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Abstract—In biomechanics, a still unresolved question is how to
estimate with enough accuracy the volume and mass of each body
segment of a subject. This is important for several applications
ranging from the rehabilitation of injured subjects to the study of
athletic performances via the analysis of the dynamic inertia of
each body segment. However, traditionally this evaluation is done
by referring to anthropometric tables or by approximating the
volumes using manual measurements. We propose a novel method
based on the 3D reconstruction of the subject’s body using the
commercial low-cost camera Kinect v2. The software developed
performs body segment separation in a few minutes leveraging
alpha shape approximation of 3D polyhedrons to quickly compute
a Montecarlo volume estimation. The procedure was evaluated
on a total of 30 healthy subjects and the resulting segments’
lengths and masses were compared with the literature.

Index Terms—body segment parameters, measurements, an-
thropometry, biomechanics, body volume estimation

I. INTRODUCTION

In biomechanics, the human body is often modeled using
rigid links to simplify the estimation of kinetic properties using
inverse dynamics [1]. This process, however, is greatly sensi-
tive to the body segments’ parameters used [2], in particular
mass and center of mass of each body segment (BS). The
direct measurement of these parameters is performed using
medical imaging systems, which are usually not available
for biomechanics studies. Another reliable option is using
optimization techniques on specific motions performed by
the subject [3], but this could only be applied to healthy
subjects since the mobility required to perform the test may
be excessive for injured subjects. Therefore, body segments’
parameters are frequently estimated using data from the lit-
erature [4], in particular from regression equations based on
cadaver studies [5], [6] or imaging [7] and the subject’s
height and weight. Data tables and references, however, re-
fer to a specific population sample and sometimes not all
necessary measurements are included, especially in the case
of women or different groups. Unfortunately, in some cases,
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this introduces an excessive approximation [8], [9]. Manual
measurements performed by trained personnel using a standard
tape to measure segment dimensions could be used to obtain
a subject-specific model, as suggested in [2]. From manual
measurements, the volume estimation can be done using a
truncated cones model roughly approximating the actual shape
of the segment, especially in the case of shoulders, trunk, and
pelvis [10]. This approach as well has limitations, since it
relies on operator accuracy and is time-consuming.

Therefore, we propose a novel method for the subject’s
body segments’ volume and mass estimation based on the
acquisition and elaboration of 3D point clouds and color data,
empowered by a deep learning skeletonization model. We
developed a test bed purposely designed to work well with
subjects with spinal cord injury and adopted a Kinect v2
camera to acquire the subject’s data fast and robustly with
little to no preparation steps, hence the testing procedure is
quick and cost-effective. The point cloud and color frame
are elaborated by a post-processing procedure that outputs the
body segments’ volumes and masses in a few minutes. Vali-
dation of the proposed approach was conducted by comparing
the resulting data with anthropometric tables and manual
measurements.

A. Related Work

In the last decade, 3D data acquisition systems have
achieved a high degree of accuracy and significant growth in
applications. With the 3D model generation, a wide variety
of information can be obtained quickly and easily, including
volume. In the medical field, the problem of human volume
estimation has been well investigated and it is quite commonly
exploited using the computerized axial tomography scan. This
method has become common for large hospitals due to its
accuracy, also suitable for subjects with motion impairments.
However, this technology is typically not easily accessible due
to its high cost. Another approach is based on the adoption
of consumer-end 3D cameras such as Kinect. Authors of [11]
acquired human profiles using Kinect v1 and reconstructed
the bodies’ mesh by exploiting commercial software. The
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work in [12] describes a custom acquisition set-up made
of multiple Kinects to extract person-specific body segments
parameters, highlighting the high reliability of such a system.
An evaluation of volume estimation techniques is given in
[13] where the authors compared the results of their proposed
algorithm to estimate the person’s full body weight when in
different scenarios: subject laying on a flat surface, standing
still, and walking towards the sensor. Other approaches based
on 3D imaging were proposed recently [14], but they require
a full scan of the subject (front and rear surfaces), which is
possible only if the subject is able to stand upright, which is
sometimes impossible if motor impairments are present.

II. PROPOSED METHODOLOGY

A. Acquisition set-up

The system used for the acquisition includes an orthopedic
bed on top of which a Kinect v2 camera is attached via a
mechanical structure. The size of the bed base is 106 x 206 x
39 cm. A wooden frame is mechanically attached to the top of
the bed base to ensure the lateral extension of the arms when
the subject lays supine on the bed. An additional layer with
a custom-made, high-density 0.1 kg/dm3 foam mattress is
placed on top of this frame. Due to its properties, it ensures low
deformation and end-user comfort. The position of the Kinect,
placed above the subject parallel to the bed, and the rigid
structure on which it is installed ensure good measurement
stability, as the relative position between the camera and the
bed base does not change. Color and depth images acquired
with the camera are collected, processed, and displayed on a
cable-connected PC.

B. Point cloud filtering

The acquired point cloud includes elements of the bed
and the background which interfere with a proper volume
estimation procedure (see the left image in Fig. 1). Since the
bed dimension is known, it is easy to eliminate points falling
outside of it, such as the ground (which has a Z coordinate
higher than the bed’s) and the bed’s support metallic elements
that can be seen at the lateral extremities of the bed (X and
Y coordinates outside the bed’s limits). This step is named
coarse filtering.

After the coarse filtering process ends, the point cloud
includes only the subject’s body and the bed surface (see
the middle image in Fig. 1). To remove it, a planar fitting
is performed resulting in the elimination of the bed’s points.
Moreover, by using the planar surface of the bed it is possible
to correct any angular misalignment, thus transforming the
subject’s cloud in the reference system RFbed centered in the
middle of the bed (roughly corresponding to the subject’s
abdomen) and perfectly aligned to the three axes (see the
right image in Fig. 1). This allows further processing to run
smoothly since the subject now lays face up in the projected
XY plane. It is worth noting that for visualization purposes
the Z coordinate was reversed, so Z = 0 corresponds to the
camera’s position and negative values to the distance of the
scene’s points from it. This step is named fine filtering. The
result of the whole procedure is an affine transformation matrix
R | t needed to transform a point in the new reference system
RFbed.

C. Body skeleton estimation

The subject’s skeleton is estimated by the famous Medi-
aPipe BlazePose deep learning model [15]. This model was
chosen because is considered the state-of-the-art among skele-
tonization models and runs fast even on CPU-only machines.
From the point cloud, it is possible to compute the original
color image and corresponding depth map (both of the same
resolution of 412x524 px) using the intrinsic parameters. The
color image of the subject is elaborated by BlazePose and the
body’s keypoints (KPs) are saved in a JSON file. BlazePose
outputs a total of 33 KPs, but only 13 of them are selected
considering which are actually necessary to the biomechanical
model. Moreover, the selected KPs are compatible with most
skeletonization models, also allowing an easy comparison for
future developments. Two more KPs are computed: the neck
joint KP2 (midpoint of the shoulders) and the midpoint of the
hips KP15. The 15 KPs are expressed in pixel coordinates and
are shown in Fig. 2.

D. Biomechanical model

Since models used in biomechanics are based on a different
segment definition from the ones based on pose estimators
(such as in Figure 2), a conversion was performed between

Fig. 1. Example of the point cloud filtering process. From left to right: original point cloud, result after coarse filtering (removing background), result after
fine filtering (removing the test bed with planar fitting). The Z coordinate has been reversed for visualization purposes.

Authorized licensed use limited to: Università degli Studi di Brescia. Downloaded on July 26,2023 at 08:49:31 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Scheme of the KPs sampled from the extracted BlazePose skeleton.
Red KPs correspond to BlazePose keypoints, yellow KPs are calculated as
midpoints and purple KPs are computed by the biomechanical model.

the two approaches. The resulting model chosen is the one
used in the Eurobench project [16], which is in turn based
on the anthropometric data by [5]. From pose estimators, we
have all the joints’ positions related to the limbs, which could
be easily translated unaltered. The head and the trunk are
estimated starting from the measurement of shoulders and hips
and assuming the same proportion of the spine as reported in
anthropometric reference tables [5] and [6]:

1) a vector midBody is computed by joining KP2 and
KP15

2) the position of C7 (KP19) is estimated starting from the
neck joint (KP2) and moving upwards of a fraction of
midBody, estimated according to the angle between the
suprasternal notch and the cervical joint center reported
in [6]:

KP19 = KP2 +
KP1−KP2

|KP1−KP2| · |midBody| · 17% (1)

3) KP17 represents the midpoint between the anterior su-
perior iliac spines and is computed using the normative
proportion of the hip reported in [5] by moving upwards
KP15 (mid hip) by a fraction of the width of the hip
Whip:

KP17 = KP15 +
midBody

|midBody| ·Whip · 47% (2)

4) the location of the last thoracic vertebra, T12 (KP18) is
computed as a point on the midBody at a fraction of
its length:

KP18 = KP17 +midBody · 36% (3)

The numerical values used in these equations are based on the
average vertebrae heights as reported in the literature [17] and
on the normative segment dimensions reported in widely used
anthropometric tables [5].

The resulting KPs are 19 expressed in pixel coordinates. To
express them in metric coordinates, a conversion is performed
by using the intrinsic parameters of the IR camera of the
Kinect v2, which are the sensor’s optical center along the X
and Y coordinates Cx and Cy , and the sensor’s focal length
along the X and Y coordinates Fx, Fy . Therefore, to convert

a point Ppx = (i, j) expressed in pixel coordinates to its
corresponding point Pm = (X,Y, Z) expressed in meters
coordinates the formula is:

X = Z · (i+ k − Cx)

Fx

Y = Z · (j + k − Cy)

Fy

(4)

given that the Z coordinate of Pm is known from the depth
map. The correction parameter k is used to address distortions
and misalignments that may happen during the color-depth
registration procedure done internally by the Kinect v2, hence,
in this case, is known and equal to 0.5 px.

Fig. 3. Example of the vectors computed by the biomechanical model drawn
on a color image of a subject. Red vectors refer to left KPs, blue vectors to
right KPs, and green vectors to the trunk KPs.

E. Volume estimation algorithm

The volume estimation procedure is conducted following
three steps: (i) body segments separation, (ii) body segments
point cloud filling, (iii) Montecarlo volume computation.

1) Body segments separation: Since the subject’s point
cloud is centered in RFbed, the separation of body segments
point clouds can be easily done by projecting the subject’s
point cloud on the XY plane. Using the vectors of the biome-
chanical model, it is possible to build enclosing polygons (EP)
around the segments and detect which points fall inside the
EP. This process also acts as a further filtering step because
the eventual background noise that may still be present in
the cloud is discarded if it does not belong to the EPs. To
compute the EPs it is sufficient to calculate the equation of
orthogonal and parallel lines starting from both the vectors
and the 19 KPs of the biomechanical model of the subject.
For most BS the EP is determined by the intersection of 4
to 5 lines. However, special BS such as the shoulders (which
is determined by 8 lines), the head, the hands, and the feet
(which are all computed considering their proximal KPs and
the corresponding vectors but do not have a distal KPs) are
computed with an ad-hoc routine. The output of this step is
a MATLAB structure in which each BS point cloud is stored
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according to the corresponding EP. In Fig. 4 an example of
this separation is shown using different colors.

Fig. 4. Example of the BSs separation shown with different colors. Note
that the point cloud of the head and feet is noisy due to the incorrect depth
acquisition, corrected afterward.

2) Body segments point cloud filling: After the separation,
some body segments may have wide gaps that interfere with
the following elaboration, for example, the gap between the
arm and the forearm in correspondence of the elbow KP.
Moreover, by removing the bed from the cloud the bottom
portion of the resulting body is empty and only the surface
seen by the camera is present. Therefore, to address this issue
two approaches are adopted:

• bottom filling: the bottom portion of each BS cloud
is filled with artificial points created by copying the
original BS cloud points and projecting them to the max
Z coordinate corresponding to the position of the now
removed bed.

• gaps filling: this step is only performed when the gaps
originated by the BS separation are too wide or the shape
of the BS has a particular geometry (i.e. shoulders and
trunk body segments which have a pointy shape). In this
case, artificial points at different Z coordinates are created
starting from the XY coordinates of points belonging to
the surface’s edge.

For head and feet BSs the procedure is slightly different.
In the case of the head, points laying at the max Z coordinate
are treated as outliers to be removed in order to eliminate the
effect of bad depth acquisition that happens due to the head’s
shape. Then, the bottom filling procedure is performed on the
filtered cloud. In the case of the feet, depth acquisition fails
because the shape of the feet points upwards but the IR ray is
projected on the bed’s surface (see Fig. 4). The result is a BS
cloud that doesn’t account for the plantar shape. Therefore, the
idea is to separate the points belonging to the actual feet from
those badly projected on the bed by using a KNN procedure
with 3 centroids. The centroid closer to the max Z coordinate
represents points that must be eliminated from the cloud. It
is worth noting that feet BSs do not undergo any other filling
process after this filtering.

3) Montecarlo volume computation: To estimate the vol-
ume of an object using the Montecarlo procedure as detailed
in [18], the idea is to enclose the 3D object in a rectangular

cuboid. Each size of the cuboid is computed considering the
minimum and maximum corresponding size of the 3D object.
The cuboid is then filled with N >= 100000 Montecarlo
points. The volume of the object is therefore calculated as:

Vobject =
Nobject

N
· Vcuboid (5)

where Vcuboid is the volume of the cuboid (easily computed
since it is of known size) and Nobject corresponds to the
number of Montecarlo points that falls inside the 3D object
shape.

However, the procedure detailed in [18] to correctly com-
pute Nobject is extremely time-consuming. Therefore, in this
work, we propose a faster approach leveraging alpha shapes.
The alpha shape of a set of points is a definition of its shape
in the 2D or 3D space. It is a generalization of the convex
hull and a subgraph of the Delaunay triangulation; hence, the
convex hull is just one type of alpha shape, and the full family
of alpha shapes can be derived from the Delaunay triangulation
of a given point set. The alpha parameter is defined as the value
a, such that an edge of a disk of radius 1/a can be drawn
between any two edge members of a set of points and still
contain all the points [19]. The alpha shape of a set of points
is computed by using the MATLAB function alpaShape. Then,
the value of Nobject is obtained by converting the alpha shape
to a polyhedron and simply counting which Montecarlo points
are inside it. However, to ensure that the computation is done
properly, the BS point cloud should not have large gaps. It is
worth noting that for each BS, the a parameter is set differently
to account for the differences between shapes (i.e. the arm
shape is very different from the trunk shape). Values used in
this work were found experimentally and are: (i) 0.08 for the
head, shoulders, pelvis, arm, shank, and foot BS, (ii) 0.05 for
the forearm and hand BS, (iii) 0.15 for the trunk BS, (iv) 0.2
for the abdomen BS, and (v) 0.22 for the leg BS.

F. Mass estimation

For each body segment, a density value was assumed using
data available from the literature [5]. For density not reported
in the literature a fixed value was assumed as 1 g/cm3.
The mass of each segment was computed by multiplying this
density value times the estimated volume.

III. EXPERIMENT

A. Protocol

Each subject is informed about the experiment and his/her
rights according to the Helsinki declaration. The subject is
then asked to undress, keeping only the underwear (and the
brassiere for women), to remove unnecessary devices such
as watches, necklaces, bracelets, glasses, and earrings, and
to wear an elastic cap to prevent hair from being identified
as a body segment. The experimental protocol itself is divided
into two parts. The first part requires a trained staff member to
measure the subject’s body using a sartorial tape as a reference
control. The manual measurements taken this way are:
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• arm, forearm, leg, shank: proximal and distal circum-
ferences Op and Od, segment’s length Dsegment

• head: circumference of the head Ohead taken 1 cm higher
than the ears, length Lhead taken from C7 to the head
tip

• trunk and abdomen: distance between the shoulders
Dshoulders, circumference of the chest Ochest taken in
correspondence of the nipples, circumference and width
of the sternum Osternum and Wsternum, circumference
and width in correspondence of T10 OT10 and WT10,
length of the trunk Ltrunk taken from C7 to T10, length
of the abdomen Labdomen taken from T10 to L5

• pelvis: distance between the two asi Dasi, circumference
and width of the hips taken in correspondence of the asis
Oasi and Wasi, width of the trochanters Wtroch, distance
from the asi to the trochanter Dasi−troch

• hands: width and length of the right hand Whand, Lhand

• feet: width and length of the right foot Wfoot, Lfoot,
circumference of the ankle Oankle, height of the heel
taken from the ankle to the ground Hfoot

While the first part of the protocol is required only during
the validation of the proposed method, the second part of
the protocol is the actual measurement, and the only one to
be actually performed to assess the subject’s body segments’
parameters. The second part requires the subject to lie on
the bed for the 3D data acquisition. The posture must be the
following: (i) head face-up near the edge of the structure, (ii)
arms straightened near the bottom angles of the upper portion
of the bed with an angle of around 60° between arms and
chest, hands palms down, (iii) legs slightly apart at around
shoulder’s length, and (iv) feet orthogonal with respect to the
bed, toes facing up.

During the volume acquisition procedure, the patient is
asked to exhale all the air from the lungs to avoid detecting an
over-expanded chest. The operator should count backward to
inform the subject of the start of the acquisition. The patient
should hold his breath until the end of the acquisition process,
which takes about three seconds.

B. Experimental campaign

Data for the present study were collected from December
2022 to March 2023 at the University of Brescia. A total of
30 participants (18 males, 12 females, average age of 26 years
old) were recruited. Inclusion criteria were age 18-79 years and
the ability to give informed consent. Exclusion criteria were
inability to lay down and still on the bed, uneasiness to undress
in their underwear, and any condition affecting the body shape
(i.e., amputations, pregnancy). Each subject signed a written
informed consent before inclusion in the study detailing the
experimental campaign. No personal data was stored except
for those needed for the tests. The data collected was treated
according to the Helsinki declaration.

IV. RESULTS

Two different sets of body segments’ parameters were
obtained: masses and lengths. All segments’ lengths were
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Fig. 5. Difference between segments’ lengths as measured by the scanner
and the same length measured manually by an expert operator. Values are
normalized on the subject’s height.

normalized by dividing the value obtained by the subject’s
height and then compared with the manual measurements
taken by the expert operator in the first part of the protocol.
Hands, feet, and the head were excluded from the comparison
since the KPs of these segments do not coincide with their
endpoints. Lengths comparison are here reported in Table 1
and in Fig. 5.

All segments’ masses were normalized by dividing the value
obtained by the subject’s weight and then compared with
the values reported in the literature by Dumas [5]. Masses
comparisons are here reported in Table 1 and in 6. Since the
population involved in this study differs from the population
used to assess the values in [5] the difference between the
two is reported here as an indication of the two approaches’
differences and similarities and not as an indicator of an error
in the measurements of volumes.

V. DISCUSSION

The results reported in Fig. 5 show clearly that the scanner
is able to identify correctly the endpoint of the segments
within a 3% of the subject’s height, making us confident that
the separation into body segments starting from the image
is accurate enough for most biomechanical research studies.
Hands, feet, and head are missing from the length analysis,
but being extreme segments this has a limited impact. The
proposed 3D acquisition performs well and fast even if only
one camera was adopted, however, in future developments a
multi-Kinect set-up will be explored as well. The comparison
of segments’ masses reported in Fig. 6 gives mixed results:
on one side it’s clear that the median is close to the values
assessed using anthropometric tables, on the other, it displays
great variability in the differences between the two. This study
involved adults, young adults, males, and females subjects.
The variability of the population body segments is clearly
visible by looking at the variance of the two main body
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Fig. 6. Difference between segments’ masses as measured by the scanner
and the same mass estimated using anthropometric tables based on Dumas[5].
Values are normalized on the subject’s weight.

TABLE I
COMPARISON OF SCANNER RESULTS WITH REFERENCE DATA

difference between lengths difference between masses
scanner - manual meas. scanner - Dumas 2005

Segment % of subject’s height % of body weight
mean st.dev mean st.dev

head n/a n/a 1.0 1.4
thorax -0.3 1.6 4.6 8.1
abdomen 0.9 1.0 -2.2 2.7
pelvis 0.3 2.0 2.0 2.8
armL -1.8 1.2 0.3 0.4
armR 2.1 1.0 0.4 0.4

forearmL -0.1 0.9 0.2 0.3
forearmR -0.8 0.7 0.3 0.2

legL -0.6 1.7 0.6 1.4
legR -1.0 1.7 0.6 1.5

shankL -2.4 1.3 1.0 0.9
shankR -2.7 1.4 1.0 1.0
handL n/a n/a -0.2 0.1
handR n/a n/a -0.2 0.1
footL n/a n/a 0.3 0.5
footR n/a n/a 0.3 0.5

segments: the thorax (with a standard deviation of 8% of the
body weight) and the abdomen (with a standard deviation of
3% of the body weight). Other possible sources of variability
for the thorax and abdomen could be the subject respiratory
phase, as the user was asked to exhale during the scan but no
control over the air content was performed. Finally, the bed
itself could play a role, since the supine position changes the
spine curvature with respect to a standing pose, altering the
proportion between the thoracic and lumbar segments of the
back. Furthermore, the amount of tested subjects is still not
enough to reach a satisfactory result since the collected dataset
may be unbalanced. In further developments, motion-impaired
patients will be tested as well to validate the robustness of the
approach.
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