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Abstract
Background: Hereditary cardiovascular diseases comprise several different enti-
ties. In this study, we focused on cardiomyopathies (i.e., hypertrophic, dilated, 
arrhythmogenic, and left ventricular non-compaction), channelopathies (i.e., 
Brugada syndrome and long QT syndrome), and aortopathies and pulmonary 
arterial hypertension (i.e., thoracic/abdominal aortic aneurysm and pulmonary 
arterial hypertension), and genetically characterized 200 Italian patients affected 
by these diseases.
Methods: We employed whole-exome sequencing (WES), focused on four in 
silico gene panels, and the MLPA method for hypertrophic and arrhythmogenic 
right ventricular cardiomyopathy cases.
Results: Cardiomyopathies affected 87.5% of analyzed patients, channelopathies 
7%, and aortopathies and pulmonary arterial hypertension 5.5%. The molecular 
diagnosis was confirmed for 21.5% of cases with a higher detection rate in familial 
forms (34%) than sporadic ones (14%). We highlighted the importance of family 
segregation to better understand the pathogenic role of the identified variants and 
their involvement in the clinical phenotype. Negative results could be ascribed to 
the high genetic and clinical heterogeneity of hereditary cardiovascular diseases; 
clinical follow-up and revaluation of WES data will be essential.
Conclusion: This study highlights the importance of a multi-step approach 
(WES and MLPA) to characterize hereditary cardiovascular diseases, provides 
crucial information for clinical management and recurrence risk estimation, and 
lays the foundation for future personalized therapies.

K E Y W O R D S

hereditary cardiovascular diseases, MLPA, whole-exome sequencing

www.wileyonlinelibrary.com/journal/mgg3
https://orcid.org/0000-0001-8450-1694
https://orcid.org/0000-0002-7432-4708
https://orcid.org/0000-0001-5622-4415
mailto:
https://orcid.org/0000-0002-5238-6422
https://orcid.org/0000-0002-5823-3777
https://orcid.org/0000-0002-3856-937X
https://orcid.org/0000-0003-2700-8478
https://orcid.org/0000-0002-0859-0856
https://orcid.org/0000-0003-4507-6589
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:paola.tesolin@burlo.trieste.it


2 of 15  |      LENARDUZZI et al.

1   |   INTRODUCTION

Cardiovascular diseases (CVDs) are a major cause of 
morbidity and mortality worldwide affecting almost 471 
million people (Benjamin et al., 2019). Hereditary CVDs 
(hCVDs) can be distinguished into different disorders. 
In this study, we focused on cardiomyopathies (CMs), 
arrhythmic disorders (i.e., channelopathies), and vascu-
lar disorders (i.e., thoracic aortic aneurysms) (Musunuru 
et al., 2020; Wilde et al., 2022).

Cardiomyopathies represent a heterogeneous group of 
structural and functional abnormalities of the heart mus-
cle and are, globally, a major cause of morbidity and mor-
tality (Cecchi et al., 2012). According to the 2008 position 
statement from the European Society of Cardiology (ESC) 
Working Group (Elliott et al.,  2008), CMs can be classi-
fied as primary when predominantly confined to the heart 
muscle or secondary when they result from different con-
ditions. This distinction can be challenging since many 
diseases classified as primary can have extra-cardiac com-
ponents and many systemic diseases can affect the heart 
(McCartan et al.,  2012). These two broad categories are 
further classified considering the etiology of the pathology. 
In particular, primary CMs are classified into (a) genetic, 
including hypertrophic cardiomyopathy (HCM), arrhyth-
mogenic right or left ventricular cardiomyopathy (ARVC 
or ALVC), and left ventricular non-compaction cardio-
myopathy (LVNC), (b) mixed (genetic and non-genetic, 
including dilated cardiomyopathy (DCM) and restrictive 
cardiomyopathy (RCM)), and (c) acquired. Secondary 
CMs include infiltrative conditions, cardiomyopathy from 
storage disorders, toxic agents, endomyocardial causes, 
systemic inflammatory, autoimmune, endocrine, neuro-
muscular, nutritional conditions, electrolyte imbalances, 
or cancer treatment (Maron et al., 2006).

Channelopathies are a heterogenous group of cardiac 
diseases possibly responsible for the appearance of life-
threatening arrhythmias, leading sometimes to sudden 
death (Ferreira et al.,  2022). Several channelopathies, 
such as Brugada syndrome (BrS), long QT syndrome 
(LQTS), short QT syndrome (SQTS), and J-wave syn-
drome (JWS), catecholaminergic polymorphic ventricular 
tachycardia (CPVT), cardiac conduction disorder (CCD), 
and unexplained cardiac arrest (UCA) can be classified as 
acquired or inherited and the latter are mainly due to mu-
tations in genes encoding cardiac ion channels (Chahine 
et al., 2022).

Aortopathies and pulmonary arterial hypertension, 
including thoracic aortic aneurysm (TAA), abdominal 
aortic aneurysm (AAA), pulmonary arterial hypertension 
(PAH), Rendu–Osler–Weber syndrome, Marfan syndrome, 
and type A aortic dissection, are mainly responsible for 
aneurysm formation and dissection and pulmonary 

hypertension (Bhandari et al., 2020; Monda et al., 2022). 
Aortopathies and pulmonary arterial hypertension may 
occur as a sporadic phenomenon or as a familial disorder 
following a classical Mendelian or a non-classical inheri-
tance pattern (Goyal et al., 2017).

To date, the global burden of genetically driven hCVDs is 
difficult to estimate, given the limited epidemiological stud-
ies. Thanks to the recent introduction of next-generation 
sequencing (NGS) technologies, such as targeted re-
sequencing (TRS) and whole-exome sequencing (WES), 
the knowledge of the genetic bases of hCVDs has largely 
increased, providing clinicians with essential information 
for the diagnosis, prognosis, treatment, and recurrence risk 
estimation of patients. In this light, many genes and loci 
have been identified, especially for primary CMs (Martinez 
et al., 2021), for which variants in more than 70 genes have 
been described so far (Hershberger et al., 2013).

Here, we describe the results obtained from the WES 
analysis of a cohort of 200 pediatric and adult patients. 
Each of them has been clinically and instrumentally 
carefully analyzed and classified. Four in silico panels 
have been applied to analyze WES data: (1) 37 genes for 
CMs, (2) 16 genes for channelopathies, (3) 19 genes for 
aortopathies and pulmonary arterial hypertension, and 
(4) 6 HCM minor genes (Tables S1 and S2). In addition, 
negative HCM and ARVC cases were analyzed with the 
multiplex ligation probe amplification (MLPA) method to 
search for copy number variations (CNVs). The results led 
to a whole picture of the molecular bases of hCVDs in the 
Italian population.

2   |   MATERIALS AND METHODS

2.1  |  Samples collection

In this study, 200 consecutive patients affected by 
hCVDs were recruited during the last year at the Medical 
Cardiological Unit of the Cattinara Hospital and trans-
ferred to the Medical Genetics Unit of the IRCCS Burlo 
Garofolo in Trieste. Enrolled cases underwent an in-
depth phenotypical evaluation that comprised a de-
tailed familial anamnesis, with particular attention to 
possible sudden death cases, and a personal anamne-
sis mainly aimed at identifying possible comorbidities 
and previous myocarditis episodes. Additionally, every 
patient underwent a cardiological evaluation through 
ECG, echocardiography, and heart magnetic resonance 
imaging (MRI). In specific cases, a myocardial biopsy 
was also performed (Figure S1). Enrolled subjects were 
classified according to their phenotype and clinical con-
dition as affected by CMs, channelopathies, and aor-
topathies and pulmonary arterial hypertension as per 
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international guidelines (Corrado et al., 2020; Humbert 
et al., 2022; Ommen et al., 2020; Pinto et al., 2016; Priori 
et al.,  2013). Seventy-six female (38%) and 124 male 
(62%) participants were enrolled in the study with an 
average age of 50 years. Overall, there are seven pediat-
ric patients (3.5%) with ages between 0 and 17. Written 
informed consent was obtained from all participants or 
their legal guardians.

2.2  |  Ethical considerations

The research was conducted according to the ESC Clinical 
Practice Guidelines on ethics and the Helsinki declaration 
and approved by the Ethics Committee of the Institute for 
Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo” 
of Trieste (Italy) (2007 242/07).

2.3  |  DNA extraction and quality control

Genomic DNA was extracted from whole peripheral 
blood using the QIAsymphony DSP DNA midi kit v1 
and QIAsymphony Robotic Device (Qiagen, Venlo, The 
Netherlands) following the manufacturer's instruc-
tions. DNA samples were stored at -20°C until use, and 
their integrity was evaluated with 1% agarose gel elec-
trophoresis. DNA concentration was measured with the 
QIAxpert Spectrophotometer System (Qiagen, Venlo, The 
Netherlands).

2.4  |  WES

According to the manufacturer's instructions, WES was 
performed using the Illumina NextSeq550 instrument 
(Illumina Inc., San Diego, CA; USA). Genomic libraries 
were prepared using the Twist Human Core Exome + 
Human RefSeq Panel kit (Twist Bioscience, South San 
Francisco, CA, USA) to cover 99% of the protein-coding 
genes.

FastQ files were processed using a custom pipeline 
developed by enGenome srl (https://www.engen​ome.
com/), including FastQ Quality Check, FastQ Mapping, 
FastQ trimming, Mark of Duplicates, Base Quality Score 
Recalibration, and Variant Calling.

This workflow, designed for Illumina paired-end se-
quencing data, enables the generation of a final VCF file 
containing information regarding germline variants, such 
as single nucleotide variants (SNVs), short insertion/dele-
tions (INDELs), and exon-level CNVs. Finally, VCF files 
are analyzed on EnGenome Expert Variant Interpreter 
(eVai) software (https://evai.engen​ome.com) that allows 

variant annotation and interpretation. eVai combines ar-
tificial intelligence with the American College of Medical 
Genetics (ACMG) guidelines (Richards et al.,  2015) to 
classify and prioritize genomic variants.

Three in silico gene panels for clinical exome targeting 
37 genes responsible for CMs, 16 genes for channelopa-
thies, and 19 genes responsible for aortopathies and pul-
monary arterial hypertension (Table  S1) were designed. 
Furthermore, in the specific case of HCM, whenever the 
molecular analysis was negative, we searched for variants 
within six HCM minor genes included in an additional in 
silico panel (Table S2). Genes were identified through the 
ClinGen resource (https://clini​calge​nome.org/) and sup-
porting literature data.

SNVs and INDELs were excluded if they led to synon-
ymous amino acid substitutions that were not predicted 
as damaging or did not affect splicing or highly conserved 
residues. Furthermore, variants with a quality score 
(QUAL) < 20 or called in off-target regions were excluded 
as well. Variants previously reported as polymorphism 
were removed, comparing the identified genetic variants 
and data reported in NCBI dbSNP build153 (http://www.
ncbi.nlm.nih.gov/SNP/) as well as in gnomAD (http://
gnomad.broad​insti​tute.org/). A minor allele frequency 
(MAF) cut-off of 0.1% was used.

The pathogenicity of known genetic variants was 
evaluated using ClinVar (http://www.ncbi.nlm.nih.gov/
clinv​ar/), Cardiodb (https://www.cardi​odb.org/) and The 
Human Gene Mutation Database (http://www.hgmd.
cf.ac.uk/ac/index.php). All the databases were last ac-
cessed on the 10th of October 2022.

Several in silico tools, such as PolyPhen-2 (Adzhubei 
et al., 2013), SIFT (Ng & Henikoff, 2003), pseudo amino 
acid protein intolerance variant predictor (for coding vari-
ants SNVs/INDELs) (PaPI score) (Limongelli et al., 2015), 
and deep neural network variant predictor (for cod-
ing/non-coding variants, SNVs) (DANN score) (Quang 
et al., 2015) were used to evaluate the effect of all variants. 
PolyPhen-2 scores ranging from 0.85 to 1.0, SIFT scores 
between 0.0 and 0.05, PaPI scores ≥ 0.5, and DANN score 
≥ 0.9 define deleterious variants. The BDGP in silico tool 
was employed for the splicing variants to define splicing 
sites' loss or addition (Reese et al., 1997). All the identified 
variants were confirmed by Sanger sequencing.

All variants included in the article have been submit-
ted to the Leiden Open Variation Database (https://www.
lovd.nl/).

2.5  |  MLPA

For patients affected by HCM negative at WES, MLPA anal-
ysis was carried out to evaluate deletions or duplications 
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within the genes MYBPC3 and MYH7. Following the 
manufacturer's instructions, the kits used were SALSA® 
MLPA® probe mix P100 MYBPC3 and P418 MYH7 (MRC-
Holland, Amsterdam, the Netherlands). Furthermore, for 
patients affected by ARVC and negative at WES, MLPA 
analysis was performed using the SALSA® MLPA® probe 
mix P168 ARVC-PKP2 (MRC-Holland, Amsterdam, the 
Netherlands) and following the manufacturer's instruc-
tions to evaluate deletions or duplications within the 
genes PKP2, DSG2, DSC2, JUP, DSP, TGFB3, and RYR2.

The software Coffalyser.Net was used combined with 
the lot-specific MLPA Coffalyser sheet to perform the data 
analysis. The probes' dosage quotient (DQ) was used for 
MLPA results interpretation. In particular, the following 
cut-offs have been applied: 0.80 < DQ < 1.20 (no deletion/
duplication), DQ  =  0 (deletion), and 1.75 < DQ < 2.15 
(duplication).

3   |   RESULTS

A detailed medical history and accurate deep phenotyping 
of the 200 unrelated subjects enrolled in the study were 
carried out, leading to the following classification: 87.5% 
(175/200) of patients were affected by CMs, 7% (14/200) by 
channelopathies, and 5.5% (11/200) by aortopathies and 
pulmonary arterial hypertension (Figure 1).

Specifically, among the CMs' patients, 55% (97/175) 
show a DCM phenotype, 27% (47/175) an HCM pheno-
type, 17% (29/175) an ARVC phenotype, and 1% (2/175) an 
LVNC phenotype (Figure 1).

The cases can be classified either as familial (33.5%—
67/200) or sporadic (66.5%—133/200).

Data analysis revealed that 21.5% (43/200) of patients 
had been solved at the molecular level, 26.5% (53/200) car-
ried a variant of uncertain significance (VUS) (Table S3), 
and 52% (104/200) resulted negative after the molecular 
analysis (Table S4).

3.1  |  DCM

The molecular analysis of the 97 patients with DCM al-
lowed the identification of 19% (18/97) of positive cases 
(Table 1).

The major player involved in DCM is the TTN gene 
(MIM:*188840; NM_003319.4), responsible for 61% 
(11/18) of our positive cases. Titin controls the relaxation 
and contraction of the sarcomere, force transmission, 
and transduction, and it is the largest protein that has 
ever been described. It spans half of the sarcomere, with 
the N-terminus in the Z-line and the C-terminus in the 
M-line (Trinick & Tskhovrebova, 2010). However, the ge-
netic studies described in the literature are more focused 
on variants placed in the A-band, which are constitutively 
expressed in the heart and are associated with the disease, 
and on the most distal ones (located at the end of band 
A), which cause a more severe phenotype than the prox-
imal ones (close to the band I) (J. S. Ware & Cook, 2018). 
We identified nine frameshift and two nonsense variants 
never described before in the literature. The phenotypes 
have an autosomal dominant inheritance pattern, and the 

F I G U R E  1   Among the 200 patients, 87.5% were affected by cardiomyopathies, 7% suffer from Channelopathies, and 5.5% have 
aortopathies and pulmonary arterial hypertension as shown on the left pie chart. On the right, 27% of patients with hypertrophic 
cardiomyopathy, 55% dilated cardiomyopathy, 17% arrhythmogenic right ventricular cardiomyopathy, 1% left ventricular non-compaction 
are shown. ARVC, Arrhythmogenic Right Ventricular Cardiomyopathy; CMs, Cardiomyopathies; DCM, Dilated Cardiomyopathy; HCM, 
Hypertrophic Cardiomyopathy; LVNC, Left Ventricular Non-Compaction
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variants lead to the formation of truncated forms of the 
protein (Tharp et al., 2019).

The remaining 39% (7/18) of positive cases are 
characterized by the presence of pathogenic vari-
ants within MYH7 (MIM:*160760; NM_000257.3), 
TNNT2 (MIM:*191045; NM_001001430.2), TNNC1 
(MIM:*191040; NM_003280.2), LMNA (MIM:*150330; 
NM_170707.3), and FLNC (MIM:*102565; NM_001458.4) 
genes.

Among sporadic cases, patient CM560, a 14-year-old 
male patient, displayed an early-onset DCM symptom-
atic of fatigue, with severe dilation and dysfunction of the 
left ventricle (LV), mild arrhythmic burden, and diffuse 
fibrosis at endomyocardial biopsy. Data analysis revealed 
the presence of the nonsense de novo unknown variant 
c.59569G>T; p.(Glu19857*) in the TTN gene.

Another sporadic patient is CM591, a 67-year-old 
man displaying acute heart failure in newly diagnosed 
DCM, with non-sustained ventricular tachycardia 
(NSVT), subepicardial fibrosis in the posterolateral 
LV walls at MRI, and carrying the unknown frame-
shift variant c.6763_6764dupAC; p.(Ser2256Profs*169) 
in the FLNC gene (MIM:*102565; NM_001458.4) re-
sponsible for the premature termination of the 169 co-
dons downstream, resulting in premature translation 
termination.

3.2  |  HCM

Sixteen patients of 47 affected by HCM were positive 
(34%) in the molecular analysis (Table 2). Major players 
are the MYBPC3 gene (MIM:*600958; NM_000256.3), 
responsible for 44% (7/16) of the cases, and the MYH7 
gene (MIM:*160760; NM_000257.3), responsible for 19% 
(3/16). Other genes involved are GLA (MIM:*300644; 
NM_000169.2), associated with Fabry disease, PLN 
(MIM:*172405; NM_002667.3), TPM1 (MIM:*191010; 
NM_001018005.1), ALPK3 (MIM:*617608; NM_020778.5), 
and TRIM63 (MIM:*606131; NM_032588.4). The last 
two genes are included in the HCM minor genes panel 
(Table S2).

One interesting sporadic case is CM741, a 55-year-old 
woman carrying the unknown truncating variant 
c.2043_2044delinsCT; p.(Gln681_Glu682delinsHis*) in 
the ALPK3 gene, leading to the formation of a prema-
ture stop codon and the consequent termination of the 
transcription. The diagnosis of HCM was confirmed at 
16 years of age, and at 52 years, the proband underwent 
orthotopic heart transplantation.

Moreover, the MLPA analysis performed only on 
negative HCM cases did not detect any CNV within the 
MYBPC3 and MYH7 genes.

3.3  |  ARVC

Seventeen percent (29/175) of our patients display 
ARVC. Twenty-one percent of them (6/29) carry a path-
ogenic variant (Table  3), the PKP2 gene (MIM:*602861; 
NM_004572.3) responsible for 67% (4/6) of cases. Other 
mutated genes are FLNC (MIM:*102565; NM_001458.4) 
and DSP (MIM:*125647; NM_004415.2).

Two different familial cases, CM596 and CM752, a 
69-year-old man and a 59-year-old woman, displayed typi-
cal predominant right ventricular (RV) involvement, char-
acterized by chamber dilation with segmental aneurysms, 
RV dysfunction, and fibro-fatty replacement. WES data 
suggested the presence of two novel large deletions, re-
spectively, of 72.4 and 75 kb in the PKP2 gene. Both dele-
tions spanned from exon 6 to exon 14 and were confirmed 
by the MLPA method (Figure 2). The lost domains of the 
encoded protein are involved in intracellular signaling, 
cytoskeletal regulation, and linking cadherins to the inter-
mediate filaments in the cytoskeleton (Hatzfeld, 1999). In 
the case of CM596, the proband's brother had a suspect of 
ARVC but died suddenly at a young age. CM752's mother 
is reported to be affected by ARVC.

Moreover, the MLPA analysis on negative cases allowed 
us to solve patient CM745. In this subject, a 38-year-old 
woman affected by arrhythmias and atrial fibrillation 
with a family history of sudden death, deletion of exon 12 
within the PKP2 gene was identified.

3.4  |  Channelopathies

In our cohort, channelopathies affect 7% (14/200) of patients 
and the clinical phenotypes identified correspond to BrS 
(21%—3/14), LQTS (29%—4/14), CCD (29%—4/14), and 
UCA (21%—3/14). Overall, 14% of patients (2/14) tested pos-
itive for the molecular analysis (Table 4A), 7% (1/14) carried 
a VUS, and 79% (11/14) were classified as negative after the 
molecular analysis. The major player genes involved in chan-
nelopathies were SCN5A (MIM:*600163; NM_001099404.1) 
and KCNH2 (MIM:*152427; NM_000238.3).

One interesting case is CAP52, a 45-year-old man 
found to be affected by LQTs during hospital admission 
for pulmonary embolism. He displayed QT interval vari-
ability, ranging from near normal to mildly prolonged. 
WES analysis revealed the presence of the unknown mis-
sense variant c.1889T>G; p.(Val630Gly) in the KCNH2 
gene, responsible for the LQTS phenotype. The variant 
is in a transmembrane helix region of a voltage-activated 
potassium channel that repolarizes the ventricular action 
potential (Gianulis & Trudeau, 2011). The variant has also 
been identified in the proband's son and daughter. The 
6-year-old son was hospitalized after syncopal events, and 
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he displayed a markedly prolonged QT interval, which led 
to defibrillator implantation. The 4-year-old daughter is 
affected by LQTS as the father and brother but apparently 
shows a less severe phenotype, with normal or mildly pro-
longed QT interval at rest.

3.5  |  Aortopathies and pulmonary 
arterial hypertension

The 5.5% (11/200) of our patients display aortopathies and 
pulmonary arterial hypertension, and the clinical con-
ditions identified were Rendu–Osler–Weber syndrome 
(9%—1/11), aortic aneurysm (27%—3/11), Marfan syn-
drome (18%—2/11), PAH (27%—3/11), and type A aor-
tic dissection (18%—2/11). Overall, 9% of patients (1/11) 
were positive for the molecular analysis (Table 4B), 18% 
(2/11) carried a VUS, and 73% (8/11) were classified as 
negative after the molecular analysis.

The familial case CM668, a 68-year-old woman, af-
fected by Rendu–Osler–Weber Syndrome manifested mul-
tiple pulmonary and hepatic arteriovenous malformations 
determining a high cardiac output state with pulmonary 
hypertension and severe right heart failure. Data analy-
sis revealed the presence of the non-canonical splicing 
variant c.625+5G>C in the ACVRL1 gene (MIM:*601284; 
NM_000020.2) responsible for the loss of a splice donor 
site according to the BDGP prediction tool (Reese 
et al., 1997). In addition, the proband's father, who died 
suddenly at 56-year-old, had a suspect of Rendu–Osler–
Weber Syndrome.

4   |   DISCUSSION

The development of NGS technologies has largely im-
proved the molecular diagnosis of hCVDs, helping the 
dissection of these diseases characterized by remarkable 
clinical and genetic heterogeneity. Moreover, the mo-
lecular characterization of hCVDs is essential for a better 
medical management, allowing, in some cases, an early 
diagnosis of the disease before the appearance of any clini-
cal phenotype (Wilcox & Hershberger, 2018).

A fundamental step in diagnosing hCVDs is genetic 
counseling, which is recommended by ACMG guidelines 
(Hershberger et al., 2018). It is necessary to improve pa-
tients' medical management by analyzing the psychoso-
cial impact of a heritable disease, to provide recurrence 
risk estimation by considering the proband's family his-
tory, and describing the inheritance pattern of hCVDs 
(Hershberger et al., 2009). Recurrence risk estimation is of 
the utmost importance both to promote an informed fam-
ily planning and to identify at-risk children. Indeed, the T
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early identification of pediatric patients who are carrier 
of known pathogenic variants in hCVDs-associated genes 
is fundamental to fostering the implementation of pre-
ventive strategies and paving the way for future person-
alized therapeutic approaches (Illikova et al., 2015; S. M. 
Ware, 2017). Specifically, predictive genetic testing in re-
lated children of subjects affected by inherited arrhythmia 
syndromes (e.g., LQTS, CPVT, BrS, CCD) is recommended 
from birth onward. Predictive testing in related children 

of subjects affected by cardiomyopathies is recommended 
in those aged >10-12 years and earlier testing may be con-
sidered if there is a family history of early-onset disease 
(Wilde et al., 2022).

Here, for the first time to our knowledge, we describe a 
complete overview of hCVD Italian patients, molecularly 
characterizing 21.5% of cases (93% of them display a CM), 
with an increase in the detection rate in familial forms (34%) 
compared to sporadic cases (14%). Family segregation of 

F I G U R E  2   Multiplex ligation-dependent probe amplification results for CM596, CM745, and CM752. The analysis revealed the presence 
of three large deletions within the PKP2 gene (NM_004572.3) responsible for arrhythmogenic right ventricular cardiomyopathy. ARVC, 
Arrhythmogenic Right Ventricular Cardiomyopathy; MLPA, Multiplex Ligation-dependent Probe Amplification
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the variants has been carried out when possible, identify-
ing, in some cases, examples of genotype–phenotype cor-
relation. For instance, one familial genotype–phenotype 
correlation can be observed in the case of patient CM658's 
family. The proband, a 27-year-old man affected by ARVC, 
displayed an RV dilation with diffuse hypokinesia of the 
walls. The MRI revealed also a localized area of adipose 
replacement at the level of the RV papillary. Data analy-
sis revealed the presence of the known variant c.962delT; 
p.(V al321Alafs*31) in the PKP2 gene identified also in the 
proband's paternal grandmother, father, brother, and sis-
ter. They all display a clinical phenotype overlapping the 
one identified in the proband.

Another example of genotype–phenotype correlation 
can be observed in the case of CM626's family. The pro-
band and both his sons presented LV dilation, severe sys-
tolic dysfunction, and hypokinetic RV. WES data analysis 
and familial segregation revealed in all of them the pres-
ence of the unknown variant c.41193_41196dupTCCG; 
p.(Ile13733Serfs*8) in the TTN gene.

Our data agree with the literature studies (Burns 
et al., 2017; de Asmundis et al., 2017; Ye et al., 2019), al-
though it is important to highlight that our cohort is en-
riched of DCM individuals (48.5%), being the Medical 
Cardiological Unit of the Cattinara Hospital the Italian 
DCM Reference Centre.

Regarding DCM, apart from the TTN gene, which ex-
plains 61% of positive cases, another interesting gene is 
FLNC. Indeed, one sporadic case, CM591, carries the un-
known frameshift mutation c.6763_6764dupAC; p.(Ser-
2256Profs*169) within FLNC. The literature reports three 
disease-causing variants associated with DCM (Begay 
et al., 2018; Janin et al., 2017; Xiao et al., 2020) and located 
within the same protein domain, corresponding to a fila-
min type 1. In the past, these variants were related to distal 
and myofibrillar skeletal myopathies (Begay et al., 2018), 
whereas recent studies (Janin et al.,  2017) revealed that 
truncating mutations in the FLNC gene can cause a car-
diac phenotype corresponding to ventricular tachycardia 
and atrial fibrillation, as seen in our patient.

Regarding the HCM patients analyzed in our cohort, 
44% of the positive cases carried a mutation within the 
MYBPC3 gene. Interestingly, patient CM741, who re-
sulted negative at the in silico CMs gene panel, was 
further analyzed through an HCM minor genes panel 
(Walsh et al.,  2022). The analysis highlighted the pres-
ence of an unknown truncating variant, c.2043_2044de-
linsCT; p.(Gln681_Glu682delinsHis*), in the ALPK3 gene. 
Recent studies revealed that truncating variants in the 
ALPK3 gene are associated with autosomal dominant 
HCM (Lopes et al., 2021), as observed in the patient. On 
the same note, the employment of the secondary minor 
gene panel allowed the identification in patient CM621 

of a known homozygous pathogenic nonsense variant 
c.739C>T; p.(Gln247*) within TRIM63, a gene associated 
with autosomal recessive HCM (Chen et al., 2012; Ploski 
et al., 2014).

As regards ARVC, this study highlighted that PKP2 
mutations have a high prevalence in our cohort (67%). In 
particular, three cases, CM596, CM745, and CM752, car-
ried CNVs within PKP2, a gene already associated with 
large genomic rearrangements (Cox et al., 2011; Pilichou 
et al.,  2017). For CM596 and CM752 patients, the clini-
cal phenotype corresponds to a severe LV dilation which, 
along with RV abnormalities, is common in other ARVC 
cases carrying large deletions within the PKP2 gene, as 
described in the literature (Roberts et al.,  2013; Sonoda 
et al.,  2017). In addition, according to literature data 
(Alhassani et al., 2018), other phenotypes associated with 
CNVs within PKP2 are atrial fibrillations and arrhythmia, 
as displayed by patient CM745. Indeed, molecular analy-
ses (WES and MLPA) highlighted the presence of PKP2 
deletions.

Regarding channelopathies, an interesting finding re-
gards an LQTS familial case. The proband CAP52 and his 
daughter have a mild phenotype, while his son displays 
severe LQTS symptoms leading to the implantation of a 
defibrillator. Interestingly, channelopathies usually ap-
pear in people around 40–50 years of age, and they are 
quite uncommon in pediatric patients (Sieira et al., 2016). 
All three subjects carry the variant c.1889T>G; p.(Val-
630Gly) in the KCNH2 gene, located in a transmembrane 
region. Interestingly, several other pathogenic variants 
(Lahrouchi et al.,  2017; Splawski et al.,  1998; Tanaka 
et al.,  1997) associated with LQTS and sudden cardiac 
death were detected in the same domain. These alleles are 
responsible for aberrant cardiac repolarization leading to 
arrhythmias (Splawski et al., 1998). These considerations 
highlight that channelopathies are characterized by high 
clinical variability, but the underlying mechanisms are 
still poorly understood. For example, hormonal influence 
and sex differences might have a role. Indeed, females are 
often asymptomatic, probably due to lower testosterone 
concentrations (Brugada et al., 2018). It is possible to hy-
pothesize that the proband's daughter will always display 
a milder phenotype than her male relatives.

Finally, as regards aortopathies and pulmonary ar-
terial hypertension, the solved case corresponds to 
CM668, a 68-year-old woman affected by the Rendu–
Osler–Weber Syndrome and showing heart failure, im-
pairments of the tricuspid valve, and atrial fibrillation. 
The WES analysis revealed the non-canonical splic-
ing mutation c.625+5G>C within the ACVRL1 gene. 
According to the literature, loss-of-function alleles and 
non-canonical splicing mutations, like the one described 
here, are responsible for epistasis or nose bleedings, 
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symptomatic liver diseases, and anemia (Sánchez-
Martínez et al., 2020) and a few cases for abnormalities 
in the endothelial cells leading to pulmonary hyperten-
sion (Trembath et al.,  2001). Interestingly, the patient 
displays all the symptoms described above.

Among the 200 patients enrolled, 21.5% were solved 
while 26.5% carried a VUS, whose interpretation remains 
an open question. In those cases, segregation within fam-
ilies is essential to confirm their role in the etiology of 
hCVDs. Finally, for 52% of patients, a molecular diagno-
sis was not defined, probably due to the high genetic and 
clinical heterogeneity of these diseases and all the limita-
tions of the applied technologies. Thus, for these patients, 
it would be essential to perform a clinical follow-up com-
bined with a re-evaluation of WES data and, eventually, a 
whole-genome sequencing approach.

5   |   CONCLUSION

In conclusion, the use of a multistep approach (e.g., WES 
and MLPA) allowed the molecular diagnosis of patients 
affected by different forms of hCVDs, shedding light on 
the true complexity of this group of diseases. This work 
highlights the importance of a deep clinical characteri-
zation combined with the use of high-throughput tech-
nologies and suggests the importance of evaluating also 
minor genes such as ALPK3 and TRIM63 which should be 
included in CMs panel. All these findings have relevant 
practical outcomes, influencing the clinical management 
of both pediatric and adult patients, providing recurrence 
risk estimation, and laying the foundation for developing 
future personalized therapeutic strategies.
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