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Abstract: Physical activities seem to counteract the age-related physiological decline of the olfactory 

function which, influencing the food choices and eating behavior, can affect the body weight of in-

dividuals. The main purpose of this cross-sectional study was to evaluate the relationships between 

olfactory function and BMI in female and male Elderly Subjects (ES), according to the level of their 

lifestyle activities in physical, cognitive, and social terms. Considering weekly physical activities, 

the adult elderlies who decided to participate in this study were divided into active ES (n = 65) and 

non-active ES (n = 68). Assessment of weekly activities and olfactory function were performed by 

means of face-to-face interviews and the “Sniffin’ Sticks” battery test, respectively. The results show 

that ES who are overweight and with a non-active lifestyle achieved lower TDI olfactory scores than 

normal weight ES and those classified as active. Hyposmic and non-active ES showed a higher BMI 

than normosmic and active ES. Sex-related differences, with females performing better than males, 

were evident in the presence of at least one of the following conditions: non-activity, hyposmia, or 

overweight. Inverse correlations were found between BMI and TDI olfactory score and between BMI 

and hours/week spent on physical activities, both when subjects were considered all together and 

when they were divided into females and males. These findings suggest that a higher BMI is related 

to the olfactory dysfunction linked to active or non-active lifestyle and the sex-related differences, 

and the condition of hyposmia is related to the increase in body weight due to lifestyle and sex 

differences. Given that the relationship between BMI and non-exercise physical activities is compa-

rable to that between BMI and exercise physical activities, and this may be of particular importance 

for ES with limited mobility. 

Keywords: elderly subjects; physical activities; BMI; body weight; lifestyle; olfactory function; 

Sniffin’ Sticks 

 

1. Introduction 

The human perception of both complex and simple odors is characterized by a great 

variability between individuals, due to the effect of multiple factors such as physiological, 

genetic, and environmental ones [1–11]. It is known that one of the main factors capable 

of negatively influencing the olfactory function is the natural aging process [12–17], in 

addition to chronic pathological conditions such as nasal, cardiovascular, metabolic, re-

nal, hepatic, and immuno-inflammatory diseases, as well as neurodegenerative and men-

tal diseases such as depression [18–23]. The olfactory function is closely linked to the qual-

ity of life of all individuals, from the young to the elderly. In fact, people who suffer from 

olfactory dysfunction complain of food dissatisfaction and eating disorders, report a 

greater number of domestic accidents and, therefore, a reduced ability to protect them-

selves from dangers, and describe a negative impact on their emotional and mental health 

with consequent social isolation and the possible onset of depressive states [14,24–26]. 

This could explain why the elderly often show poor eating habits with the risk of devel-

oping conditions of malnutrition and/or increased body weight, social isolation, and the 
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development of depressive states, as well as a greater possibility of incurring environmen-

tal hazards [24,27,28]. 

An active lifestyle in terms of both physical and cognitive activity is known to im-

prove health conditions affected by a physiological decline associated with age. In partic-

ular, the risk factors of chronic pathologies associated with olfactory dysfunctions such as 

diabetes, obesity, cardiovascular, metabolic, mental, neo-degenerative and inflammatory 

diseases appear to be reduced by regular physical and/or mental exercise [21,26,29–35]. In 

this regard, a recent study conducted in our laboratories on an elderly population has 

highlighted a direct correlation between olfactory function and time spent in physical and 

cognitive activities; the most active individuals obtained significantly higher olfactory 

scores than the weakly active ones [36]. 

Lifestyle, metabolic state, state of hunger or satiety, sex, age, genetic predisposition, 

and state of health are all factors that affect the olfactory function of individuals. Most 

studies have focused on the effects of these parameters taken individually, so the first 

objective of this study was to assess the effect of body weight and/or sex on the olfactory 

function of elderly subjects (ES) who were classified as active or non-active in relation to 

their living habits. In fact, while the progressive sensory deterioration linked to age is 

commonly accepted, the presence of differences between individuals in their olfactory 

sensitivity that are sex-related is still a matter of debate [4,37–39]. Given the relationship 

between olfactory function and eating behavior, which, in turn, influences BMI and body 

weight, the second aim of this study was to estimate the effect of the olfactory function on 

BMI in elderly individuals based on their lifestyle (active or non-active) and sex (females 

or males). Furthermore, we looked for a link between each subject’s BMI and his/her TDI 

olfactory score and the time devoted (h/week) to life activities, both across populations 

and sexes. 

2. Materials and Methods 

2.1. Subjects 

Senior volunteers (n = 133) who participated in this study were recruited in the met-

ropolitan area of Cagliari and in the province of South Sardinia (Italy) and were classified 

as active Elderly Subjects (n = 65; 29 men, 36 women; age 67.7 ± 1.06 years) or non-active 

Elderly Subjects (n = 68; 32 men, 36 women, aged 70.5 ± 1.08 years), as reported in Sollai 

and Crnjar [36]. Healthy females and males aged > 55 years who reported having a normal 

sense of smell were included in the panel, while those who reported the presence of 

chronic diseases (e.g., diabetes, neurodegeneration, severe cardiovascular disease, etc.) 

and/or acute diseases of their respiratory tract, were excluded. In addition, we excluded 

from the study individuals with a history of COVID-19 infection of less than 9 months. 

For each participant, a wall-mounted stadiometer (SECA) was used to measure height, 

expressed in cm, while a calibrated scale (TANITA) was used to evaluate the body weight 

expressed in Kg. The body mass index (BMI), determined through the ratio of weight to 

the square of height (kg/m2), was used to classify the weight condition of the subjects. 

Anthropometric and olfactory characteristics, lifestyle of the participants, and the number 

of elderly subjects with co-morbidities are reported in Table 1. 

Table 1. Anthropometric and olfactory characteristics, lifestyle of the participants, and number of 

elderly subjects with co-morbidities. 

Panel Active ES n-Active ES 

N 65 68 

Age (years) 67.7 ± 1.06 70.5 ± 1.08 

BMI (Kg/m2) 23.6 ± 0.27 28.2 ± 0.46 

TDI olfactory score 28.5 ± 0.48 22.3 ± 0.53 

Exercise activities 10.1 ± 0.67 3.56 ± 0.42 

non-Exercise activities 15.9 ± 0.75 6.46 ± 0.65 
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ES with co-morbidities   

Hypertension 6 5 

Hyperglycemia 4 3 

Hypercholesterolemia 2 2 

Rheumatoid arthritis 1 1 

2.2. Assessment of Physical, Social and Cognitive Activity 

Assessment of physical, social, and cognitive activities was performed by means of 

face-to-face interviews, as reported in Sollai and Crnjar [36]. Briefly, subjects were asked 

to answer questions related to the number of hours per day and number of days per week 

they spent on: (a) walking or running for exercise, heavy housework or gardening, field 

work, swimming, or dancing; (b) meetings, planning and/or attending events, and attend-

ing lectures; (c) reading a book and/or solving puzzles. The total number of hours devoted 

to each of these activities was added together and reported as hours of weekly activity 

(hours/week). According to Buchman et al. [29], we classified the motor activity as “exer-

cise-physical activity” (E-PA) and as “non exercise-physical activity” (nE-PA) as the hours 

dedicated to social and cognitive activities. 

2.3. Olfactory Sensitivity Sssessment 

The “Sniffin’ Sticks” battery test [40] was used to assess each subject’s orthonasal ol-

factory function, which consists of three subtests for olfactory threshold (T-test), odor dis-

crimination (D-test), and odor identification (I-test). For the T-test, the researcher has a kit 

of 48 pens arranged in 16 triplets; each triplet has two pens containing a solvent and a 

third pen (target pen) loaded with n-butanol solution at escalating concentrations. A scale 

reversal begins if the subject correctly identifies the target pen twice in a row. When the 

seventh scale reversal is accomplished, the test is finished, and the T-test score is calcu-

lated using the average of the last four reversals. For the D-test, the researcher has 16 tri-

plets, each consisting of two identical pens and one loaded with a distinct odor (target 

pen). The aim for the participant is to find the target pen. From 0 to 16, the D-test score 

correlates with the number of correct answers. For the I-test, individuals have to sniff 16 

pens containing odors they are familiar with. In a forced-choice approach, the participant 

must choose one of four items each time he/she smells a pen. From 0 to 16, the score is 

given by the sum of correct answers. 

The sum of the T-test, D-test, and I-test values is used to obtain the total TDI olfactory 

score. By using the age and gender normalized values reported in Hummel et al. [41], each 

individual was classified as normosmic or hyposmic. 

2.4. Data Analyses 

One-way ANOVA was used to test for a significant difference between the two pop-

ulations (active ES vs. non-active ES) in their BMI. 

Factorial ANOVA was used to test for a significant interaction between: (a) popula-

tion (active or non-active) × BMI status (normal weight or overweight), population × sex 

(female or male) and population × sex × BMI status on the TDI score; (b) population × TDI 

olfactory status (normosmic or hyposmic), population × sex and population × sex × TDI 

olfactory status on the BMI. 

Fisher’s LSD test (p values < 0.05 were judged significant) was used for post-analysis. 

STATISTICA for WINDOWS (version 7.0; StatSoft Inc., Tulsa, OK, USA) was used for the 

statistical analysis. 

The relationships between BMI and TDI olfactory score, BMI, and hours/week of ex-

ercise or non-exercise physical activities, for each population and sex separately, was eval-

uated by means of the Pearson’s correlation coefficient. GraphPad Prism 6 (GraphPad 

Software, San Diego, CA, USA) was used for the statistical analysis. p Values < 0.05 were 

significant. 
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3. Results 

3.1. Olfactory Scores and BMI in Female and Male Actine or Non-Active Elderly Subjects 

Figure 1 shows mean values ± SEM of the TDI olfactory score obtained by the active 

Elderly Subjects and non-active Elderly Subjects according to their BMI status (normal 

weight, NW or overweight, OW). Post hoc comparisons subsequent to two-way ANOVA 

revealed that, for both active ES and non-active ES, normal weight individuals achieved 

olfactory scores that were significantly higher than those obtained for overweight ones 

(active ES: p < 0.0005; non-active ES: p < 0.0001; Fisher’s LSD test). Furthermore, in both 

normal weight and overweight individuals, active ES obtained TDI olfactory scores higher 

than non-active ES (NW: p = 0.011; OW: p < 0.0001; Fisher’s LSD test). 

 

Figure 1. Mean value (±SEM) of the TDI olfactory score obtained by active ES (n = 65) and non-active 

ES (n = 68) classified as Normal Weight (NW; active n = 49, non-active n = 15) or Overweight (OW; 

active n = 16, non-active n = 53) according to their BMI value. Different letters indicate significant 

differences between normal weight and overweight active ES (a–b) or non-active ES (ai–bi) (p < 

0.0005; Fisher’s LSD test subsequent to two-way ANOVA). Asterisk indicates significant differences 

between active and non-active ES normal weight (p = 0.011; Fisher’s LSD test subsequent to two-way 

ANOVA) or overweight (p < 0.0001; Fisher’s LSD test subsequent to two-way ANOVA). 

The mean ± SEM value of the TDI olfactory score obtained by active ES and non-

active ES according to their sex (females or males) are shown in Figure 2. In detail, two-

way ANOVA revealed a significant interaction between population × sex on the TDI ol-

factory score (F 1,129 = 12,894; p < 0.0005) and post hoc comparisons showed that both 

female and male active ES reached TDI scores higher than female and male non-active ES 

(p < 0.0001; Fisher’s LSD test). Among non-active ES, females achieved TDI score higher 

than males (p = 0.0001; Fisher’s LSD test), while no difference was found between sexes 

among active ES (p > 0.05). 
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Figure 2. Mean value (±SEM) of the TDI olfactory score obtained by active ES (n = 65) and non-active 

ES (n = 68) considered separately for females (active n = 36, non-active n = 36) and males (active n = 

29, non-active n = 32). Different letters indicate significant differences between active and non-active 

females (a–b) or males (ai–bi) (p < 0.0001; Fisher’s LSD test subsequent to two-way ANOVA). Asterisk 

indicates significant differences between female and male non-active ES (p < 0.0005; Fisher’s LSD 

test subsequent to two-way ANOVA). 

Figure 3A,B shows mean values ± SEM of the TDI olfactory score obtained by females 

and males according to their lifestyle (active or non-active) and BMI status (normal-weight 

or overweight). For overweight individuals, post hoc comparisons subsequent to three-

way ANOVA (F 1, 125 = 1.14; p = 0.29) revealed that the TDI olfactory scores were higher 

in both females and male active ES than in females and male non-active ES (p = 0.001); in 

addition, a significant difference was found between sexes, with females performing bet-

ter than males (p = 0.011). Instead, no difference was found in the TDI scores between 

lifestyles (active or non-active) and sexes (female or male) for normal weight individuals 

(p > 0.05). 

 

Figure 3. Mean value (±SEM) of the TDI olfactory score obtained by females (Fem) and males (Mal) 

ES according to their lifestyle (active or non-active) and BMI status ((A) normal weight or (B) over-

weight). Active ES: F NW n = 24, F OW n = 12, M NW n = 25, active M OW n = 4. Non-active ES: F 

NW n = 13, F OW n = 23, M NW n = 2, M OW n = 30. Different letters indicate significant differences 

between both active and non-active females (a–b; p = 0.019) and males (ai–bi; p = 0.0017). Asterisk 

indicates significant differences between females and males non-active ES (p = 0.011; Fisher’s LSD 

test subsequent to three-way ANOVA). 

The mean values ± SEM of BMI determined in active ES and non-active ES are shown 

in Figure 4A. One-way ANOVA revealed that BMI of active ES was significantly lower 
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than that of non-active ES (F 1,131 = 75.45; p < 0.0001). Figure 3B shows the same data 

according to their TDI olfactory status. Post hoc comparisons subsequent to two-way 

ANOVA (F 1,129 = 3.44, p = 0.066) highlighted that hyposmic individuals showed higher 

BMI values than normosmic ones (active ES, p = 0.0005; non-active ES, p < 0.0001; Fisher’s 

LSD test) and that hyposmic non-active ES had a higher BMI than hyposmic active ES (p 

< 0.0001; Fisher’s LSD test). Instead, no difference was observed between normosmic ac-

tive and non-active ES (p > 0.05; Fisher’s LSD test). 

 

Figure 4. Mean value (±SEM) of BMI determined in active (n = 65) and non-active (n = 68) ES (A) and 

according to their TDI olfactory status (Nor = normosmia; Hyp = hyposmia) (B). Active ES: Nor n = 

49, Hyp n = 16. Non-active ES: Nor n = 12, Hyp n = 56. (A) Asterisk indicates significant differences 

between active and non-active ES (p < 0.0001; Fisher’s LSD test subsequent to one-way ANOVA). (B) 

Different letters indicate significant differences between normosmic and hyposmic individuals 

among active (a–b) or non-active (ai–bi) ES (p < 0.001; Fisher’s LSD test subsequent to two-way 

ANOVA). Asterisk indicates significant differences between active and non-active ES within the 

same olfactory status (p < 0.0001; Fisher’s LSD test subsequent to two-way ANOVA). 

Figure 5 shows mean values ± SEM of the BMI obtained by females and males ac-

cording to their lifestyle (active or non-active). Two-way ANOVA revealed significant in-

teractions of lifestyle x sex on the BMI (F 1,129 = 8.39, p = 0.005); post hoc comparisons 

showed that non-active females and males had a higher BMI than the active ones (p < 

0.0001; Fisher’s LSD test) and that non-active males had a higher BMI than non-active fe-

males (p = 0.0002; Fisher’s LSD test). Instead, no difference was observed between active 

female and male ES (p > 0.05; Fisher’s LSD test). 

 

Figure 5. Mean value (± SEM) of BMI determined in females (F) and males (M) ES according to their 

lifestyle (active or non-active). Active ES: F n = 36, M n = 29. Non-active ES: F n = 36, M n = 321. 

Different letters indicate significant differences between active and non-active ES among females (a–

b) or males (ai–bi) (p < 0.0001; Fisher’s LSD test subsequent to two-way ANOVA). Asterisk indicates 

significant differences between sexes among the same population (p = 0.0002; Fisher’s LSD test sub-

sequent to two-way ANOVA). 
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Figure 6 represents mean values ± SEM of the BMI obtained by females and males 

according to their lifestyle (active or non-active) and TDI olfactory status (normosmia or 

hyposmia). Post hoc comparisons subsequent to three-way ANOVA (F 1,125 = 0.54, p = 

0.47) highlighted that non-active hyposmic individuals showed BMI higher than active 

ones (p ≤ 0.038; Fisher’s LSD test) and that male non-active ES had a higher BMI than 

female non-active ES (p < 0.001; Fisher’s LSD test). Instead, for normosmic individuals, no 

difference was observed between lifestyles or sexes (p > 0.05; Fisher’s LSD test). 

 

Figure 6. Mean (±SE) values of the BMI determined determined in active and non-active ES accord-

ing to their TDI olfactory status (Nor = normosmia; Hyp = hyposmia) and sex. Active ES: F Nor n = 

25, F Hyp n = 11, M Nor n = 24, M Hyp n = 5. Non-active ES: F Nor n = 10, F Hyp n = 26, M Nor n = 

2, M Hyp n = 30. Different letters indicate significant differences between active and non-active ES 

among females (a–b) or males (ai–bi) (p ≤ 0.038; Fisher’s LSD test subsequent to three-way ANOVA). 

Asterisk indicates significant differences between sexes among the same population (p < 0.001; 

Fisher’s LSD test subsequent to three-way ANOVA). 

3.2. Correlation Analysis 

Pearson’s correlation test was used to verify for a correlation between BMI and TDI 

olfactory scores in active and non-active ES (Figure 7). The results show that the TDI ol-

factory score obtained by each subject and his/her BMI are negatively correlated, both 

when considered all together or for females and males separately. 
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Figure 7. Correlation analysis between BMI and TDI olfactory score obtained by each active and 

non-active ES, considering them all together (A) and separately in females (B) and males (C). 

The Pearson’s correlation test was also used to check for a relationship between BMI 

of each individual with his/her exercise and non-exercise physical activity (h/week). For 

both active (Figure 8) and non-active (Figure 9) ES, we found a negative correlation both 

when individuals were considered all together and when they were divided into females 

and males. 
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Figure 8. Correlation analysis between BMI and the number of weekly hours (h/week) that each 

active subject dedicated to exercise and non-exercise physical activities, considering them all to-

gether (A) and separately in females (B) and males (C). 
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Figure 9. Correlation analysis between BMI and the number of weekly hours (h/week) that each 

non-active subject dedicated to exercise and non-exercise physical activities, considering them all 

together (A) and separately in females (B) and males (C). 

4. Discussion 

We have previously shown that the elderly individuals with an active lifestyle pre-

sent a better olfactory function than those with a non-active lifestyle and that the number 

of hours spent in both exercise and non-exercise physical activities is directly correlated 

with the olfactory score obtained by the individuals of both populations (active or non-

active) [36]. One of the main functions of the olfactory system is to influence food choices 

and food intake, participating in the modulation of a meal size and contributing to deter-

mining body weight and BMI [42–46]. People with impaired olfactory function sometimes 

report having changed their eating habits, seeking more appetizing foods, but perceiving 

them as less tasty and less pleasant [28,47,48]. 

On this basis, the first purpose of this study was to evaluate the effect of body weight 

and sex on the olfactory function of active and non-active elderly subjects (ES). The results 

we obtained indicate that both normal and overweight active ES of both females and males 

achieve significantly higher TDI olfactory scores than non-active ones. Normal weight 
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individuals achieve higher TDI olfactory scores than overweight individuals, regardless 

of their active or non-active lifestyle; on the other hand, as regards sex, non-active females 

obtain higher TDI scores than non-active males, while no difference emerged between fe-

males and males for active ES. In general, our results show that among normal weight 

individuals, the TDI olfactory score does not significantly change between active and non-

active ES and between females and males. In contrast, among overweight individuals, 

both non-active females and males obtain lower TDI scores than active ones; moreover, 

when we consider only non-active ES, males score significantly lower than females. These 

findings suggest that the condition of normal weight is inversely associated with the ol-

factory deficit related to the non-active versus active lifestyle. This could be due to the fact 

that olfactory function is modulated by the circulating levels of peptides that regulate en-

ergy metabolism: orexigenic peptides such as ghrelin increase olfactory sensitivity, while 

anorexigenic ones such as leptin and insulin decrease it [43,49–53]. We suggest that the 

reduced olfactory acuity associated with weight gain is the result of the opposite effect of 

increased leptin levels, with an inhibitory action on the mitral cells of the olfactory bulb 

[51–53] and a decrease in circulating levels of ghrelin, with consequent reduction of its 

stimulating effect on the olfactory function [54]. These results are in agreement with pre-

vious studies reporting a reduction in olfactory function related to an increase in body 

weight [46,55–57]. 

The second aim of this study was to evaluate the role of smell on body weight by 

measuring the BMI in relation to the different lifestyle and sex of the ES. We found that 

both active and non-active ES classified as normosmic have a significantly lower BMI than 

those classified as hyposmic and, among hyposmic individuals, the non-active ES exhibit 

a higher BMI than active ones. Furthermore, both females and males classified as active 

ES exhibit lower BMI than those classified as non-active and, among non-active individu-

als, females exhibit a lower BMI than males. In general, it emerges that a normosmia con-

dition is inversely related to an increase in body weight linked to a non-active lifestyle, 

both in females and males. On the other hand, among hyposmic ES, the differences in 

weight gain become significant in relation to the active or non-active lifestyle and also 

between females and males, at least as regards the non-active ES. On the basis of these 

findings, we could speculate that lifestyle may mask possible sex-related differences and 

that a normal olfactory function may balance not only sex-related differences but also 

those due to different lifestyles. In fact, the differences related to lifestyle and sex are ob-

served only among those ES exhibiting an olfactory dysfunction, particularly in the case 

of a non-active lifestyle. 

The last objective of this study was to verify the relationship between the BMI and 

TDI olfactory score obtained by each elderly subject of both groups and between the BMI 

and the number of weekly hours dedicated to exercise and non-exercise physical activities 

by considering both females and males separately and jointly. The negative relationships 

we found between BMI and TDI olfactory score and between BMI and exercise/non-exer-

cise physical activities support the results shown above and suggest that lifestyle, smell, 

and BMI are linked in two ways. As we have previously shown [36], elderly individuals 

who report having a non-stimulating lifestyle in terms of physical, social, and cognitive 

activity show a reduction in their olfactory function. Since olfaction influences eating be-

havior and the responses of the cephalic phase of food intake, that is, in the processes of 

the beginning and the end of the meal [58], this leads hyposmic individuals not only to 

prefer sweet and fat-rich foods instead of fruits and vegetables but also to add condiments 

and spices to compensate for the reduced gratification due to their reduced olfactory func-

tion [28,47,59,60]. This also prolongs the intake of these foods due to a delay in reaching 

satiety [61,62], which results in a body weight increase in these individuals who, as our 

data show, have a higher BMI than those with a normal olfactory function. 

In turn, a high BMI impacts the olfactory function of individuals by affecting their 

lifestyle by reducing their exercise activity due to a higher body weight that limits move-

ments but also social activities. As already mentioned, the increase in body weight is 
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associated with metabolic changes and circulating hormone levels that influence the ol-

factory function which, on the other hand, influences the sociability of individuals leading 

the elderly to reduce their social relationships because of their inability to enjoy the pleas-

ures of food (e.g., in situations of conviviality, such as a dinner with friends or a party 

with relatives) and/or due to a state of insecurity due to one’s body odor [27,63,64]. 

In elderly subjects, these relationships are of particular importance because olfactory 

dysfunction, weight gain, and lifestyle are also associated with other pathologies, such as 

hypertension, diabetes, depression, metabolic disorders, obesity, and inflammatory dis-

eases, which co-act to cause brain dysfunction and neurodegeneration [21,26,29–34,57,65–

67]. Therefore, understanding the mechanisms and factors involved and their interactions 

can be useful for improving the health status of individuals such as the elderly, who often 

struggle with the behavioral and cognitive limitations that characterize their age. We 

could speculate that a normal condition in one of the factors involved (lifestyle, olfaction, 

or body weight) may compensate the negative aspects related to the other. The normal 

weight condition is inversely related to the olfactory dysfunction linked to lifestyle and 

sex differences, while the normosmia condition is inversely associated with the increase 

due to lifestyle and sex-related differences. 

5. Conclusions 

In conclusion, given the close relationship between olfactory function, BMI, and ex-

ercise and non-exercise physical activity, it can be assumed that ES may benefit from an 

active lifestyle. Indeed, an active lifestyle associated with a normal olfactory function, 

which plays an important role in individuals’ eating behavior, can have a positive effect 

on their body weight and BMI, and that this benefit appears to be the same for both 

women and men. In particular, the fact that the relationship between BMI and non-exer-

cise physical activity is comparable to that between BMI and exercise physical activity 

may be of relevant importance for ES with limited mobility. This means that elderly peo-

ple with reduced mobility can obtain benefits for their olfactory function and for their 

body weight from an active lifestyle, even if only in cognitive and social terms. 
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