
Citation: Bocciarelli, P.;

D’Ambrogio, A.; Panetti, T. A Model

Based Framework for IoT-Aware

Business Process Management.

Future Internet 2023, 15, 50.

https://doi.org/10.3390/fi15020050

Academic Editor: Davide Tosi

Received: 3 January 2023

Revised: 23 January 2023

Accepted: 24 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Model Based Framework for IoT-Aware Business
Process Management
Paolo Bocciarelli * , Andrea D’Ambrogio and Tommaso Panetti

Department of Enterprise Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
* Correspondence: paolo.bocciarelli@uniroma2.it

Abstract: IoT-aware Business processes (BPs) that exchange data with Internet of Things (IoT)
devices, briefly referred to as IoT-aware BPs, are gaining momentum in the BPM field. Introducing
IoT technologies from the early stages of the BP development process requires dealing with the
complexity and heterogeneity of such technologies at design and analysis time. This paper analyzes
widely used IoT frameworks and ontologies to introduce a BPMN extension that improves the
expressiveness of relevant BP modeling notations and allows an appropriate representation of IoT
devices from both an architectural and a behavioral perspective. In the BP management field, the
use of simulation-based approaches is recognized as an effective technology for analyzing BPs.
Simulation models need to be parameterized according to relevant properties of the process under
study. Unfortunately, such parameters may change during the process operational life, thus making
the simulation model invalid with respect to the actual process behavior. To ease the analysis of
IoT-aware BPs, this paper introduces a model-driven method for the automated development of
digital twins of actual business processes. The proposed method also exploits data retrieved by IoT
sensors to automatically reconfigure the simulation model, to make the digital twin continuously
coherent and compliant with its actual counterpart.

Keywords: IoT; business process; IoT-aware BPs; simulation; model-driven; digital twin

1. Introduction

The Internet of Things (IoT) paradigm refers to the interoperability of physical devices
such as sensors and actuators, appliances, wearable technology, vehicles, and other objects,
embedded with software capabilities and network connectivity that allow these items to
collect and exchange data among them and from/to a cloud environment [1].

In this context, IoT-aware Business Processes (BPs) describe, from an operational point-of-
view, how data collected by sensors can be processed and provided to human and automated
process participants, for promptly reacting to changes in the monitored environment.

Due to their complexity, the development of IoT systems and relevant IoT-aware BPs
claim the adoption of innovative methodologies that support all involved stakeholders
from the early stages of the development process. As an example, at design time, various
alternatives have to be evaluated in order to identify the one that better fits with the system
requirements. At execution time, the process behavior has to be constantly monitored in
order to identify issues (e.g., performance downgrades, failures, etc.) and timely plan and
execute appropriate corrective actions. Among the various approaches for planning such
actions, the use of simulation is acknowledged to be the most valuable and effective [2].

In this respect, this work proposes a novel framework which aims at supporting the
development and simulation-based analysis of IoT-aware BPs. The framework conceptual
design has been based on principles introduced in the Model-driven Engineering (MDE)
field and makes use of technologies and standards provided by the OMG’s Model Driven
Architecture (MDA) [3], which have proven to be effective for simulation-based analysis of
complex systems [4].

Future Internet 2023, 15, 50. https://doi.org/10.3390/fi15020050 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15020050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-3656-5372
https://orcid.org/0000-0001-5711-1527
https://doi.org/10.3390/fi15020050
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15020050?type=check_update&version=2

Future Internet 2023, 15, 50 2 of 28

The development of executable simulations requires building and parameterizing a
simulation model, according to the structure and relevant properties of the process under
study. The simulation model parameters may change during the process operational
life, thus making the simulation model invalid with respect to the actual state of the
simulated process.

In this respect, the proposed framework exploits the digital twin (DT) paradigm [5] and
introduces model transformations for the automated development of a DT corresponding to
the actual BP under analysis. Data retrieved from IoT sensors are also used to automatically
reconfigure the simulation model, to make the DT continuously coherent and compliant
with its actual process counterpart.

In this regard, the objective of this paper is to tackle the analysis of IoT-aware BPs from
conceptual, methodological and technical perspectives, so as to address the three following
Research Questions (RQs):

RQ1 —How can we represent a model of an IoT system, consisting of a network of sensors, that
includes enough information to ease and possibly automate the implementation of both the
actual system and its DT?

RQ2 —Which steps do we need to undertake and which technologies do we need to introduce to
effectively exploit the IoT system model for implementing both the actual system and its DT?

RQ3 —What Architectural Building Blocks (ABBs) and relevant capabilities does the Framework
Architecture provide to effectively guide its implementation?

According to this point of view, the contribution proposed by this paper can be
summarized as follows:

• An IoT metamodel that provides a flexible and coherent description of entities in-
volved in an IoT system consisting of a sensors network, i.e., an interconnected collection
of IoT sensors, is introduced. According to the founding principles of MDA, the speci-
fication of a metamodel which describes domain entities and their relationships is the
first and essential task to carry out. The proposed metamodel is used for deriving the
following software artifacts:

– An IoT-aware UML profile for annotating SysML models that provide the structural
view of the IoT system;

– An IoT-aware extension of the Business Process Model and Notation (BPMN), the
standard notation for BP modeling, for specifying the operational view of the
IoT system;

• A methodology that illustrates how the framework exploits the UML profile and the
BPMN extension to effectively support the development and analysis of IoT-aware
BPs is introduced, along with appropriate model transformations for automating the
generation of both the system and its digital twin;

• An architecture that describes the framework in terms of its components (i.e., ABBs)
and the capabilities they shall provide is specified.

As regards the modeling of BPs, it is worth noting that several formalisms are available,
e.g., Petri-Net [6], Yet Another Workflow Language (YAWL) [7], or Event-Driven Process
Chain (EPC) [8]. Different from the various modeling languages that focus on specific levels
of abstraction (e.g., business level or technical level), BPMN aims to provide a notation that
is easily readable by all the different roles involved in a business process management effort,
bridging the gap between the BP design and the process implementation. Over the years,
BPMN has gained an ever-growing popularity, until it has become a de facto standard in
the BPM field [9]. Therefore, as this work deals with BP modeling from both operational
and technical perspectives, BPMN has been considered the most suitable option to achieve
the research objectives.

Finally, in order to evaluate the feasibility of the proposed approach, this work also
includes an experimentation dealing with a Water Monitoring System (WMS).

The rest of this paper is structured as follows. Section 2 reviews the existing literature
and clarifies the novelty of the proposed contribution. Section 3 provides the concepts at

Future Internet 2023, 15, 50 3 of 28

the basis of this work, by briefly outlining the DT paradigm, the Sensor Web Enablement
framework, the Model-driven Engineering principles and the PyBPMN/eBPMN approach
for supporting the simulation-based analysis of BPs. Section 4 introduces the proposed
IoT-aware framework for BP analysis. Section 5 provides details on the framework imple-
mentation. Section 6 discusses an example application to monitor the risk of flooding of a
basin, and finally Section 7 provides concluding remarks.

2. Related Work

Great effort has been made over the past years in dealing with the modeling and
execution of IoT-aware BPs in the business process management (BPM) field. As this topic
has been faced from various perspectives, the literature review hereby proposed specifically
focuses on the semantic description of IoT systems, the specification of middlewares and
architectures for supporting the actual implementation of IoT systems, and finally, the
identification of approaches for enacting the IoT-ware BP management.

As regards the effort spent in investigating IoT systems from a conceptual point of
view, interesting contributions can be found in [10–13].

In [10], a novel semantic model, namely Internet of Things in Business Processes Ontology
(IoT-BPO) is introduced. Such a model is designed as an extension of IoT-Lite, a semantic
model based on the IoT-A reference model [10] that formalizes the main concepts of the
IoT domain.

The Global Sensor Network (GSN), a scalable infrastructure for integrating hetero-
geneous sensor networks, is described in [11]. GSN introduces a set of abstractions to
represent sensors and IoT devices, which are specified as XML-based descriptors.

In [12], the International Telecommunication Union (ITU) introduces an architecture
that, similarly to the well-known Open Systems Interconnection (OSI) model, specifies
the different layers that an IoT System should be structured on: sensing, access, network,
middleware and application.

The Semantic Sensor Network (SSN) Ontology [13] is one of the most prominent
contributions dealing with the specification of a conceptual picture that describes entities,
actions and relations involved in the IoT domain.

In this respect, this paper introduces an IoT metamodel, which has been mostly
inspired by the SSN ontology. As discussed in Section 4, the metamodel is used to derive
a SysML profile and a BPMN extension that enable the specification of the structural and
operational views of an IoT system, respectively.

Among the various contributions that specifically address the heterogeneity of sensor
networks from an architectural point of view, relevant examples are [14,15].

The Hydra middleware was introduced in [14] as an outcome of an EU project that
aimed at building a service-oriented middleware for networked embedded systems.

Open Sensor Hub (OSH) [15] is an open source framework which aims at easing the
development of smart and scalable sensors networks interconnected by a web platform.
The OSH implementation is based on the Software Web Enablement Framework [16], an
initiative of the Open Geospatial Consortium to support the implementation of IoT systems.
Specifically, SWE includes various standards dealing with the definition of sensor data
models, encoding and interface specifications, for enacting the exchange of information
among devices in a sensors network.

As discussed in Section 6, this paper introduces a prototype of the architecture for
supporting the simulation based analysis of IoT-aware BPs. Such a prototype makes use
of OSH as a middleware for enabling the seamless interaction of the BPM layer with the
underlying IoT layer.

The deployment of IoT-based solutions in business domains requires addressing
issues that go beyond the technological complexity. The network of IoT devices should
be appropriately integrated with the BPM infrastructure to enable the business layer able
to exploit real-time and historical data collected by the sensors. In this regard, significant
contributions can be found in [17–23].

Future Internet 2023, 15, 50 4 of 28

As stated in [17], the integration of the IoT technology in the BP domain constitutes
an opportunity for business managers to enhance the business performance and increase
business competitiveness. As an IoT-aware BP addresses concepts from both the BP and
the IoT domains, this paper proposes a review of relevant approaches that deal with the
integration of IoT technology and BPs. According to the proposed analysis, a valuable
summary of BP-related concepts is provided by OMG’s BPMN specification. Moreover, as
regards the conceptual representation of the IoT domain, it is argued that it should consider
the definition of various concepts: devices, sensors, actuators and users. In this respect, a
valuable strategy for enacting the IoT integration with the BP paradigm is to extend BPMN
to enable the representation of IoT concepts and hence integrate them into an IoT-aware BP
model. In this respect, such a contribution provides the conceptual guidance to define the
strategy upon which we have based our approach, whose founding pillar is constituted by
the specification of an IoT-based extension of BPMN that addresses the representation of
the aforementioned IoT-related concepts.

In [18], an approach that combines the recording of data collected by IoT sensors
with BPM technologies is presented. The authors underline how provisioning of real-time
data gathered from sensors to BPM tools might help organizations to achieve cost savings
and efficiency. The proposed approach consists of a four-step procedure: IoT devices
are connected to the business process management system (BPMS), the BPMN model is
extended with data variables for capturing data from sensors, the process model is executed
and, finally, context relevant information are provided to process participants. Unlike such
an approach, the framework introduced in this work aims to support both the process
design and its continuous monitoring and analysis by use of a digital twin. Moreover, the
proposed approach has been based on a low code development paradigm, thanks to the
adoption of standard and technologies introduced by the MDA effort.

In [19], a novel modeling approach is introduced to provide guidance for integrating
IoT resources in a BP model. The proposed method, denoted as the IoT-Aware Process
Modeling Method (IAPMM), exploits the IoT-Architecture [24], a notation to represent the
IoT concepts in BPMN in terms of annotations associated to BPMN models.

In [20,21], the lack of modeling concepts for representing IoT devices in a business pro-
cess model is underlined. Specifically, in [20], an IoT domain model for BPs is introduced
for both physical entities and device elements. While a physical entity denotes an ele-
ment in the observed environment, device elements allow the representation of IoT-related
concepts. A device element can further be specialized by three subcategories: sensors,
actuators, and tags. A sensor is in charge of monitoring the physical entity, whereas an
actuator acts on the physical entity to change its state. A tag is used to identify a device.
Differently, in [21], a BPMN extension is proposed to deal with the representation of IoT
concepts in a BP model. The paper analyzes and compares three potential strategies for
extending BPMN to represent physical IoT devices. According to the presented results,
two new classes are introduced: the ParticipantContainer and the PhysicalEntity. Specifi-
cally, ParticipantContainer is an abstract class that extends the standard BaseElement class
and is specialized by subclasses that represent different types of entity participating in a
collaboration, i.e., the novel PhysicalEntity class and the standard Participant class.

In [22], a REST-based architectural model is introduced to integrate BPs with IoT
resources. Specifically, the proposed architecture provides the core components that enact
the development and execution of IoT-aware BPs. To demonstrate the feasibility of the
proposed architectural approach, the paper also discussed a prototype implementation
based on BPM (Java Business Process Management) [25], an open source workflow engine
compliant with BPMN.

The lack of a common architecture which standardizes the communication between
the IoT layer and the BPM layer is underlined in [23]. Such a contribution proposes
an integrated approach that exploits IoT for BPM and introduces an IoT architecture
structured in three layers: the IoT devices layer, the IoT communication middleware and
the BP execution layer (also known as BPMS, or BP management software). The proposed

Future Internet 2023, 15, 50 5 of 28

architecture allows sensors to be digitally accessible by humans, machinery and automated
systems so to provide the BPMS layer with up-to-date information. Moreover, in order to
orchestrate the activities which involve both humans and automated systems, exchanged
data are annotated with information about the context and the provenance. Finally, real-
time notifications are provided to human participants through mobile devices.

In this respect, the BPMN extension and the architecture proposed in this paper share
some aspects with the above-mentioned contributions, specifically with regard to the need
of extending the BPMN expressiveness, the layered approach used for the architecture
specification, and the identification of most relevant architectural components. Differ-
ently, this paper goes beyond previous contributions, thanks to the adoption of the MDA
standards and the DT paradigm. Specifically, MDA’s standards and technologies have
been used for deriving the profile and the BPMN extension at the basis of the conceptual
contribution. Moreover, the strength of the proposed methodology lies in the introduced
model transformation chains, which aims at:

(i) Easing the development of the architecture’s implementation components which
depend on the particular IoT devices used in the sensors network, i.e., the data
model layer and the required drivers for interacting with IoT sensors are generated
by model transformations, as discussed in Section 4.6);

(ii) Keeping the methodology flexible enough to be used in multiple operational con-
texts (e.g., different BPMN specification tools or various BPMS can be supported,
as clarified in Section 4.6).

3. Background

This Section briefly outlines standards and technologies at the basis of the proposed
contribution. Specifically, Section 3.1 introduces the digital twin paradigm, Section 3.2
illustrates the OGC Sensor Web Enablement (SWE) standard and the OGC-W3C Semantic
Sensor Network Ontology (SSN), while Section 3.4 briefly describes PyBPMN/eBPMN, an
integrated approach for BP modeling&simulation (M&S) that focuses on performance and
reliability aspects.

3.1. Digital Twins

A Digital Twin (DT) [26,27] is a dynamic digital representation of a physical system that
can be seen as a virtual instance of the physical system, often referred to as the Physical Twin
(PT). In a traditional M&S approach, simulation models of a given system (i.e., the system
under study) can be developed at different steps of the system life-cycle for addressing
various objectives:

• At execution time, an existing system is observed and a corresponding simulation model
is specified. A simulation-based analysis is performed to predict system behavior
under given conditions and to ultimately obtain guidance to properly address critical
situations (see Figure 1a);

• At design time, a simulation model can be specified starting from models of the system
to be developed. Simulation-based analysis allows developers to compare different
design alternatives and evaluate the system behavior before its actual implementation
(see Figure 1b).

In order to be coherent with the system under study, a simulation model needs to be
parameterized. Indeed, the various properties of the real-world environment have to be used
for deriving the relevant configuration parameters of the simulation model. One of the
most relevant drawbacks of a traditional M&S approach is that the simulation model does
not take into account the dynamic evolution of the physical system during its operational
life. Changes in the properties of the physical system might invalidate the simulation
model with respect to the actual behavior of the system.

In this respect, the DT paradigm aims at overcoming such issue. DTs are constantly
updated according to actual performance, health status and context data of the PT [5], thus
keeping the DT continuously coherent with its physical counterpart.

Future Internet 2023, 15, 50 6 of 28

Due to their novelty and relevance, DTs are increasingly being used in several applica-
tion domains [28].

As discussed in Section 4, the framework proposed in this paper introduces an MDA-
based approach to ease the development of DT and support the analysis of IoT-aware BPs.

System
Observation

Simulation Model
Development

Simulation Model

System Under Study

<<based on>>

Simulation Model
Development

Simulation Model

System Under StudySystem Model

classA

classB

System
Implementation

<<based on>>

(a) M&S-based Analysis at Design Time

(b) M&S-based Analysis at Execution Time

(c) Digital Twin and Physical Twin

Simulation Model
Development

Simulation Model
(Digital Twin)

System Under Study
(Physical Twin)System Model

classA

classB

System
Implementation

<<based on>>

System Observation and
Simulation Model Update

Figure 1. Traditional M&S Approaches vs. Adoption of a Digital Twin.

Future Internet 2023, 15, 50 7 of 28

3.2. SWE Framework and SSN Ontology

A significant challenge in the IoT field comes from the heterogeneity of the physical
layer. In an interconnected sensors network, heterogeneous physical entities, provided by
different vendors and operating according to specific rules and protocols, must cooperate
to achieve the required objectives. An IoT system that aims at collecting and processing the
flow of data coming from orchestrated devices must introduce appropriate methods and
tools for the seamless interaction with various devices. In this respect, the interoperability
should be addressed from two perspectives:

• Technical and syntactical interoperability should be ensured by introducing standards
and technologies that enable an IoT system to interact with various devices, each using
different implementation technologies and communication protocols;

• Semantic interoperability should also be ensured in order to make sensor data easily
understandable by various actors, including IoT system components in charge of
automatically processing the flow of data collected by the sensor network.

In this respect, this paper exploits the OGC Sensor Web Enablement standard [16] and
the OGC-W3C Semantic Sensor Netwok (SSN) ontology [13], respectively.

The Sensor Web Enablement (SWE) is a framework promoted by the Open Geospatial
Consortium (OGC) for supporting the development of the so-called Sensor Web, i.e., a
collection of sensors and sensors networks provided and controlled by different owners
and interconnected by use of the web platform. The SWE initiative has been started in 2003
and has progressively addressed the development of data models, encoding methods and
service interface specifications to provide a set of features that includes:

• Retrieval of real-time or time-series observations, along with their coverage in standard
encodings;

• Access to sensor settings that allow the software to automatically process and geo-
locate data;

• Tasking of sensors to obtain observations of interest;
• Subscription to and publication of warnings to be sent by sensors or sensor services based

on particular criteria.

Among the various standards currently included in the SWE Framework, this paper
specifically exploits the following two:

• Observations & Measurements Schema (O&M), which provides data models and XML
Schemas for encoding historical observations, real-time observations and measure-
ments retrieved by sensors;

• Sensor Model Language (SensorML), which introduces models and XML Schemas for
describing the observation processing systems;

• Sensor Observation Service (SOS), which specifies an open interface for interacting with
sensors and collecting measurement data.

As regards the definition of ontologies for the semantic description of sensor devices,
observation processes, and measurement results, one of the most prominent results has
been achieved by the joint work of the World Wide Web Consortium (W3C) and the OGC
Consortium, which promoted the Semantic Sensor Network (SSN) Ontology [13].

SSN provides a flexible but coherent perspective for the conceptual description of the
entities, relations and activities involved in the measurement process. The pillars of the
proposed approach can be summarized in the following concepts defined by SSN:

• System: an abstraction of physical infrastructures that implement procedures;
• Sensor: entity (device, human or automated system, e.g., a software) involved in

a procedure;
• Procedure: a sequence of activities or a protocol carried out to make an observation;
• Observation: action executed to measure, estimate or calculate the actual value of an

observable property related to a feature of interest. An observation produces a result;

Future Internet 2023, 15, 50 8 of 28

• Observable property: a characteristic of a feature of interest which can be subjected to
an observation;

• Feature of interest: an entity in the real world whose properties are subjected to observa-
tions to measure or estimate their actual values to obtain a result;

• Result: the result of an observation.

As discussed in Section 4.5, the architecture of the proposed framework exploits the
Open Sensor Hub (OSH) [15], a middleware for the development of sensor networks based
on SWE standards. Moreover, as outlined in Section 4.2, the SSN and the data models
specified by the O&M and the SensorML SWE standards have been used to derive the
proposed IoT Metamodel.

For an exhaustive description of SSN and SWE standards, interested readers are
referred to the official specification and the aforementioned literature contributions.

3.3. Model-Driven Engineering and Model-Driven Architecture

Model-driven development (MDE) is an approach to software systems engineering that
addresses the increasing complexity of execution platforms by focusing on the use of
formal models [29]. The founding pillars of MDE are constituted by model transformations.
An appropriate chain of model-to-model and model-to-text transformations is specified and
executed in order to progressively translate abstract models into more refined models until
executable artifacts or models that meet the desired level of abstraction are generated.

One of the most important initiatives driven by MDE is the Model Driven Architecture
(MDA), the Object Management Group (OMG) incarnation of MDD principles [3].

The Model-Driven Architecture prescribes that various models have to be specified
throughout the software development lifecycle. Such models, which provide different
views of the system, are specified from viewpoints focusing on particular system concerns.

The following main standards have been introduced as part of the MDA effort:

• Meta Object Facility (MOF): for specifying technology neutral metamodels (i.e., models
used to describe other models) [30];

• XML Metadata Interchange (XMI): for serializing MOF metamodels/models into XML-
based schemas/documents [31];

• Query/View/Transformation (QVT) and MOF Model To Text (MOFM2T): for specifying
model-to-model and model-to-text transformations, respectively [32,33].

In a general model-driven engineering process, an input model can be used for gen-
erating an output model or a textual document (e.g., executable code, text documents,
configuration files, etc.)

Specifically, let us consider an input model Model MA, which is an instance of source
metamodel MMA. Let us assume that such a model has to be mapped to the output model
MB, which, in turn, is an instance of target metamodel MMB.

Both MMA and MMB have to be specified in terms of MOF Model constructs.
The model-to-model transformation that generates the output model is specified by use

of QVT, the declarative language for specifying model-to-model transformations. In order
to be handled by a QVT transformation engine, the input and output models have to be
serialized as XML-based documents which are obtained by applying the rules specified by
the XMI standard.

Finally, the required textual document is generated throughout the execution of an ap-
propriate model-to-text transformation specified by use of the MOFM2T metamodel standard.

3.4. PyBPMN/eBPMN

In order to automate the building and execution of BP simulation models, this work ex-
ploits an approach denoted as PyBPMN/eBPMN, which has been introduced and described
in previous contributions [34], and that is hereby summarized for the sake of completeness.

Specifically, PyBPMN (Performability-enabled BPMN) is a BPMN extension that ad-
dresses the specification of performance and reliability properties of BPs [35,36], while
eBPMN is a Java-based domain-specific simulation framework [37,38].

Future Internet 2023, 15, 50 9 of 28

The PyBPMN extension is based on principles and standards introduced in the model-
driven engineering field, specifically by the OMG’s Model Driven Architecture (MDA) [3].
Such an extension addresses the non-functional characterization of a BP according to four
different dimensions:

• Workload, to model the workload submitted to BP tasks;
• Performance, to specify the performance properties, i.e., efficiency-related properties

such as the service time, associated to single tasks;
• Reliability, to specify the reliability properties of the resources that tasks depend on to

carry out work requests;
• Resource management, to describe the execution platform actually used for executing

the BP.

The PyBPMN-based modeling approach does not introduce a separate notation for
representing the BP under study. Rather, the functional requirements of the process to
be analyzed are initially used for specifying a standard BPMN model. Then, the model
is enriched with annotations that capture the non-functional requirements, according to
elements (or metaclasses) introduced in the PyBPMN metamodel. As such, a PyBPMN
model is still a valid BPMN model.

PyBPMN models can be directly simulated by using eBPMN, a Java-based domain-
specific simulation framework. The eBPMN architecture, which has been designed to
comply with the execution semantics of the BPMN version 2.0 specification, reflects the
structure of the PyBPMN metamodel. Relevant concrete classes have been defined for
explicitly handling the non-functional characterization of a BP (e.g., the service demand for
a given resource or the probability of a failure/repair event), in order to mimic the realistic
behavior of the BP under study. As an example, EBPMNResource is the abstract superclass
for all the resource classes defined in eBPMN. This class holds a list of references to the
eBPMN elements that use the resource. The EBPMNResource class can be specialized as
Performer, i.e., the atomic entity that actually executes the service request, or as Broker and
Subsystem, which provide the implementation of complex patterns of composite resources.

4. IoT-Aware BPM Framework

This section illustrates the proposed framework for the IoT-aware BPM. Specifically,
Section 4.1 states the requirements that guided the framework specification, Section 4.2
provides the rationale which has driven the framework development and outlines its con-
ceptual pillars, Section 4.3 introduces SysML4IoT, a profile for describing sensor networks,
Section 4.4 describes the IoT-BPMN extension and, finally, Section 4.5 provides an archi-
tectural view of the proposed framework and, finally, Section 4.6 discusses the IoT-aware
BPMN framework from an operational perspective.

4.1. Framework Requirements

The proposed framework has been designed to address the following requirements:

• REQ1: the framework shall support the specification of BP models by use of the
BPMN notation;

• REQ2: the framework shall provide appropriate features to enrich the BPMN model
with information characterizing the underlying IoT platform;

• REQ3: the framework shall support the specification of the IoT platform structure by
use of SysML;

• REQ4: an appropriate UML profile should be provided to enrich the expressiveness of
SysML with regards to the IoT domain;

• REQ5: the framework shall be able to support the simulation of the BPMN model;
• REQ6: the framework shall include a BP execution engine able to interact with the

underlying IoT platform;
• REQ6: the framework shall be able to update the simulation model according to the

actual state of the system, as derived from data collected by IoT sensors;

Future Internet 2023, 15, 50 10 of 28

Sections 4.2–4.6 clarify how such requirements have been addressed.

4.2. Rationale and Overview

As outlined in Section 1, this paper introduces a conceptual framework for the analysis
of IoT-aware BPs, e.g., processes which specifically monitor, exploit and manage data
retrieved from a network of distributed IoT sensors.

The strategy at the basis of the proposed framework development is outlined in
Figure 2.

OGC
Open Geospatial

Consortium

W3C
World Wide Web

Consortium

Semantic Sensor
Network (SSN)

Ontology

Sensor Web
Enablement (SWE)

Framework

Sensor Model
Language

(SensorML)

Observation and
Measurement

(O&M)

promoted

promoted

includes

includes

inspired/aligned to

MOF-based
Sensor Metamodel

Sensor-aware
SysML Profile

Sensor-aware
BPMN Extension

Existing Entities

Figure 2. Conceptual strategy for developing the framework for the analysis of IoT-aware BPs.

As a first step, in order to describe from a conceptual point of view the addressed
sensors network domain, an MOF-based metamodel has been initially specified, MOF
being the key MDA standard that provides an abstract language and a framework for
specifying, constructing, and managing technology neutral metamodels, e.g., models used
to describe other models [30].

The IoT metamodel describes entities that compose a sensor network system and the
relationships among them. As shown in the upper part of Figure 2, in order to identify
the metamodel elements, existing ontologies and frameworks dealing with the addressed
domain have been analyzed. Specifically, the proposed metamodel is inspired by the
following elements:

• Sensor Web Enablement (SWE) framework, which has been promoted by the OGC Spatial
Consortium and includes various standards, each related to a particular aspect in the
general context of sensors network development (e.g., sensors API, data representation,
data encoding, etc.). Specifically, the proposed metamodel design is based on the
sensor structural model and the data model provided by the SensorML and the O&M
standards, respectively;

• Semantic Sensor Network Ontology (SSN), which is one the most relevant ontologies for
conceptual description of sensors network systems.

The proposed IoT Metamodel is shown in Figure 3.

Future Internet 2023, 15, 50 11 of 28

serviceEndPoint: URI

Sensor

definition: URI

FeatureOfInterest

definition: URI

ObservableProperty

System

Platform

Position

position

platform

description: String
resultTime: Time

Observation

sensors 1..*

sensors

0..*

1

0..*0..1

1

0..1

0..1

observations

observedProperty
featureOfInterest

0..*

properties 1..*

1..*

subsystem
0..*

SimpleData

elementCount: Integer
elementType: SensorDataType
encoding: EncodingType
values: Byte

DataArray
DataRecord

description: String
definition: URI

SensorDataType

heading: Quantity
pitch: Quantity
roll: Quantity

Orientation

altitude: Quantity
longitude: Quantity
altitude: Quantity

Location

value: Boolean

Boolean

value: Double
unitOfMeasure: String

Quantity

value: String

String

value: Time

Time

value: String
dictionary: URI
itemsList: String[]

Category

result

1

EncodingType

tokenSeparator: String
blockSeparator: String

TextEncoding

byteOrder: String
byteEncoding: String

ByteEncoding

position

0..1location 0..1 orientation

deployedSystem

deployment

label: String
description: String

IoTAbstractType

field

1..*

1..*

properties 1

1..*

0..*

sensors observedFeatures

Figure 3. IoT Metamodel.

According to the figure, a sensor network system (represented by the System entity)
is defined as a collection of Sensors (or, in other words, sensing devices). Each sensor
provides a serviceEndPoint which is used for inquiring the device and retrieving the col-
lected measures.

Sensors might be single, stand-alone devices or they can be structured in a Platform,
which is a physical component constituting the system deployment. A Position can be
specified for sensors and platforms, to describe the entity Location (in terms of latitude,
longitude and altitude) and its Orientation (by specifying the entity heading, pitch and roll).

Sensors observe properties (ObservableProperty entity), which denote physical enti-
ties’ characteristics subjected to a measure, and make observations (Observation entity).
The observable properties of an entity can be grouped into features of interest (Feature-
OfInterest entity). As an example, let us consider a meteorological sensor for measuring
the rainfall and the wind speed. The weather condition is the feature of interest observed
by sensors, while the rainfall and windspeed are two observable properties characterizing the
weather condition feature of interest.

Properties and features of interest are characterized by a Definition URI, which
allows one to associate a reference to an external ontology or dictionary that provides the
relevant conceptual description.

Any Observation (or measure) collected by a sensor includes one Result. As results
are typed elements, the metamodel includes the following types:

• SimpleData: metaclass which is further specified by the following subclasses:

– Boolean, which represents a boolean type. The value attribute provides the
measured boolean value of the observed property;

– Quantity, which is a type representing a physical quantity whose measure requires
the specification of a value along with the related unit of measure (unitOfMeasure
attribute);

– Category, which is a type representing a property whose actual value is defined
in terms of a limited and fixed set of possible values. It is characterized by the
following attributes: value, which is the actual value of the measured property,

Future Internet 2023, 15, 50 12 of 28

dictionary, which refers to the external resource defining the set of allowable
values and itemList, which directly provides the allowable values;

– String, which represents a sequence of characters;
– Time, which denotes an observable property representing a time and/or a date value.

• DataArray, which is a complex type specified in terms of a sequence of same type
elements. It is characterized by the following attributes:

– elementCount, which denotes the array length;
– elementType, that is the type of each array’s item. As it is defined as a SensorDataType,

an array contains elements type by any possible sensor datatype;
– encoding, that describes how elements are encoded in the array. Two encodings are

provided: TextEncodings, according to which the array elements are encoded as
a text-based list of tokens, or ByteEncoding for items encoded as a row sequence
of bytes;

– values, which contains the encoded data representing the actual array value;

• DataRecord, which is a complex type representing a collection of elements. Unlike
the DataArray type, fields in a DataRecord are not supposed to be of the same type.

Finally, it should be noted that any result is associated with a textual Description, and a
Definition URI that specifies the external dictionary/ontology used for its formal definition.

As discussed in Section 1, in order to effectively support the simulation-based analysis
of BPs dealing with a sensor network, the proposed IoT-aware methodology addresses the
system representation from two modeling perspectives: the structural view, specified by a
SysML model, and the operational view, provided in terms of an IoT-aware BP.

In this respect, as outlined in Figure 2, two artifacts have been implemented starting
from the conceptual representations provided by the IoT Metamodel: the IoT4SysML profile
and the IoT-BPMN extension. The former is a UML profile which allows the annotation of
a SysML model representing the structural view of a sensor network systems. The latter
is a BPMN metamodel extension which allows the specification of IoT-aware BPs provid-
ing the operational view of the sensor network systems. Such artifacts are described in
Sections 4.3 and 4.4, respectively.

4.3. IoT4SysML: An IoT-Aware UML Profile for SysML

The proposed IoT-aware profile for annotating SysML models providing the structural
view of sensor networks is shown in Figure 4.

The profile includes the following stereotypes, which have been introduced according
to relevant concepts/relationships specified in the IoT Metamodel:

• System, which extends both the Package and the Class metaclass and identifies the
Sensors Network System;

• Platform: which extends the Package metaclass and denotes a SysML Block element
representing a Platform. It provides the position property for allowing the specifica-
tion of the Platform’s location and orientation;

• Sensor, which identifies SysML Blocks representing Sensors within the addressed
sensor network. It provides the following attributes:

– serviceURI, that specifies an URI endpoint for inquiring the sensor and retrieving
the collected measures;

– position, that describes the sensor’s position in terms of its location and orientation;

• FeatureOfInterest, that denotes a physical object observed by a sensor. It includes
the definition attribute for referring to an external resource (i.e., a dictionary or an
ontology) which formally defines the feature;

• ObservableProperty, which denotes a SyML Block Property representing an observ-
able property. The formal definition of the property can be provided by use of the
definition attribute;

Future Internet 2023, 15, 50 13 of 28

• Observes, which extends the Association metaclass. It allows the proper specifica-
tion of the relationships among sensors and observed entities;

• SensorData, which extends the Property metaclass and identifies a SysML Block
attribute representing data measured by the sensor. As SensorData represents physical
and measurable quantities, the uom attribute allows the specification of the related unit
of measure;

• CategorySensorData, which extends the Property metaclass and identifies a SyML
Block attribute representing a Category Data, as specified by the IoT Metamodel.
As the profile does not make any assumption on the annotated SysML model, the
CategorySensorData includes the two following attributes which might be possibly
used for further specifying the Category Data:

– Dictionary, which specifies a reference to an external resource;
– ItemList, which includes the list of allowed values;

• SensorDataRecord, which extends the DataType metaclass and identifies a DataRecord
type;

• SensorDataArray, which extends the DataType metaclass and identifies an Array type;

<<Stereotype>>
System

definition: URI

<<Stereotype>>
ObservableProperty

serviceURI: URI
position: Position

<<Stereotype>>
Sensor

position: Position

<<Stereotype>>
Platform

label: String
description: String [0..1]

IoTBaseElement

<<Metaclass>>
Class

<<Metaclass>>
Package

<<Metaclass>>
Property

definition: URI

<<stereotype>>
FeatureOfInterest

value: EDouble
uom: EString

<<DataType>>
Quantity

label: EString
description: EString [0..1]
location: Location [0..1]
orientation: Orientation [0..1]

<<DataType>>
Position

heading: Quantity
pitch: Quantity
roll: Quantity

<<DataType>>
Orientation

altitude: Quantity
longitude: Quantity
altitude: Quantity

<<DataType>>
Location

uom: String [0..1]

<<Stereotype>>
SensorData

encoding: EncodingType

<<Stereotype>>
SensorDataArray

<<Stereotype>>
SensorDataRecord

<<DataType>>
EncodingType

tokenSeparator: String
blockSeparator: String

<<DataType>>
TextEncoding

byteOrder: String
byteEncoding: String

<<DataType>>
BinaryEncoding

dictionary: URI
itemsList: String[]

<<Stereotype>>
CategorySensorData

description: String [0..1]
definition: URI

BaseSensorData

bigEndian
littleEndian

<<Enumeratione>>
ByteOrder

raw
base64

<<Enumeratione>>
ByteEncoding

<<Metaclass>>
Association

definition: URI

<<stereotype>>
Observes

<<Metaclass>>
DataType

Figure 4. SysML profile for IoT.

4.4. IoT-BPMN: A BPMN Extension for IoT-Aware BPs

This section introduces IoT-BPMN, an extension of the BPMN metamodel, in other
words the notation that the proposed methodology exploits to provision the behavioral view
of the IoT System.

As mentioned in Section 1, the proposed extension has been designed and developed
according to principles and standards provided by MDA. Specifically, the extension is
strongly based on a metamodeling-based approach, according to which the existing BPMN
metamodel has been analyzed and new metaclasses are introduced as extension of existing
metaclasses, without altering the structure of the original BPMN metamodel.

The extension process is illustrated in Figure 5. Specifically, the BPMN metamodel
is provided in terms of MOF metaclasses. According to the MDA methodology, a BPMN
model is an instance of the corresponding metamodel. The XMI [31] standard provides the
rules for

• Serializing an MOF metamodel to an XMI Schema;
• Serializing a model to an XMI document which is validated by the relevant XMI schema.

Future Internet 2023, 15, 50 14 of 28

IoT-BPMN
Metamodel

Meta-Object
Facility (MOF)

BPMN
Metamodel

<<instance of>><<instance of>>

Metamodel
Extension

IoT-BPMN
Model

<<instance of>>

XM
I

Ru
le

s
XM

I
Ru

le
s

XMI
Schema

XMI
Document

<<validated by>>

L3 - Meta-metamodel Layer

L2 - Metamodel Layer

L1 - Model Layer
IoT-BPMN

Model

<<instance of>>

Figure 5. MDA-based Extension Process.

The IoT-BPMN has been defined at layer M2 (metamodel layer) by extending existing
BPMN metaclasses.

The IoT-BPMN metamodel is easily obtained by adding metaclasses that extend the
original ones, without applying any modifications to the BPMN metamodel. This also has
the advantage of maintaining a complete backward compatibility with BPMN, so that a
BPMN model conforms to both the BPMN metamodel and the IoT-BPMN metamodel.

The second step of the extension process is the serialization of the IoT-BPMN meta-
model by using the XMI Schema Production Rules, in order to obtain the IoT-BPMN
XMI Schema.

Finally, the XMI Document Production Rules are instead used to derive an IoT-BPMN
document (i.e., a XML document) from the corresponding IoT-BPMN model.

The BPMN metamodel extension which addresses the IoT-related concepts is shown
in Figure 6 and consists of the following metaclasses.

• SensorTasK, which represents an IoT device. It provides the serviceEndPoint param-
eter that allows the BP engine to inquire the sensor for collecting the measured data;

• Observation, which models a single observation made by the sensor. It includes the
following attributes:

– Description, for specifying a free description of the measure;
– ResultTime, which describes when the observation has been made;
– Result, which is a reference to the class providing the actual measured value;

• ObservableProperty, which is the subject of an observation. Its definition property
refers to an external dictionary/ontology where the relevant conceptual definition
is provided;

• FeatureOfInterest, which describes a feature of interest for the addressed environment.
It is specified as a subclass of the BPMN2::Artifact metaclass, so that it can be associated
to any other BPMN element;

• SensorDataType, which represents the abstract type characterizing an observation re-
sult. According to the IoT metamodel introduced in Section 4.2, it is further specialized
by the concrete classes SimpleData, DataArray and DataRecord.

Finally, it should be emphasized that the above-mentioned metaclasses focus on the
IoT-related extension of the BPMN. As the proposed methodology specifically addresses
the simulation-based analysis of BPs, the IoT-BPMN extension also includes the metaclasses
provided by the PyBPMN metamodel extension [35], briefly summarized in Section 3.4, in
order to provide a complete extension that allows one to capture both performance/relia-
bility and IoT-related properties of an IoT system.

The next section illustrates the proposed architecture for enabling the analysis of
IoT-aware BPs.

Future Internet 2023, 15, 50 15 of 28

serviceEndPoint: URI

SensorTask

definition: URI

ObservableProperty

description: String
resultTime: Time

Observation
observations

0..*

properties 1

SimpleData

elementCount: Integer
elementType: SensorDataType
encoding: EncodingType
values: Byte

DataArray
DataRecord

description: String
definition: URI

SensorDataType

value: Boolean

Boolean

value: Double
unitOfMeasure: String

Quantity

value: String

String

value: Time

Time

value: String
dictionary: URI
itemsList: String[]

Category

result

1

EncodingType

tokenSeparator: String
blockSeparator: String

TextEncoding

byteOrder: String
byteEncoding: String

ByteEncoding

field

1..*

BPMN2::ServiceTask

definition: URI

FeatureOfInterest

1..*

BPMN2::Artifact

properties

Figure 6. IoT-BPMN Metamodel Extension.

4.5. Architecture for the IoT-Aware BPM

This section introduces the proposed architecture for enacting the simulation-based
analysis of IoT-aware BPs. As pointed out in Section 1 and further explained in Section 4.6,
the architecture aims at enabling the effective adoption of the digital twin paradigm. More-
over, its design exploits MDA-based standards and technologies to ease the development
of the required executable simulation models.

The proposed architecture, which is shown in Figure 7, consists of the following
components:

• BP Modeling and Management, which provides a visual environment to specify the
IoT-aware BP and monitor its execution;

• BP Execution Engine, which actually executes the BP. Process tasks that specifically
require an interaction with the sensors network invoke services provided by the Broker,
which acts as the intermediate layer;

• Transformation Engine, which implements the model-to-text transformations intro-
duced in Section 4.6 to generate an executable process description tailored for the
adopted BP execution engine and a Java implementation of the broker components, ac-
cording to the structural view of the IoT System. It is structured in the following layers:

– The M2T Transformation Layer, which provides the Acceleo-based implementation
of the aforementioned transformations, being Acceleo [39] an implementation of
MOFM2T [33], the MDA standard for the specification of model-to-text transformations;

– MOF Metamodel Layer, which provides an implementation of the IoT-BPMN meta-
model based on MOF [30], the MDA standard for the specification of technology-
neutral metamodels;

– The Eclipse Modeling Framework (EMF), which provides the extensible environment
for the specification and execution of the model transformations.

• Broker, which constitutes the intermediate layer for hiding the technological complex-
ity of the underlying IoT infrastructure, thus providing transparency of the business
layer from implementation-related details of the IoT-layer. It includes the follow-
ing components:

Future Internet 2023, 15, 50 16 of 28

– The Open Sensor Hub, which is the core of the Broker. OSH implements the
various standard parts of the SWE effort and provides a service-based interface
for interacting with the IoT devices. The OSH implementation natively provides
a set of OSH Basic Drivers for enabling the data exchange with generic devices;

– App-specific Sensor Drivers and Sensor Data Layer, which are the components whose
implementation is supported by the IoTBPMN-to-Sensor model-to-text transforma-
tion. Specifically, they provide the implementation of device-specific drivers and
data models, respectively. As such components’ implementation is strictly tied to
the set of concrete sensors, the information needed for their implementation is
specified by the use of stereotypes provided by the IoT4SysML profile;

– Data Retrieval Layer, which is responsible of updating the BP simulation model
(i.e., the digital twin) with the data collected by sensors defining the actual state
of the real environment (i.e., the physical twin).

• Simulation Engine, which allows the execution of the simulation model. It provides
an implementation of the eBPMN [37] framework for executing simulation models
specified by use of PyBPMN [35];

• BP Execution Engine, which is in charge of executing the BP model.

The next section introduces the methodology that clarifies how the IoTSyML profile,
IoT-BPMN extension and the architecture discussed herein can be actually exploited to
enact the analysis of IoT-aware BPS.

BP Execution Engine

OSH
Open Sensor HUB

App-specific
Sensors
Drivers

Sensors
Data Layer

OSH
Basic Drivers

Data Retrieval
Layer

Internet Sensors

Broker

BP Editor BP Execution
Cockpit

BP Modeling and Management

PyBPMN Layer

JVM

Simulation Engine

M2T Transformations

Eclipse EMF

Transformation Engine

MOF Metamodel Layer

Existing Component

Developed Component

Legenda

Subsystem

Figure 7. IoT-aware BP Analysis Architecture.

4.6. Methodology for IoT-Aware BPM

The proposed methodology, which is shown in Figure 8, consists of the following steps:

1. Initially, an IoT-BPMN model that provides the operational view of the sensors system
is specified. The proposed BPMN extension allows systems developers to characterize
the process model with information that describe the sensors networks, e.g., service
endpoints for Service Task interacting with the underlying IoT platforms, datatype
structure for the expected measures, etc.;

2. A SysML model annotated with the IoT4SysML profile is specified for providing the
structural view of the sensors network;

3. In order to allow the simulation-based analysis of the IoT system, the IoT-BPMN model
and the XML-based description of the static simulation parameters characterizing
the scenario under study are given as input to the IoTBPMN-to-eBPMN model-to-text

Future Internet 2023, 15, 50 17 of 28

transformation. In this respect, as explained in Section 4.4, the IoT-BPMN extension
includes the metaclasses provided by the PyBPMN metamodel. As such, the IoT-
BPMN also describes the performance and reliability properties that characterize
the BP (e.g., the activity service demand, the IoT devices MTTF, etc.). The eBPMN
code implementing the digital twin of the actual IoT-aware BP is thus generated. The
eBPMN code execution allows analysts to evaluate the behavior of the IoT system and
assess whether or not all the functional and non-functional requirements are satisfied;

4. The SySML-to-Sensors model-to-text transformation is executed for generating:

• The sensors driver used for making the PoT Broker component able to actually
interact with concrete IoT devices;

• The required classes that implement the Data Model storing measures collected
by sensors.

5. In order to allow the actual execution of the business process, the IoTBPMN-to-Engine
model-to-model transformation is executed for generating a process model compliant
with the adopted execution engine. It should be underlined that even though such
a transformation is strictly tied to the adopted BP execution engine, the adoption
of an MDA-based approach allows keeping the methodology valid regardless the
engine adopted in the concrete case: any BP execution environment will be virtually
supported by introducing an appropriate model transformation able to generate the
required input model;

6. Finally, the IoT-aware BP is executed. The information included in the IoT-BPMN
model (e.g., the sensor service end-points), allows the execution engine to interact
with the PoT Broker for inquiring the underlying sensors network and collecting the
measured data;

7. At execution time, the actual configuration of the sensors system (i.e., the physical
twin) may change. In order to keep the digital twin aligned with its physical coun-
terpart, the Data Retrieval Layer is responsible of collecting the parameters which
describe the actual system configuration and updating the eBPMN implementation ac-
cordingly.

It should be underlined that the methodology does not make any assumption about
the availability of an IoT-BPMN modeling tool. Indeed, as shown in Figure 9, the IoT-BPMN
model can be obtained throughout the following steps: first, a BPMN model is specified
according to the IoT System functional requirements. Then, performance and reliability
properties, as well as the description of the IoT devices, are used for enriching the BPMN
model with relevant text annotations. Finally, a model-to-model transformation is executed
to generate the corresponding PyBPMN and IoT-BPMN models. In this respect, in order
to be automatically processed by a model-to-text transformation, text annotations should
follow the EBNF [40] formal syntax illustrated in [41] and conform to the PyBPM and the
IoT metamodels.

In order to show how the proposed methodology can be used in practice, a prototype
of the framework has been developed and used in a scenario dealing with a Water Alert
System. In this respect, the next section provides relevant implementation details, while
Section 6 describes the corresponding experimentation.

Future Internet 2023, 15, 50 18 of 28

SysML-to-Sensors
M2T Transformation

SysML
+

SaProfile

IoT System
Structural View

IoT-
BPMN

IoT System
Operational View

Java

Java

IoTBPMN-to-Engine
M2T Transformation

BP Execution
Engine

Data Retrieval
Layer

IoTBPMN-to-eBPMN
M2T TransformationXML

Simulation
Static Parameters

XML

Engine-specific
Process Model

Simulation
Dynamic
Parameters

Sensor Data Layer

App-Specific
Sensor Drivers

Data Model Classes

Sensors Drivers

OSH

Simulation
EngineeBPMN

Executable
Simulation

Existing Component

Developed Component

Legenda

PoT Subsystem

Input Model / Parameters

Generated Model / Parameters

Sensors Data / Control Flow

Models / Parameters Flow

Transformation Engine

Broker

1

6

2

3

5

7

8

4

Figure 8. Methodology for the IoT-aware BPM.

BPMN
Specification

BP Annotation
(Performance and

Reliability)
BP Annotation

(IoT)

Model-to-Model
Transformation

Functional
Requirements

Performance-
Reliability
Properties

IoT Devices
Description

BPMN

IoT-BPMN

Figure 9. Specification of PyBPMN and IoT-BPMN.

5. Implementation of the IoT-Aware Framework Prototype

As discussed in Section 4.5, the framework architecture includes five main components
providing the capabilities to (i) specify a BP model (BP Modeling and Management compo-
nent), (ii) run the BP (Execution Engine), (iii) execute the required model transformations
(Model Transformation Engine), (iv) communicate with the underlying sensors network
(Broker), and (v) simulate the BP by executing the relevant simulation model which plays
the role of DT (Simulation Engine).

This section describes how the framework prototype has been developed. As il-
lustrated in Figure 7, part of the framework capabilities are provided by existing open
source components. The core technologies at the basis of prototype implementation are
the Java programming language and the Eclipse Modeling Project [42], an Eclipse compo-
nent that provides concrete tools to enable the actual adoption of model-driven software
engineering approaches.

Future Internet 2023, 15, 50 19 of 28

The core of the Eclipse Modeling Project is the Eclipse Modeling Framework (EMF) [43],
which constitutes the backbone of the proposed framework implementation. It provides:

• Ecore, the Eclipse reference implementation of OMG’s Essential-MOF (EMOF) [30], the
OMG standard for the specification of neutral metamodels;

• A visual environment to create, manage and store metamodels serialized as XML
Metadata Interchange (XMI) data [31].

According to the framework architecture, the prototype provides various model-to-
model and model-to-text transformations. In this respect, the following technologies of the
Eclipse Modeling Project have been used:

• QVT Operational (QVTo), which is an implementation of the QVT Operational Map-
pings language issued by OMG. QVTo provides a transformation engine to execute
model-to-model transformations on Ecore-based models. Specifically, QVTo allows the
transformation of an input model, which conforms to the relevant source metamodel, to
an output model, which is in turn an instance of the target metamodel. Both the source
and target metamodels have to be specified by use of of Ecore [44] and serialized as
XML schemas according to XMI rules [44];

• Acceleo, which is an Eclipse plugin that implements the OMG MOFM2T standard.
Acceleo provides a model-to-text transformation engine which takes as input an XMI
model that conforms to a given Ecore-based source metamodel and yields as output a
text document. The latter is obtained by use of a template-based approach, where fixed
text is completed with the information retrieved from the input model [39].

The aforementioned technologies and standards are at the basis of the prototype
framework, which consists of a set of components described hereinafter.

The implementation of both the BP Modeling and Management component and BP
Execution Engine makes use of the open-source Camunda Platform, version 7 [45], which
provides a BPMN visual editor and a BP execution engine.

As regards the Transformation Engine, an EMF- and Java-based implementation of the
following transformations have been developed:

• BPMN-to-IoTBPMN Model-to-Model Transformation, which takes as input the an-
notated BPMN model (serialized as an XML file) and yields as output an XMI-based
IoT-BPMN model. Specifically, the transformation maps the annotation elements that
describe IoT devices, as well as the performance and reliability properties of the BP
under study (e.g., the sensor url endpoint, the device MTTF, etc.), to the corresponding
IoT-BPMN elements. As an example, the following annotations is used to generate
an output model which includes a SensorTask element where the serviceEndPoint at-
tribute assumes the value http://utv.testserviceurl.it/sensor1. In order to be
handled by the model transformation engine, the annotations must conform to the
EBNF (Extended Backus-Naur Form) formal syntax, as illustrated in [41].

<<Sensor >> {
serviceEndPoint = http :// utv.testserviceurl.it/sensor1 ,
}

• IoTBPMN-to-eBPMN Model-to-Text Transformation, which takes as input the IoT-
BPMN model and yields as output the eBPMN code that constitutes the Java-based
implementation of BP digital twin. It should be underlined that this transforma-
tion takes into consideration the performance- and reliability-related properties of
the IoT-BPMN model. Therefore, the framework prototype uses the transformation
implementation introduced in [41];

• SysML-to-Sensor Model-To-Text Transformation which constitutes the core of the
proposed approach. This transformation takes as input the annotated SySML model,
which represents the structural view of the IoT system, and generates the Java classes
implementing the application-specific OSH sensor drivers, along with the relevant
data model. In this respect, in order to generate the app-specific sensor drivers, the

Future Internet 2023, 15, 50 20 of 28

transformation analyzes the SysML model and, for each class stereotyped as «Sensor»,
yields as output the following classes:

– Sensor Configuration class, which provides the attributes to store the parameters
that characterize the sensor configuration. If the SysML model specifies the sensor
location (i.e., throughout the position attribute provided by «Sensor» or «Platform»
stereotypes, the transformation includes such information in the sensor configuration;

– Sensor Class, which constitutes the actual implementation of the sensor driver.
According to the OSH architecture, it implements the ISensorModule interface.
The transformation generates the class skeleton which includes the code to handle
the sensor identifiers. The skeleton also includes the appropriate specification
and initialization of the methods inherited from the ISensorModule interface for
accessing the measured sensor data. A manual refinement is thus required for
the complete implementation of the driver;

– Sensor Output Class, which provides methods to allow access to measured data.
In this respect, the sensor output data structure and the encoding to be adopted
are generated according to the structure of the SyML model elements. Specifically,
the transformation takes into account those elements stereotyped as «Observ-
ableProperties», «SensorData», «SensorDataArray» and «CategorySensorData».

Finally, in order to obtain the implementation of the sensor data model, the trans-
formation generates one separated class for each SysML model element stereotyped
as «FeatureOfInterest». It is worth noting that the related properties are typed ac-
cording to the SysML model elements annotated with stereotypes that inherit from
«BaseSensorData».

The implementation of the Broker consists of various components. As described in
Section 4.5, the core of the Broker implementation is represented by the open-source project
Open Sensor Hub (OSH), which provides a service-based interface for interacting with
IoT devices. The OSH implementation includes a set of OSH Basic Drivers that enact the
data exchange with generic devices. The App-specific Sensor Driver component includes
the implementation of the various drivers required for interacting with the actual sensors
used in the specific application. As stated above, such drivers constitute the output of the
SysML-to-Sensor model-to-text transformation. An example is given in Section 6. Similarly,
the Java-based implementation of Sensor Data which represents the Broker data model,
is dynamically obtained from the structural model of the sensors network by use of the
same SysML-to-Sensor model-to-text transformation (see Figure 8 step 5). In addition, as
clarified in Section 6, the experimentation has addressed steps 1 to 7 of the proposed
methodology. As such, the current prototype does not include an implementation of the
Data Retrieval Layer.

Finally, as regards the Simulation Engine, the prototype implementation includes
the Java-based domain-specific simulation framework eBPMN, which is fully described
in [37,38].

The next section illustrates the experimentation carried out to assess the feasibility
and effectiveness of the proposed approach.

6. Example Application

This section provides an example that aims to demonstrate how the proposed IoT-
aware BPM framework can be used in practice. The example application makes use of a
framework prototype implementation that addresses the methodology steps 1 through 7.

In order to assess the technically soundness of the proposed IoT-aware BPM framework
and to assess the feasibility and effectiveness of the relevant methodology along with its
limitations, this section discusses the application of a framework prototype to a concrete
case. Specifically, the prototype implementation of the framework addresses steps 1 through
7 of the proposed methodology.

Future Internet 2023, 15, 50 21 of 28

Let us consider a Water Monitoring System (WMS), which controls a sensors network
for evaluating the flooding risk of a water basin. The system includes the following sensors:

• The water level and its vertical acceleration are monitored by a GPS and an accelerome-
ter, both mounted on a buoy which floats on the water surface;

• The weather conditions are monitored by a weather station equipped with a pluviome-
ter/anemometer.

The control flow executed by the WMS IoT system is summarized as follows:

1. All sensors have to be initialized;
2. Iteratively, the available sensors have to be inquired in order to obtain actual measures

for the observed parameters: the water level, its vertical speed, the rainfall and the
wind speed and direction;

3. According to the collected data, the system shall evaluate the flooding risk and, if
required, an alert shall be sent to a human operator in charge of enacting the required
countermeasures and properly managing the emergency operations.

As illustrated in Figures 8 and 9, the first step of the proposed methodology deals with
the specification of an IoT-BPMN process model. In this respect, according to the functional
requirements, a BPMN diagram is initially defined. Then, the non-functional requirements
are used for extending the BP model with textual annotations compliant to the IoT-BPMN
metamodel. Finally, a model-to-text transformation is executed to generate the XML-based
representation of the IoT-aware BP.

Figure 10 illustrates the BPMN model for the Water Alert System. A fragment of the
annotated model is shown in Figure 11.

At the second step, the structural view of the WMS is specified in terms of a SysML
diagram extended with the IoT4SysML profile.

The structural model consists of various diagrams. The package diagram describes the
various domain entities, as shown in Figure 12, which shows how the WMS entity, which
acts as a «system», observes the Basin.

The use of the IoT4SysML profile allows the identification of relevant concepts which
are used by the model transformations for generating the corresponding output:

• Blocks representing IoT devices, e.g., the GPS or the accelerometer stereotyped as
«Sensor» (see Figure 13);

• The structure of the data collected by a sensor. As an example, the attributes rainFall
and wind owned by the Pluvio-Anemometer Block are stereotyped as «SensorData»
and «SensorDataRecord», respectively. While the former denotes a basic (i.e., Integer)
datatype, the latter is a record type, further specified by the WindDataTYpe element
(see Figure 13);

• The relationship between a sensor and the observed features of interest. As an example,
the GPS «observes» the weather conditions (see Figure 13);

• The observable properties characterizing each feature of interest. As an example, the
Basin Water Condition block is stereotyped as a «FeatureofInterest» which in turn is
specified by two attributes stereotyped as «ObservableProperty»: the waterLevel and
the verticalAcceleration (see Figure 14).

Future Internet 2023, 15, 50 22 of 28

Figure 10. BPMN Model for the Water Alert System.

Figure 11. Annotation of the BPMN model with performance- and IoT-related properties (fragment).

Future Internet 2023, 15, 50 23 of 28

Figure 12. Water Alert System overview.

The WMS package contains the Block Definition Diagram (BDD) specifying the WMS
structure (see Figure 13). In addition, the BDDs contained in the Basin package and in the
Datatypes package are shown in Figures 14 and 15, respectively.

Figure 13. WAS Package: structure of the Water Monitoring System.

Figure 14. Basin Package: WMS Features of Interest.

Future Internet 2023, 15, 50 24 of 28

Figure 15. Datatypes Package.

Steps 4 to 6 of the methodology deal with the implementation of the executable
BP process (i.e., the physical twin) and the related eBPMN simulation model (i.e., the
digital twin).

In this respect, an example of how the IoTBPMN-to-Engine transformation adapts
the IoT-aware BP model to make it compliant to Camunda is given in Figure 16, while
the output of the IoTBPMN-to-eBPMN transformation is provided in Figure 17. Finally,
Figure 18 shows an example of how the IoTBPMN-to-sensor is used for supporting the
generation of the broker’s Sensor Data Layer, as well as the required sensor’s Drivers.

Figure 16. Specification of IoT-related properties in Camunda.

Future Internet 2023, 15, 50 25 of 28

Figure 17. Fragment of the IoT-ware BP Digital Twin implemented in eBPMN-based Java code.

It is worth noting that the experimentation was not intended to be based on a test
campaign and on the collection of measures to evaluate the performance- or reliability-
related properties of the prototype, or the software/hardware components of the Water
Alert System. The experimentation does not include the validation of the simulation model,
as it has been investigated in a previous contribution (e.g., [19]).

Differently, the experimentation has allowed us to:

• Assess the completeness and effectiveness of the IoT-BPMN extension and the IoT4SysML
profile to model a simple but concrete IoT System;

• Assess the usefulness and the usability of the IoT4SysML profile;
• Verify how the use of a model-transformation approach is feasible and effective to

support the development of sensor drivers and the data model;
• Define the procedure through which the drivers and the data model can be deployed

at run-time to the extend middleware capabilities;
• Verify how the adoption of a model-transformation approach eases the development

of a digital twin, by generating the relevant code from design models of the corre-
sponding physical system.

Figure 18. Fragment of the Weather Sensor Driver implementation.

7. Conclusions

This paper has introduced a framework for the simulation-based analysis of IoT-aware
BPs. The strength of the proposed approach lies in the adoption of MDA-based standards

Future Internet 2023, 15, 50 26 of 28

and technologies, which effectively ease the implementation of executable simulations
associated to the actual BP state, according to a digital twin perspective. Moreover, the
adoption of MDA has also allowed the development of a framework flexible enough to
be used in various operational contexts. In this respect, the broker is virtually compliant
with any IoT device, as the provided model transformations are able to effectively support
the implementation of both the required drivers and the classes implementing the sensors’
data models. Similarly, no assumptions have been made about the software environment
used for specifying and executing the BP model, as the methodology includes an adaption
step in which the IoT-BPMN model is translated to fit the actual process engine. In order
to preliminarily assess the validity of the proposed approach, a framework prototype,
based on the Camunda BPM platform, has been implemented. red According to the results
collected from prototype experimentation, the use of the framework in a concrete case has
demonstrated the feasibility of the approach for the simulation-based analysis of IoT-aware
BPs. The experimentation has also allowed us to verify the completeness and effectiveness
of the proposed modeling approach to represent a sensors network from operational and
a structural perspectives, respectively. Finally, the adopted model transformations have
shown their effectiveness to promote a low-code development approach, which reduces
the effort required to implement the system. On the other hand, the experimentation has
shown that the adoption of an MDE paradigm does not completely relieve developers from
the need of refining and completing the generated code. Moreover, the annotation of a
SysML model requires specific knowledge of the adopted profile both from a semantic and
a syntactic point of view. Finally, even though the experimentation has demonstrated that
the use of an IoT-BPMN compliant visual tool is not strictly required, its unavailability
can be considered as a limitation to address in future work. Ongoing work includes
the development of a full-fledged implementation of the framework, which specifically
addresses the dynamic and automated update of the DT at execution time, according to
state changes of the actual system.

Author Contributions: Conceptualization, P.B. and A.D.; Investigation, P.B. and A.D.; Methodology,
P.B. and A.D.; Software, P.B. and T.P.; Supervision, A.D.; Validation, P.B. and A.D.; Writing—original
draft, P.B., A.D. and T.P.; Writing—review & editing, P.B. and A.D. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not employ or report any data.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Rose, K.; Eldridge, S.; Chapin, L. The internet of things: An overview. Internet Soc. (ISOC) 2015, 80, 1–50.
2. Gianni, D.; D’Ambrogio, A.; Tolk, A., Eds. Modeling and Simulation-Based Systems Engineering Handbook; CRC Press: Boca Raton,

FL, USA, 2014.
3. Ojbect Management Group. MDA Guide, Revision 2.0 (ormsc/14-06-01). 2003. Available online: https://www.omg.org/cgi-

bin/doc?ormsc/14-06-01.pdf (accessed on 20 December 2022).
4. Bocciarelli, P.; D’Ambrogio, A.; Falcone, A.; Garro, A.; Giglio, A. A Model-Driven Approach to Enable the Distributed Simulation

of Complex Systems. In Proceedings of the Complex Systems Design & Management; Auvray, G., Bocquet, J.C., Bonjour, E., Krob, D.,
Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 171–183.

5. Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019,
7, 7. [CrossRef]

6. Peterson, J.L. Petri nets. ACM Comput. Surv. (CSUR) 1977, 9, 223–252. [CrossRef]
7. van der Aalst, W.; ter Hofstede, A. YAWL: Yet another workflow language. Inf. Syst. 2005, 30, 245–275. [CrossRef]
8. Ryan, J.; Heavey, C. Process modeling for simulation. Comput. Ind. 2006, 57, 437–450. [CrossRef]
9. Chinosi, M.; Trombetta, A. BPMN: An introduction to the standard. Comput. Stand. Interfaces 2012, 34, 124–134. [CrossRef]

https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
http://doi.org/10.3390/systems7010007
http://dx.doi.org/10.1145/356698.356702
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1016/j.compind.2006.02.002
http://dx.doi.org/10.1016/j.csi.2011.06.002

Future Internet 2023, 15, 50 27 of 28

10. Suri, K.; Gaaloul, W.; Cuccuru, A.; Gerard, S. Semantic Framework for Internet of Things-Aware Business Process Development.
In Proceedings of the 2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), Poznan, Poland, 21–23 June 2017; pp. 214–219. [CrossRef]

11. EFPL. Global Sensor Networks. 2003. Available online: http://lsir.epfl.ch (accessed on 15 December 2022).
12. International Telecommunication Union. Architectural Reference Models of Devices for Internet of things Applications. 2019.

Available online: https://www.itu.int/rec/T-REC-Y.4460/en (accessed on 22 December 2022).
13. Open Geospatial Consortium. Java Business Process Model (jBPMN). 2022. Available online: https://www.w3.org/TR/vocab-ssn/

(accessed on 22 December 2022).
14. Want, R.; Schilit, B.N.; Jenson, S. Enabling the Internet of Things. Computer 2015, 48, 28–35. [CrossRef]
15. OSH Community. Opens Sensor Hub. 2022. Available online: https://opensensorhub.org/ (accessed on 22 December 2022).
16. Open Geospatia Consortium. Sensor Web Enablement (SWE). 2022. Available online: https://www.ogc.org/node/698 (accessed

on 20 December 2022).
17. Fattouch, N.; Ben Lahmar, I.; Boukadi, K. IoT-aware Business Process: comprehensive survey, discussion and challenges. In

Proceedings of the 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), Bayonne, France, 10–13 September, 2020; pp. 100–105. [CrossRef]

18. Schönig, S.; Ackermann, L.; Jablonski, S.; Ermer, A. IoT meets BPM: A bidirectional communication architecture for IoT-aware
process execution. Softw. Syst. Model. 2020, 19, 1443–1459. [CrossRef]

19. Petrasch, R.; Hentschke, R. Towards an Internet-of-Things-aware process modeling method. In Proceedings of the 2nd
Management and Innovation Technology International Conference (MITiCON2015), Bangkok, Thailand, 16–18 November, 2015;
pp. 168–172.

20. Sperner, K.; Meyer, S.; Magerkurth, C. Introducing Entity-Based Concepts to Business Process Modeling. In Proceedings of the
Business Process Model and Notation; Dijkman, R., Hofstetter, J., Koehler, J., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg,
Germany, 2011; pp. 166–171.

21. Meyer, S.; Ruppen, A.; Hilty, L. The Things of the Internet of Things in BPMN. In Proceedings of the Advanced Information Systems
Engineering Workshops; Persson, A., Stirna, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 285–297.

22. Dar, K.; Taherkordi, A.; Baraki, H.; Eliassen, F.; Geihs, K. A resource oriented integration architecture for the Internet of Things: A
business process perspective. Pervasive Mob. Comput. 2015, 20, 145–159. [CrossRef]

23. Schönig, S.; Ackermann, L.; Jablonski, S.; Ermer, A. An Integrated Architecture for IoT-Aware Business Process Execution.
In Proceedings of the Enterprise, Business-Process and Information Systems Modeling; Gulden, J., Reinhartz-Berger, I., Schmidt, R.,
Guerreiro, S., Guédria, W., Bera, P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 19–34.

24. Euroean Commission. IOT-A Internet of Things Architecture. 2013. Available online: https://cordis.europa.eu/project/id/2575
21/ (accessed on 22 December 2022).

25. Red Hat. Java Business Process Model (jBPMN). 2022. Available online: http://www.jboss.org/jbpm/ (accessed on 20
December 2022).

26. Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Twin: A systematic literature review. CIRP J. Manuf. Sci.
Technol. 2020, 29, 36–52. [CrossRef]

27. Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital Twin: Origin to Future. Appl. Syst. Innov. 2021,
4, 36. [CrossRef]

28. Negri, E.; Fumagalli, L.; Macchi, M. A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manuf.
2017, 11, 939–948. [CrossRef]

29. Atkinson, C.; Kühne, T. Model-driven development: A metamodeling foundation. IEEE Softw. 2003, 20, 36–41. [CrossRef]
30. Object Management Group. Meta Object Facility (MOF) Core Specification. 2013. Available online: http://www.omg.org/MOF/

(accessed on 20 December 2022).
31. Object Management Group. XML Metadata Interchange (XMI) Specification. 2011. Available online: https://www.omg.org/spec/

XMI/ (accessed on 20 December 2022). .
32. Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation. 2015. Available online: http://www.omg.

org/spec/QVT/ (accessed on 20 December 2022).
33. OMG. MOF Model to Text Transformation Language (MOFM2T), 1.0. 2008. Available online: https://www.omg.org/spec/MOFM2T

(accessed on 20 December 2022).
34. Bocciarelli, P.; D’Ambrogio, A.; Wagner, G. Resource Modeling in Business Process Simulation. In Proceedings of the 2022 Winter

Simulation Conference; Feng, B., Pedrielli, G., Peng, Y., Shashaani, S., Song, E., Corlu, C., Lee, L., Chew, T., Roeder, E., Eds.; Institute
of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2022.

35. Bocciarelli, P.; D’Ambrogio, A. Performability-Oriented Description and Analysis of Business Processes. In Business Process
Modeling: Software Engineering, Analysis and Applications; Beckmann, J.A., Ed.; Nova Science Publisher: New York, NY, USA, 2011;
pp. 1–36.

36. Bocciarelli, P.; D’Ambrogio, A. A BPMN Extension for Modeling Non Functional Properties of Business Processes. In Proceedings
of the Symposium on Theory of Modeling and Simulation, DEVS-TMS ’11, Boston, MA, USA, 3–7 April 2011; pp. 160–168.

37. Bocciarelli, P.; D’Ambrogio, A.; Paglia, E. A Language for Enabling Model-Driven Analysis of Business Processes. In Proceedings
of the 2nd International Conference on Model-Driven Engineering and Software Development; SciTePress: Lisbon, Portugal, 2014.

http://dx.doi.org/10.1109/WETICE.2017.54
http://lsir.epfl.ch
https://www.itu.int/rec/T-REC-Y.4460/en
https://www.w3.org/TR/vocab-ssn/
http://dx.doi.org/10.1109/MC.2015.12
https://opensensorhub.org/
https://www.ogc.org/node/698
http://dx.doi.org/10.1109/WETICE49692.2020.00027
http://dx.doi.org/10.1007/s10270-020-00785-7
http://dx.doi.org/10.1016/j.pmcj.2014.11.005
https://cordis.europa.eu/project/id/257521/
https://cordis.europa.eu/project/id/257521/
 http://www.jboss.org/jbpm/
http://dx.doi.org/10.1016/j.cirpj.2020.02.002
http://dx.doi.org/10.3390/asi4020036
http://dx.doi.org/10.1016/j.promfg.2017.07.198
http://dx.doi.org/10.1109/MS.2003.1231149
http://www.omg.org/MOF/
https://www.omg.org/spec/XMI/
https://www.omg.org/spec/XMI/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/
https://www.omg.org/spec/MOFM2T

Future Internet 2023, 15, 50 28 of 28

38. Bocciarelli, P.; D’ambrogio, A.; Giglio, A.; Paglia, E.; Gianni, D. A Transformation Approach to Enact the Design-Time Simulation
of BPMN Models. In Proceedings of the IEEE 23rd International WETICE Conference, Parma, Italy, 23–25 June 2014; pp. 199–204.
[CrossRef]

39. Eclipse Foundation. Acceleo. 2012. Available online: https://www.eclipse.org/acceleo/ (accessed on 20 December 2022).
40. Scowen, R.S. Extended BNF—A generic base standard. In Proceedings of the Software Engineering Standards Symposium, Lake

Buena Vista, FL, USA, 1–5 November 1998; Volume 3, pp. 6–12.
41. Bocciarelli, P.; D’Ambrogio, A.; Giglio, A.; Paglia, E. BPMN-Based Business Process Modeling and Simulation. In Proceedings of

the 2019 Winter Simulation Conference; Mustafee, N., Bae, K.H.G., Lazarova-Molnar, S., Rabe, M., Szabo, C., Haas, P., Son, Y.J., Eds.;
Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2019; pp. 1439–1453. [CrossRef]

42. Eclipse Foundation. Eclipse Modeling Project. 2016. Available online: https://eclipse.org/modeling (accessed on 20 Decem-
ber 2022).

43. Eclipse Foundation. Eclipse Modeling Framework (EMF). 2016. Available online: https://eclipse.org/modeling/emf/ (accessed on
20 December 2022).

44. Eclipse Foundation QVT Operational Project. 2016. Available online: http://projects.eclipse.org/projects/modeling.mmt.qvt-oml
(accessed on 19 January 2022).

45. Camunda. Camunda Platfom 7. 2022. Available online: https://camunda.com/platform-7/ (accessed on 20 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/WETICE.2014.27
https://www.eclipse.org/acceleo/
http://dx.doi.org/10.1109/WSC40007.2019.9004960
https://eclipse.org/modeling
https://eclipse.org/modeling/emf/
http://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://camunda.com/platform-7/

	Introduction
	Related Work
	Background
	Digital Twins
	SWE Framework and SSN Ontology
	Model-Driven Engineering and Model-Driven Architecture
	PyBPMN/eBPMN

	IoT-Aware BPM Framework
	Framework Requirements
	Rationale and Overview
	IoT4SysML: An IoT-Aware UML Profile for SysML
	IoT-BPMN: A BPMN Extension for IoT-Aware BPs
	Architecture for the IoT-Aware BPM
	Methodology for IoT-Aware BPM

	Implementation of the IoT-Aware Framework Prototype
	Example Application
	Conclusions
	References

