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Abstract: This research paper aimed to validate two methods for measuring loads during walking
with instrumented crutches: one method to estimate partial weight-bearing on the lower limbs and
another to estimate shoulder joint reactions. Currently, gait laboratories, instrumented with high-end
measurement systems, are used to extract kinematic and kinetic data, but such facilities are expensive
and not accessible to all patients. The proposed method uses instrumented crutches to measure
ground reaction forces and does not require any motion capture devices or force platforms. The
load on the lower limbs is estimated by subtracting the forces measured by the crutches from the
subject’s total weight. Since the model does not consider inertia contribution in dynamic conditions,
the estimation improves with low walking cadence when walking with the two-point contralateral
and the three-point partial weight-bearing patterns considered for the validation tests. The shoulder
joint reactions are estimated using linear regression, providing accurate values for the forces but less
accurate torque estimates. The crutches data are acquired and processed in real-time, allowing for
immediate feedback, and the system can be used outdoors in real-world walking conditions. The
validation of this method could lead to better monitoring of partial weight-bearing and shoulder joint
reactions, which could improve patient outcomes and reduce complications.

Keywords: partial weight-bearing; instrumented crutches; walking aid; gait analysis; biomechanical
model; shoulder joint; shoulder load; load measurement

1. Introduction

Incremental weight-bearing is often required during post-surgery gait rehabilitation
to reduce implant failures and improve soft tissue healing. The Partial Weight-Bearing
(PWB) approach includes increasing weight loading on the limb progressively over time,
which varies between patients depending on the extent of the injury and the judgment
of the clinician [1,2]. Walking aids, such as crutches, can also help reduce instability
in patients with after-stroke hemiparesis and are prescribed for weight-bearing on the
involved weak lower extremity [3]. During rehabilitation, physiotherapists usually provide
instant feedback to the patient regarding posture, load, and step sequence according to
his/her perception and experience. The results are thus tied to the therapist’s skills, and
the patient’s improvements are evaluated by the therapist’s subjective considerations [4].
Several studies have reported that adequate compliance with lower extremity partial weight
bearing is not usually reached, increasing the risk of complications [5–8]. In [7], none of
the patients were able to follow the prescribed reduction of 30% of their body weight
(BW), and one-third of them were not aware of their inability to follow the instructions.
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Another study highlighted that none of the participants managed the prescribed load on
the operated limb, especially patients who were 60 years old or more [8]. It is necessary
to monitor not only consequences on the affected limb but also secondary symptoms
involving the upper extremities, which can be stressed during daily activities if crutches are
involved [7,9–11]. In [12], shoulder force magnitudes up to 170%BW were measured during
crutch-assisted walking with partial or complete unloading of the lower limb. Moreover,
the number of repetitions during long-lasting crutch use could lead to shoulder problems
as a long-term consequence.

Force platforms and motion capture systems are commonly used to extract kinematics
and kinetics information of the gait also when performed with walking aids. Even if gait
laboratories could perform highly accurate measurements [13], some limitations must be
considered in clinical applications: they are expensive to set up and operate [14]; patients
may need to travel to a specialized gait laboratory, and this can be challenging for individ-
uals who have limited mobility; the controlled environment of the laboratory may be a
rough simulation of a patient’s real-life walking patterns; and the test takes place over a
relatively short period of time [15]. Moreover, the information related to the reaction forces
of the shoulders is not usually available in real-time since it requires post-process analysis
of the acquired data.

Recently, several wearable technologies have aimed to bring gait analysis outside
laboratory conditions. Many instrumented insoles are used to collect data in daily life
activities, and most of them allow real-time acquisition, but they usually require a pre-
liminary calibration to measure forces accurately [14,16,17]. Other research groups and
enterprises are improving markerless systems based on inertial measurement units, but
they are not yet accurate enough in joint center locations or joint angle estimation [18,19].
Several research groups have created instrumented crutches because they allow the esti-
mation of the patient’s performance during walking and to provide feedback to improve
the rehabilitation. The systems developed in [20–26] measured the force applied to the
crutches and their orientation and send the acquired data via wireless communication. For
the force measurement, the systems in [21,22] used load cells mounted at the lower end or
inside the crutch, while the instrumented crutches in [23,26] used strain gauges to reduce
the cost of the device. In [20,21], the acquired data were displayed in real-time on a PC or
through a projector to show them to the patient or physiotherapist. In [21,22] vibratory
and audio feedback was added to inform the user of overloading or underloading, and
in [27], patients showed higher compliance to the rehabilitation goals when audio feedback
was provided.

In this paper, we provide a preliminary methodological validation of an estimator of
the partial weight-bearing of the lower limbs and the shoulder joint’s reaction forces during
a walk with instrumented crutches. The estimate was provided by a pair of instrumented
crutches to measure the ground reaction forces along their principal axis, and the forces
were acquired and processed in real-time, which is suitable to collect data or provide
feedback [20–22,27,28]. The system is validated on six healthy subjects, and since the
estimation of the load on the lower limbs during partial weight-bearing is affected by
dynamics factors ignored by the model, the tests were performed varying the walking
cadence and the load on the crutches. Two force platforms by BTS were used to collect
the reference values of the leg load. The models to estimate the shoulder reactions were
identified and tested using the reference values obtained by inverse kinematics using the
biomechanical model described in [11] and an optoelectronic motion capture system by
VICON. The estimator could produce accurate estimates of shoulder forces, although its
torque estimates were less accurate. However, as schematized in Figure 1, it does not
require motion capture devices to extract the subject’s kinematics, and the system can also
be used outdoors, bringing the analysis to environments outside the laboratory’s conditions.
Since neurological conditions, orthopedic problems, and medical conditions could lead
to alterations in gait behavior [29], this preliminary validation aimed to promote future
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investigations to confirm and reinforce the method by expanding the sample size and
including impairments.
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Figure 1. Comparison between the flowcharts of the biomechanical model approach and the shoulder
reactions estimator.

2. Materials and Methods
2.1. Experimental Set-Up

The instrumentation used and described in the following chapter is summarized in
Table 1, and the main details are listed.

Table 1. Summary of instrumentations and methods in the experimental setup.

Instrumentation Details

Instrumented crutches

• Range: 0–600 N
• Uncertainty: 6 N (p = 95%)
• Crutch mass: 1 kg
• Sampling frequency: 60 Hz
• Data sharing protocol: ROS
• Time synchronization: NTP server

Optoelectronic motion capture system (Vicon
Motion Systems Ltd., Yarnton, UK)

• Cameras: 8
• Volume: 6 × 3 × 3 m
• Marker protocol:

# full body VICON plug-in gait (39 markers)
# 2 markers on each foot
# 3 markers on each crutch

• Sampling frequency: 100 Hz

LockLab Control Box (Vicon Motion Systems
Ltd., Yarnton, UK) • Time synchronization: generates trigger output

BTS force platforms (BTS S.p.A., Garbagnate
Milanese, Italy)

• Dimensions: 0.8 × 0.6 m
• Range: 2 kN
• Uncertainty:
• Sampling frequency: 1 kHz
• Time synchronization: receives start/stop trigger from LockLab

Crutches Trigger box

• Available I/O channels: 3
• Data sharing protocol: ROS
• Crutch time synchronization: NTP server
• System time synchronization receives a start/stop trigger from LockLab

The instrumented crutches, shown in Figure 2, measure the force exerted along their
principal axis and the crutch’s orientation during assisted walking. They are a new version
of the previously developed instrumented crutches [23,24,26] in which the control unit
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is changed, and they also measure the gait phases using depth cameras mounted on the
lower part of the crutches [25,30]. A Raspberry PI 3 B+ controls the data acquisition from
the strain gauge bridges fixed close to the tip, and the crutch’s orientation is obtained by
an inertial measurement unit. Data are shared wirelessly in an ROS network [31], and a
PC under the same network collects them. The force is measured at 60 Hz in a range from
0 to 600 N with 6 N of measurement uncertainty (p = 95%) [23]. The total mass of a single
crutch, including the acquisition board and the power unit attached close to the handle, is
1 kg.
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Figure 2. (a) Instrumented crutches and marker placement; (b) subject walking with instrumented
crutches during validation. Red dots highlight the visible markers from the frontal point of view.

Besides the instrumented cutches, the experimental set-up included two force plates
from BTS Bioengineering to measure each foot’s ground reaction force and a marker-based
motion capture system from Vicon Motion Systems with 8 cameras to measure the subject’s
kinematics. The sampling frequencies were different for the three systems: the force
plates acquired data at 1 kHz, the motion-capture system acquired data at 100 Hz, and the
crutches acquired data at 60 Hz, so a resampling procedure was required before starting
data processing.

The Vicon Full Body Plug-In Gait model was used for the placement of the markers on
the subject’s body [32]. Two additional markers were placed on the first and fifth metatarsus
of each foot, and another three markers were fixed on each crutch, as shown in Figure 2. A
total of 49 markers were used in each trial.

A custom-made trigger box was used for data synchronization between the motion
capture system, the force platforms, and the instrumented crutches [33]. The internal
clock of the trigger box was synchronized with the same NTP server as that used for
the instrumented crutches, and when it received a rising edge from the input channel,
it published its timestamp in UNIX format through the ROS network. The published
timestamp was then associated with the first sample of the motion capture system and the
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force plates. The crutches were already synchronized with the NTP server, and they saved
their timestamp labels in UNIX format.

Vicon’s software Nexus was used to start and stop the acquisition of all the devices
involved in the experiment. The analog output channels of the Vicon Lock control box were
connected to the BTS’s trigger box and the instrumented crutches’ trigger box. When the
Vicon acquisition began, the control box generated a rising edge on the outputs. On the
rising edge, the BTS’s trigger box enabled the acquisition from the force plates, and the
instrumented crutches’ trigger box sent the start command and its timestamp through the
ROS network. The instrumented crutches streamed the data once they received the start
command. With a similar approach to the start, the control box generated a falling edge to
stop all the acquisitions.

Please note that this configuration was required for validation only; when the instru-
mented crutches are not used simultaneously with other devices, they can be controlled
independently.

2.2. Experimental Protocol

The experimental protocol aimed to acquire data useful for validating the proposed
PWB and shoulder reaction estimators. Since the effect of the gait dynamics was some-
how neglected in the model that determined the PWB from crutches’ forces, the protocol
included three different pacing conditions during walking: normal or subject’s preferred
rhythm and slow and fast cadence rhythms. These different conditions enabled the verifica-
tion of the dynamic effects of the proposed approach. A metronome helped the subjects
follow a cadence of 50 or 90 steps/min, with the goal of covering reasonable boundaries
of a walking cadence with crutches [34,35]. Subjects were asked to walk using the 2-
point contralateral pattern [36], and then the tests were repeated with the 3-point partial
weight-bearing (3-point PWB) walking pattern [36].

Finally, the protocol required two PWB levels in each condition. To achieve weight-
bearing values on the lower limbs comparable with those commonly prescribed by clini-
cians, the subjects must load 20% or 40% of their body weight on the crutch. In this way,
during the 2-point contralateral pattern, the PWB should stay between 60–80%BW, and
during the 3-point PWB pattern, it should stay between 20–60%BW.

In order to verify subject repeatability, at least three trials were conducted for every
condition. In addition, before starting the trial sequence, a calibration procedure was
necessary to calibrate the motion capture model and properly adjust the force plates to zero.
A training session of about 10 min was performed before these calibration procedures to let
the subjects familiarize themselves with walking patterns, cadences, and crutch loads.

Table 2 summarizes the protocol, which included a minimum of 33 useful trials for
each subject. The crutch loads were checked at the end of each test; if they reached the
required value, the trial was accepted, and otherwise, it was repeated.

Table 2. List of conditions of the experimental protocol.

Min. Number of Valid Tests Conditions

1× Static test on the first force plate
1× Static test on the second force plate
1× Vicon functional calibration
3× Normal gait, self-selected speed, no crutches
3× Normal gait, slow (50 steps/min), no crutches
3× Normal gait, fast (90 steps/min), no crutches
3× 2-point contralateral, slow (50 steps/min), 20%BW
3× 2-point contralateral, slow (50 steps/min), 40%BW
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Table 2. Cont.

Min. Number of Valid Tests Conditions

3× 2-point contralateral, fast (90 steps/min), 20%BW
3× 2-point contralateral, fast (90 steps/min), 40%BW
3× 3-point PWB, slow (50 steps/min), 20%BW
3× 3-point PWB, slow (50 steps/min), 40%BW
3× 3-point PWB, fast (90 steps/min), 20%BW
3× 3-point PWB, fast (90 steps/min), 40%BW

The experimental protocol was applied to 6 subjects, 5 male and 1 female with a weight
of 78 ± 12 kg, a height of 1.77 ± 0.03 m, and an age of 38 ± 12 years old (mean ± STD).
Since at this stage, we were interested in the validation of the proposed approach and
not in clinical validation, we performed the tests on healthy subjects only. The study was
conducted in accordance with the Declaration of Helsinki, and informed consent was
obtained from all subjects involved.

2.3. Partial Weight-Bearing Estimation and Validation

Since during assisted walking, the external forces applied to the subject are the ground
reaction forces on the feet and on the crutches, the authors believed that the load supported
by the user’s lower limbs could be estimated by subtracting the left crutch force (LCF) and
the right crutch force (RCF) from the total subject body’s weight (BW), which is the sum of
the instrumented crutches’ weight and the user’s weight. The load is then normalized and
expressed as a percentage of the total subject’s weight:

PWB =
TW − LCF − RCF

BW
(1)

The reference values are obtained from the sum of the left platform force (LPF) and
the right platform force (RPF), normalized by the total subject’s weight:

ˆPWB =
LPF + RPF

BW
(2)

The difference between the two values is considered the error:

ERROR = PWB − ˆPWB (3)

The error was calculated when all the external forces were known, and the validation
intervals were obtained from the gait events recorded by the motion capture. The valid
interval started after the last toe-off event outside the force platforms, shown in Figure 3a,
and it ended at the first heel contact outside the force platforms, as shown in Figure 3c. The
gait cycle was then divided into single and double support; Figure 3b shows the double
support phase starting from the first heel contact on the force plate and ending at the next
toe-off. Figure 3d shows the PWB estimated by the instrumented crutches compared with
the reference during the gait cycle.

Of course, the inertia contribution in dynamic conditions could worsen the results, so
a specific testing protocol was proposed to verify this point, varying the user’s walking
pace and the crutch loads. The root-mean-square error (RMSE) was used to measure the
difference between the values predicted by the estimator and the values observed. The
mean error (ME) was used to measure the systematic bias since the RMSE included both
stochastic and systematic errors.
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Figure 3. (a) The gait event at the start of the interval for the validation of the PWB. The single
support phase of the right leg started from this event until the next left foot’s heel contact. (b) The
double leg support phase with all external forces measured by instrumented crutches and force plates.
(c) The gait event at the end of the interval for the validation of the PWB. The left leg’s single support
phase was between the last toe-off and the next heel contact of the right foot. (d) Comparison between
the PWB estimated by the instrumented crutches and the reference value from the force plates, shown
in the right leg’s gait cycle. The blank background is due to the interval with unknown external forces
applied to the foot still resting on the floor.
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2.4. Shoulder Reaction Regressions

Shoulder reaction reference values were obtained by the biomechanical model out-
comes described in detail in [11]. The model is based on an inverse kinetics analysis of the
upper limbs. It was originally created to analyze torques in the sagittal plane, and then it
was extended to the other planes, including coupled three-dimensional effects. The inputs
required are the subject’s anthropometry, the kinematics of the crutches and the subject’s
upper limbs, and the force measured on the crutches. The model considers the hand rigidly
connected to the crutch, so the upper limb is described by three rigid segments: the crutch
plus the hand, forearm, and arm. The torque and the internal forces are computed at the
proximal end of the shoulder or arm. The biomechanical model’s main goal was to obtain
an online estimation of the overall shoulder torque; for this reason, a purely mechanical
model was considered; this model considers the overall torque required in the articulation
to realize the measured movement, and it does not include the forces produced by active
muscles on the articulation.

As previously described in the introduction, the purpose of the shoulder loads and
torque regression model is to obtain their estimates without measuring upper limb kinemat-
ics. In such a way, the biomechanical model is not required, and an online, rough indication
of shoulder loads and torque can be directly given to the patient and to the physician. Since
the biomechanical model does not need the ground reaction forces on the feet, any gait
cycle is valid to create the regression dataset to compute the shoulder values.

The wide dataset was then divided into identification and validation datasets. For this
separation, we considered that, in accordance with the test protocol, each condition was
repeated at least three times, so one trial was randomly assigned to the validation dataset,
while the remaining trials were assigned to the identification dataset. With this procedure,
we maintain a balanced representation of the population and conditions between the
datasets with good numerosity: 2/3 for the identification and 1/3 for the validation. The
model estimated the peaks and the root mean square (RMS) of the shoulder torques and
forces, calculated by the biomechanical model in every stance phase of the crutches. Each
subject performed at least two stance phases of the crutch on both sides in every trial.

Since the purpose is to give an online indication to the patient, the time histories of
the loads at the shoulders are not required, while peak and root mean square values are
certainly more informative. The corresponding values were computed for each crutch cycle
and the force is normalized by the subject’s weight while the torque is normalized by the
subject’s weight times the subject’s height.

In the first regression attempt, we considered forces in the sagittal plane (anterior–
posterior and vertical directions) and the torque exerted along an axis perpendicular to
this plane (mediolateral). In fact, these directions were the most significant in a previous
study [11], as they include the force in the vertical direction and the torque needed to
maneuver the crutches during the gait cycle. To simplify the model and focus only on
relevant predictors, we investigated the correlation between possible influencing factors
and shoulders forces and torques before proceeding with the regression. We considered
the overall set of available parameters, including the most evident crutch force, anthro-
pometric parameters, kinematic parameters, stance time, and walking pattern. Then, we
included all possible couple interactions. For both shoulder forces and torques, we classi-
fied possible predictors in decreasing order of correlation with a clear discrimination at a
certain correlation level, enabling a clear selection of the most significative parameters for
our purposes.

3. Results
3.1. Partial Weight-Bearing

Tables 3 and 4 report the analysis of variance (ANOVA) results of the RMSE and the
ME respectively. The walking pattern was not statistically significant for the RMSE and the
ME; however, all the other parameters (cadence, crutch load, subject, and support status)
were statistically significant in both the PWB’s RMSE and ME.
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Table 3. ANOVA of the PWB’s RMSE.

Parameter Sum of Squares Degrees of
Freedom Mean Squares F p-Value

Cadence 4242 1 4242 264 <0.05

Crutch load 345 1 345 21 <0.05

Pattern 13 1 13 1 0.36

Subject 860 5 172 11 <0.05

Support 811 1 811 50 <0.05

Error 4113 256 16

Total 10,624 265

Table 4. ANOVA of the PWB’s ME.

Parameter Sum of Squares Degrees of
Freedom Mean Squares F p-Value

Cadence 1346 1 1346 46 <0.05

Crutch load 361 1 361 12 <0.05

Pattern 37 1 37 1 0.26

Subject 1336 5 267 9 <0.05

Support 10,177 1 10,177 348 <0.05

Error 7471 256 29

Total 20,961 265

In Table 3, the cadence has the highest F value, showing a higher influence on the
RMSE; by contrast, in Table 4 the ME is more affected by the support status of the legs.

Figure 4 shows the boxplots of the RMSE for all the parameters divided by the cadence
since it has the highest F-value.
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and bottom edges of each box are the upper and lower quartiles (0.75 and 0.25), respectively. The
distance between the top and bottom edges is the interquartile range.

Figure 5 shows the boxplots of the ME for all the parameters divided by the gait
support since it had the highest F-value in Table 4.
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and bottom edges of each box are the upper and lower quartiles (0.75 and 0.25), respectively. The
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The PWB’s reference, estimate, and error are shown with respect to the time in Figure 6
and with respect to the gait cycle in Figure 7. The data are compared between the gait
pattern and the cadence in Figure 6 and the crutch load in Figure 7; moreover, the double-leg
support is shown in the background.
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Figure 6. Comparison between the estimated PWB and the reference and the status of the leg support.
The line represents the mean value, and the standard deviation is shown with the colored band
around the mean. The data are from four conditions combining the walking pattern while walking at
50 or 90 steps/min. Data are visualized with respect to time, and the green and red backgrounds
indicate the double-leg support interval.
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Figure 7. Comparison between the estimated PWB and the reference during the gait cycle and the
status of the leg support. The line represents the mean value, and the standard deviation is shown
with the colored band around the mean. The data are from four conditions combining the walking
pattern while loading 20 or 40% of the body weight on the crutch. Data are visualized with respect to
the percentage of the gait cycle, and the green and red backgrounds indicate the gait cycle interval
with double-leg support. The missing data between 0–15% of the gait cycle are due to the interval
with unknown external forces applied to the foot still resting on the floor.

3.2. Shoulder Joint Reactions

According to the procedure described in Section 2.3, we ordered the possible predictor,
including their interaction, according to their Pearson correlation coefficient with shoulder
forces and torque, and we obtained a clear separation for parameters above 0.65 for the
torque and 0.90 for the force. We considered a regression model including such parameters
and their interactions and with the possibility to consider a second-order model. The
parameters above the Pearson correlation index thresholds (0.65 for torques and 0.90 for
forces) are shown in Table 5.

Table 5. Pearson correlation coefficients between the shoulder load and torque and some of the
parameters investigated. The * (multiplication) operator yields the product of its operands.

Parameters

Correlation with
Shoulder Vertical Force

Correlation with
Shoulder Mediolateral Torque

RMS Peaks RMS Peaks

Crutch force RMS 1.00 0.96 0.74 0.74

Crutch force RMS * height 1.00 0.96 0.73 0.73

Crutch force RMS * height2 0.99 0.95 0.71 0.71

Crutch force peak 0.93 0.98 0.68 0.74

Crutch force peak * height 0.93 0.98 0.67 0.73
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Table 5. Cont.

Parameters

Correlation with
Shoulder Vertical Force

Correlation with
Shoulder Mediolateral Torque

RMS Peaks RMS Peaks

Crutch force peak * height2 0.93 0.98 0.66 0.71

Crutch force RMS * BMI 0.86 0.86 0.54 0.56

Crutch force RMS * body mass 0.86 0.86 0.52 0.54

Crutch force peak * BMI 0.80 0.87 0.49 0.56

. . . . . . . . . . . . . . .

Moreover, in order to maintain a clear physical correspondence of the model, we
considered the same predictors set for both force and torque, so we assume that this
parameter set is significant for the general shoulder load.

Figures 8 and 9 show the regressions of the shoulder joint force and torque.
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Tables 6 and 7 display the RMSE values for the shoulder joint force and torque.

Table 6. RMSE and R2 values of the shoulder joint force.

Shoulder Joint Force RMSE (%BW) R2 Dataset

RMS
0.45 1.00 Identification
0.42 1.00 Validation

Peak
1.5 0.97 Identification
1.4 0.98 Validation

Table 7. RMSE and R2 values of the shoulder joint torque.

Shoulder Joint Torque RMSE (%BW*H) R2 Dataset

RMS
0.34 0.61 Identification
0.32 0.68 Validation

Peak
0.55 0.61 Identification
0.52 0.69 Validation

4. Discussion

The presented approach estimated the partial weight-bearing from the measurement
of a pair of instrumented crutches. The ANOVA results of Tables 3 and 4 show that the
error was strongly influenced by the cadence and the legs support. A higher walking pace
produced a higher inertia contribution, and the double-leg support also included the toe-off
and heel contact events, which generated higher accelerations than the midstance phases.
This confirmed that higher dynamic conditions worsen the PWB estimation. When the
cadence was about 90 steps/min, the RMSEs reached more than twice the value reached
walking at 50 steps/min in all the parameter combinations, as shown in Figure 4. Moreover,
the double-support condition was more affected by a high systematic error than the single
support, as highlighted by the boxplots in Figure 5. The highest RMSE value is observed
during double-support walking at a speed of 90 steps/min, and this can be explained by
the contribution of the mean error in this combination, indicating a systematic bias in the
measurement. This means that real-time values are more reliable with lower cadence and
speed, as could happen during the first rehabilitation days. Typical values of cadence for
assisted walking with crutches are 73.2 ± 8.5 steps/min [34,35].

Moreover, if the gait phases are detected, both cadence and gait support are known,
and the PWB estimation can be corrected by removing the systematic error. There are
several devices that can be used to assess gait phases, but they may have limitations. IMUs
or instrumented insoles require the patient to wear the device and sometimes require
calibration. Fixed RGB or infrared cameras must be installed in some motion capture
systems, which limits their use to specific locations. These devices also require a post-
processing stage sometimes and cannot provide real-time feedback. While our instrumented
crutches may provide gait phase detection, the process still needs to improve the reliability
and elaborate data in real-time [25,30].

In the three-point PWB gait pattern, the PWB estimation during the single support of
the unaffected limb was not useful for rehabilitation purposes, and the crutches were lifted
from the ground most of the time with saturation at 100%BW of the prediction. As shown
in Figures 6 and 7, the unaffected limb single-support was in the interval before the double
support for the three-point PWB pattern, and the errors reached the highest positive values.
If only the affected limb single-support interval was considered during three-point PWB
walking in all the other conditions, the RMSE was about 6.8%BW and the ME was 1.3%BW,
and as shown by the boxplots in Figure 10, the RMSE was not influenced by the crutch load
but only by the cadence.
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Figure 10. PWB’s RMSE boxplots in the single-support phase of the affected limb. The line inside
of each box is the sample median, and the top and bottom edges of each box are the upper and
lower quartiles (0.75 and 0.25), respectively. The distance between the top and bottom edges is the
interquartile range.

The shoulder regression model was based on RMS and the peak values for crutch
force and their interaction with the subject’s height and squared height. The regression
was good regarding shoulder force (R2 about 1), while it was more critical for torques (R2

about 0.6). The residuals for the RMS and peak force regression models followed a normal
distribution, as shown in the normal probability plots in Figure 11, so the random behavior
of the residuals was confirmed.
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Figure 11. Normal probability plots of regression residuals of the identification subset for RMS and
peak shoulder force.

Regarding torque, the R2 was lower, and residuals were less normal. A possible justi-
fication relies on the equations describing the inverse dynamics: they are based on some
anthropometric parameters determined with the help of statistical tables based on specific
population samples. Precise evaluation of the effect of anthropometric parameters uncer-
tainties on the inverse dynamics results uncertainty is complex due to non-linearities in the



Sensors 2023, 23, 6213 15 of 18

model equations, the large number of possible influence factors, and the recursive relation
that moves the results from a distal to a proximal element. A previous investigation [37]
applying the simplification principles described in [38] evidenced that anthropometric
parameters may heavily affect the inverse kinetics analysis and, in our case, the reference
shoulder torque and force. In the force case, equations included only segment masses and
their center of mass acceleration. Torque computation also requires the segment’s inertial
properties, which generally suffer from a larger uncertainty. Moreover, the correlation
analysis excluded anthropometric parameters such as mass and height from the regression
due to their poor correlation. The prediction error for torque as a function of the BMI an-
thropometric parameter can be checked with the box plots in Figure 12, in which no explicit
dependency is shown, so the model validity was confirmed, and the reason for the lower
torque prediction performance is not clear yet. Of course, a more complex regression model
including a larger set of factors improves the correlation at the expense of introducing a
large set of quantities in the description. Since our intention here was to give a rough but
immediate and easily obtainable estimation to the patient and the clinician to improve gait
management, we prioritized model simplicity. To this end, the regression proposed seems
to be sufficiently accurate. In fact, shoulder forces were estimated with an RMS error of
about 1.5% of body weight, while for torques, the RMS error was about 0.5% of the product
body weight times height on a scale ranging up to 4.0 %BW*H, i.e., about 12% of the full
scale of the values recorded. Such values are sufficient for a rough indication to the end
user and the therapist.
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5. Conclusions

The presented approach estimated the PWB using instrumented crutches, and the
results showed that the error was strongly influenced by walking cadence and leg sup-
port. Higher walking speeds and double-leg support result in higher errors in the PWB
estimation. The real-time PWB values were more reliable with lower cadence and speed,
which were typical values for assisted walking with crutches, and the RMSE was not
influenced by crutch load. In the three-point PWB gait pattern, PWB estimation during
the unaffected limb’s single support was saturated at 100%BW, but this is not useful for
rehabilitation purposes.

The study also developed a regression model for estimating shoulder force and torque
during crutch-assisted gait. The model is based on RMS and peak values of crutch force
and considers the subject’s height and squared height. The regression model provided
good estimates for shoulder force (R2 about 1) but was less accurate for torque (R2 about
0.6). The less normal distribution of the torque residuals was possibly due to uncertainties
in the anthropometric parameters used in the inverse dynamics equations, and a more
complex regression model would improve the correlation.

The main goal was to conduct a preliminary methodological study to validate the
load estimator applied on the legs using instrumented crutches for force measurement.
The inclusion of a larger sample size and a more balanced gender distribution could
have provided more generalizable results. Nevertheless, this preliminary study provided
promising results that demonstrate the validity and effectiveness of the load estimator
system. In the future, studies should include a larger number of participants and adequate
gender representation to confirm and strengthen the preliminary findings. Additionally,
future studies should consider testing the system under different walking conditions, such
as different ranges of speeds, inclines, and terrain types to further validate its accuracy and
effectiveness. From the results obtained, it can be assumed that cadence has more effects
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on the PWB estimation, and it should be investigated more deeply, while the crutch load
could be self-selected by the subject or indicated by the therapist since it has less influence.
Furthermore, the estimator should also be checked with different impairments since the
deviations in the gait could alter the predictions.

Author Contributions: Conceptualization, M.G. and F.C.; Data curation, M.G. and F.C.; Formal
analysis, M.G.; Funding acquisition, M.L.; Investigation, M.G. and F.C.; Methodology, M.G. and F.C.;
Project administration, M.L.; Software, M.G.; Supervision, F.C. and M.L.; Validation, M.G. and F.C.;
Visualization, M.G.; Writing–original draft, M.G. and F.C.; Writing–review and editing, C.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This project received funding from the European Union’s Horizon 2020 Research and Inno-
vation Program via an open call issued and executed under Project EUROBENCH (grant agreement
N◦ 779963).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of ASST Spedali Civili of Brescia (NP 3005, 3
April 2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data available on request due to privacy restrictions.

Acknowledgments: The authors would thank Francesco Cepolina and Enrico Ferlinghetti for the
help and support given during the tests.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Youm, T.; Maurer, S.G.; Stuchin, S.A. Postoperative Management After Total Hip and Knee Arthroplasty. J. Arthroplast. 2005, 20,

322–324. [CrossRef] [PubMed]
2. Abdalbary, S.A. Partial weight bearing in hip fracture rehabilitation. Futur. Sci. OA 2018, 4, FSO254. [CrossRef] [PubMed]
3. Laufer, Y. The use of walking aids in the rehabilitation of stroke patients. Rev. Clin. Gerontol. 2004, 14, 137–144. [CrossRef]
4. Khan, F.R.; Vijesh, P.V.; Rahool, S.; Radha, A.A.; Sukumaran, S.; Kurupath, R. Physiotherapy Practice in Stroke Rehabilitation: A

Cross-Sectional Survey of Physiotherapists in the State of Kerala, India. Top. Stroke Rehabil. 2012, 19, 405–410. [CrossRef]
5. Raaben, M.; Holtslag, H.R.; Leenen, L.P.; Augustine, R.; Blokhuis, T.J. Real-time visual biofeedback during weight bearing

improves therapy compliance in patients following lower extremity fractures. Gait Posture 2018, 59, 206–210. [CrossRef]
6. Eickhoff, A.M.; Cintean, R.; Fiedler, C.; Gebhard, F.; Schütze, K.; Richter, P.H. Analysis of partial weight bearing after surgical

treatment in patients with injuries of the lower extremity. Arch. Orthop. Trauma Surg. 2022, 142, 77–81. [CrossRef]
7. Tveit, M.; Ka, J.; Kä, J. Low Effectiveness of Prescribed Partial Weight Bearing Continuous recording of vertical loads using a new

pressure-sensitive insole. J. Rehabil. Med. 2001, 33, 42–46.
8. Vasarhelyi, A.; Baumert, T.; Fritsch, C.; Hopfenmüller, W.; Gradl, G.; Mittlmeier, T. Partial weight bearing after surgery for

fractures of the lower extremity—Is it achievable? Gait Posture 2006, 23, 99–105. [CrossRef]
9. Jain, N.B.; Higgins, L.D.; Katz, J.N.; Garshick, E. Association of Shoulder Pain with the Use of Mobility Devices in Persons with

Chronic Spinal Cord Injury. PM&R 2010, 2, 896–900. [CrossRef]
10. Requejo, P.S.; Wahl, D.P.; Bontrager, E.L.; Newsam, C.J.; Gronley, J.K.; Mulroy, S.J.; Perry, J. Upper extremity kinetics during

Lofstrand crutch-assisted gait. Med. Eng. Phys. 2005, 27, 19–29. [CrossRef]
11. Crenna, F.; Lancini, M.; Ghidelli, M.; Rossi, G.B.; Berardengo, M. Biomechanics in crutch assisted walking. Acta IMEKO 2022, 11,

1–5. [CrossRef]
12. Westerhoff, P.; Graichen, F.; Bender, A.; Halder, A.; Beier, A.; Rohlmann, A.; Bergmann, G. In vivo measurement of shoulder joint

loads during walking with crutches. Clin. Biomech. 2012, 27, 711–718. [CrossRef] [PubMed]
13. Crenna, F.; Rossi, G.B.; Palazzo, A. Measurement of human movement under metrological controlled conditions. Acta IMEKO

2015, 4, 48–56. [CrossRef]
14. Howell, A.M.; Kobayashi, T.; Hayes, H.A.; Foreman, K.B.; Bamberg, S.J.M. Kinetic Gait Analysis Using a Low-Cost Insole. IEEE

Trans. Biomed. Eng. 2013, 60, 3284–3290. [CrossRef] [PubMed]
15. Shah, V.V.; McNames, J.; Mancini, M.; Carlson-Kuhta, P.; Spain, R.I.; Nutt, J.G.; El-Gohary, M.; Curtze, C.; Horak, F.B. Laboratory

versus daily life gait characteristics in patients with multiple sclerosis, Parkinson’s disease, and matched controls. J. Neuroeng.
Rehabilit. 2020, 17, 159. [CrossRef]

16. Baldazzi, G.; Masciavè, G.K.; Gusai, E.; Zedda, A.; Spanu, S.; Sulas, E.; Raffo, L.; Pani, D. A Plantar Pressure Biofeedback M-Health
System for Stroke Patients; IEEE: New York, NY, USA, 2020.

https://doi.org/10.1016/j.arth.2004.04.015
https://www.ncbi.nlm.nih.gov/pubmed/15809949
https://doi.org/10.4155/fsoa-2017-0068
https://www.ncbi.nlm.nih.gov/pubmed/29255626
https://doi.org/10.1017/S0959259805001449
https://doi.org/10.1310/tsr1905-405
https://doi.org/10.1016/j.gaitpost.2017.10.022
https://doi.org/10.1007/s00402-020-03588-z
https://doi.org/10.1016/j.gaitpost.2004.12.005
https://doi.org/10.1016/j.pmrj.2010.05.004
https://doi.org/10.1016/j.medengphy.2004.08.008
https://doi.org/10.21014/actaimeko.v11i4.1328
https://doi.org/10.1016/j.clinbiomech.2012.03.004
https://www.ncbi.nlm.nih.gov/pubmed/22633130
https://doi.org/10.21014/acta_imeko.v4i4.281
https://doi.org/10.1109/TBME.2013.2250972
https://www.ncbi.nlm.nih.gov/pubmed/23475336
https://doi.org/10.1186/s12984-020-00781-4


Sensors 2023, 23, 6213 18 of 18

17. Chen, J.; Dai, Y.; Grimaldi, N.S.; Lin, J.; Hu, B.; Wu, Y.; Gao, S. Plantar Pressure-Based Insole Gait Monitoring Techniques for
Diseases Monitoring and Analysis: A Review. Adv. Mater. Technol. 2022, 7, 2100566. [CrossRef]

18. Wade, L.; Needham, L.; McGuigan, P.; Bilzon, J. Applications and limitations of current markerless motion capture methods for
clinical gait biomechanics. PeerJ 2022, 10, e12995. [CrossRef]

19. Pasinetti, S.; Nuzzi, C.; Covre, N.; Luchetti, A.; Maule, L.; Serpelloni, M.; Lancini, M. Validation of Marker-Less System for the
Assessment of Upper Joints Reaction Forces in Exoskeleton Users. Sensors 2020, 20, 3899. [CrossRef]

20. Merrett, G.V.; A Ettabib, M.; Peters, C.; Hallett, G.; White, N.M. Augmenting forearm crutches with wireless sensors for lower
limb rehabilitation. Meas. Sci. Technol. 2010, 21, 124008. [CrossRef]

21. Chamorro-Moriana, G.; Sevillano, J.L.; Ridao-Fernández, C. A Compact Forearm Crutch Based on Force Sensors for Aided Gait:
Reliability and Validity. Sensors 2016, 16, 925. [CrossRef]

22. Chen, Y.F.; Napoli, D.; Agrawal, S.K.; Zanotto, D. Smart Crutches: Towards Instrumented Crutches for Rehabilitation and
Exoskeletons-Assisted Walking. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and
Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 193–198. [CrossRef]

23. Sardini, E.; Serpelloni, M.; Lancini, M. Wireless Instrumented Crutches for Force and Movement Measurements for Gait
Monitoring. IEEE Trans. Instrum. Meas. 2015, 64, 3369–3379. [CrossRef]

24. Lancini, M.; Serpelloni, M.; Pasinetti, S. Instrumented crutches to measure the internal forces acting on upper limbs in powered
exoskeleton users. In Proceedings of the 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI),
Gallipoli, Italy, 18–19 June 2015; pp. 175–180. [CrossRef]

25. Ghidelli, M.; Nuzzi, C.; Pasinetti, S.; Lancini, M. Onboard gait detection crutches for gait rehabilitation. In Proceedings of the
Podium and Poster Presentations at the International Conference for Virtual Reality 2022, Rotterdam, The Netherlands, 26–28
July 2022. [CrossRef]

26. Lancini, M.; Serpelloni, M.; Pasinetti, S.; Guanziroli, E. Healthcare sensor system exploiting instrumented crutches for force
measurement during assisted gait of exoskeleton users. IEEE Sens. J. 2016, 16, 2579738. [CrossRef]

27. Tamburella, F.; Lorusso, M.; Tagliamonte, N.L.; Bentivoglio, F.; Bigioni, A.; Pisotta, I.; Lancini, M.; Pasinetti, S.; Ghidelli, M.;
Masciullo, M.; et al. Load Auditory Feedback Boosts Crutch Usage in Subjects with Central Nervous System Lesions: A Pilot
Study. Front. Neurol. 2021, 12, 700472. [CrossRef] [PubMed]

28. Lancini, M.; Pasinetti, S.; Ghidelli, M.; Padovani, P.; Pinto-Fernández, D.; Del-Ama, A.J.; Torricelli, D. A Workaround for
Recruitment Issues in Preliminary WR Studies: Audio Feedback and Instrumented Crutches to Train Test Subjects. In Wearable
Robotics: Challenges and Trends; Springer: Berlin/Heidelberg, Germany, 2021; pp. 627–631. [CrossRef]

29. Biomechanic of Gait and Treatment of Abnormal Gait Patterns|PM&R KnowledgeNow. Available online: https://now.aapmr.
org/biomechanic-of-gait-and-treatment-of-abnormal-gait-patterns/ (accessed on 4 July 2023).

30. Pasinetti, S.; Fornaser, A.; Lancini, M.; De Cecco, M.; Sansoni, G. Assisted Gait Phase Estimation Through an Embedded Depth
Camera Using Modified Random Forest Algorithm Classification. IEEE Sens. J. 2020, 20, 3343–3355. [CrossRef]

31. Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An Open-Source Robot
Operating System. Available online: http://stair.stanford.edu (accessed on 29 April 2023).

32. Kainz, H.; Graham, D.; Edwards, J.; Walsh, H.P.; Maine, S.; Boyd, R.N.; Lloyd, D.G.; Modenese, L.; Carty, C.P. Reliability of four
models for clinical gait analysis. Gait Posture 2017, 54, 325–331. [CrossRef] [PubMed]

33. Ghidelli, M.; Massardi, S.; Foletti, L.; Gonzalez, A.C.; Lancini, M. Validation of a ROS-Based Synchronization System for
Biomechanics Gait Labs. In Proceedings of the 2022 IEEE International Symposium on Measurements & Networking (M&N),
Padua, Italy, 18–20 July 2022; pp. 1–5. [CrossRef]

34. Noreau, L.; Richards, C.L.; Comeau, F.; Tardif, D. Biomechanical analysis of swing-through gait in paraplegic and non-disabled
individuals. J. Biomech. 1995, 28, 689–700. [CrossRef]

35. Youdas, J.W.; Kotajarvi, B.J.; Padgett, D.J.; Kaufman, K.R. Partial weight-bearing gait using conventional assistive devices. Arch.
Phys. Med. Rehabil. 2005, 86, 394–398. [CrossRef]

36. Rasouli, F.; Reed, K.B. Walking assistance using crutches: A state of the art review. J. Biomech. 2020, 98, 109489. [CrossRef]
37. Crenna, F.; Rossi, G.B.; Berardengo, M. A Global Approach to Assessing Uncertainty in Biomechanical Inverse Dynamic Analysis:

Mathematical Model and Experimental Validation. IEEE Trans. Instrum. Meas. 2021, 70, 1006809. [CrossRef]
38. Rossi, G.B.; Crenna, F.; Palazzo, A. A Proposal for a More User-Oriented GUM. IEEE Trans. Instrum. Meas. 2019, 68, 1343–1352.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/admt.202100566
https://doi.org/10.7717/peerj.12995
https://doi.org/10.3390/s20143899
https://doi.org/10.1088/0957-0233/21/12/124008
https://doi.org/10.3390/s16060925
https://doi.org/10.1109/biorob.2018.8487662
https://doi.org/10.1109/TIM.2015.2465751
https://doi.org/10.1109/iwasi.2015.7184960
https://doi.org/10.17605/OSF.IO/B85X9
https://doi.org/10.1109/JSEN.2016.2579738
https://doi.org/10.3389/fneur.2021.700472
https://www.ncbi.nlm.nih.gov/pubmed/34295303
https://doi.org/10.1007/978-3-030-69547-7_101
https://now.aapmr.org/biomechanic-of-gait-and-treatment-of-abnormal-gait-patterns/
https://now.aapmr.org/biomechanic-of-gait-and-treatment-of-abnormal-gait-patterns/
https://doi.org/10.1109/JSEN.2019.2957667
http://stair.stanford.edu
https://doi.org/10.1016/j.gaitpost.2017.04.001
https://www.ncbi.nlm.nih.gov/pubmed/28411552
https://doi.org/10.1109/mn55117.2022.9887745
https://doi.org/10.1016/0021-9290(94)00118-N
https://doi.org/10.1016/j.apmr.2004.03.026
https://doi.org/10.1016/j.jbiomech.2019.109489
https://doi.org/10.1109/TIM.2021.3072113
https://doi.org/10.1109/TIM.2019.2899183

	Introduction 
	Materials and Methods 
	Experimental Set-Up 
	Experimental Protocol 
	Partial Weight-Bearing Estimation and Validation 
	Shoulder Reaction Regressions 

	Results 
	Partial Weight-Bearing 
	Shoulder Joint Reactions 

	Discussion 
	Conclusions 
	References

