BinaRy andAll(StRict) are applicable, the order of agreements is, with-
out exception, All(StRict)-IAA< All-IAA< BinaRy-IAA, which proves the challenge
of the subset used for computing All(StRict)-IAA as well as the ease of annotating the
absence/presence of a particular utterance attribute. The annotators are found to be in
fair agreement on Input (All(StRict)) andReflection (All(StRict)), which reveals the
difficulty of annotating those attributes despite their inclusion in MISC/MITI, particu-
larly when their presence in an utterance cannot be easily ruled out. Nevertheless, the
IAA jumps to a substantial agreement for Input and Reflection under the BinaRy set-
ting, which suggests the presence of distinguishable linguistic features unique to those
two attributes. Encouragingly,Question, (Main) Behaviour and Talk Type all record
moderate or better IAAs under all settings, which shows the text-based predictability
and therefore the existence of distinct linguistic features of those attributes.

Based on the IAA results above, the attributes are kept with their respective label
spaces that showmoderate or better IAAs in the release version of the enhancedAnno-
MI:
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Table 4.10: Inter-annotator agreements on utterance-level annotations, in Fleiss’ kappa.
Color code: Orange, Blue, Cyan and Green indicate fair (0.21-0.40), moderate (0.41-0.60),
substantial (0.61-0.80) and almost perfect (0.80-1.00) agreement, respectively.

Therapist Utterance Attribute IAA Setting IAA

Input
All(StRict) 0.34

All 0.51
BinaRy 0.64

Reflection
All(StRict) 0.32

All 0.50
BinaRy 0.66

Question
All(StRict) 0.54

All 0.74
BinaRy 0.87

(Main) Behaviour All 0.74
Client Utterance Attribute IAA Setting IAA

Talk type All 0.47

• Input: BinaRy - {with input, without input}). N.B. Namely, each therapist ut-
terance has this label indicating whether Input is present. The same applies to
Reflection.

• Reflection: BinaRy - {with reflection, without reflection})

• Question: All, i.e., {open question, closed question, no question}),

• (Main) Behaviour: All, i.e., {Reflection, Input, Question, Other})

• Talk Type: All, i.e., {Change, Neutral, Sustain}

For the 7 IAA transcripts, the value of each attribute of each utterance is obtained
through majority voting.

4.5.3 Supplementary IAA Measure: Intraclass Correlation

Following MITI, Intraclass Correlation (ICC) is also used to analyse (Main) Behaviour
and Talk Type at label-level to gain more insights and facilitate comparison with other
studies. For each label, the number of occurrences of utterances annotated with the
label in each session by each annotator is counted. Thus, each of the 10 annotators
has 7 label counts corresponding to the 7 IAA transcripts. Then, ICC is computed to
describe how much of the total variation in the label counts is due to differences among
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Table 4.11: Inter-annotator agreements as Intraclass Correlation.

(Main) Therapist Behaviour ICC
Input 0.975

Reflection 0.991
Question 0.997
Other 0.996

Client Talk Type ICC
Change 0.916
Neutral 0.986
Sustain 0.890

annotators. Also following MITI, the ICC scores are obtained using a two-way mixed
model with absolute agreement and average measures.

As Table 4.11 presents, all the (Main) Behaviour and Talk Type labels have excel-
lent (0.75-1) [26] agreement scores, which shows the reliability of Anno-MI annota-
tions. Nevertheless, Change and Sustain have slightly lower ICCs — around 0.9 — com-
pared to the other ICCs that are almost 1.0, which somewhat echoes the lower Fleiss’-
kappa-based IAA of Talk Type compared to that of (Main) Behaviour.

4.6 Dataset Analysis

The annotations are analysed via visualisations, unless otherwise specified, (Main) Be-
haviour represents the behaviour of an utterance. For example, if a therapist’s utter-
ance consists of a reflection and a question but Reflection is annotated as the main
behaviour, the utterance to be a reflection is considered instead of a question, in order
to facilitate further analysis. It is noted that while there are clear correlations between
utterance attribute distribution and MI quality in some cases, they do not necessarily
point to causation, especially given the relatively low amount of data and potential sam-
pling bias.

4.6.1 General (Main) Behaviour and Talk Type Distributions

As Figure 4.2 demonstrates, the most marked contrast between therapist behaviours
in MI-adherent and non-adherent therapy is the proportions of Reflection and In-
put. The average MI-adherent therapist employs Reflection in 28% of their utterances
whereas it is only 7% in non-adherent therapy, echoing the MI requirement of trying to
understand the client’s perspective and communicating it. On the other hand, Input is
given 33% of the time in low-qualityMI but only 11% in high-qualityMI, which, together
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Figure 4.2: (Main) Behaviour distributions in high- & low-quality MI

Figure 4.3: Talk Type distributions in high- & low-quality MI

with the statistics of Reflection, conforms to the observation [115] that high-quality
MI emphasises understanding the client as opposed to speaking from their own point
of view. The correlation between MI quality and the share of Question and Other is
relatively weak.

As for Talk Type, change talk is more frequent in high-quality MI — 25% vs. 17%,
whereas sustain talk has a stronger presence in low-quality MI — 11% vs. 15% (Fig-
ure 4.3). Those contrasts are, nevertheless, less obvious than those found in Reflection
and Input. Possible explanations include a) some clients in low-quality MI could adopt
tepid change-talk-like speech such as “Yeah, maybe” only to end the counselling quickly
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Figure 4.4: Distribution of next-turn client talk types given different therapist be-
haviours in the current turn

and b) some clients in high-quality MI are simply more reluctant to change but the ther-
apist still respects that, as is recommended in MI. On the other hand, most (64%-68%)
client utterances belong to the neutral talk category regardless of MI quality, for which
the prevalence of short utterances like “Mhmm” and “Uh huh” can be a major contribut-
ing factor.

4.6.2 Posterior (Main) Behaviour and Talk Type Distributions

MI guidelines have specific recommendations on how a therapist should respond when
the client talks in certain ways, and a client may also react to the therapist in partic-
ular patterns. The posterior distributions of next-turn therapist behaviours(/client talk
types) is probed given the current-turn client talk type(/therapist behaviour). Denot-
ing uT

t as the therapist utterance at turn (time step) t and uC
t+1 as the client reply in

the following turn, the posterior distribution of client talk types can be represented as
p(Talk_Type(uC

t+1) | Behaviour(uT
t )). Similarly, the posterior distribution of therapist be-

haviours can be formulated as p(Behaviour(uT
t+1) | Talk_Type(uC

t )). Figure 4.4 presents
the posterior distribution of client talk types (i.e. p(Talk_Type(uC

t+1)∥ Behaviour(uT
t ))).

While neutral talk is clearly the majority talk type of the client response, in most
cases p(Talk_Type(uC

t+1) = Change∥ Behaviour(uT
t )) is substantially larger in high-

quality MI than in low-quality MI regardless of Behaviour(uT
t ), which shows that an

MI-adherent counsellor is more likely to evoke change talk from the client, irrespec-
tive of specific therapist behaviours. On a more granular level, Question is the most
likely (31%) therapist behaviour in high-quality MI to evoke change talk, which may be
because some therapist questions lead to change talks more often, such as asking the
client what steps they could take towards a behaviour change or how confident they are
about adopting a change. Interestingly, Input results in more change talks (21%) than
any other therapist behaviour in low-quality MI, but it is also the therapist behaviour
that prompts the most (23%) sustain talks, which may suggest that the effect of frequent
input — characteristic of low-quality MI as shown in Figure 4.2 — is far from certain in
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Figure 4.5: Distribution of next-turn therapist behaviours given different client talk
types in the current turn

terms of evoking change talk and reducing sustain talk. Figure 4.5 shows the posterior
distribution of therapist behaviours (i.e. p(Behaviour(uT

t+1)∥ Talk_Type(uC
t ))).

One can observe that MI-adherent therapists in general use considerably more re-
flections than non-adherent therapists do — 30% vs. 12% — in response to change talks,
which suggests that high-quality MI utilises Reflection to reinforce willingness to
change. On the other hand, the most commonly shown therapist behaviour in response
to sustain talk in high-quality MI is Reflection (37%), while the dominant pattern of
reacting to sustain talk in low-quality MI is Input (54%). This contrast serves as strong
evidence that MI-adherent therapy focuses more on showing empathy and trying to un-
derstand the client when faced with resistance, including through Reflection, whereas
a non-adherent therapist is more likely to try to challenge, correct or persuade the client
through more Input — a common mistake in MI non-adherent therapy [115].

4.6.3 (Main) Behaviour and Talk Type as Conversation Proceeds

Following [102], each conversation is divided into 5 parts: [0.0, 0.2], (0.2, 0.4], (0.4, 0.6],
(0.6, 0.8] and (0.8, 1.0], in order to probe conversational properties at different dialogue
stages. Specifically, the distributions of different therapist behaviours and client talk
types are examined at those stages. Among the trends shown in Figure 4.610, one can
observe in both high- and low-quality MI that the proportion of Question gradually
decreases as the therapist gathers more information about the client from the progress-
ing conversation. The amount of Reflection, on the other hand, generally fluctuates
within a small interval throughout a dialogue in both high- (27% - 31%) and low-quality
MI (2% - 8%), which meansReflection is common throughout a high-quality MI session
and rare throughout a low-quality one. Finally, the proportion of Input rises during
the middle stages ((0.4, 0.8]) in both high- and low-quality MI, but the increase is sub-
stantially more pronounced in low-quality MI sessions (from ∼30% to ∼60%) than in

10In all the line charts, the “marked” data points are the sample means and the error bars around them
are calculated using bootstrapping with a 95% confidence interval.
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Figure 4.6: Proportions of therapist behaviours in different conversation stages in high-
and low-quality MI.

Figure 4.7: Proportions of client talk types in different conversation stages in high- and
low-quality MI.

high-quality ones (from ∼10% to ∼15%), which further indicates a non-adherent thera-
pist tends to talk from their own perspective more as the conversation develops.

The trends of different client talk types are displayed in Figure 4.7. A clear shift is
shown in high-quality MI: there are similar amounts of change and sustain talk at the
beginning of a conversation, but change talk becomes more present steadily and even-
tually reaches around 40% at the end of a dialogue, while the share of sustain talk dimin-
ishes gradually at the same time and drops to around 7%. In other words, the desired
effects of MI-adherent therapy, namely change talk evocation and sustain talk reduc-
tion, become increasingly prominent with the progress of a session. In low-quality MI,
however, during the early & middle conversation stages (i.e. [0.0, 0.6]) the proportion
of sustain talk soars from approximately 10% to a little over 40% while the number for
change talk remains under 10%. Interestingly, the later stages (i.e. (0.6, 1.0]) show the
opposite trend, as the growing share of change talk surpasses the declining proportion
of sustain talk, finishing at around 30% and 12% respectively at the end. Nevertheless,
the absolute %Change - %Sustain difference is clearly larger at the end of a high-quality
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MI session in general.

4.7 Utterance-Level Prediction Experiments

From the annotation labels, various utterance-level prediction tasks can be readily de-
fined. This section focuses on two tasks: therapist behaviour prediction and client
talk type prediction. These tasks are introduced as examples of potential real-world
applications of Anno-MI, in order to inspire future tasks based on the dataset. While
an imbalance exists between the high- and low-quality dialogue volumes, its impact
on the tasks is expected to be minor, since they are not related to MI quality directly.
For future work exploring session- or utterance-level MI quality classification, however,
remedies such as data augmentation will be needed to address the imbalance. Each task
allows a single utterance as the input and requires a class label as the output. Experi-
ments are performed with 4 machine-learning-based models trained until convergence.
In addition the BERT variants with AdapterHub11 [105] (in turn based on Hugging-
Face [140]), the CNN models with Keras 12, and the other models with Scikit-learn [97]
are implemented.

• BERT w/o AdapteRs: BERT-base-uncased [39] fine-tuned on Anno-MI.

• BERT w/ AdapteRs: BERT-base-uncased with adapters [55, 105] fine-tuned
on Anno-MI. Adapters are a small set of task-specific parameters that can be
easily plugged into transformer [132]-based models so that only the lightweight
adapters are updated during fine-tuning while the rest of the model is frozen.

• CNN: convolutional neural networks initialised with word2vec embedding [83]
and fine-tuned on Anno-MI.

• Random FoRest: random forest with TF-IDF features.

Two dummy baseline classifiers are also used for comparison:

• PRioR: producing random predictions based on the class distribution in the train-
ing set.

• UnifoRm: producing random predictions based on the uniform distribution of
the classes.

11https://github.com/Adapter-Hub/adapter-transformers
12https://keras.io/
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4.7. UTTERANCE-LEVEL PREDICTION EXPERIMENTS

Considering the relatively small size of Anno-MI, 5-fold cross-validation (CV) on
the entire dataset is applied. Matthews Correlation Coefficient (MCC) [80] is used
as the metric to leverage its robustness to class imbalance. MCC ranges between -1 to
1, where -1 represents total disagreement between prediction and observation, 0 means
no better than a random prediction, and 1 indicates perfect prediction. For PRioR and
UnifoRm whose outputs are random, the models are run 1000 times in each training-
validation setup and average their performances. Therefore, each of the 6 models listed
above eventually has 5 performances from a 5-fold CV, and the mean is taken as the
final performance of the model.

To address the class imbalance, two variants for each training set are introduced:
Original Unbalanced andAugmented Balanced. The former keeps the original data
in each CV training set, while the latter leverages a Pegasus [155]-based neural para-
phraser13 in order to augment the non-majority classes so that the size of each class
in Augmented Balanced reaches that of the majority class in Original Unbalanced.
Table 4.12 presents both the multi-class and per-class performance of each model, the
former measured by multi-class MCC and the latter by binary MCC. To calculate the
latter for a particular class, each ground truth and predicted label is converted to True
or False depending on whether the label is the same as the class in question.

4.7.1 Task 1: Therapist Behaviour Prediction

We first investigate therapist behaviour prediction. Given a therapist’s utterance,
the task is to predict its (main) therapist’s behaviour. Overall, the BERT variants score
the highest with MCCs around 0.75, followed by CNN at 0.6 and Random FoRest at ap-
proximately 0.5. Compared to the random baselines (PRioR & UnifoRm) with MCCs at
0 which confirms the randomness of their prediction, the trained models, especially the
BERT variants, have clearly learned contextualized semantics. No substantial difference
exists between the results of BERT w/o AdapteRs and BERT w/ AdapteRs. The effects
of augmentation are minor and mixed, as the technique slightly improves the perfor-
mance of Random FoRest and CNN and harms that of the BERT variants marginally.
The order of difficulty for classifying individual therapist behaviours is generallyOther
<Question < Reflection < Input. Remarkably, the performance difference between
Other and Input is 0.24 ∼ 0.28 MCC even for the BERT variants, suggesting Input
is relatively challenging to classify. Also, the difference between the performance on
Other — mostly short utterances like “Hmm” and “OK” — and that on the other three
behaviours is substantially larger on the non-BERT models than on the BERT variants,
likely attributable to the strong context modelling capability of BERT.

13https://huggingface.co/tuner007/pegasus_paraphrase
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Table 4.12: Overview of the multi-class and per-class performance of (main) therapist
behaviour prediction and client change talk type prediction. All results are averaged
from 5-fold cross-validation. ↓/↑ indicates decrease/increase from the original-data-
trained model’s performance to that of the augmented-data-trained model.

Result Format Result of Model Trained on Augmented Data and Original Data
(Main) Therapist Behaviour Prediction

Model Multi-Class Other Question Reflection Input
BERTadpt .74 (.74) .84 ↑ (.82) .78 ↓ (.80) .68 (.68) .56 ↓ (.58)
BERT .74 ↓ (.75) .84 (.84) .79 (.79) .68 ↓ (.69) .56 ↓ (.58)
CNN .60 (.60) .80 (.80) .59 ↑ (.58) .52 ↑ (.50) .41 ↑ (.39)
Random Forest .50 ↑ (.49) .76 ↑ (.75) .40 (.40) .38 ↑ (.37) .38 ↑ (.34)
PRioR .00 (.00) .00 (.00) .00 (.00) .00 (.00) .00 (.00)
UnifoRm .00 (.00) .00 (.00) .00 (.00) .00 (.00) .00 (.00)

Client Talk Type Prediction
Multi-Class Change Neutral Sustain

BERTadpt .34 ↓ (.36) .34 ↓ (.36) .36 ↓ (.39) .29 ↑ (.27)
BERT .32 ↓ (.37) .32 ↓ (.37) .34 ↓ (.40) .29 ↑ (.28)
CNN .24 ↓ (.26) .23 (.23) .26 ↓ (.31) .21 (.21)
Random Forest .22 ↑ (.19) .23 ↑ (.21) .24 ↑ (.21) .15 ↑ (.08)
PRioR .00 (.00) .00 (.00) .00 (.00) .00 (.00)
UnifoRm .00 (.00) .00 (.00) .00 (.00) .00 (.00)

4.7.2 Task 2: Client Talk Type Prediction

Client talk type prediction aims to produce the right client talk type label given a
client utterance. Overall, this task records universally lower scores than Task 1 for all
the trained models — the best BERT-variant performances are around 0.35 MCC while
CNN and Random FoRest score about or less than 0.25, irrespective of data augmenta-
tion. Two factors likely responsible for the performance gap between the two tasks are
dialogue context and annotation noise. In some cases, the talk type of a client ut-
terance can only be determined with context grounding. For example, “Yeah” as a reply
to “So you work out every day?” is a neutral talk, but it should be change talk when it
follows “Don’t you ever wish things were different?”. Also, the IAA (Fleiss’ kappa) for
client talk type is around 0.47 while it is 0.74 for therapist behaviour, which suggests
that annotating talk type is more challenging and therefore more noise is present in
the labelling. Inevitably, such noise makes it harder to optimise the trainable models.
Among the talk types, Neutral Talk has slightly higher performance than Change Talk,
while Sustain Talk is more challenging (∆ ≥ 0.05MCC) than both for all the classifiers,
which is somewhat unexpected, considering the similar IAA scores for Change Talk
and Sustain Talk. As mentioned previously, using more dialogue context may offer a
performance boost and more insights, for now it is left for future work. In this ex-
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perimental setup the single-utterance BERT variants is established as strong baselines
for both tasks, in order to facilitate comparison with improved machine-learning-based
methods in the future.

4.8 Topic-Specific and Cross-Topic Performance

Apart from performance over the entire Anno-MI, we also explore how the models
fare in conversations of different topics, hypothesising that some topics may be more
challenging for certain models on particular tasks. Importantly, as the generalisability
to topics unseen during training is a major desideratum of reliable models with real-
world impact, we probe cross-topic model performance by training on data of all but
one topic and testing on examples from that topic. Based on the topic coverage of
Anno-MI (Table 4.4), three topics are selected namely — reducing alcohol consump-
tion, reducing recidivism, and smoking cessation — for probing the topic-specific and
cross-topic performance of all the trained models on the two tasks defined in 4.7, since
between 10% and 20% of the utterances in Anno-MI belong to conversations of these
topics. All the results (in MCC) are summarised in Table 4.13.

4.8.1 Topic-Specific Performance

To obtain the performance on topic Ti, we re-use the 5-fold CV models for the two
tasks (4.7), but we test each model only on a Ti-specific subset of the corresponding
20%-Anno-MI test set created during CV. Specifically, the subset consists entirely of
utterances that are originally from conversations of topic Ti. By averaging the perfor-
mances of the 5 models on their respective Ti-specific subsets, this method covers all
Ti-utterances and thus yields a reliable measure of the Ti-specific performance of each
model type. Generally, it is clear that the model performances, especially those of the
BERT variants, follow the topic-wise ordering below, with negligible impact from class
balance/imbalance:

• Therapist Behaviour Prediction: reducing alcohol consumption > smoking
cessation > reducing recidivism

• Client Talk Type Prediction: reducing alcohol consumption≈ smoking cessa-
tion > reducing recidivism

One contributing factor to the topic-level performance gaps could be the coverage of
the three topics — reducing alcohol consumption > reducing recidivism > smoking
cessation, as better coverage entails more data used for training. However, it is also
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clear that the client talk type prediction performance for reducing-recidivism conver-
sations is considerably lower — , e.g., 0.15 by BERT w/ AdapteRs — than for smoking
cessation — , e.g., 0.37 by BERT w/ AdapteRs, despite the slightly larger coverage of
reducing recidivism. Such a contrast is, therefore, more likely because the utterances of
the topic themselves are more semantically challenging for the task, and it also shows
the necessity to include a wide range of topics in a counselling dialogue dataset.

4.8.2 Cross-Topic Performance

It is often important for trained models to generalize to unseen domains. While con-
versations of different topics are not completely different domains, the results shown
in 4.8.1 illustrate that models indeed have varying levels of performance depending on
the topic. Hence, to complement 4.8.1 where models trained on dialogues of all topics
are examined for their topic-specific performances, we probe model generalizability by
removing a topic Ti from the training set completely and then analyzing its performance
on a Ti-only test set. Concretely, we adopt a leave-1-topic-out approach by training on
all the Anno-MI utterances from conversations that do not have topic Ti and testing
on all the Anno-MI utterances from dialogues that only have topic Ti. Conversa-
tions with Ti, as well as a different topic, are not present during training or testing.
We note that the test set in this setup is effectively identical to that of 4.8.1; there-
fore, the cross-topic and topic-specific performances can be compared fairly. Unsur-
prisingly, cross-topic (trained on leave-1-topic-out data) performance is lower than its
topic-specific performance counterpart (i.e., topic-specific 5-fold CV) for most <model
type, topic> combinations (Table 4.13), since the models have limited exposure to the
left-out topic during leave-1-topic-out training whereas all topics are present during the
training of the CV models. There is not a clear trend as to which topic generally leads
to the largest gap between cross-topic and topic-specific performance, and the impact
of augmentation-enabled class balance on prediction performance is mixed. Encour-
agingly, the BERT models only see minor performance degradation (≤ 0.02) and even
slight improvements in some cases for therapist behaviour prediction, thus illustrat-
ing the generalisability of those models for this task. For client talk type prediction,
however, larger performance drops (≥ 0.04) are more common. For example, BERT w/
AdapteRs sees a fall to 0.29 in cross-topic from 0.38 in topic-specific when the topic is
reducing alcohol consumption under the setting of balanced training data. Consider-
ing that the overall performances in 4.7 of this task are lower than those of therapist
behaviour prediction, one may postulate that client talk type prediction is more chal-
lenging (when conversation history is absent in the input), and more training data is
necessary irrespective of topic.
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CHAPTER 4. ANNO-MI: GENERATING DATASET OF COUNSELLING THERAPY

4.9 Discussion

While Anno-MI contains transcripts of MI demonstrations instead of real therapy ses-
sions, we believe that it is the closest approximation possible without privacy violations,
while the precise transcription and the accompanying expert annotations further make
it more reliable and versatile than similar datasets (e.g. [102]). We note that most of
the source videos are from professional therapists and research organisations/institutes
dedicated to relevant topics (e.g. reducing substance use), therefore the authenticity
of the manifested client-therapist interaction can be considered reliable, as confirmed
by the survey responses from the professional annotators. It could also be interesting
to explore the domain gap between the corpus and an undisclosed real-world therapy
dataset. In particular, as the average duration of the source videos is 7 minutes and
thus shorter than usual real-world counselling sessions, in future work we will repli-
cate our experiments on other corpora with longer sessions and then compare the re-
sults with those obtained based on Anno-MI. We also note that while client talk type
has comparatively lower IAA scores, the performance difference between the trained
models and random baselines is substantial, proving the reliability of the annotations
on those attributes. As we experimented with attribute prediction based on the current
utterance only, the lack of contextualization is also likely to have contributed to the
relatively lower performance, which we leave to future work to address. In terms of
applications, Anno-MI can be readily used to develop NLP/ML models for MI fidelity,
such as generating feedback to help train and supervise counsellors. Example use cases
of this nature include 1) categorising current-turn therapist behaviour and/or client talk
type, as explored in Sections 4.7 and 4.8, and 2) forecasting next-turn client talk type
and/or MI-adherent therapist behaviour. Beyond those natural language understanding
settings, Anno-MI can also be used for natural language generation to assist human
therapists, such as providing suggestions on what a counsellor could say next, given the
past utterances of an ongoing session.

4.10 Conclusion

We introduceAnno-MI [142] a dataset of professionally transcribed and expert-annotated
conversations that demonstrate high- and low-qualitymotivational interviewing. Based
on the rich annotations by experienced counsellors, we thoroughly analyse various
counselling-related properties at utterance-, dialogue- and corpus-levels. We also create
relevant utterance-level prediction tasks and establish strong baseline models. Finally,
we examine topic-specific model performance on those tasks and probe the general-
isability of the models on new topics. Anno-MI represents a powerful resource for
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research in the important direction of counselling-related natural language processing.
For future work, we plan to investigate applications of Anno-MI with real-world im-
pact, such as assisting counsellors with real-time session analytics and next-turn sug-
gestions.
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Chapter 5

Addressing the challenges of scarce
data through augmentation

5.1 Introduction

Recent advancements in NLP captured the interest of the research community in health-
care [67, 79], including mental health and its subdomains such as depression, anxiety, or
substance abuse [70]. However, the real-world application of clinical NLP is hampered
by multiple elements such as domain complexity, rigorous accuracy and reliability stan-
dards and data scarcity [57]. Lastly, recent research highlighted critical concerns on AI
fairness [25, 61], which is imperative to address when applying NLP to mental health.
As the first step towards addressing these issues, this work adopts data augmentation to
improve AI reliability and fairness in the context of scarce mental health data. The work
in this chapter leverages our recently released dataset Anno-MI [142], consisting of
professionally annotated therapy transcriptions in MI [88, 115]. The classification task
is modeled to identify therapy quality, one of the Anno-MI most unbalanced labels,
using each therapist’s utterance as input data. In the fairness context, the work inspects
therapy topics, e.g., ”smoking cessation,” ”reducing alcohol consumption,” or ”diabetes
management” as the sensitive variable. A detailed quantitative analysis of the effects
of data augmentation to balance target and sensitive variables is conducted. The ex-
perimental results show little to no impact on CML classifiers but prove that DL ones
benefit from augmented data, showing consistent improvement in both accuracy and
reliability. Fairness assessment shows that more work on augmentation is required to
properly mitigate eventual classification BIAS.

92



5.2. MATERIAL AND METHODS

5.2 Material and Methods

Anno-MI1 [142] contains 110 high-quality and 23 low-quality MI conversational di-
alogues from a total of 44 topics e.g.: ”smoking cessation”, ”diabetes management”,
”anxiety management” and others. Therapy quality indicates the therapist’s adherence
to ”general counseling principles taken from the literature on client-centered coun-
seling” [103]. Therapy quality distribution in Anno-MI is heavily skewed towards
high-quality (HQ-MI) utterances. This is because the conversations that constitute the
dataset belong toMI training videos, which rarely showcase low-quality (LQ-MI) coun-
seling scenarios. To overcome these issues data augmentation techniques are employed.

Theworks leveragesNL-Augmenter2 [40] to develop an 11-step augmentation pipeline,
each one taking one utterance as input. Therefore, for each given utterance, the pipeline
generates n ≥ 11 augmentations (due to certain augmenters potentially producing mul-
tiple alternatives for the same utterance). The adopted augmentation techniques include
noising, paraphrasing and sampling [72]. Since the augmentation process is unsuper-
vised, caution is taken to avoid using techniques that could lead to semantic changes
with respect to the original utterance. With this setup, two augmented versions of
Anno-MI are generated, targeting classifier reliability and fairness, respectively.

5.2.1 Problem statement

The work focuses on a binary classification task to detect therapy quality from a single
therapist utterance. Each therapist utterance is assigned, to the corresponding conver-
sation quality, in order to formulate the positive and negative examples for the task.
Indeed, assessing the quality of MI sessions can boost therapist training and skills as-
sessment, as confirmed from the existing related work on empathy modelling [147, 49,
48, 143], automatic coding of therapeutic utterances [4, 148, 19] and session-level ther-
apist performance [44]. Given the previously mentioned quality skewness, the target
variable represents the first potential source of classification unreliability. In this con-
text, Anno-AugMI dataset is generated, which consists of all the therapist utterances
from Anno-MI, augmented in order to balance quality proportion. Anno-AugMI
creation proceeds in a topic-agnostic fashion, with the goal of obtaining a roughly bal-
anced amount of HQ-MI and LQ-MI utterances across the entire dataset. Since ther-
apy quality is the target of the employed classifiers, this procedure is termed as target-
aware augmentation. No check is in place with regards to which utterances are aug-
mented, meaning that target-aware augmentation merely iterates over the dataset and

1Data is available at https://github.com/uccollab/AnnoMI
2Code available at https://github.com/GEM-benchmark/NL-Augmenter
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augments every low-quality utterance until the target label is balanced. To assess classi-
fication fairness, it is necessary to identify the sensitive variable and field-test it with the
employed classifiers. For this work the therapy topic (MI-topic) is considered as the
sensitive variable, as inter-topic fairness guarantees stable performances across a wide
range of therapy goals, and because therapy quality in Anno-MI is also unbalanced at
the topic-level (as shown in Figure 5.1). To address fairness, Anno-FairMI dataset is
generated, consisting of all the therapist utterances from Anno-MI, augmented to bal-
ance therapy quality proportionwith respect toMI-topic. Anno-FairMI creation
proceeds in a topic-aware fashion, with the goal of having the same amount of HQ-MI
and LQ-MI utterances for each MI-topic. Since MI-topic is the sensitive vari-
able of our classifier, this procedure is named as fairness-aware augmentation. This last
procedure introduces the necessity to cut out those MI-topic which have no low-
quality example since augmentation would have been impossible. As a result, Anno-
MI and Anno-AugMI share all 44 topics (134 conversations), while Anno-FairMI
keeps only 9 topics (55 conversations), resulting in a much lower pre-augmentation data
size. The comparative distribution of topic-wise utterances and average therapy qual-
ity per topic is shown in Figure 5.1. The overall distribution of labels in Anno-MI,
Anno-AugMI and Anno-FairMI is shown in Table 5.1.

Table 5.1: The overall distribution of high and low-quality therapy utterances.

Dataset Total utterances (no.) High quality(%) Low quality(%)
Anno-MI 2601 91% 9%
Anno-AugMI 5302 45% 55%
Anno-FairMI 9154 50% 50%

5.3 Experiments and Results

A series of experiments are designed for this work, where each experiment’s input is
based on the output of the preceding ones. The experimental setup is as follows:

• Therapist utterances quality classification of Anno-MI.

• Augmentation of Anno-MI to balance therapy quality.

• Therapist utterances quality classification of Anno-AugMI.

• Fairness assessment of Anno-AugMI.

• Augmentation of Anno-MI based on MI-topic.
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Figure 5.1: Sensitive variable statistics for each dataset. The figure shows topic-wise
(a) utterances distribution and (b) average therapy quality. For brevity, only common
topics for each dataset are shown.

• Therapist utterances quality classification of Anno-FairMI.

• Fairness assessment and BIAS mitigation of Anno-FairMI.

SVM and RF as CML classifiers and a BiLSTM-based Dl model with Word2Vec pre-
trained word embedding for the embedding layer are employed in this work. Balanced
accuracy (BA) and F-1 score are used as performance evaluation metrics of the classi-
fiers. One universal test set is used for all the experiments, created by extracting 400
high-quality and 100 low-quality utterances from Anno-MI to avoid any data contam-
ination or bias. The rest of the data is considered as training set and constitutes the basis
for the augmentation.

To assess the fairness and mitigate eventual BIAS of the employed classifiers Mi-
crosoft FairLearn3[8] is used that inspects Selection Rate (SR), False Negative Rate (FNR)
and BA as evaluation metrics. Where applicable, ”Threshold Optimization” with BA as
the target and False Negative Parity as the fairness constraint is adopted. Since Anno-
MI and Anno-AugMI contain multiple topics that lack LQ-MI utterances, it is not
possible to split training, test and validation data in a way that each partition contains

3Code available at https://github.com/fairlearn/fairlearn
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both therapy quality classes. The presence of degenerate labels prevents BIAS mitiga-
tion, so for these datasets, only the initial metrics values are evaluated.

The classification results of CML and DL approaches for each of the three datasets
are summed up in Table 5.3. The obtained results are indicative of consistent low perfor-
mance of the CML with Anno-MI. The employed augmentation techniques are quite
simple so they do not add prominent features to Anno-MI, which can be very help-
ful in distinguishing classes with bag-of-words representation. This explains the minor
performance improvement of the CML algorithms. Since both SVM and RF did not ben-
efit from data augmentation and are comparable to random classifiers, further analysis
is not done for CML classifiers. On the other hand, the BiLSTMmodel shows significant
performance enhancement of 23-14% for Anno-AugMI and Anno-FairMI respec-
tively over Anno-MI. Further considerations can be drawn by looking at the confusion
matrix in Figure5.2. The initial model, trained on Anno-MI, suffers from the skewed
therapy quality distribution and is unable to recognizeLQ-MI utterances. This problem
also reflects on HQ-MI, with no false positives at all. With target-aware augmentation
on Anno-AugMIwe see more promising results with about 40% of false positives and
14% of false negatives. Finally, with fairness-aware augmentation on Anno-FairMI
we see pretty much no change in LQ-MI classification, but a considerable drop with
HQ-MI, with about 30% false negatives. This can be motivated by the reduced amount
of topics in Anno-FairMI, making the BiLSTM suffer from the unseen ones in the
test set. In both cases, data augmentation led to an accuracy improvement, whichmakes
our approach promising for future developments [112]. Fairness metrics values for each
dataset are shown in Figure 5.3. SR and FNR are apparently ideal for Anno-MI, but
this is purely related to the low BA value. Anno-AugMI shows more unbalanced val-
ues for SR and FNR, but higher BA than Anno-MI across pretty much every topic.
For Anno-FairMI, BIAS mitigation can be run because of the absence of degener-
ate labels in the training set. Pre-mitigation, Anno-FairMI shows generally more
balanced SR, lower FNR, and higher BA than the other two datasets for known topics,
and little to no effect after mitigation. However, moving to unseen topics the overall
BiLSTM performances greatly worsened, with compromised classification (Figure 5.2)
and fairness metrics dropping significantly (Table 5.2).

Table 5.2: The effects of BIAS mitigation on BiLSTM trained on Anno-FairMI. For each
metric, the mean value calculated with regard to the sensitive variable (therapy topic)
is reported. ”TO” stands for ”Threshold Optimisation”.

Dataset Selection Rate False Negative Rate Bal. Acc.
Anno-FairMI 67.29 23.94 75.72
Anno-FairMI + TO 19.60 72.86 21.89
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Figure 5.2: Confusion matrix for the BiLSTM trained on each dataset And for Anno-
FairMI pre and post-mitigation matrix.

Table 5.3: Performance of CML and DL approaches with Anno-MI, Anno-AugMI, and
Anno-FairMI. For each dataset, Balanced Accuracy and F1 score calculated with regards
to MI quality are reported.

SVM Random Forest BiLSTM (DNN)
Dataset Bal.Acc. F-1 Bal.Acc. F-1 Bal.Acc. F-1
Anno-MI 50.00 44.44 50.75 46.34 50.00 44.44
Anno-AugMI 48.87 38.12 50.37 45.78 73.12 71.85
Anno-FairMI 53.87 48.15 51.00 50.99 64.13 59.50

5.4 Conclusion and Future Work

In this work data augmentation is employed to balance target and sensitive variables
on the dataset of MI transcriptions Anno-MI, resulting in two augmented datasets,
namely Anno-AugMI and Anno-FairMI. The augmentation approaches are eval-
uated by means of the classification tasks, aimed at recognizing therapy quality. The re-
sults show a promising accuracy increase for DL classifiers by using augmented datasets,
especially Anno-AugMI. This result further motivates to consider other target at-
tributes in future works, such as client talk type or therapist behavior, also extending
to other tasks like forecasting. The fairness assessment and BIAS mitigation show that
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Figure 5.3: Fairness assessment and BIAS mitigation for BiLSTM on each dataset. For
brevity, only common topics for each dataset are shown.

Anno-FairMI is too sensitive to unseen topics, opening interesting future work on
the adoption of more advanced augmentation techniques. Overall, the outcomes indi-
cate that target-aware augmentation is effective at addressing the challenges of unbal-
anced and scarce data in the mental health domain. Finally, I aim to perform a human
evaluation of the developed classifiers, to sanity-check the reliability of the obtained
results.
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Chapter 6

Conclusion and Future Work

In this thesis, I argue that cultivating a symbiosis between fundamental ML approaches
and advanced text representation methods can crucially address the challenges of do-
main adaptation and reliability of ML in a real-world application. Optimal practices in
NLP can alleviate the inherent limits of relevant data to build better NLP models using
world knowledge. Each chapter in this thesis poses a novel research question moti-
vated by challenges with (i) unbalanced and small data and (ii) domain adaptation of
NLP models. In this process, the thesis makes several contributions, as listed below.

• In Chapter 2, several CML and DL approaches are employed to tackle the multi-
classification of clinical records using bag-of-words using TF-IDF and word em-
bedding representationmethods coupled with 3 feature selection algorithms. This
work extensively investigates the fundamental yet most crucial aspects of data
modeling, such as feature selection, data prepossessing, etc., to establish the best
practices for NLP tasks. Finally, ensemble models by coupling DL models and
CML classifiers mitigate the biased behavior of a single classifier model and im-
prove the single best model’s performance prediction stability. The results of this
work are promising and assert the efficacy of the employed techniques in dealing
with small and imbalanced datasets.

• In chapter 3, K-LM is proposed to use available world knowledge directly in the
form of triples to equip LMs with domain knowledge. It is one of the few works
available in the literature to tackle domain adaptation. In fact, it can be considered
as first work which:

– introducesDeterministic (context-dependent) andNon-deterministic (context-
independent) approaches for knowledge injection in LM.

– provides a robust pipeline to filter, select and rank the triples for knowledge
injection.
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– quantifies the knowledge injection process tomitigate the Knowledge Noise.

The experimental results have proven the efficacy of K-LM and demonstrate that
K-LM is a potential choice for solving knowledge-driven tasks in NLP.

• Chapter 4 introduces Anno-MI, an MI-adherent public dataset comprising both
high and low-quality counseling sessions, to address the scarcity of publicly avail-
able resources for MI-related NLP research. This dataset is the first of its kind, and
the chapter also establishes the baselines for the dataset to be further used by the
research community.

• Chapter 5 provides the fairness assessment and BIAS mitigation approaches cen-
tered on the classification taskmodeled from theAnno-MI dataset. It also includes
data augmentation techniques useful for the mental health domain, which lead to
the creation of two more datasets, Anno-AugMI and Anno-FairMI.

In the context of future work we aim to go past domain adaptation and solve the
pertaining NLP problems and bridge knowledge gaps in cross-domain adaptation using
world knowledge by means of KGs.
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