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Abstract

Image reconstruction problems, like image deblurring and computer tomogra-
phy, are usually ill-posed and require regularization. A popular approach to
regularization is to substitute the original problem with an optimization prob-
lem that minimizes the sum of two terms, an ℓ2 term and an ℓq term with
0 < q ≤ 1. The first penalizes the distance between the measured data and the
reconstructed one, the latter imposes sparsity on some features of the computed
solution.

In this work, we propose to use the fractional Laplacian of a properly con-
structed graph in the ℓq term to compute extremely accurate reconstructions of
the desired images. A simple model with a fully automatic method, i.e., that
does not require the tuning of any parameter, is used to construct the graph
and enhanced diffusion on the graph is achieved with the use of a fractional
exponent in the Laplacian operator. Since the fractional Laplacian is a global
operator, i.e., its matrix representation is completely full, it cannot be formed
and stored. We propose to replace it with an approximation in an appropriate
Krylov subspace. We show that the algorithm is a regularization method un-
der some reasonable assumptions. Some selected numerical examples in image
deblurring and computer tomography show the performance of our proposal.

Keywords: Fractional graph Laplacian, image reconstruction, ℓ2 − ℓq

minimization.
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1. Introduction

Image reconstruction algorithms are of fundamental importance in several
fields of science and engineering, such as medicine, astronomy, and geophysics.
In most cases, the problem is ill-posed, i.e., extremely sensitive to perturbations
in the collected data. Regularization methods aim at reducing this sensitivity
[4, 16, 20].
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In this paper we are concerned with the solution of problems of the form

arg min
x∈Rn

∥∥Ax− bδ
∥∥2
2
, (1)

where ∥·∥2 denotes the Euclidean norm, A ∈ Rm×n is the discretization of an
integral operator, e.g., a blurring matrix, bδ ∈ Rm collects some measurements
that we assume are corrupted by errors, and x ∈ Rn represents an unknown
two-dimensional image with n pixels, whose entries have been reordered in lex-
icographical order. We assume that the data bδ can be written as

bδ = b+ η, (2)

where η collects all the perturbations and is often referred to as noise and b is
the unavailable noise-free data. Moreover, we assume that each entry of η is the
realization of a Gaussian random variable with zero mean and fixed variance
and that all the entries are independent. We denote by δ > 0 an upper-bound
of the norm of the noise, i.e., ∥∥bδ − b

∥∥
2
≤ δ.

Due to the presence of noise in the observed data bδ and the severely ill-
conditioning of A, the naive solution of (1) is a poor approximation of the de-
sired solution x† = A†b, where A† denotes the Moore-Penrose pseudo-inverse of
A. Regularization methods substitute the original ill-posed problem (1) with a
nearby well-posed one whose solution well approximates x†. Among the various
regularization methods in the literature, we consider here the ℓ2 − ℓq regular-
ization (see, e.g., [13, 17, 23, 21])

arg min
x∈Rn

1

2

∥∥Ax− bδ
∥∥2
2
+

µ

q
∥Lx∥qq , (3)

where L ∈ Rs×n is called regularization operator, µ > 0 is referred to as regu-
larization parameter, and 0 < q ≤ 2. We define ∥x∥qq =

∑n
i=1 |xi|q and we refer

to this quantity as ℓq-norm, even though, if q < 1, this is not a norm since it
does not satisfy the triangular inequality. A Bayesian justification of (3) was
given in [7], while its application to statistics was explored in [8]. For a review
on how the parameter µ can be selected, we refer the interested reader to [10].

If q ≤ 1, then the ℓq-norm approximates the so-called ℓ0-norm that counts
the non-vanishing entries of a vector; see, e.g., [23] for a discussion. Therefore,
in this case, it is beneficial to select L such that Lx† is as sparse as possible. It
was shown in [11] that, if Lx† is sparse, the quality of the computed solutions
increases as q approaches 0. Popular choices are framelet operators and differ-
ential operators. Fractional differential operators have also been investigated
to enhance diffusion, in particular with denoising problems [1, 33]. Moreover,
several authors have recently considered selecting L as the graph Laplacian of a
properly constructed graph obtained from a given approximation of x†; see, e.g.,
[5, 9, 22, 25, 26, 27, 29, 32]. On the other hand, to the best of our knowledge,
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the fractional graph Laplacian was yet to be used as a regularization operator
for image restoration problems.

Fractional graph Laplacian has recently attracted the attention of the com-
munity working on complex networks [3, 6]. It allows to explore non-local dy-
namics that can spread the information in the graph. The drawback of this
strategy is that the fractional graph Laplacian is a full matrix even if the graph
Laplacian is sparse. Therefore, approximation tools need to be explored to per-
form computation with the fractional graph Laplacian. In this direction, the
spectral approximation of the graph Laplacian proposed in [29] is very useful
and will be employed in our method. In detail, the authors explore the use of
the Lanczos method for filtering signals on graphs and observe that only few
Lanczos iterations are sufficient to obtain a good approximation of a filtering
function of the graph Laplacian.

In this paper, we expand the algorithmic proposal in [9]. In the latter, the
authors first constructed an approximation of the solution of (1) with Tikhonov
regularization, i.e., by setting q = 2 in (3). Starting from this approximation
they constructed a graph Laplacian to use as a regularization operator in (3)
with q < 1. Here we improve this method as follows. We employ an improved
algorithm for the minimization of (3) recently proposed in [12]. Moreover,
instead of considering L, we consider the fractional graph Laplacian Lα with
α > 0, where the graph is computed by the approximation of x† obtained by the
graph Laplacian. In practice, we add a further step to the algorithm proposed in
[9] updating the graph and forcing enhanced diffusion by a fractional exponent.
Finally, we prove that the proposed method is a regularization method, i.e.,
that the computed solutions converge to the exact one as δ → 0 under some
suitable assumptions. Though we have two parameters µ and α to estimate,
the proposed approach is completely automatic. This is achieved by combining
the Discrepancy Principle (DP), which prescribes that the computed solution x̄
satisfies ∥∥Ax̄− bδ

∥∥
2
= τδ,

where τ > 1 is a user-defined constant, and the whiteness residual principle
(see [24]) which requires that the residual Ax̄ − bδ is as white as possible; see
below for more details.

This paper is structured as follows. In Section 2 we report the minimization
algorithm in [12] tailored to the ℓ2−ℓq problem in (3). Section 3 presents how to
construct the graph Laplacian starting from a given image. In Section 4 we de-
scribe how to apply the MM method to the ℓ2−ℓq case with the graph Laplacian
as a regularizer. We provide some pseudocode describing the implementation
of these methods. We present our algorithmic proposal in Section 5 and re-
port some numerical examples in Section 6. Finally, we draw our conclusions in
Section 7.

2. Majorization-Minimization for ℓ2 − ℓq

We briefly describe the approaches proposed in [21] to solve (3). In this
paper we set p = 2, however, the algorithms proposed in [21] allow for a general
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0 < p ≤ 2.
A possible approach to solve (3) is to use a Majorization-Minimization (MM)

method. Note that, for q ≤ 1, the minimized functional in (3) is non-smooth,
therefore, we substitute it with a smooth approximation. Let ε > 0 be a fixed
parameter and denote by

Φq,ε(t) =
(√

t2 + ε2
)q

.

Assuming that ε is small enough, we can approximate ∥x∥qq by

∥x∥qq ≈
n∑

i=1

Φq,ε(xi), x ∈ Rn.

Note that the function on the right-hand side is everywhere differentiable, while
the one on the left is not differentiable if at least one of the components of x
vanishes. Therefore, we substitute problem (3) by

min
x∈Rn

Jε(x), (4)

where

Jε(x) =
1

2

∥∥Ax− bδ
∥∥2
2
+

µ

q

s∑
i=1

Φq,ε((Lx)i).

The MM algorithm constructs a sequence
{
x(k)

}
k
that converges to a sta-

tionary point of Jε. Let x(k) be the current approximation of the solution of
(4), the MM method first determines a quadratic functional Q

(
x,x(k)

)
that

majorizes Jε everywhere and that is tangent to it in x(k). Then, the new iterate
x(k+1) is the minimizer of Q

(
x,x(k)

)
.

Given Jε and x(k) one can construct infinitely many quadratic tangent ma-
jorants Q

(
x,x(k)

)
. In [21] the authors proposed two choices. We describe here

the so-called fixed majorant. The name derives from the fact that, in the one-
dimensional case, it coincides with a parabola whose leading coefficient does not
depend on x(k). Fix ε > 0, let u(k) = Lx(k) and

ω(k) = u(k)

(
1−

(
(u(k))2 + ε2

ε2

)q/2−1
)
,

where all operations are meant element-wise, then,

Q(x,x(k)) =
1

2

∥∥Ax− bδ
∥∥2
2
+

µεq−2

2

(
∥Lx∥22 − 2

〈
ω(k), Lx

〉)
+ c,

where c is a constant that does not depend on x. Note that Q
(
x,x(k)

)
is a

quadratic tangent majorant of Jε in x(k); see [21]. The approximation x(k+1)

is obtained by minimizing Q with respect to x, i.e.,

x(k+1) = arg min
x∈Rn

∥∥∥∥[ A
ν1/2L

]
x−

[
bδ

ν1/2ω(k)

]∥∥∥∥2
2

, (5)
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where ν = µεq−2. Therefore, we solve the least squares problem (5) at each
iteration.

An approximate solution of (5) can be computed in a subspace of Rn of

fairly small dimension. Let Vk ∈ Rn×k̂ be a matrix with orthonormal columns.
Assuming that the columns of Vk span the search subspace, we look for a solution
of the form

x(k+1) = Vky
(k+1), (6)

where y(k+1) is obtained solving

y(k+1) = arg min
y∈Rk̂

∥∥∥∥[ AVk

ν1/2LVk

]
y −

[
bδ

ν1/2ω(k)

]∥∥∥∥2
2

. (7)

Note that (7) is obtained by plugging x = Vky in (5). Since the matrices AVk

and LVk have more rows than columns, we can compute just the first k̂ rows
of R and the first k̂ columns of Q in their QR factorizations. This is called
economic (or economy-size) QR factorization. These factorizations read

AVk = QARA with QA ∈ Rm×k̂, RA ∈ Rk̂×k̂,

LVk = QLRL with QL ∈ Rs×k̂, RL ∈ Rk̂×k̂,
(8)

where QA and QL have orthonormal columns and RA and RL are upper trian-
gular. Plugging the decompositions (8) in (7), we obtain

y(k+1) = arg min
y∈Rk̂

∥∥∥∥[ RA

ν1/2RL

]
y −

[
QT

Ab
δ

ν1/2QT
Lω

(k)

]∥∥∥∥2
2

,

which can be solved with direct methods since k̂ ≪ n; see, e.g., [15].
Computing the residual of the normal equation associated with (5) and re-

calling that x(k+1) = Vky
(k+1), we obtain

r(k+1) = AT (AVky
(k+1) − bδ) + νLT (LVky

(k+1) − ω(k)).

Following [30], at each iteration, we expand the search subspace by adding to
the basis Vk the normalized residual, i.e.,

Vk+1 = [Vk,v
(k+1)], v(k+1) = r(k+1)/

∥∥∥r(k+1)
∥∥∥
2
.

Note that, in exact arithmetic, v(k+1) is orthogonal to the space spanned by the
columns of Vk.

Since the following computations are exactly the same for both matrices A
and L, we can describe them using a generic matrix C ∈ {A,L}.

Following [14], the QR factorizations of CVk+1 is computed by updating the
QR factorization CVk = QCRC , cf. (8), according to

CVk+1 = [CVk, Cv(k+1)] = [QC ,qC ]

[
RC rC
0T τC

]
,
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where

ṽ(k+1) = Cv(k+1), rC = QT
C ṽ

(k+1),
q̃C = ṽ(k+1) −QCrC , τC = ∥q̃C∥2 , qC = q̃C/τC ,

We now briefly discuss the strategy proposed in [12] to reduce the computa-
tional cost of the MM algorithm. The authors observed that in real applications
only a few vectors of the Krylov subspace are actually used and that most of the
coefficients of y(k) almost vanish. Therefore, they propose to restart the space
every r iterations. More in details, if k ≡ 0 mod r we set

Vk = x(k)/
∥∥∥x(k)

∥∥∥
2
∈ Rn.

We compute CVk and its economic QR factorization is easily obtained as

CVk = QCRC , with QC = CVk/ ∥CVk∥2 and RC = ∥CVk∥2 ,

We then proceed with the iterations as in the MM method. In [12] the authors
proved that the obtained algorithm is a descent method, i.e., it holds

Jε

(
x(k+1)

)
≤ Jε

(
x(k)

)
.

Moreover, there exists a converging subsequence x(kj). Extensive numerical
experience, however, suggests that the whole sequence converges and there is
no need to consider subsequences.

3. Graph Laplacian for image reconstruction

In this section, we describe how, given an approximation of x†, we construct
the graph Laplacian. We first recall the definition of a graph and how to con-
struct its Laplacian. We then describe how to build a graph that we can use for
our purposes starting from an image x̂.

An unweighted graph is a pair G = (V,E), where V is the vertex set and
E ⊆ V ×V is the set containing all the edges. A graph G is said to be undirected
if (i, j) ∈ E implies that (j, i) ∈ E, otherwise we say that the graph is directed.
Sometimes, a graph G is associated with a measure ω : E → R+ which associates
each edge of the graph with a unique positive value that is often referred to as
the weight of the edge. In this case, the graph G is called a weighted graph. It is
possible to represent it by means of the adjacency matrix. Let n = |V |, where
|A| is the cardinality of the set A, i.e., n is the number of nodes in G. Then,
we denoted the adjacency matrix Ω ∈ Rn×n of the graph G as

Ωi,j =

{
ω(i, j) if (i, j) ∈ E,
0 otherwise,

where we set ω(i, j) ≡ 1 for all (i, j) ∈ E for unweighted graphs.
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Now, we describe how to construct the graph Laplacian associated with
a given graph G. There are many definitions for the graph Laplacian. For
our purposes, we define this operator as follows. Given the adjacency matrix
Ω ∈ Rn×n of G we define the degree matrix D as the diagonal matrix

Dj,j = deg(j) =

n∑
i=1

Ωi,j .

Then, the graph Laplacian Lω is defined by

Lω =
D − Ω

∥Ω∥
,

where ∥·∥ denotes the Frobenius norm. Note that, if ω is symmetric, that
is ω(i, j) = ω(j, i), ∀(xi, xj) ∈ E, then the adjacency matrix Ω and Lω are
symmetric. Moreover, the graph Laplacian is a positive semi-definite matrix,
i.e. ∀x ∈ Rn, xTLωx ≥ 0, and it is also stochastic by rows. Thus, we have that

ker(Lω) ⊇ span{1},

where 1 is the constant vector.
We now describe how to construct a proper graph Laplacian for solving (3).

Given a fairly accurate approximation x̂ of the minimal norm solution x†, we
reshape it into matrix form X̂ ∈ Rd1×d2 and we set n = d1d2. To simplify the
notation we assume that d1 = d2 so that the image is square. We define the
undirected graph G related to the image X̂ identifying each pixel of X̂ with a
vertex of G. Let R ∈ N and σ ∈ R+ be two fixed numbers, we connect two
pixels X̂i1,i2 and X̂j1,j2 if

0 < ∥i− j∥∞ =

∥∥∥∥[i1i2
]
−
[
j1
j2

]∥∥∥∥
∞

≤ R,

where ∥x∥∞ = max{|xk|, k = 1, . . . , n} for x ∈ Rn. Then, we define the weight
measure ω by

ω(X̂i, X̂j) = e−(X̂i1,i2
−X̂j1,j2

)2/σ.

In this way, denoting by i and j the lexicographically ordered indexes of i and
j respectively, the adjacency matrix Ω is defined by

Ωi,j =

{
e−(X̂i1,i2

−X̂j1,j2
)2/σ if 0 < ∥i− j∥∞ ≤ R,

0 otherwise,

where i =
[
i1, i2

]T
and j =

[
j1, j2

]T
. Intuitively, if two pixels (nodes of the

graph G) are close to each other and have similar intensity then we connect
them with a strong weight. On the other hand, if two pixels have different
values or are too far away from each other we connect them with a low weight
or we do not connect them at all. In this way, the graph Laplacian encodes
the structure of the image X̂ with strong connections between pixels belonging

7



to the same area of the image and low connections between nodes belonging to
different parts of the picture.

It was shown in [5, 9] that the Laplacian related to this graph is a good reg-
ularization operator for ℓ2− ℓq image deblurring whenever x̂ is a fairly accurate
approximation of x†.

4. Graph Laplacian for ℓ2 − ℓq

In this section, we apply the MM algorithm described in Section 2 to the
ℓ2−ℓq problem in (3) with Lω as regularization operator. In practice, we provide
a new implementation of the algorithm proposed in [9] based on the restarting
strategy proposed in [12].

We first discuss how we select the initial approximation of x† that we use
to construct Lω. We wish to solve (3) with L defined as the finite difference
approximation of the 2D gradient, which is

L =

[
L1 ⊗ I
I ⊗ L1

]
with L1 =


−1 1

. . .
. . .

−1 1
1 −1

 , (9)

where ⊗ is the Kronecker product and I is the identity matrix. The size of the
two square matrices L1 and I depends on the size of the image x† to restore.
For simplicity, if we assume that x† ∈ Rn×n, then the matrices L1 and I have
the same size of x†. Therefore, the matrix L ∈ R2n2×n2

is extremely sparse.
To determine the parameter µ we use the DP as described in [11, 10]. We

consider in the MM iterations (5) a non-stationary µk (and in turn νk) such
that at each iteration it holds∥∥∥Ax(k+1) − bδ

∥∥∥
2
= τδ,

with τ > 1. In [11] the authors proved that such µk exists and the iterates
converge (up to subsequences) to a certain x̂ that satisfies the DP as well. We
use this x̂ to construct our graph Laplacian.

For completeness, we report the computations in Algorithm 1.
After computing an initial approximation x̂ of x†, we use x̂ to construct

the graph Laplacian Lω. Note that by construction Lω is symmetric and hence
in Algorithm 1 the only operation involving Lω is the matrix-vector product.
Moreover, since Lω is a sparse matrix, the matrix-vector product can be com-
puted efficiently with a linear cost in n. Therefore, the same Algorithm 1 can
be used to solve the ℓ2 − ℓq problem in (3) with Lω as regularization operator.
We report the computations in Algorithm 2.

5. Fractional graph Laplacian for ℓ2 − ℓq

To improve the quality of the reconstruction x∗ obtained by Algorithm 2, we
construct a new graph based on x∗ and we take the α-th power of the new graph
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Algorithm 1: Nonstationary ℓ2 − ℓq with the Discrepancy Principle

Input : A, bδ, δ, q, L, x0, ε, τ , K, r, γ

1 Construct V0 ∈ Rn×k̂ such that V T
0 V0 = I;

2 Compute and store AV0 and LV0, and their economic QR factorizations
AV0 = QARA;
LV0 = QLRL;

3 for k = 0, 1, . . . ,K do
4 if (k ≡ 0 mod r) and (k ̸= 0) then
5 Vk = x(k)/

∥∥x(k)
∥∥
2
;

6 Compute and store AVk;
7 RA = ∥AVk∥2;
8 QA = AVk/RA;
9 Compute and store LVk;

10 RL = ∥LVk∥2;
11 QL = LVk/RL;

12 u(k) = Lx(k);

13 ω(k) = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)
;

14 y(k+1) = argminy
∥∥RAy −QT

Ab
δ
∥∥2
2
+ ν(k)

∥∥RLy −QT
Lω

(k)
∥∥2
2
, where

νk is such that
∥∥RAy

(k+1) −QT
Ab

δ
∥∥
2
= τδ;

15 if
∥∥y(k+1) − y(k)

∥∥
2
≤ γ

∥∥y(k)
∥∥
2
then

16 exit;

17 r(k+1) = AT (AVky
(k+1) − bδ) + νLT (LVky

(k+1) − ω(k));

18 v(k+1) = r(k+1)/
∥∥r(k+1)

∥∥
2
;

19 Vk+1 = [Vk, v
(k+1)];

20 AVk+1 = [AVk, Av(k+1)];

21 LVk+1 = [LVk, Lv
(k+1)];

22 Update the QR factorizations of AVk+1 and LVk+1;

23 x∗ = Vky
(k+1);

Output: x∗
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Algorithm 2: Graph Laplacian ℓ2 − ℓq

Input : A, bδ, δ, q, L, x0, ε, τ , K, r, γ, σ, R, αmin, αmax, J , d
1 Compute, using Algorithm 1 with inputs A, bδ, δ, q, L, x0, ε, τ , K, r,

the approximation x̂;
2 Construct the adjacency matrix

Ωi,j =

{
e−(X̂i1,i2

−X̂j1,j2
)2/σ if 0 < ∥i− j∥∞ ≤ R,

0 otherwise,

where x̂ = vec
(
X̂
)
, i and j are the lexicographic indexes of

i =
[
i1, i2

]T
and j =

[
j1, j2

]T
, respectively;

3 Construct the diagonal matrix Dj,j =
∑n

i=1 Ωi,j ;

4 Lω = D−Ω
∥Ω∥F

;

5 Compute, using Algorithm 1 with inputs A, bδ, δ, q, Lω, x
0, ε, τ , K, r,

the approximation x∗, where every product with Lω is performed
using sparse matrices;

Output: x∗

Laplacian Lω in order to better diffuse the information along the graph. Finally,
we solve the ℓ2 − ℓq problem in (3), for fixed α > 0, with Lα

ω as regularization
operator.

We are now faced with the following issues, Lα
ω is a full matrix and hence it

cannot be explicitly formed, therefore, it has to be approximated. Moreover, we
have to provide an automatic rule for the computation of a suitable value for
α. In the next subsections, we describe how to perform matrix-vector products
with Lα

ω, we propose an algorithm for an automatic estimation of α, and we
study the convergence of the proposed algorithm.

5.1. Approximation of the fractional graph Laplacian

Let α > 0, we wish to solve

argmin
x

1

2

∥∥Ax− bδ
∥∥2
2
+

µ

q
∥Lα

ωx∥
q
q . (10)

Note that, by construction, Lω is symmetric and positive semidefinite, hence it
is possible to determine an orthonormal basis of eigenvectors of Lω. Let λj ≥ 0
be the eigenvalues of Lω for j = 1, . . . , n, and let Q be the matrix formed by
the eigenvectors of Lω, then

Lα
ω = QΛαQT , (11)

where Λα = diag (λα
1 , . . . , λ

α
n), is symmetric and positive semidefinite. Unfortu-

nately, it is computationally too expensive to compute the spectral decomposi-
tion of Lω.
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We now discuss how we implement the MM algorithm when applied to the
minimization (10). The only difference with Algorithm 1 is in the computation

of the matrix-vector products with Lα
ω and (Lα

ω)
T
. Since Lα

ω is symmetric and
positive semidefinite as Lω, it is sufficient to discuss how to implement the
matrix-vector products with Lα

ω without explicitly constructing the matrix Lα
ω.

We distinguish the case α ∈ N and α ∈ R+ \ N. In the first case, if α = 1,
there is nothing to discuss, therefore, we assume α > 1. Since Lω is sparse, it
is computationally attractive to perform the matrix-vector product as

Lα
ωx = Lω(Lω(. . . (Lωx)))︸ ︷︷ ︸

α times

,

instead of to explicitly form the matrix Lα
ω.

If α ∈ R+ \ N, since n ≫ 1, we cannot either explicitly form the matrix Lα
ω

or compute its spectral decomposition (11). Therefore, following the proposal
in [29], to compute Lα

ωx for a given x, we project the problem in the Krylov
subspace

Kd(Lω,x) = span
{
x, Lωx, . . . , L

d−1
ω x

}
,

where we assume d ≪ n small enough so that the dimension of Kd(Lω,x) is d.
Using d steps of the Lanczos algorithm (see, e.g., [19]), with starting vector x,
we obtain the following relation

LωVd = Vd+1Td+1,d,

where Vd+1 ∈ Rn×(d+1) has orthonormal columns that spans the spaceKd+1(Lω,x)
and Td+1,d ∈ R×(d+1)×d is of the form

Td+1,d =



α1 β2

β2 α2 β3

β3
. . .

. . .

. . .
. . . βd−1

βd−1 αd−1 βd

βd αd

βd+1


.

We use the matrix Td,d, i.e., the leading d × d block of Td+1,d, to approximate
the matrix-vector product Lα

ωx as

Lα
ωx ≈

(
VdTd,dV

T
d

)α
x

=
(
VdUΣUTV T

d

)α
x

= VdUΣαUTV T
d x,

where Td,d = UΣUT is the eigenvalue decomposition of Td,d, that exists since
Td,d is symmetric. If d ≪ n the computation of U and Σ can be performed with
small computational burden.
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5.2. Selection of the parameters

According to the analysis and the numerical results in [29], only a few it-
erations of the Lanczos method are sufficient to obtain a good approximation
of the graph Laplacian, in particular, when a filtering function is applied to
it. Therefore, the dimension d of the Krylov subspace introduced in the pre-
vious subsection is not crucial and even a small d is enough to obtain a good
approximation. For instance, we fix d = 10 in the numerical results for differ-
ent applications (deblurring and computer tomography) and images of different
sizes.

In (10), we need to determine two parameters, the regularization parameter
µ and the fractional parameter α. Moreover, we would like to ensure that
our choices ensure that the obtained algorithm is a regularization method; see
below. Due to the Bakushinskii veto [2], in order to construct a regularization
method, we need to assume that an accurate estimate of the norm of the noise
δ is available.

We proceed as follows. Let 0 < αmin < αmax be two fixed values and let
J ∈ N be given. We define

αj = αmin + j
αmax − αmin

J
, j = 0, 1, . . . , J.

For each j we consider the minimization problem

xµ = argmin
x

1

2

∥∥Ax− bδ
∥∥2
2
+

µ

q
∥Lαj

ω x∥qq .

We would like to select µ so that the discrepancy principle is satisfied. This
can be done a posteriori, as described in [10], by trying several values of µ
and selecting the largest one such that

∥∥Axµ − bδ
∥∥
2
≤ τδ. However, this may

become computationally expensive if J is large or if many values of µ are con-
sidered. Therefore, we follow the strategy proposed in [11] and described in
Algorithm 1, where the only difference is that every multiplication with L

αj
ω is

performed using the Lanczos algorithm as described above. Therefore, for each
αj , we compute a xj such that∥∥Axj − bδ

∥∥
2
= τδ, j = 0, . . . , J.

We now discuss how we select the solution xj . Following the idea in [10, 24] we
wish to select xj using the residual whiteness principle. Ideally, if xj = x† for
a certain j, then rj = bδ − Axj = η and, therefore, rj would be white since η
defined in (2) has this property. We propose to select j such that rj is as white
as possible. We consider the measure of whiteness, introduced by Lanza et al.
[24], defined by

W(r) =
∥r ⋆ r∥22
∥r∥42

, (12)

where ⋆ denotes the two-dimensional convolution. The computation of W(r)
can be performed cheaply thanks to the convolution theorem. Let F be the
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discrete Fourier matrix, then

W(r) =

∥∥∥|Fr|2
∥∥∥2
2

∥Fr∥42
,

where | · | denotes the modulus of a complex number and the operations are
meant element-wise.

Using the function W we compute

ĵ = argmin
j

W(rj)

and select our approximate solution as x∗ = xĵ . We summarize the computa-
tions in Algorithm 3.

Algorithm 3: Fractional Graph Laplacian ℓ2 − ℓq

Input : A, bδ, δ, q, L, x0, ε, τ , K, r, γ, σ, R, αmin, αmax, J , d
1 Compute the approximation x̂, using Algorithm 2 with inputs A, bδ, δ,

q, L, x0, ε, τ , K, r, ;
2 Construct the adjacency matrix

Ωi,j =

{
e−(X̂i1,i2−X̂j1,j2 )

2/σ if 0 < ∥i− j∥∞ ≤ R,
0 otherwise,

where x̂ = vec
(
X̂
)
, i and j are the lexicographic indexes of

i =
[
i1, i2

]T
and j =

[
j1, j2

]T
, respectively;

3 Construct the diagonal matrix Dj,j =
∑n

i=1 Ωi,j ;

4 Lω = D−Ω
∥Ω∥F

;

5 for j=1,. . . ,J do
6 Compute the approximation xj , using Algorithm 1 with inputs A,

bδ, δ, q, L
αj
ω , x0, ε, τ , K, r, where every product with L

αj
ω is

performed using d steps of Lanczos, as discussed above;

7 θj = F
(
bδ −Axj

)
;

8 wj =
∥|θj |2∥2

∥θj∥4 ;

9 ĵ = argminj{wj};
10 x∗ = xĵ ;

Output: x∗

5.3. Theoretical results

We now discuss some theoretical properties of our method. In particular,
we wish to show that Algorithm 3 is a regularization method, i.e., that, if

13



δj ↘ 0 as j → ∞, denoting by x∗
j the solution obtained with data bδj , where∥∥b− bδj

∥∥
2
≤ δj , then

lim sup
j→∞

∥∥x∗
j − x†∥∥

2
= 0.

In order to show this, as it was done in [11], we need to assume that A ∈ Rm×n

is of full rank, that m ≥ n, and that b ∈ R(A). This ensures that the least
square solution of

min
x

∥Ax− b∥2

is unique and coincides with x†. If A is not of full rank, one may consider the
slightly modified problem

min
x

∥∥∥Ãx− b̃
∥∥∥
2
,

with

Ã =

[
A
θI

]
and Ã =

[
b
0

]
,

where I ∈ Rn×n denotes the identity matrix and θ ∈ R+ is a small number. This
usually does not change the numerical results, especially if θ is smaller than the
machine epsilon, and we do not consider this modification in our computations.

We are now in a position to show our main result

Theorem 1. Let A ∈ Rm×n be of full column rank with m ≥ n and let b ∈
R(A). Let

{
bδj
}
j∈N ⊂ Rm be a sequence of vectors such that∥∥bδj − b

∥∥
2
≤ δj ,

with δj ↘ 0 as j → ∞. Denote by x∗
j the output of Algorithm 3 with input data

bδj , then there exists a converging subsequence
{
x∗
jk

}
jk∈N such that

lim sup
jk→∞

∥∥x∗
jk

− x†∥∥
2
= 0,

where x† = A†b.

Proof. The proof is similar to the one in [11]. Let us first observe that, by
construction, for all j ∈ N we have∥∥Ax∗

j − bδj
∥∥
2
= τδj .

Using the fact that∥∥Ax∗
j − bδj

∥∥
2
≥
∣∣∣∥∥Ax∗

j

∥∥
2
−
∥∥bδj

∥∥
2

∣∣∣ ≥ ∥∥Ax∗
j

∥∥
2
−
∥∥bδj

∥∥
2
,

we have ∥∥Ax∗
j

∥∥
2
≤
∥∥Ax∗

j − bδj
∥∥
2
+
∥∥bδj

∥∥
2

= τδj +
∥∥bδj − b+ b

∥∥
2

≤ τδj +
∥∥bδj − b

∥∥
2
+ ∥b∥2

≤ (1 + τ)δj + ∥b∥2
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Let σn denote the smallest singular value of A. Since we assumed that A is of full
column rank and m ≥ n we have that σn > 0, therefore, ∥Ax∥2 ≥ σn ∥x∥2 for all
x ∈ Rn. Combining these two inequalities and the fact that δj is monotonically
decreasing we obtain

∥∥x∗
j

∥∥
2
≤

(1 + τ)δ1 + ∥b∥2
σn

, ∀j ∈ N.

i.e., that the sequence
{
x∗
j

}
j∈N is uniformly bounded. Since

{
x∗
j

}
j∈N is uni-

formly bounded, it admits a converging subsequence
{
x∗
jk

}
jk∈N. We obtain

0 ≤ lim sup
jk→∞

∥∥x∗
jk

− x†∥∥
2
≤ lim sup

jk→∞

1

σn

∥∥Ax∗
jk

−Ax†∥∥
2

= lim sup
jk→∞

1

σn

∥∥Ax∗
jk

− b
∥∥
2
= lim sup

jk→∞

1

σn

∥∥Ax∗
jk

− bδjk + bδjk − b
∥∥
2

≤ lim sup
jk→∞

1

σn

{∥∥Ax∗
jk

− bδjk
∥∥
2
+
∥∥bδjk − b

∥∥
2

}
≤ lim sup

jk→∞

1

σn
(1 + τ)δjk = 0

which concludes the proof.

6. Numerical examples

In this section, we show some numerical examples obtained using the frac-
tional graph Laplacian. We compare our results with the methods proposed in
[11] and [9]. The ℓ2 − ℓq TV algorithm proposed in [11] is Algorithm 1 where
the operator L is the gradient defined in (9). The ℓ2 − ℓq algorithm with graph
Laplacian proposed in [9] is Algorithm 2 up to the modification of the restarting
strategy described in Section 2, which reduces the computational time without
deteriorating the quality of the restored image. The initial approximation x̂
used to construct the graph in Algorithm 2 is computed solving the ℓ2 − ℓ2 TV
method, i.e., the minimization problem (3) with q = 2 and L being the gradient
defined in (9). This solution x̂ can be computed by the fast Fourier transform
for image deblurring or by a generalized Krylov subspace method [28], where
the regularization parameter µ is estimated by the generalized cross validation
(GCV).

As it was shown in [11] the quality of the reconstructions increases as q
approaches 0. However, a too small value of q may lead to numerical instability.
Therefore, we set q = 0.1.

Finally, for our fractional graph Laplacian ℓ2−ℓq method we use Algorithm 3
according to the following strategy:

1. compute an initial reconstruction x̂ by solving the ℓ2 − ℓ2 TV problem;
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2. construct the graph associated to x̂ and compute a better reconstruction
x∗ by Algorithm 2 (ℓ2 − ℓq graph Laplacian);

3. construct the graph associated to x∗ and compute a new reconstruction
by Algorithm 3 (ℓ2 − ℓq fractional graph Laplacian).

Vast numerical experience suggests that this combination of the three algo-
rithms reliably products extremely accurate approximate solutions. Moreover,
thanks to the projection in the GKS and Krylov subspace as well as the restart
technique employed, the computational cost of the procedure is reasonable and
the computations can be easily performed on any machine.

We compare the methods above in terms of accuracy using the Relative
Restoration Error (RRE) computed as

RRE(x) =

∥∥x− x†
∥∥
2

∥x†∥2
,

and the Peak Signal to Noise Ration (PSNR) defined as

PSNR(x) = 20 log10

(
nM

∥x− x†∥2

)
,

where M denotes the maximum value achievable by x†. Moreover, we consider
the Structure SIMilarity index (SSIM), introduced in [31]. The definition of
the SSIM is extremely involved, here we simply recall that this statistical index
measures how structurally similar two images are, in particular, the higher the
SSIM the more similar the images are, and its highest achievable value is 1.

We will consider two different applications: a deblurring problem and a
Computer Tomography (CT) reconstruction.

We set the restarting parameter r = 30, the window size R = 5, the variance
in the weight function of the graph σ = 10−3, and the smoothing parameter
ε = 10−1. We would like to stress that the results obtained by the algorithm is
not very sensitive to the choice of this parameters.

We stop the iterations of all considered algorithms as soon as either∥∥x(k+1) − x(k)
∥∥
2∥∥x(k)

∥∥
2

≤ 10−4

or the maximum number of iterations, i.e., K = 500, is reached.

6.1. Example 1

In our first example we consider a 256×256 pixels image of the Hubble space
telescope. We blur it with a PSF of dimension 9 × 9 pixels and we add white
Gaussian noise such that ∥η∥2 = 0.01 ∥b∥2. We say that, in the case, the noise
level is 1%. We crop the image to simulate realistic data and boundary effects;
see, e.g., [20]. Since the image has a black background we impose zero boundary
conditions. Figure 1 shows the true image, the PSF, and the observed picture.
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(a) (b) (c)

Figure 1: Example 1. (a) true image (228 × 238 pixels), (b) PSF (9 × 9 pixels), (c) blurred
image corrupted by 1% of white Gaussian Noise (238× 238 pixels).

In Figure 2 we report the reconstructions obtained using the considered
methods. In Figure 2(a) we show the approximate solution obtained with the
ℓ2 − ℓ2 model with TV regularization, while, in Figure 2(b), we report the
reconstruction obtained with the ℓ2 − ℓq model, like before, with L being the
TV operator (Algorithm 1). In Figures 2(c) and 2(d) we consider the standard
graph Laplacian (Algorithm 2), that is α = 1, and the fractional graph Laplacian
with α = 1.5 in the ℓ2 − ℓq setting (Algorithm 3), respectively. We also report
the results obtained with α = 1.6 and α = 2 in Figures 2(e) and 2(f). Although
visual inspection seems to suggest that there are no differences with the case
α = 1.5, the computed reconstructions achieve a higher value of the PSNR
and the SSIM respectively. The considered statistics for the numerical results
obtained with the four different methods are reported in Table 1.

In Figure 3 we show a blow-up of the lower-right part of the image. We
observe that, if one can properly choose the fractional exponent α, then it is
possible to accurately reconstruct the details of the image. To this aim, we
compute the value of the fractional exponent α using the residual whiteness
principle described in Section 5.2.

Figures 4(a) and 4(b) depict the behavior of PSNR and SSIM, respectively,
for different values of the fractional parameter α. These two measures are used
to evaluate the accuracy of the computed solutions, we recall that high values of
these quantities correspond to more accurate reconstructions. We highlight with
a red asterisk the value of the fractional exponent computed using the residual
whiteness principle. We observe that this criterion provides a fairly accurate
estimate of the optimal value, i.e., the one that maximizes the two functionals.
Moreover, we can observe that, in this case, the choice of a fractional exponent
different from 1 improves the quality of the results with respect to α = 1.
This means that the fractional graph Laplacian can be a better regularizer than
the standard graph Laplacian, provided that one can estimate the fractional
exponent properly. Finally, Figures 4(c) and 4(d) report the RRE and the
residual whiteness function for different values of α. As before, the red asterisk
denotes the minimizer of the functional (12) and is also close to the value that
minimizes the RRE.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Example 1. Reconstructions obtained with four different methods. (a) ℓ2 − ℓ2 with
TV, (b) ℓ2−ℓq with TV, (c) ℓ2−ℓq with the graph Laplacian by Algorithm 1. (d)-(e)-(f) ℓ2−ℓq

with the fractional graph Laplacian by Algorithm 3 with fractional exponent α = 1.5, 1.6, 2
respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Example 1. Blow-up on the frontal part of the Hubble: (a) original image, (b)
ℓ2 − ℓq TV, (c) ℓ2 − ℓq graph Laplacian, (d)-(e)-(f) ℓ2 − ℓq fractional graph Laplacian with
α = 1.5, 1.6, 2, respectively.

6.2. Example 2

The second example is a CT reconstruction problem. We construct this
example using the IRtools toolbox [18]. The original image is the Shepp-Logan
Phantom of dimension 128× 128 pixels, it is shined with 181 parallel beams at
180 equispaced angles between 0 and π. Moreover, we perturb the sinogram b ∈
R181×180 with white Gaussian noise η with noise level 2%, i.e., ∥η∥2 = 0.02∥b∥2.
The real image and the observed sinogram are shown in Figure 5.

In Figure 6 we compare the different reconstructions obtained with the same
methods we used for the deblurring example. We follow the same strategy de-
scribed before for the deblurring problem and we set the parameters of Algo-
rithm 3 as in the previous example. Despite the fact that the initial approx-
imation provided by the ℓ2 − ℓ2 method, reported in Figure 6(a), is not very
accurate, since its SSIM is only 0.6378, our proposal was able to provide an al-
most optimal reconstruction, reported in Figure 6(d), that that achieves a SSIM
value of 0.9929. All the artifacts present in the first approximation have been
completely removed in the final reconstruction. The numerical results obtained
for the four different cases can be found in Table 1.

In Figure 7 we reported the PSNR, SSIM, RRE, and values of the white-
ness residual W for different values of α. We observe that the quality of the
reconstruction strongly depends on the choice of the fractional exponent. A red
asterisk highlights the value of α that minimizes W in (12). Once again, we

19



0.5 1 1.5 2 2.5 3

31.4

31.6

31.8

32

(a)

0.5 1 1.5 2 2.5

0.948

0.949

0.95

0.951

0.952

(b)

0.5 1 1.5 2 2.5 3

0.079

0.08
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(d)

Figure 4: Example 1. Behavior of (a) PSNR, (b) SSIM, (c) RRE, and (d) residual whiteness
W, for different values of the fractional exponent α.

(a) (b)

Figure 5: Example 2. (a) true image (128× 128 pixels, (b) observed sinogram corrupted with
2% of white Gaussian noise (181× 180 pixels).
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(a) (b)

(c) (d)

Figure 6: Example 2. Reconstructions obtained with four considered methods. (a) ℓ2 − ℓ2

with TV, (b) ℓ2−ℓq with TV, (c) ℓ2−ℓq with graph Laplacian, and (d) ℓ2−ℓq with fractional
graph Laplacian with α = 0.5.

note that this strategy provides extremely accurate values for α.

7. Conclusions

In this paper, we developed an algorithm for the solution of some ill-posed
image reconstruction problems. The main novelty of our proposal is the use of
a fractional exponent in the graph Laplacian used in the regularization term to
diffuse the information on the graph. This introduction improves the quality of
the computed reconstructions. Moreover, the algorithm is completely automatic
and, provided that a fairly accurate estimate of the norm of the noise that
corrupts the data is available, does not require the tuning of any parameter.
Finally, we showed that the proposed method is a regularization method and
analyzed its theoretical properties. Selected numerical examples showed that the
introduction of this fractional exponent can improve the quality of the computed
solutions. The application of this method to non-linear problems and to a
different type of noise, e.g., impulse noise or Cauchy noise, will be a matter of
future research.

21



0.5 1 1.5 2

37.5

38

38.5

39

39.5

40

(a)

0.5 1 1.5 2

0.986

0.988

0.99

0.992

(b)

0.5 1 1.5 2

0.04

0.045

0.05

0.055

(c)

0.5 1 1.5 2

6.5

7

7.5
10

-5

(d)

Figure 7: Example 2. Behavior of (a) PSNR, (b) SSIM, (c) RRE, and (d) residual whiteness
W, for different values of the fractional exponent α.

Table 1: Quality of the computed reconstructions for the considered methods.

Example Method RRE SSIM PSNR

Example 1

ℓ2 − ℓ2 TV 0.1318 0.8695 27.49
ℓ2 − ℓq TV (Alg. 1) 0.0933 0.9114 30.49
ℓ2 − ℓq α = 1 (Alg. 2) 0.0857 0.9445 31.23
ℓ2 − ℓq α = 1.5 (Alg. 3) 0.0783 0.9521 32.02
ℓ2 − ℓq α = 1.6 0.0782 0.9524 32.03
ℓ2 − ℓq α = 2 0.0791 0.9529 31.92

Example 2

ℓ2 − ℓ2 TV 0.1468 0.6378 28.88
ℓ2 − ℓq TV (Alg. 1) 0.0539 0.9593 37.58
ℓ2 − ℓq α = 1 (Alg. 2) 0.0560 0.9878 37.24
ℓ2 − ℓq α = 0.5 (Alg. 3) 0.0396 0.9926 40.27
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