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Abstract: Geodetic data can detect and estimate deformation signals and rates due to natural and
anthropogenic phenomena. In the present study, we focus on northeastern Italy, an area characterized
by ~1.5–3 mm/yr of convergence rates due to the collision of Adria-Eurasia plates and active
subsidence along the coasts. To define the rates and trends of tectonic and subsidence signals,
we use a Multi-Temporal InSAR (MT-InSAR) approach called the Stanford Method for Persistent
Scatterers (StaMPS), which is based on the detection of coherent and temporally stable pixels in a
stack of single-master differential interferograms. We use Sentinel-1 SAR images along ascending and
descending orbits spanning the 2015–2019 temporal interval as inputs for Persistent Scatterers InSAR
(PSI) processing. We apply spatial-temporal filters and post-processing steps to reduce unrealistic
results. Finally, we calibrate InSAR measurements using GNSS velocities derived from permanent
stations available in the study area. Our results consist of mean ground velocity maps showing the
displacement rates along the radar Line-Of-Sight for each satellite track, from which we estimate
the east–west and vertical velocity components. Our results provide a detailed and original view of
active vertical and horizontal displacement rates over the whole region, allowing the detection of
spatial velocity gradients, which are particularly relevant to a better understanding of the seismogenic
potential of the area. As regards the subsidence along the coasts, our measurements confirm the
correlation between subsidence and the geological setting of the study area, with rates of ~2–4 mm/yr
between the Venezia and Marano lagoons, and lower than 1 mm/yr near Grado.

Keywords: multi-temporal InSAR; PSI; GNSS; geodetic data; tectonic signals; subsidence

1. Introduction

Space geodetic measurements are crucial in assessing natural and anthropogenic
surface deformation, as they can detect and monitor spatially consistent deformation
patterns at different length scales. Recent advances in space geodetic techniques allow
measurement of ground displacement rates over large areas with millimeter accuracies.
For example, geodetic data have been exploited to extract information on tectonic activity
(e.g., interseismic displacement; Iran–Pakistan–India: [1–4]; California: [5–7]; Anatolia: [8–11];
Italy: [12–16]), investigations regarding subsidence (e.g., [17–26]), landslides and slope in-
stabilities (e.g., [27–30]), sinkholes (e.g., [31]), volcanic processes (e.g., [32–34]), monitoring
of infrastructures, reservoirs, and mining activities (e.g., [35–38]).

Global Navigation Satellite Systems (GNSS) and Synthetic Aperture Radar Interfer-
ometry (InSAR) are today the most widely used methods for estimating and monitoring
ground displacements (e.g., [39,40]). GNSS provides highly accurate, punctual, daily 3D
surface displacement and velocity information referring to a receiver on the ground [41].
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Conversely, spaceborne MT-InSAR (Multi-temporal InSAR) generates a 1D ground defor-
mation time-series in the radar line-of-sight (LOS), with a temporal sampling of several
days, but with a high spatial density over areas containing several stable radar scatterers
(e.g., man-made structures). In the last few years, the development and extensive use of
new satellites and new algorithms have made it possible to detect tectonic, gravitative,
hydrogeological, and anthropogenic deformation signals, even in areas exhibiting low
displacement rates (e.g., [33,34,42,43]).

In northeastern Italy, the tectonic setting is characterized by two fold-and-thrust
systems, i.e., the Southeastern Alps and the External Dinarides, and their foreland, i.e., the
Venetian-Friulian plain (e.g., [44]; Figure 1). The recent tectonic activity is characterized
by active south verging thrusting and strike-slip faulting in the Alpine (e.g., the 1976 Mw
6.4 Friuli earthquake) and Dinaric systems, respectively, as the result of the about N-S
active convergence between the Adriatic and Eurasian plates, at 1.5–3 mm/yr [15,45–51].

Regarding the Venetian-Friulian plain and coastal areas, active subsidence has been
described in response to natural (sediment compaction) and anthropogenic causes (e.g.,
urbanization or groundwater and gas pumping) [18,52].

Based on GNSS and MT-InSAR data, previous studies in northeastern Italy estimated
ground displacement rates and correlated them to the ongoing processes. The geodetically
estimated convergence rates have been used to define the geometrical and kinematic
behaviors of the active faults and their seismogenic potential (e.g., [12,15,16,53–56]).

Several other studies used geodetic observations, focusing on non-tectonic processes
affecting the study area. Rossi et al. [57–59] described transient deformation signals associ-
ated with pore pressure variations in rocks in response to tectonic stress. Stocchi et al. [60]
estimated the post-glacial isostatic rebound along the Alpine belt as ~1/3 of the measured
vertical rates. Devoti et al. and Serpelloni et al. [61,62] revealed horizontal non-tectonic
and non-seasonal ground deformation signals due to hydrologic flux in karstic areas in
response to rainfall and groundwater flow, also describing a correlation between hydrolog-
ical deformation transients and background seismicity [63]. Regarding the deformation
rates along the plain and coasts, other studies have estimated active vertical subsidence,
also posing a problem with coastal hazards and flooding [18,19,21,24,64–66].

As the geodetic sensors and processing techniques have quickly improved the accuracy
and precision of ground deformation measurements over the years, our goal in this study
is to update the geodetic velocity field in northeastern Italy and its surrounding regions by
integrating GNSS and MT-InSAR data. The resulting mean ground velocity maps allow for
the detection of spatial gradients of the velocities across the area during the observation
period, offering new clues about active tectonics and subsidence.

Geological Setting

To understand the nature of ground deformation recorded by space geodetic measure-
ments in the study area, it is central to consider the geological features in terms of rock type,
recent tectonic activity (e.g., seismicity), and the natural and anthropogenic phenomena
acting near or close to the coasts.

The stratigraphic sequence consists of a Paleozoic crystalline and metamorphic base-
ment covered by thick Mesozoic carbonate and terrigenous rock sequences (e.g., [68–70]).
Tertiary rocks derive from terrigenous sediments (e.g., turbiditic and generic clastic de-
posits) related to the erosion of growing Alpine and Dinaric chains. Quaternary shallow-
marine and alluvial plain deposits complete the sequence [68,69,71,72] (Figure 1C).

The present-day tectonic setting of the region derives from the superposition of differ-
ent tectonic phases (Figure 1A). During the Mesozoic, an extensional phase generated a
horst and graben system. The development of thick carbonate platforms took place from
Triassic to Cretaceous. During the Early Jurassic, a nearly NS-oriented basin, namely the
Belluno-Northern Adriatic basin, separated the two carbonate platforms, i.e., the Trento
Platform to the west and the Friuli Platform to the east [68,70,73] (Figure 1B). Finally, during
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the Paleogene, a small and shallow basin was formed in the northern part of the Friuli
platform [74].
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Figure 1. Seismotectonic map of the study area. (A) The map shows the seismicity and tectonics of the 
region. The blue-purple circles represent the instrumental seismicity for the 2000–2017 time span, pro-
vided by OGS bulletins (URL: http://www.crs.inogs.it/bollettino/RSFVG (accessed on 31 August 2020)) 
with focal mechanisms of the most important historical events [15,48,49]. (B) The map shows the tec-
tonics and paleogeography of the area. (AR: Arba-Ragogna thrust; BL: Belluno thrust; BV: Bassano-
Valdobbiadene thrust; CA: Cansiglio thrust; FS: Fella-Sava line; ID: Idrija fault; MD: Medea thrust; 
MT: Montello thrust; PAF: Periadriatic fault; PM: Polcenigo-Maniago thrust; PR: Predjama fault; PT: 
Pozzuolo thrust; RA: Raša fault; RV: Ravne Fault; ST: Susans-Tricesimo thrust; TBC: Thiene-Bas-
sano-Cornuda thrusts; VS: Valsugana thrust). (C) Simplified geological map with stratigraphic col-
umn (Modified from: [67]). 
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The stratigraphic sequence consists of a Paleozoic crystalline and metamorphic base-
ment covered by thick Mesozoic carbonate and terrigenous rock sequences (e.g., [68–70]). 
Tertiary rocks derive from terrigenous sediments (e.g., turbiditic and generic clastic de-
posits) related to the erosion of growing Alpine and Dinaric chains. Quaternary shallow-
marine and alluvial plain deposits complete the sequence [68,69,71,72] (Figure 1C). 
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graben system. The development of thick carbonate platforms took place from Triassic to Cre-
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From the Cenozoic, three main compressional phases occurred in the area, causing 
the formation and development of the Alpine and Dinaric chains. 

Figure 1. Seismotectonic map of the study area. (A) The map shows the seismicity and tectonics
of the region. The blue-purple circles represent the instrumental seismicity for the 2000–2017 time
span, provided by OGS bulletins (URL: http://www.crs.inogs.it/bollettino/RSFVG (accessed on
31 August 2020)) with focal mechanisms of the most important historical events [15,48,49]. (B) The
map shows the tectonics and paleogeography of the area. (AR: Arba-Ragogna thrust; BL: Belluno
thrust; BV: Bassano-Valdobbiadene thrust; CA: Cansiglio thrust; FS: Fella-Sava line; ID: Idrija fault;
MD: Medea thrust; MT: Montello thrust; PAF: Periadriatic fault; PM: Polcenigo-Maniago thrust; PR:
Predjama fault; PT: Pozzuolo thrust; RA: Raša fault; RV: Ravne Fault; ST: Susans-Tricesimo thrust;
TBC: Thiene-Bassano-Cornuda thrusts; VS: Valsugana thrust). (C) Simplified geological map with
stratigraphic column (Modified from: [67]).

From the Cenozoic, three main compressional phases occurred in the area, causing the
formation and development of the Alpine and Dinaric chains.

The first compressional event coincided with the inception of the Alpine orogeny.
In particular, in the study region, the first contractional structures developed from the
Cretaceous to Late Eocene, resulting in NW–SE-trending Dinarides fold and thrust systems
(e.g., [75,76]). From the Serravallian to Messinian, a slightly differently oriented contrac-
tional phase generated ~EW-oriented fold and thrust systems of the Southern Alps [75,77].
Finally, from Late Messinian to the present day, new southeast-verging thrust-and-fold
systems developed in the central-eastern sector of the Southern Alps due to the rotation of
the maximum stress axis northwards [75,76]. Meanwhile, major strike-slip faults developed
in the eastern sector, with some partially reusing segments of pre-existing thrusts [78].

ENE-trending, southeast-verging, folds, and thrusts dominate the present-day tectonic
setting of the western area (Long. 11.6◦–12.8◦), such as the Valsugana thrust, the Belluno
thrust, the Bassano-Valdobbiadene thrust in the inner sectors, and the external thrust front,
including, from west to east, the Thiene-Bassano-Cornuda, Montello, Cansiglio, Polcenigo-
Maniago, and Arba-Ragogna Thrusts [79,80] (Figure 1B). In the sector where the interaction
of the Alpine and Dinaric systems is most active (Long. 12.8◦–13.5◦), the south-verging
thrust-and-fold system tends to be mainly E-W-oriented, as, for example, the Periadriatic
thrust and the Susans-Tricesimo line [79–81]. Several NW-SE-oriented, sub-vertical, dextral
strike-slip faults belonging to the Dinaric system, such as Raša, Predjama, Idrija, and Ravne
faults, are found in the eastern sector (Long. 13.5◦–13.9◦) [55,56,80,82] (Figure 1B). The
Dinaric system is today interrupted along the Fella-Sava fault, a transpressional structure
located in the northeastern sector that accommodates a large part of the right-lateral motion
between the Eastern Southern Alps and the Eastern Alps [15]. In the Friulian Plain, buried
by thick Quaternary sediments, there are south-verging thrusts, especially around Udine,
such as the Udine-Buttrio and Medea thrusts (e.g., [80]).

http://www.crs.inogs.it/bollettino/RSFVG
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The distribution of instrumental seismicity, as shown in Figure 1A for the 2000–2017
time span along the study area, demonstrates that some of the previous structures are still
active. Historical seismicity and geological evidence confirm the activity of these structures,
even suggesting the generation of moderate/strong earthquakes [79,80,83]. Among all the
events, we mention the 1976–1977 Friuli sequence (mainshock Mw 6.4) and the 1998 and
2004 Bovec-Krn earthquakes (Mw 5.6 and Mw 5.2) [45–47,79,84–87].

Regarding the Venetian-Friulian plain, the Pre-Quaternary thick sedimentary sequence
(up to 1500 m) is derived from the erosion of the Dinaric and Alpine belts and is mainly
composed of clay-silty layers with thin sandy layers (e.g., [18,72,88]).

The Quaternary deposits consist of consolidated sandy and silty-clay layers mainly
related to alluvial and marine-lagoon environments, with a variable thickness from hun-
dreds of meters to 3000 m moving from the northeast (i.e., the Friuli area) to the southwest
(i.e., the Venezia lagoon) (e.g., [18,68,89]. In the Venezia lagoon area, sandy sediments are
mainly distributed in the central sector. In contrast, more compressible clay sediments
predominate in the northern and southern areas [88].

The unconsolidated Holocene deposits, characterized by a maximum thickness of a
few tens of meters, present heterogeneous lithologies (sand, silt, and clay) in response to
marine ingression and fluvial actions [18,89].

2. Materials and Methods
2.1. InSAR Processing

To obtain ground velocities in the study area, we use C-band SAR images acquired
by the Sentinel-1 A/B satellites in Interferometric Wide swath mode (IW). This imaging
mode is characterized by a swath width of 250 km and a spatial resolution of 5 × 20 m in
the range and azimuth directions [90,91]. We collect Single-Look Complex (SLC) images
along ascending track 44 and descending track 95, spanning late March 2015 to December
2019 (Figure 2). We use the Stanford Method for Persistent Scatterers (StaMPS), which
enables the identification of stable radar targets in urban and non-urban environments
characterized by variable displacement rates [32,92].

The generation of mean velocity maps using InSAR data requires three main steps:
(1) preprocessing based on the open-source snap2stamps package [93], (2) PSI processing
with StaMPS software, and (3) post-processing operations (Figure 3).

The first step enables the generation of a stack of coregistered images and differential
interferograms referred to a single reference image. Reference images are on 7 August
2017 and 11 August 2017 for the ascending and descending datasets, respectively. We use
precise orbit ephemerides, automatically downloaded by SNAP, for orbital refinement and
the 1-arcsec Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) for
image coregistration and topographic phase removal.

StaMPS processing consists of several steps (Figure 3). A preliminary selection of
Persistent Scatterer (PS) candidates is carried out by applying an amplitude dispersion
threshold of 0.4 [32,91,92]. The area of interest is then divided into 3 × 3 patches, with
an overlap of 50 pixels, which are processed in parallel in subsequent steps to improve
computational efficiency. For each data patch, we load the input data (processing step #1),
estimate the phase noise for each pixel in every interferogram (step #2), select the potential
PS candidates based on their phase noise characteristics (step #3), and remove potential out-
liers (step #4). After the phase correction for spatially uncorrelated DEM errors, the patches
are merged and resampled with a sampling of 100 m (step #5). During step #6, we compute
3D phase unwrapping based on the algorithm described by [32] using the statistical-cost,
network-flow phase-unwrapping algorithm (SNAPHU) by [94], implemented in StaMPS
software. By setting the unwrapping resampling grid (unwrap_grid_size) at 100 m, we
test two different values for the window size of the Goldstein filter (unwrap_gold_n_win)
(32 × 32 and 64 × 64 pixels) [95] to compare and evaluate the results, namely 100_32
and 100_64 datasets. After the unwrapping, the spatially correlated DEM errors and the
atmospheric and orbital error contributions of the Reference image are estimated (step
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#7). Finally, during step #8, we apply a high pass filter in time (scn_time_win = 45 days)
and a low pass filter in space (scn_wavelength = 400 m) to remove potential atmospheric
contributions related to Secondary images [37,96–98]. Finally, after defining a common
reference point on a tectonically and vertically stable area (Long. 12.84◦E; Lat. 45.95◦N) for
both the ascending and descending radar tracks, we obtain two displacement time series in
the radar LOS direction with respect to the reference point.
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Figure 3. Workflow for PSI processing. The final products, highlighted in yellow, are the veloc-
ity maps showing the surface deformation along Line-Of-Sight (LOS) and in the East–West and
Vertical directions.

The third processing block in Figure 3 consists of a set of post-processing operations
to remove unreliable measurements in the study area.

First, we remove PSs potentially affected by residual atmospheric contributions cor-
related with height. Although the use of spatial-temporal filters can mitigate turbulent
atmospheric delays, which are considered spatially correlated and temporally uncorre-
lated [32,97,98], this method might not be so effective in the case of temporally correlated
stratified tropospheric contributions [99]. Hence, considering the study area, we remove the
PSs whose difference in height with respect to the reference point was higher than 1000 m
to reduce the atmospheric propagation effects correlated with topographic height [99].

Second, we compare the results obtained for each radar track using the two different
Goldstein filtering window size parameters and remove the PSs with a velocity (displace-
ment rate) difference higher than a given threshold. Considering the convergence rates of
~1.5–3 mm/yr in the study area, we define the threshold at 1 mm/yr. Finally, we remove
pixels with a multi-temporal coherence value < 0.6. For the ascending track, we mask
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out an area close to the Carnic Alps, characterized by spatially correlated PSs, showing a
significant velocity difference (mean value of 5 mm/yr) with respect to the adjacent PSs.

Figure 4A,B shows the resulting mean LOS velocity maps for both tracks.
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Figure 4. LOS Velocity maps. The LOS mean ground displacement maps before (A,B) and after the
calibration (C,D) for the ascending (A–C) and descending (B–D) tracks. The black points indicate
the location of the GNSS stations used for the calibration. Positive and negative values indicate
movements towards and away from the satellite, respectively.

2.2. GNSS-InSAR Calibration

InSAR measurements are relative both in time (w.r.t. the first image of the data stack)
and in space (w.r.t. to the selected spatial reference), and large-scale deformation gradients
measured with this technique are unreliable, mostly due to atmospheric propagation effects
and orbital uncertainties, which cannot be entirely corrected with the processing steps
described in the previous section [100]. Therefore, the InSAR measurements should be
calibrated and validated with independent ground-based observations in order to assess
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the reliability of the data. Because of the high accuracy of the measurements [41], GNSS
data are usually employed to calibrate InSAR datasets. In the present work, we used GNSS
velocities among different approaches to calibrate InSAR measurements [16,24,101–103].

The GNSS velocities used have been obtained by processing data from continuous
stations belonging to several public and private networks, following the approach described
in [104] and are part of a Euro-Mediterranean geodetic solution (e.g., [105]).

As reported in [104], GNSS processing consists of three steps:

(1) GPS phase reduction and generation of loosely constrained sub-networks solutions
using GAMIT [106];

(2) Combination of daily subnet solutions and realization of positions in specific reference
frames using GLOBK [106];

(3) Analysis of time-series using QOCA (URL: http://qoca.jpl.nasa.gov (accessed on
20 March 2023)).

Starting from the displacement time series in the 2000–2020 time span, realized in the
IGb14 reference frame (URL: https://lists.igs.org/pipermail/igsmail/2020/007917.html
(accessed on 20 March 2023)), we estimate linear velocities, seasonal (annual and semi-
annual) signals, and eventual instrumental offsets due to equipment changes for sites with
a minimum observational period of 2.5 years to minimize possible biases in the linear
trend estimation due to seasonal signals [107] and non-seasonal hydrological deformation
signals [62].

The horizontal velocities in Figure 2 refer to an Adria-fixed reference frame considering
the rotation pole from [15].

Given the two geodetic datasets, we first project the GNSS 3D velocity vectors along
the SAR LOS directions for each track to calibrate the SAR measurements using the GNSS
velocities. Since GNSS sites and PSs are not usually located in the same spot, we then
calculate the mean and the standard deviation velocity of all PSs located within a given
radius from each GNSS station to compare the two geodetic datasets.

The selection of GNSS stations is a crucial step that can meaningfully affect calibration.
Hence, the GNSS stations used for calibration are chosen based on the following criteria:

1. InSAR-GNSS temporal coverage overlapping;
2. GNSS data continuity;
3. InSAR-GNSS spatial colocation;
4. Low spatial variability underlying the deformation field.

Concerning criterion #1, we consider the SAR observation interval, namely 2015–2019,
as the reference period, thus excluding GNSS stations whose data acquisitions terminated
before 2015. Similarly, for condition #2, we define a minimum period of 2.5 yr within the
same temporal interval by excluding the GNSS stations having shorter time series. We fix
these two criteria to improve the comparison between InSAR and GNSS data in the same
reference period (2015–2019).

We run different tests by varying the radius value, namely 200, 400, 600, and 800 m,
counting the number of detected PSs, and calculating the standard deviation of their ground
velocity values. To guarantee a minimum number of PSs around each GNSS station, we
assume the minimum PS number below which 10% of the values fall (criterion #3) as a
threshold. Moreover, we fix the standard deviation threshold at 1 mm/yr to limit the spatial
variability (criterion #4). Hence, considering all radii, we exclude the GNSS stations for
which there are few PSs and high spatial variability in PSs velocities.

We retain 43 GNSS stations for the LOS datasets distributed in the study area (Figure 4A,B).
After the selection, we exploit the GNSS velocity values to perform the calibration,

estimating a vertical offset due to the different reference frames between InSAR and
GNSS, and allowing for image-wide trends due to orbital uncertainties and atmospheric
propagation [108,109]. Both a planar [110] and a quadratic ramp calibration model [111,112]
are tested by fitting the InSAR-GNSS velocity differences in a least-squares sense.

http://qoca.jpl.nasa.gov
https://lists.igs.org/pipermail/igsmail/2020/007917.html
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The processing settings described in the previous section, namely two processing runs
using different Goldstein filter parameters (window sizes of 32 × 32 and 64 × 64 pixels,
respectively), and the different GNSS-calibration settings, namely using different search
radii (200, 400, 600, and 800 m) and two calibration error models (linear and quadratic), yield
16 different calibrated deformation products for each track, which have been evaluated
based on the statistical comparison with the GNSS data (Tables S1 and S2).

In particular, we use the standard deviation and correlation coefficient values of the
InSAR-GNSS residuals as quality parameters. Considering the lower standard deviation
and the higher correlation coefficient of the residuals, we finally find the best calibrated LOS
datasets to be those based on a quadratic calibration error model, a search radius of 600 m
around each GNSS station, and a Goldstein filter window size of 64 (Tables S1 and S2).
The standard deviation values of the resulting solutions are 0.68 and 0.56 mm/yr for the
ascending and descending datasets, respectively. We use these values to define the accuracy
of the calibrated InSAR measurements (e.g., [7]).

The correlation plots also state good agreement and a positive correlation between the
geodetic measurements (Figure S1).

To better visualize the geodetic surface velocities in the study area, we obtain the hori-
zontal (east–west) and vertical velocity maps by combing the two resulting LOS datasets.
After the definition of a 100 × 100 m regular grid, we calculate the mean LOS velocities of
all PSs within each grid cell in both datasets (∆dasc and ∆ddesc), we extract the values of the
local incidence angle (θ) (positive from the vertical) and the azimuth of the satellite heading
vector (ϕ) (positive clockwise from the North) and we apply the following formula [113]:(

∆dasc
∆ddesc

)
=

(
− cos ϕasc sin θasc sin ϕasc sin θasc cos θasc

− cos ϕdesc sin θdesc sin ϕdesc sin θdesc cos θdesc

)(
∆E
∆U

)
(1)

Finally, we compare the InSAR-GNSS velocities after the decomposition (Table S3;
Figure S2). As done for the calibrated LOS products, we compute the mean velocity
of the PSs within a radius of 600 m from each GNSS station, and we plot the InSAR-
GNSS velocities (Figure S2). To evaluate the results, we use the standard deviation values
and correlation coefficients of the InSAR-GNSS velocity residuals as quality parameters.
Specifically, we obtain standard deviation and correlation coefficient values of 0.62 mm/yr
and 0.55, respectively, for the east–west component and 0.61 mm/yr and 0.8, respectively,
for the vertical dataset (Table S3).

3. Results

After the processing procedures explained in the previous section, the preliminary
results consist of two calibrated LOS mean ground velocity maps, as shown in Figure 4C,D.
During the linear estimation of the velocity for each PS, we also compute the standard
deviation, which is characterized by mean values of 0.2 mm/yr for both LOS datasets,
indicating low spatial variability of the InSAR displacement measurements w.r.t. a linear
model (Table S4; Figure S3).

Due to the decorrelation (i.e., the presence of vegetated areas) and the removal of
unreliable values during the post-processing operations, the final products show a lower
PSs density across the mountain regions with respect to the plain, the intermontane valleys,
and the coastal areas. However, the distribution of PSs enables the clear detection of
gradients and deformation patterns in the study area.

Based on the E-W velocity map (Figure 5A), we report a general eastwards ground
motion that increases northeastward by reaching ~1–2 mm/yr around Villach. Positive
rates characterize the Venetian-Friulian plain, especially moving toward the mountain belt,
although west of Venezia, we record displacement rates of 0.5–1 mm/yr in the opposite
direction. We also observe westward displacement rates in the Dolomites area, with average
values of 1–2 mm/yr, reaching locally up to 2 mm/yr.
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Figure 5. East–west (A) and vertical (B) velocity maps. The black arrows represent the GNSS
horizontal (east–west) and vertical velocity components. According to the scale, positive rates
indicate eastward and upward ground motion.
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The northern Friuli, the Austrian area, and the eastern Slovenian sector are character-
ized by eastward velocities at rates of ~1–2 mm/yr, decreasing southeastward (Figure 5A).
Finally, the area east of Udine, across the Italian–Slovenian border, records a westward
motion (0.5–1 mm/yr).

Regarding vertical velocities (Figure 5B), the Venetian-Friulian plain and the northern
Adriatic coasts are mainly affected by subsidence, with negative rates of 0.5–3 mm/yr,
decreasing toward the inland. Moreover, we note the presence of subsidence along the
major rivers and close to the mountain belt, with negative rates of 0.5–1 mm/yr.

From Grado-Marano Lagoon to Croatia, the coasts present negative ground veloci-
ties with lower rates, decreasing eastwards and inland (<1 mm/yr). However, we also
detect local strong negative signals faster than 4 mm/yr, especially near harbors and
industrial areas.

Positive vertical velocities increase northward toward the south Alpine belt (Figure 5B).
We estimate an uplift of ~1–2 mm/yr, reaching locally up to >3 mm/yr between the
Dolomites and the Carnic Alps. Between the Carnic and the Julian Alps, we record positive
vertical rates higher than 2 mm/yr, decreasing southwards (eastern border Italia–Slovenia)
and eastwards (i.e., Austria and Slovenia), with values up to 0.5–1 mm/yr (Figure 5B).

Finally, we observe a subsidence of ~1 mm/yr affecting the Slovenian area (west of
Ljubliana) and the Austrian region (east of Villach). In contrast, the areas near Trieste and
the Croatia–Slovenia border present an uplift with rates of 0.5–1 mm/yr.

We trace some profiles across three different sectors of the Southern Alps and northern
Dinarides to study possible correlations between the geodetic signals (InSAR and GNSS)
and active tectonic structures (Figures 6–10).

The westernmost section crosses the south Alpine thrusts, starting from the Venetian
plain (Figure 6). In this case, we plot only the vertical component of the detected signals
along this section, as vertical motion prevails here (Figure 5). The Venetian coasts and the
plain areas around San Donà and Noventa di Piave (SDNA and NOVE GNSS stations in
Figure 6) record negative vertical rates of 1–3 mm/yr, with a minimum located close to the
ERAC GNSS station (Figures 5B and 6). Moving northward, the vertical velocity increases,
reaching values of ±1 mm/yr close to the MT01 GNSS site. Similarly, GNSS stations record
negative rates and a progressive increase in the vertical velocities along the profile. The
first 50–60 km of the profile are characterized by thick post-middle Miocene to Quaternary
terrigenous deposits according to the geological section modified from [69]. These areas
also lack seismicity, as shown in Figure 6.

A significant positive gradient of about 1 mm/yr between the VITT GNSS station
and the Belluno Valley (BLNO–BL01 GNSS stations) is recorded by InSAR and GNSS
measurements. Observing the seismicity and tectonic structures (Figure 6), we note the
presence of clusters characterized by moderate-small earthquakes with a hypocentral depth
of 10–15 km. The recent seismic activity concentrated on the main thrusts’ deeper portions,
especially the Montello, Bassano-Valdobbiadene, and Belluno Thrusts.

Regarding the second profile across the Carnic-Julian Alps, we note negative vertical
rates of 1–3 mm/yr along the coasts, rapidly becoming positive with increasing values
toward the stable area between the Udine and JOAN GNSS station (Figure 7). Based on
the information provided by the geological section modified from [114], the area presents
compressible terrigenous deposits over the Friulian carbonate platform, also characterized
by low seismicity, with hypocentral depths of 5–15 km.

Moving toward the mountain belt, both geodetic measurements record a positive
vertical velocity gradient with different estimated values. Indeed, the uplift recorded
within 35 km along the profile around Tarvisio (TARV GNSS site) reaches up to 2.3 mm/yr
instead of the lower GNSS values (~1 mm/yr). Considering the seismicity, we observe small
events located at depths of 5-15 km near the south-verging thrusts and sub-vertical parallel
strike-slip faults (i.e., Idrija and Ravne faults). Lower vertical rates characterize the areas
near Villach, to the north of the Periadriatic fault, with values up to 1 mm/yr (Figure 7).
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Figure 6. Vertical velocity profile across the Alpine system (Dolomites). Top: the map shows the ver-
tical velocity values for each PS, while the colored squares indicate the vertical velocity of the GNSS sta-
tions, according to the InSAR multicolor scale on the right (blue = uplift; red = subsidence). The blue 
dotted line represents the trace of the geological section reported below. The profile with a buffer of 20 
km is 140 km long, and the white star indicates the starting point. Bottom: the plot shows the vertical 
SAR velocities (grey dots), whereas the blue line indicates the median value. The circles with relative 
uncertainties represent the vertical velocities of GNSS stations; specifically, the grey ones have not been 
used during the calibration. The geological section is modified from Fantoni and Franciosi [69]. 

Figure 6. Vertical velocity profile across the Alpine system (Dolomites). Top: the map shows the
vertical velocity values for each PS, while the colored squares indicate the vertical velocity of the
GNSS stations, according to the InSAR multicolor scale on the right (blue = uplift; red = subsidence).
The blue dotted line represents the trace of the geological section reported below. The profile with
a buffer of 20 km is 140 km long, and the white star indicates the starting point. Bottom: the plot
shows the vertical SAR velocities (grey dots), whereas the blue line indicates the median value. The
circles with relative uncertainties represent the vertical velocities of GNSS stations; specifically, the
grey ones have not been used during the calibration. The geological section is modified from Fantoni
and Franciosi [69].
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Figure 7. Vertical velocity profile across the Alpine (Carnic and Julian Alps) and Dinaric system.
Top: the map shows the vertical velocity values for each PS, while the colored squares indicate
the vertical velocity of the GNSS stations, according to the InSAR multicolor scale on the right
(blue = uplift; red = subsidence). The blue dotted line represents the trace of the geological section
reported below. The profile with a buffer of 20 km is 140 km long, and the white star indicates the
starting point. Bottom: the plot shows the vertical SAR velocities (grey dots), whereas the blue line
indicates the median value. The circles with relative uncertainties represent the vertical velocities of
GNSS stations; specifically, the grey ones have not been used during the calibration. The geological
section is modified from Merlini et al. [114].
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Figure 8. East–west velocity profile across the Alpine (Carnic and Julian Alps) and Dinaric system. 
Top: the map shows the east–west velocity values for each PS, while the colored squares indicate 
the east–west velocity of the GNSS stations, according to the InSAR multicolor scale on the right 
(red = westward; blue = eastward displacement). The blue dotted line represents the trace of the 
geological section reported below. The profile with a buffer of 20 km is 140 km long, and the white 
star indicates the starting point. Bottom: the plot shows the east–west SAR velocities (grey dots), 
whereas the blue line indicates the median value. The circles with relative uncertainties represent 

Figure 8. East–west velocity profile across the Alpine (Carnic and Julian Alps) and Dinaric system.
Top: the map shows the east–west velocity values for each PS, while the colored squares indicate
the east–west velocity of the GNSS stations, according to the InSAR multicolor scale on the right
(red = westward; blue = eastward displacement). The blue dotted line represents the trace of the
geological section reported below. The profile with a buffer of 20 km is 140 km long, and the white
star indicates the starting point. Bottom: the plot shows the east–west SAR velocities (grey dots),
whereas the blue line indicates the median value. The circles with relative uncertainties represent
the east–west velocities of GNSS stations; specifically, the grey ones have not been used during the
calibration. The geological section is modified from Merlini et al. [114].
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Figure 9. Vertical velocity profile across the Dinaric system. Top: the map shows the vertical velocity 
values for each PS, while the colored squares indicate the vertical velocity of the GNSS stations, 
according to the InSAR multicolor scale on the right (blue = uplift; red = subsidence). The blue dotted 
line represents the trace of the geological section reported below. The profile with a buffer of 20 km 
is 140 km long, and the white star indicates the starting point. Bottom: the plot shows the vertical 
InSAR velocities (grey dots), whereas the blue line indicates the median value. The circles with rel-
ative uncertainties represent the vertical velocities of GNSS stations; specifically, the grey ones have 
not been used during the calibration. The geological section is modified from Moulin et al. [56]. 

Figure 9. Vertical velocity profile across the Dinaric system. Top: the map shows the vertical velocity
values for each PS, while the colored squares indicate the vertical velocity of the GNSS stations,
according to the InSAR multicolor scale on the right (blue = uplift; red = subsidence). The blue dotted
line represents the trace of the geological section reported below. The profile with a buffer of 20 km
is 140 km long, and the white star indicates the starting point. Bottom: the plot shows the vertical
InSAR velocities (grey dots), whereas the blue line indicates the median value. The circles with
relative uncertainties represent the vertical velocities of GNSS stations; specifically, the grey ones
have not been used during the calibration. The geological section is modified from Moulin et al. [56].
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plot shows the east–west InSAR velocities (grey dots), whereas the blue line indicates the median 
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specifically, the grey ones have not been used during the calibration. The geological section is mod-
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In the E-W velocity profile (Figure 8), the southern Friulian plain presents a westward 
movement (<1 mm/yr), whereas, to the north of Udine, a velocity increase is recorded (east-
wards motion), with rates of about 1 mm/yr near Tarvisio (TARV GNSS site). In this case, 

Figure 10. East–west velocity profile across the Dinaric system. Top: the map shows the east–west
velocity values for each PS, while the colored squares indicate the east–west velocity of the GNSS
stations, according to the InSAR multicolor scale on the right (red = westward; blue = eastward
displacement). The blue dotted line represents the trace of the geological section reported below.
The profile with a buffer of 20 km) is 140 km long, and the white star indicates the starting point.
Bottom: the plot shows the east–west InSAR velocities (grey dots), whereas the blue line indicates
the median value. The circles with relative uncertainties represent the east–west velocities of GNSS
stations; specifically, the grey ones have not been used during the calibration. The geological section
is modified from Moulin et al. [56].
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In the E-W velocity profile (Figure 8), the southern Friulian plain presents a westward
movement (<1 mm/yr), whereas, to the north of Udine, a velocity increase is recorded
(eastwards motion), with rates of about 1 mm/yr near Tarvisio (TARV GNSS site). In this
case, GNSS measurements indicate a stable area and a moderate positive trend (<1 mm/yr
Eastwards), respectively.

The last section crosses the sub-parallel, NW-SE trending Dinaric transcurrent and
transpressional structures in the easternmost sector of the study area. Similar to the previous
profiles, Figures 9 and 10 show the vertical and east–west velocity components, respectively.

Starting from the vertical velocity profile (Figure 9), we observe a gradual increase
in velocity from the Grado-Marano Lagoon (mean rate > −1 mm/yr) toward the inland,
reaching rates lower than 1 mm/yr near the NOVG GNSS station. The area also shows a
general eastward motion (Figure 10), except for a weak westward signal confined between
MDEA and NOVG GNSS sites due to the effect of the deformation pattern recorded near
Udine (see also Figure 8). Concerning the seismotectonic context, we note a few small
seismic events localized between the crystalline basement and the carbonate units (depth
of 10–15 km) and the presence of some buried thrusts and strike-slip faults located on the
Friulian plain (Figures 9 and 10).

Between the Raša and Idrija faults, we record an uplift and an eastward motion of
~1 mm/yr, as observed in Figures 9 and 10.

We also identify a significant seismic activity at depth of 0–15 km, mainly concentrated
around the Ravne fault.

North of the IDRI station, the velocity increases (Eastwards movement), reaching
values up to 1.5 mm/yr in correspondence with the RADO station, which gradually
decreases (~1 mm/yr) (Figure 10). Similarly, we record a positive vertical gradient of about
1.5 mm/yr within approximately 35 km along the profile, decreasing toward the valley of
Villach in Austria (~0 mm/yr) (Figure 9). Even the GNSS data delineate similar trends in
vertical and east–west velocity despite the lower estimated rates. Finally, the seismic data
show a small cluster near the Fella-Sava fault at depths of 5–10 km.

4. Discussion

The present study aims to update the velocity field in northeastern Italy and its
surrounding regions using GNSS and MT-InSAR data. Many studies have been carried out
in the study area using GNSS observations to estimate the ground deformations in response
to several geological and geophysical phenomena. Our results are in agreement with the
geodetic solutions provided by previous studies. Comparing the Adria-fixed velocity field
in Serpelloni et al. and Cheloni et al. [12,15], we observe a general eastward motion of
the study area with rates that tend to increase toward NNE, reaching rates of 1–2 mm/yr
between Italy and Austria. Regarding the vertical velocities, the diffuse subsidence along
the coasts and on the Venetian-Friulian plain with variable rates (2–3 mm/yr) and velocity
gradients of about 1 mm/yr across the Alpine belt are also confirmed by [15,104,115].
Furthermore, our results show a gradual decrease in vertical rates southward (i.e., Italy–
Slovenia border) and eastward (i.e., Austria and Slovenia, across the Julian Alps), which
is in agreement with the study of [115]. Anderlini et al. [16] employed ENVISAT data
to investigate the Dolomites and the Venetian plain, revealing positive rates across the
mountain belt that decrease toward the coasts, reaching negative velocity (1–2 mm/yr). Our
measurements show similar deformation patterns but with lower LOS displacement rates.
Other studies, such as [17,18,24,64], used MT-InSAR-GNSS data to estimate and analyze
the subsidence along the coasts and on the plain. Although the methods, the observation
period, and the SAR data differ from our study, the datasets reveal significant subsidence
rates with variable rates (mean values 1–3 mm/yr, locally > 4mm/yr) between Venezia and
Grado-Marano lagoon that decrease toward the hinterland. In contrast, lower subsidence
rates (<1 mm/yr) characterize the coastal areas from Grado to Trieste, confirming the
measurements estimated by [21] using MT-InSAR and GNSS data.
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Hence, our study mostly agrees with previous investigations in terms of detected
patterns and velocity gradients.

4.1. Tectonic Signals

Considering the seismotectonic context of the study area, we reasonably expect the
presence of signals related to the activity of the Alpine and Dinaric structures. Indeed, many
recent studies have focused on estimating the seismogenic potential of active faults by
distinguishing seismic (locked) and aseismic (creep) behaviors, with important implications
for seismic hazard purposes (e.g., [12,15,116]).

Three different velocity profiles describe the geodetic deformation signals that
can be correlated with active tectonic structures, in agreement with seismological and
geological observations.

The first profile traced across the Alpine belt shows negative vertical rates of
1–3 mm/yr along the coasts and on the southern Venetian plain (Figure 6). As the tec-
tonic structures in this sector are apparently not active [117], this trend is not related to
active tectonics.

We also detect a positive gradient of about 1 mm/yr between the Bassano-Valdobbiadene
and Belluno thrusts. Furthermore, we observe a distributed seismicity near the roots of
the main thrusts, located in the basement rocks at depths of 10–15 km. Both observa-
tions allow us to interpret this signal as related to the creeping of the deeper segments
of the thrusts, especially the Bassano-Valdobbiadene thrust. Although the seismogenic
potential of these structures is still debated [79,80], recent studies suggest the seismogenic
potential of the Bassano-Valdobbiadene thrust based on the results of interseismic fault
model inversion constrained by geodetic observations [16,116]. Comparing our results
with those of Anderlini et al. [16], we note a similar pattern in the vertical velocity pro-
files, revealing the presence of a positive vertical gradient across the Dolomites. In this
case, the positive velocity gradient of [16] is steeper (up to 2 mm/yr) with respect to the
1 mm/yr gradient estimated in our study. However, the difference can be explained by
the use of a different dataset in a different observation period (SAR sensor: ENVISAT;
observation period: 2004–2010). Despite these differences, both studies reveal the pres-
ence of geodetic signals potentially related to tectonic deformation associated with the
Bassano-Valdobbiadene thrust.

Anderlini et al. [16] also included the Montello thrust in the model used to explain the
detected geodetic signals in the area. Indeed, the Montello thrust represents another important
tectonic structure, with an estimated uplift rate of 0.4–1 mm/yr and slip rate of 0.47–1.56 mm/yr
based on geological, geomorphological, and geodetic evidence [16,49,79,83,116,118]. Further-
more, the Montello thrust seems characterized by a low interseismic coupling degree, likely
associated with a component of the aseismic release of strain [15,16,116]. In our case, a
weak signal might be attributed to the activity of the Montello thrust.

The second profile crosses the Carnic and Julian Alps in an area where historical and
instrumental seismicity suggests the activity of thrusts and strike-slip faults [45–47,87].

Unlike the other velocity profiles, where we observe a good agreement between InSAR
and GNSS measurements, here we report some differences in rates, such as the velocities
recorded near the TARV GNSS site (Figure 7). In this case, these discrepancies might be
attributed to the linear estimation of the velocity for InSAR data without considering the
seasonal contributions, as done for the GNSS measurements. Another possible explanation
might be the potential atmospheric residuals due to the strong topography gradient in
the area [99,119]. Thus, to better evaluate these differences, further analysis should be
conducted to estimate the InSAR velocities, considering all the signals within the time
series. Nevertheless, both geodetic datasets detect a positive trend across the Alpine belt.

Within 50 km along the profile between Udine and Tarvisio, we observe velocity
gradients in both directions, corresponding with south-verging thrusts and transcurrent-
transpressive faults (Figures 7 and 8). Together with the distributed seismicity, these signals
are consistent with the activity of the tectonic structures in the area, which was also hit by
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the destructive seismic sequence in 1976–1977 (mainshock Mw 6.4) [45–47,85]. According
to recent studies, the event was attributed to the activation of the Susans-Tricesimo thrust
with the potential contribution of transpressive faults (i.e., Predjama fault), which played
an essential role during the 1976 activity (characterized by the two events of 6 May 1976;
Mw 6.4 and 15 September 1976; Mw 6.0) [87,120]. The evidence suggests a complex
interaction between the two tectonic systems, indicating the need to further investigate
regions characterized by a high seismogenic potential [12,15].

The Fella-Sava fault, a 150-km long active dextral strike-slip fault with an estimated
slip rate of ~1 mm/yr, should be considered since it may play a significant role in the
seismotectonic context of the study area [15,54,82]. In these regions, the vertical rates
decrease southward (eastern border between Italia and Slovenia) and eastward (i.e., in
Austria and Slovenia), with values up to 0.5–1 mm/yr, as estimated by Sternai et al. [115]
with GNSS measurements (Figure 7).

The westward motion of ~1 mm/yr observed in the Friulian plain near Udine (Figure 8)
is more difficult to explain. Considering the presence of active thrusts and the termination
of the Dinaric strike-slip faults, such as Idrija, Predjama, and Raša faults in the area, we
suggest a potential correlation between the deformation pattern and the tectonic structures
(i.e., buried thrusts and transcurrent and transpressive faults) in the area. The activity
of these buried structures is also suggested by Viscolani et al. [121], whose estimated
vertical rates agree with our observations (Figure 7). Moreover, Serpelloni et al. [15]
identified residual westwards, sub-mm/yr, motions in an Adria-fixed reference frame near
Udine. However, considering the magnitude and related uncertainties of the signal and
the low correlation between InSAR and GNSS measurements in the area, the detected
deformation pattern should be further investigated using appropriate methods, such as
time series analysis.

The third profile across the External Dinarides shows no significant deformation
signals in the vertical velocity profile until Gorizia (e.g., GORI GNSS site; Figure 9).

Between the Raša and Idrija faults, the uplift of ~1 mm/yr and the eastward gradient of
1 mm/yr might be correlated with deformation associated with Dinaric structures, as shown
in the geological profile modified from Moulin et al. [56] (Figures 9 and 10). Seismicity here
is concentrated on the basement-carbonatic platform transition (10–15 km deep).

The subparallel dextral strike-slip faults are active, and their slip rates have been
estimated by exploiting multi-disciplinary investigations. For example, Moulin et al. [56]
used 36Cl cosmic ray exposure dating to extract the mean slip rates over the last 255 kyr
of 1.30 ± 0.20, 1.15 ± 0.15, and 1.45 ± 0.25 mm/yr for Raša, Predjama, and Idrija faults,
respectively. Moreover, Atanackov et al. [82] reported 0.7, 0.7, and 1 mm/yr slip rates for
the same structures, relying on geologic, paleoseismic, geodynamic, geophysical, geodetic,
and seismological data. Despite their low slip rate and complex geometry, these active
dextral transcurrent-transpressive tectonic structures are capable of moderate/strong earth-
quakes, as demonstrated by the 1998 Mw 5.6 and 2004 Mw 5.2 Bovec-Krn earthquakes (NW
Slovenia) attributed to the Ravne fault [82,122–125].

Although it is not possible to discriminate the contribution of every single struc-
ture, the signals detected in our profile confirm the activity of these transcurrent and
transpressive structures. Furthermore, we have to consider the complex geometry of the
Dinaric strike-slip faults, composed of several segments [82], which may move differently
(i.e., aseismically and seismically). Observing the velocity maps and profiles, we might sug-
gest the aseismic behavior of one or more segments of the Predjama fault. Conversely, the
Ravne fault, which showed valve behavior in the past, related to the 2004 Mw = 5.2 Bovec
event [57], may be locked, considering the absence of tectonic signals near the structure
during the 2015–2019 interval.
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4.2. Non-Tectonic Signals

In the present study, we highlight the presence of deformation signals not correlated
with the active tectonic structures in the area, such as the subsidence in the Venetian-Friulian
plain and the Adriatic coast.

The vertical velocity map (Figure 5B) shows diffuse subsidence areas along the coast and in
the Venetian-Friulian plain, whose rates generally agree with precedent studies [17,18,24,64,89].
Analyzing the vertical velocity profiles (Figures 6, 7 and 9), we interpret the vertical trend
as long-term subsidence related to the differential compaction of the shallow sediments,
given the presence of thick sedimentary units and the lack of seismicity.

In the vertical velocity profile, we note a spatial correspondence between the abrupt
velocity jump recorded south of San Donà di Piave (SDNA site) and the Friuli platform-
Northern Adriatic Basin transition (Figure 6). Furthermore, higher subsidence rates are
recorded in the northern Venezia lagoon, where the lithostratigraphic features and the
thickness of Quaternary deposits strongly influenced the subsidence [18,88,89]. Conversely,
the Grado-Marano Lagoon presents lower rates that decrease eastward and toward the inner
areas (Figures 7 and 9). These differences might be related to the absence of paleobasins,
such as the Belluno-Northern Adriatic ones, and the reduced thickness of the Quaternary
deposits. As also reported by Da Lio and Tosi [21], the subsidence around the Grado-
Marano Lagoon is mainly dominated by bedrock settings and Holocene deposits.

Although we detect the same deformation spatial patterns, our results differ from
previous works. For example, the mean subsidence rates estimated in our study spanning
2015–2019 with Sentinel-1 result being lower than the rates measured with ERS1/2 (period
1992–2002) and ENVISAT (2003–2007/2010) in [17,18,21].

Aside from using different SAR sensors, differences among datasets can be attributed
to the time-variable phenomena responsible for subsidence in the study area. In particular,
the combination of several causes, which act differently in time and space (i.e., consoli-
dation of compressible sediments due to natural processes or presence of surface loads,
tectonics, fluid extractions, seasonal fluctuation of aquifers, and human activities), can
induce heterogeneity and variability, both in space and time, of subsidence rates in the
study area [17,18,52,88,89,126].

An example of land subsidence due to multi-causes is Portogruaro (PORT in Figure 6).
The high subsidence rates are related to the consolidation of the Holocene lagoon and
alluvial deposits mainly due to urbanization and the extraction of fluids [26].

The mean ground LOS velocity maps represent the linear estimation of the displace-
ments recorded along the radar Line-Of-Sight direction during the observation period.
However, in the case of time-variable phenomena, such as subsidence, time series analysis
helps to evaluate changes during the observation interval.

In this work, we report two examples of InSAR time series after the correction for the
calibration linear trends for the sites of Grado and Portogruaro.

In Figure 11, the average LOS time series of the PSs around Grado (GRDO GNSS
station in Figure 6) and the GNSS time series projected along the LOS direction present an
annual sinusoidal component and a general negative linear trend in both LOS datasets,
implying a downward movement of the site. Similarly, the LOS time series of Portogruaro
(PORT GNSS station in Figure 6) shows annual components and a negative velocity trend,
especially within 2016–2019. However, before 2016 and after 2019, a change in trends and
annual components can be observed.

The seasonal signals are, in both cases, characterized by an annual periodicity with rel-
ative peaks in late summer/autumn. In contrast, the relative minimum values correspond
to the winter/early spring season. Since both time series are similar in relative maximum
and minimum point locations, the areas move vertically, uplifting during summer/autumn
and subsiding during the winter/spring months, in agreement with Serpelloni et al. [62].
Furthermore, despite the generally negative deformation trend, we observe some trend
changes, especially in the PORT time series before 2016 and after 2019. As shown in
Figure 11, the different trends suggest an increase and a decrease in velocity, respectively.
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Hence, observing the time series of the site (PORT; Figure 6), the presence of a po-
tential acceleration of the land subsidence suggests the presence of temporally variable
deformation phenomena.

5. Conclusions

Our study provides a high spatial resolution outcome, allowing the detection of
deformation patterns and the estimation of velocity gradients.

Considering the tectonic aspects of the area, our analysis shows a correlation between
the interseismic signals and the active Alpine-Dinaric tectonic structures. Our findings can
be summarized as follows:

1. A positive vertical gradient of 1 mm/yr is observed between the Montello and the
Prealps due to strain accumulation of the deepest portion of the thrusts. Specifically,
we suggested the Bassano-Valdobbiandene thrust as the main one responsible for the
interseismic signal detected in the area.

2. The eastward (1 mm/yr) and upward (1–2 mm/yr) interseismic signals are accom-
modated by the Friulian Alpine-Dinaric faults (i.e., thrusts and strike-slip faults) in
the area.

3. The westward signal of 1 mm/yr recorded near Udine might be related to transcurrent-
transpressive systems and buried thrusts, although further investigations and analysis
are required.

4. The velocity profiles traced across the Dinaric dextral strike-slip faults show an uplift
and an eastward motion (about 1 mm/yr) that can be attributed to the tectonic activity
of the Raša, Predjama, and Idrija faults.

Regarding non-tectonic signals, we observe diffuse subsidence mainly on the Venetian-
Friulian plain and along the coasts (0.5–2 mm/yr), confirming a strong correlation with
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the geological setting of the area. Strong local subsidence signals can also be identified
(i.e., Portogruaro) due to several natural and anthropogenic causes that induce differential
subsidence in the areas.

Our study provides a detailed view of the regional deformation processes in the study
area, mainly focused on interseismic and subsidence signals. However, further analysis
should be conducted to deepen our knowledge of the ongoing processes. Time-series
analysis and correlation with ancillary data (e.g., temperature, extraction of fluids, and
groundwater variations) are necessary to improve the understanding of their effects and
their evolution in time and space. In addition, fault modeling (i.e., 2D and 3D models)
is fundamental to defining the geometric and kinematic parameters of active faults and
deepening our knowledge of their seismogenic potential (i.e., estimation of locking depths
and slip rates).
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GNSS east-west and vertical velocity plots. Table S4. Standard Deviation values (mm/yr) of the LOS
calibrated velocities. Figure S3. Standard Deviation maps of the LOS calibrated velocities for the
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