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The knowledge from basic neuroscience studies on mechanisms of motor recovery
and the development of theoretical models of learning and recovery has favoured the
development and implementation of neurophysiologically sounded rehabilitative interven-
tions. Even if no clear conclusions have been made, the influence of relevant ingredients
on functional and global outcomes has been proposed, such as the treatment dose, inten-
sity, repetition, specificity of the functional task proposed, motivation, engagement, and
feedback used. Highly repetitive, task-specific training is necessary to induce cortical reor-
ganization and promote neural plasticity [1]. However, even if repetitions matter, they are
not enough to be effective. Another critical element of motor recovery is the motivation and
cognitive engagement of a patient receiving rehabilitation [2]. Finally, the learning process
can also depend on the feedback provided (implicit or explicit) and its frequency. For
this reason, a theoretical decalogue in rehabilitation is available to induce neural plasticity
with interventions [3].

Since the 1990s, technology has been increasingly introduced in clinical settings as a
tool to augment the intensity of neurorehabilitation and foster motor recovery. Moreover,
technologies might permit manipulating recovery’s key ingredients, delivering an assisted,
massed practice in an enriched environment. A clear example of translating basic neuro-
science principles into clinical practice is the mirror neuron system-based rehabilitation
techniques, such as action observation therapy (AOT), motor imagery, and mirror therapy.
Activating specific brain areas during action observation has been seen as a potentially
powerful rehabilitation target to foster motor recovery [4].

Robot-assisted therapy (RAT) is one of the most widely used technologies in clinical
settings for restoring gait and arm function. It can increase the amount of therapy, providing
an enriched therapeutic scenario using gaming or virtual reality systems. Robotic devices
can be classified as end-effectors or exoskeletons. Other classifications, mainly focusing
on gait rehabilitation, can attempt their portable or not-portable characteristics. The end-
effectors control only the distal part of the limb, whereas the exoskeletons with actuators
can handle multiple joints and train an increased complexity of movements [5]. So far,
international guidelines for stroke patients have included RAT for promoting recovery. For
upper limb robotics, activities of daily living, arm function, and arm muscle strength might
improve in stroke patients [6].

Concerning gait rehabilitation, patients who received electromechanical-assisted gait
training in combination with physiotherapy after stroke were more likely to walk indepen-
dently than patients who received gait training without these devices [7].

However, the applicability of these indications is still minimal, with little information
on the proper training protocol, dosage, and profile of the responders [8,9]. Moreover, a
longer step has to be taken to develop a new generation of devices with a clear neurophysi-
ological and biomechanical rationale of use [10], estimating the costs (or savings) due to
electromechanically assisted training and for how long the benefits last.

Among technology-assisted interventions, the gamification of therapy is one of the
most relevant strategies conceptualized in the last decade to promote the enjoyment and
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reward of neurological patients. So far, gaming has been combined with robotics or
utilised alone with exergaming platforms or, more recently, creating specific virtual reality
(VR) scenarios [11].

Relevant elements related to VR are immersion and interaction, which refers to the
level of presence, plausibility, and embodiment achieved during training. Specifically,
immersion is the ability to elicit in the patient a perception of “being real” and to be part of
the training received. High variability in the degree of immersion is present in the available
systems, ranging from immersive VR with a head-mounted display to semi-immersive
with a single-screen projection and non-immersive using a pad or computer desktop. The
interaction between the patient and the VR scenario, as well as the level of physical activity
generated, depends on the hardware and software of the VR system that can be very simple
(i.e., joystick) or more complex (i.e., sensors, haptic feedback devices). [12]. VR also might
add key elements for motor learning in stroke patients (but not exclusively) as specific
practice, explicit or implicit feedback, increasing difficulty, variable practice and forced
use [13]. Scientific evidence demonstrates that when virtual reality is used in addition to
usual care or rehabilitation in stroke patients to increase the amount of time the person
spends in therapy, there are improvements in function [14]. Above all, semi-immersive
and immersive VR systems seem promising for tailoring rehabilitation to the patient’s
specific needs and outcomes, even at home [15]. Given the limited resources for healthcare
and the window of opportunities for recovery, developing solutions available remotely
(telerehabilitation) is timely and meaningful. Indeed, more recently, technology has become
even more digital (e.g., mobile applications or wearable sensors), opening the door to a
new treatment scenario encompassing the patient’s home and the community for a more
sustainable rehabilitation model. Regarding mobile applications, several apps have been
done with the aim of promoting real-time communication, remote assessment, and training
of specific domains (i.e., balance, healthy lifestyle). However, this scientific field is still in
its infancy with limited validity and applicability in clinical practice [16].

Contemporary neurorehabilitation would consider all the potential contributors to
the recovery process, including the long-term management of motor disabilities and the
promotion of self-management and empowerment of patients and caregivers.
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