
Received 29 April 2023, accepted 15 May 2023, date of publication 18 May 2023, date of current version 26 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3277759

Microservices From Cloud to Edge: An Analytical
Discussion on Risks, Opportunities and Enablers
ANDREA DETTI , (Member, IEEE)
Department of Electronic Engineering, University of Rome ‘‘Tor Vergata,’’ 00133 Rome, Italy
National Inter-University Consortium for Telecommunications (CNIT), 43124 Parma, Italy

e-mail: andrea.detti@uniroma2.it

This work was supported in part by the Italian RESTART Program funded by European Union–NextGenerationEU through Italian PNRR
(Piano Nazionale di Ripresa e Resilienza).

ABSTRACT Microservice applications are made of many interacting microservices that can leverage
different cloud servers to distribute the computational load horizontally, so these applications are considered
cloud-native. The emergence of edge computing has prompted the research of placement strategies that
consider the possibility of instantiating microservices in cloud and edge data centers to improve specific
performance metrics, such as the time the application spent serving a user request, also referred to as user
delay or makespan. Microservice applications differ in many architectural properties, such as the number
of microservices, the number of them involved per request, their dependency graph, and the presence of
centralized databases. We found that these properties influence the possibility of a placement strategy to
exploit edge resources to reduce user delay; therefore, they constitute an application-level optimization space
that, however, has not yet been explored in the literature. Accordingly, this paper contributes to filling this
knowledge gap by answering the following question: which are the architectural properties of a microservice
application that enable it to bemore edge-native, that is, to better reduce user delay by using edge computing?
Our results are based on a new analytical modeling of the average user delay provided by a microservice
application deployed on cloud/edge resources and a new heuristic placement strategy that take into account
key aspects of the application, and the supporting cloud and network environment, not considered by previous
literature works.

INDEX TERMS Edge computing, microservices, placement problems, delay performance, analytical
modeling.

I. INTRODUCTION
Microservice architecture is a widely used architectural style
for enterprise software that decomposes large applications
into a set of small, modular, and independently deployable
‘‘micro’’ services. To serve user requests, each microservice
performs a specific internal function and communicates with
other microservices through network APIs, usually based on
HTTP or gRPC [1], [2], [3].

The benefits of moving from a monolithic architecture
to a microservices architecture are many and involve both
development and performance aspects. Decoupling the appli-
cation into small loosely coupled components makes it eas-
ier to understand and program, thus improving developer

The associate editor coordinating the review of this manuscript and

approving it for publication was Rodrigo S. Couto .

productivity and accelerating release cycles. It is possible to
horizontally distribute the application workload on a cluster
of servers rather than using an expensive giant server and
manage resource allocation precisely by replicating or giving
more resources to the most heavily loaded microservices or
those that require more reliability. For these characteristics,
microservice applications are cloud-native i.e., able to run
and scale in modern, dynamic environments such as public,
private and hybrid clouds. The disadvantages of decomposing
an application into microservices include increased latency
and processing load due to internal network interactions,
increased difficulty in debugging, etc. However, the benefits
are more significant, especially for complex applications that
need to support high request loads [4].

The most widely used technology today to package
microservices are Linux Containers, managed by Docker [5]

49924

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-0803-1392
https://orcid.org/0000-0002-6921-7756

A. Detti: Microservices From Cloud to Edge

or other Container engines. Then automating deployment,
scaling, and management of Containers (microservices) on
a cluster of real or virtual servers is usually done using
the Kubernetes (k8s) Container Orchestration platform [6],
possibly supported by other frameworks, for example, the
so-called service meshes for observability and request rout-
ing [7].

Along with the growing adoption of microservice archi-
tectures, edge computing is another architectural paradigm in
which there is great interest in bringing computation and data
storage closer to the devices that generate and/or consume the
data. This is in contrast to traditional cloud computing, which
centralizes computation and storage in remote data centers.
When microservices are deployed on the edge, they enable
users to process their requests closer, which can offer many
benefits, such as reduced latency and network traffic toward
central data centers, which can lead to cost savings and more
efficient use of network resources [8], [9].

Edge resources are expected to be less and more expensive
than cloud resources. For example, the physical space where
to deploy servers is smaller at the edge than in a central
data center and the resource utilization efficiency in a central
cloud is higher because there is a larger aggregation of request
flows. This motivated research on solutions that optimize the
use of precious edge resources and, consequently, microser-
vice placement strategies for edge computing scenarios have
been extensively addressed in the literature with the goal of
understanding which microservices are best run in the edge
and which in the cloud data center to improve a specific
performance metrics, such as the time the application spent
serving a user request, also referred to as user delay or
makespan [10], [11], [12].

A. RESEARCH OBJECTIVES
Microservice applications differ in many architectural prop-
erties, such as the number of microservices, the number
of them involved per request, their dependency graph, the
presence of centralized databases, and the type of interac-
tions (e.g., request-response or publish-subscribe). We found
that depending on these characteristics, some applications
are more edge-native than others; i.e., placement strategies
can potentially reduce their user delay more significantly
by exploiting edge resources. The term ‘‘potentially’’ means
that the reduction of delays could not be realized due to
inefficiencies of the placement strategy employed, but the
reduction of delays occurs by using an optimal placement
strategy.

This finding led us to argue that the reduction of the delay
of a microservice application by exploiting edge computing
can be addressed on the one hand by designing optimal or
near-optimal placement strategies and, on the other hand,
by designing the application itself so that it has those architec-
tural properties that allow the placement strategy to be most
effective in reducing delay using edge resources. To the best
of our knowledge, this latter application-level optimization

domain has not yet been explored in the literature. Accord-
ingly, this paper contributes to filling this knowledge gap by
analyzing how different application properties influence the
potential improvement that edge computing can provide in
terms of reducing user delay.

B. METHODOLOGY
To perform the analysis, we developed a novel analytical
model of the average user delay of a microservice applica-
tion that takes as input i) the properties of a microservice
application, ii) the placement state of the microservices, i.e.,
which microservice is running in the cloud and which replica
is also running in the edge, iii) the rate of user requests, and
also iv) key aspects of the supporting execution environment,
such as the routing policy used by the service mesh to route
requests among microservice instances, the amount of CPU
and network resources to be shared based on processor shar-
ing paradigms.

The metric we consider to compare applications with dif-
ferent properties is the average user delay provided by the
analytical model in the case of optimal (or near-optimal)
placement solutions, that is, solutions that minimize the delay
of the considered applications. In so doing, the differences
in delay among the compared applications are only due to
their different architectural properties and are not ‘‘biased’’
by possible inefficiencies of the placement strategy.

To find an optimal placement solution for the microser-
vices of an application, we tried to use an exhaustive search-
ing approach that merely evaluates the user delay for all
possible placement solutions and chooses the one that pro-
vides the minimum delay. Unfortunately, the search space is
already so large for applications with a few microservices
that exhaustive search is impractical, and the minimization
problem is also NP-complete. As a result, we had to resort to
near-optimal placement solutions, based on a new heuristic
strategy we developed as a consequence of the fact that those
in the literature did not include all application properties and
system characteristics of our interest, as we will comment by
discussing related work.

C. CONTRIBUTIONS
Overall, the specific contributions of the paper presented in
the next sections are as follows.

• In Sec. II, we propose an analytical model of the average
user delay of microservice applications deployed in edge
and cloud data centers that takes into account applica-
tion and system properties not considered by previous
models.

• In Sec. III, we formulate an edge/cloud microservice
placement problem whose solutions are optimal in the
sense of minimizing user delay.

• In Sec. IV, we provide an understanding of the charac-
teristics that an optimal placement solution has, and this
allowed us to develop a suboptimal heuristic algorithm,
called Path Adding Microservice Placement (PAMP).

VOLUME 11, 2023 49925

A. Detti: Microservices From Cloud to Edge

FIGURE 1. Reference scenario.

• In Sec. V, we use the analytical model of user delay
combined with the placement solutions provided by the
PAMP algorithm to analyze which architectural proper-
ties of the microservice application are enablers of edge
computing, i.e., they allow a better reduction of user
delays by using edge resources.1

• In Sec. VI we comment on the differences between our
work and that of the literature, and finally in Sec. VII we
draw conclusions.

II. ANALYTICAL MODEL OF THE USER DELAY
A. SYSTEM MODEL
1) INFRASTRUCTURE
We consider a generic system consisting of edge data centers
and a remote cloud data center. We assume that there are no
edge-to-edge interactions, i.e., service requests are processed
either in the origin edge data center or in the cloud. Conse-
quently, we restrict our analysis to the case of a single edge
data center, as shown in Fig. 1. Data centers have processing
(CPU), memory, and network resources. Cloud data center
resources are assumed to be unlimited. The edge data centers
have a total number of CPUs equal to Ce and memory equal
to Me. There is a bidirectional network connection between

1In the rest of the paper, we will often briefly say that a given archi-
tectural property allows better or worse exploitation of edge computing.
More formally, we mean that the architectural property under consideration
potentially allows placement strategies to more or less reduce user delay by
exploiting edge resources.

FIGURE 2. Dependency graph of microservices (Gm).

the cloud and the edge, whose capacity is equal to Ne in each
direction. The data centers’ resources are used to deploy (i.e.,
execute) the instances of the microservices of the application,
where with the term instance we mean a running version of
the microservice code.

2) USER
As shown in Fig. 1, the user is located close to the edge
data center and sends requests to a ‘‘ingress’’ microservices
of an application, that is, those microservices that the user
can directly contact. We do not consider the possible delay
introduced by the user-edge connection, also because it is a
parameter that cannot be optimized in our system. Service
requests are generated at a rate of λ requests per second
and are always routed to the edge data center. Instances
of microservices running in the edge can serve the request
independently or interact with other microservices whose
instances are running in the cloud.

3) MICROSERVICE APPLICATION
Themicroservice application consists ofM−1microservices
that interact using a request-response model (e.g., REST
HTTP API) and whose work model follows the one pro-
posed in [4]. Specifically, when a microservice i receives
a request, it executes a internal function and then sequen-
tially calls a set of downstream microservices according to
a microservice-level call probability Pmc . Specifically, the
downstream microservice j is called with probability Pmc (i, j).
When all called microservices send their response back, the
microservice i sends its response to the upstream caller and
terminates the processing of the request. We consider the
user as a M th microservice and Pmc (M , j) is the probability
that the user sends his request to the microservice j. The
matrix Pmc can be used to build the dependency graph Gm
of microservices that has a node per microservice and a
link between i and j if Pmc (i, j) > 0. We assume that Gm
is a directed acyclic graph (DAG). Fig. 2 shows an exam-
ple of a dependency graph for a microservice application
made of 5 microservices, whose ingress microservice is the
number 1. When microservice 1 receives a request from the
user, it can call microservices 2,3 and 4 to serve a request with
probability Pmc (1, 2), P

m
c (1, 3), P

m
c (1, 4), respectively. In turn,

if microservice 2 is called, then it can call microservice 5 with
probability Pmc (2, 5).

49926 VOLUME 11, 2023

A. Detti: Microservices From Cloud to Edge

TABLE 1. Major notation.

Each microservice has an instance that runs in the cloud
data center. Furthermore, edge resources can be used oppor-
tunistically to run another instance of the microservice in
the edge data center to process requests closer to the user.2

We identify a microservice instance with a tuple ⟨i, di⟩. The
index i identifies the microservice, the index di is a string
that identifies the data center where the instance is running,
specifically, di = cloud for an instance running in the cloud

2With the term microservice, we simply refer to the software code of the
microservice. A running version of the code is called amicroservice instance.
In the presence of many instances of the same microservice in the same data
center, a microservice instance of our model represents the whole replica set.

and di = edge for an instance running at the edge. To sim-
plify the notation, we represent a tuple with a single letter,
specifically Î = ⟨i, di⟩ and Ĵ = ⟨j, dj⟩. The user is the
microservice instance Û = ⟨M , edge⟩. For example, Fig. 3
shows a possible edge/cloud placement of instances of the
microservices of the application in Fig. 2. All microservices
have a cloud instance, and microservices 1,3 and 4 also have
an edge instance.

The state of the application represents where its instances
are running and is a binary placement vector S that has an
element for each possible microservice instance Î , therefore,
it has 2M elements since each microservice instance can run

VOLUME 11, 2023 49927

A. Detti: Microservices From Cloud to Edge

FIGURE 3. Dependency graph of microservices instances (Gi).

in both cloud and edge data centers. A value S(Î) = 1 means
that the microservice instance Î is running. Vice versa, for
S(Î) = 0, the microservice instance Î does not exist. Since
we assume that an instance of a microservice always runs in
the cloud, we have S(Î) = 1, for Î = ⟨i, cloud⟩ with 1 ≤ i ≤
M − 1. The user is only on the edge, therefore S(Û) = 1 and
S(Î) = 0 for Î = ⟨M , cloud⟩. Other values of S are those that
the placement strategy aims to optimize.3

Regarding the resource consumption of a microservice
instance Î , we assume that only the execution of the inter-
nal function consumes computational resources. The CPU
seconds needed per request to process the internal function
is equal to Rcpu_sxr (Î).4 The CPU quota and the amount of
memory dedicated are equal to Rcpu(Î) and Rmem(Î), respec-
tively.5 The size of the generated response is Rs(Î) bits; the
size of the requests is negligible. For the user, we simply set
Rcpu_sxr (Û) = Rcpu(Û) = Rmem(Û) = Rs(Û) = 0

4) SERVICE MESH
The service mesh is a management framework that con-
trols the routing of requests towards different instances of a
microservice to comply with a routing policy [7], [13], [14],
[15]. The topology of the service mesh is a dependency
graph Gi of microservice instances (Fig. 3). The nodes of
Gi are instances and there is a link between node Î and Ĵ

3The size of S and later variables could be reduced by taking these con-
straints into account. However, we prefer to keep this general mathematical
framework for future analyses where these constraints could be relaxed.

4Note that a CPU is shared among processes, therefore Rcpu_sxr (Î) would
be the execution time of the internal function only in case of full and unshared
access to a CPU.

5The CPU quota is a number greater than zero and indicates, for each
second, how many CPU seconds are dedicated to a microservice instance.
For example, Rcpu(Î) = 0.2 (aka 200 millicpu) means that on average the
instance can use 20% of a CPU, Rcpu(Î) = 2 means that an instance can
use 2 CPUs, and so on.

if instance Î can call instance Ĵ while processing a request.
We statistically model this event with a instance-level call
probability named Pic(Î , Ĵ).

The values Pic are correlated with the microservice-level
call probabilities Pmc , and this correlation depends on the
routing policy. We assume a typical locality load balancing
policy, for which the interactions between microservices are
preferentially resolved locally [14], in the same data center.
This policy can be modeled by configuring the call probabil-
ities Pic as shown in algorithm 1, where it is convenient to
make explicit the tuples Î = ⟨i, di⟩ and Ĵ = ⟨j, dj⟩ to identify
microservice instances.

To summarize, assuming that a microservice i calls a
microservice jwith probability Pmc (i, j) > 0 and that therefore
there exists a i, j link in Gm, then

• the instance of microservice i running in the cloud calls
the instance of microservice j running in the cloud with
probability Pic (⟨i, cloud⟩, ⟨j, cloud⟩) = Pmc (i, j) (line 5),
so there exists aGi link between ⟨i, cloud⟩ and ⟨j, cloud⟩;

• an instance of themicroservice i running in the edge calls
the instance of the microservice j running in the edge,
if it exists, with probability Pic (⟨i, edge⟩, ⟨j, edge⟩) =

Pmc (i, j) (line 9) and thus there exists a link in Gi
between ⟨i, edge⟩ and ⟨j, edge⟩; otherwise, the instance
of microservice i running in the edge calls the instance
of the microservice j running in the cloud (line 11) with
probability Pic (⟨i, edge⟩, ⟨j, cloud⟩) = Pmc (i, j) and thus
there exists a link in Gi between ⟨i, edge⟩ and ⟨j, cloud⟩.

For example, Fig. 3 shows the instance dependency graph
Gi for the microservice application whose microservice
dependency graphGm is shown in Fig. 2 and when microser-
vices 1,3 and 4 have an instance running in the edge.
We note that the model we propose is suitable for imple-

menting other routing policies by appropriately modifying
the algorithm 1.

Algorithm 1 Pic for Locality Load Balancing Routing Policy

1: Initialize Pic with 0 values
2: for i = 1 to M do
3: for j = 1 to M do
4: if i ̸= M then ▷ not for the user
5: Pic (⟨i, cloud⟩, ⟨j, cloud⟩) = Pmc (i, j)
6: end if
7: if S (⟨i, edge⟩) = 1 then
8: if S (⟨j, edge⟩) = 1 then
9: Pic (⟨i, edge⟩, ⟨j, edge⟩) = Pmc (i, j)
10: else
11: Pic (⟨i, edge⟩, ⟨j, cloud⟩) = Pmc (i, j)
12: end if
13: end if
14: end for
15: end for

We conclude the section by presenting, in Fig. 4, an exam-
ple of the interactions that occur among microservices to

49928 VOLUME 11, 2023

A. Detti: Microservices From Cloud to Edge

FIGURE 4. Trace of a user request.

serve a user request in the case of the configuration in
Fig. 3. The user’s request is received by the instance
⟨1, edge⟩ of microservice 1 running in the edge data cen-
ter, which performs its internal function and then calls
microservice 2. The service mesh routes this request to the
instance ⟨2, cloud⟩ of microservice 2 running in the cloud,
so the request traverses the edge-to-cloud network connec-
tion. The instance ⟨2, cloud⟩ executes its internal function and
then calls microservice 5. This request is routed by the service
mesh to the local instance ⟨5, cloud⟩. After the execution of
its internal function, instance ⟨5, cloud⟩ sends its response to
instance ⟨2, cloud⟩ which in turn sends its response to edge
instance ⟨1, edge⟩. This response traverses the cloud-to-edge
network connection. As a result, the microservice instance
⟨1, edge⟩ calls microservices 3 and 4, these calls are routed
by the service mesh to the related local edge instances, and
when, finally, the instance ⟨4, edge⟩ responds to ⟨1, edge⟩,
it responds to the user.

B. DELAY MODEL
Now that we have modeled the reference system, we move
on to analytically evaluate the average delay of user requests
(Fig. 4), as a function of the state S of the application. This
model will be used in the next section to formulate the delay
minimization problem.

We define Dm(Î) as the execution time of the microservice
Î that is equal to the sum of:

1) the timeDi(Î) required by the microservice Î to execute
its internal function,

2) the execution times Dm(Ĵ) of each downstream
microservice Ĵ ,

3) the network timesDn(Î , Ĵ) required to transfer requests
and responses between microservices Î and Ĵ .

The last two values are weighted by the call probabilities
Pic(Î , Ĵ).
For amicroservice Î that is not running (S(Î) = 0), we used

the dummy value of 0 for Dm(Î) and for related other values
as well. Accordingly, to simplify the notation, in the next
formulas, we will avoid making explicit that they refer to
values for which all considered microservices are running;
otherwise the value is zero. Consequently, we can write the
following equation.

Dm(Î) = Di(Î) +

∑
Ĵ

Pic(Î , Ĵ)
(
Dm(Ĵ) + Dn(Î , Ĵ)

)
(1)

Considering all possible values of Î , we have a system of
equations whose resolution returns the values Dm(Î); among
them, the value Dm(Û) is the time it takes the user to execute
a request, so it is the average delay of the requests that we
intend to minimize.6

The execution time Di(Î) of the internal function is not a
constant but depends on the computing resources dedicated
to microservice instance Î and a load of requests that the
instance receives. Indeed, we consider that an instance serves
more than one request. To computeDi(Î), wemodeled the use
of computing resources as an M/G/1 queue with processor-
sharing.7 Accordingly, Di(Î) can be expressed as [16]:

Di(Î) =

Rcpu_sxr (Î)/Rcpu(Î)

1 − ρc(Î)
, for Î ̸= Û

0, for Î = Û
(2)

ρc(Î) is the utilization factor of the CPU quota dedicated to
microservice instance Î , which is equal to

ρc(Î) =

min

(
λNc(Î)Rcpu_sxr (Î)

Rcpu(Î)
, 1

)
, for Î ̸= Û

0, for Î = Û
(3)

Nc(Î) is the average number of times in whichmicroservice
instance Î is called during the processing of a user request.
This value depends on the calling probabilities Pic as follows

Nc(Î) =

∑
Ĵ

Nc(Ĵ)Pic(Ĵ , Î), for Î ̸= Û

1, for Î = Û
(4)

6Since the dependency graph of microservices Gm is a DAG, the depen-
dency graph of instancesGi is also a DAG, so a topological ordering of nodes
can be derived and this system can be solved iteratively with 2M steps. This
also applies to the following systems of equations.

7A microservice instance usually processes multiple requests in parallel,
which share CPU resources dedicated to the instance. This justifies the
processor-sharing model. The assumption of an exponential interarrival time
is a simplification to address the problem analytically. Although numeri-
cal results are not accurate in the absence of this type of interarrival, the
conclusions we are seeking about the impact of system parameters on edge
computing effectiveness are still valid.

VOLUME 11, 2023 49929

A. Detti: Microservices From Cloud to Edge

The first equation states that the number of times a
microservice instance Î is involved in a request is equal to
the number of times each upstream microservice instance
Ĵ is involved, multiplied by the calling probability Pic(Ĵ , Î).
The last equation takes into account that the user is always
involved in a request. Considering all possible values of Î ,
we have a system of equations fromwhich the values ofNc(Î)
can be derived.

For network time Dn(Î , Ĵ), we assume that if microservice
instances Î and Ĵ are placed in the same data center, this
delay is negligible, because we are considering a low-latency
and very high-speed network within a data center. When Î
and Ĵ are in different data centers, the network time Dn(Î , Ĵ)
is equal to a constant Pd that depends on the propagation
delay between data centers, plus the time Td (Î , Ĵ) needed
to transmit Rs(Ĵ) bits from instance Ĵ to Î over the cloud-
edge connection. For example, for HTTP REST APIs, Pd
can be approximated to 3RTT , where RTT is the round trip
time between data centers. Two RTTs are needed for opening
and closing the TCP connection and another RTT takes into
account the propagation of the request and the propagation of
the response. In formula,

Dn(Î , Ĵ) =

{
Pd + Td (Î , Ĵ), if di ̸= dj
0, otherwise.

(5)

for which, we recall that di and dj identify the data centers of
microservice instances Î and Ĵ .

The transmission time Td (Î , Ĵ) is not a constant because
it depends on the capacity of the cloud-edge connection and
the traffic load. Accordingly, we model cloud-edge network
resource sharing as two M/G/1 queues with processor shar-
ing, one per direction.8 It follows that time Td (Î , Ĵ) can be
written as

Td (Î , Ĵ) =

Rs(Ĵ)/Ne
1 − ρnce

, for di = edge, dj = cloud

Rs(Ĵ)/Ne
1 − ρnec

, for di = cloud, dj = edge

0, otherwise
(6)

The values ρnce and ρnec are the utilization factors of the
cloud-to-edge and edge-to-cloud connections, respectively.
They can be written as,

ρnce = min(Tnce/Ne, 1) (7)
ρnec = min(Tnec/Ne, 1) (8)

where Tnce and Tnec are the volumes of cloud-to-edge and
edge-to-cloud traffic, respectively, and can be evaluated as

8We used processor sharing to model the fact that concurrent TCP/IP
connections share transmission resources fairly. Exponential interarrivals
among TCP/IP connections, on the other hand, is a simplifying assumption.
However, we believe that the conclusions we draw about the effectiveness of
edge computing are not compromised in the absence of such an interarrival
distribution.

follows.

Tnce =

∑
Î ,di=edge

λNc(Î)
∑

Ĵ ,dj=cloud

Pic(Î , Ĵ)Rs(Ĵ) (9)

Tnec =

∑
Î ,di=cloud

λNc(Î)
∑

Ĵ ,dj=edge

Pic(Î , Ĵ)Rs(Ĵ) (10)

(11)

We conclude the section by computing the value of the
average number of times microservices instances in the edge
need to contact those in the cloud or vice versa. We simply
name this value as the average number of edge/cloud interac-
tions NRT , it will be used to comment on some results of the
analysis and can be expressed as follows.

NRT =

∑
Î ,di=edge

Nc(Î)
∑

Ĵ ,dj=cloud

Pic(Î , Ĵ)

+

∑
Î ,di=cloud

Nc(Î)
∑

Ĵ ,dj=edge

Pic(Î , Ĵ) (12)

III. PLACEMENT PROBLEM
Now we have derived all formulas to compute the average
request delay Dm(Û) and can formulate the placement prob-
lem to minimize the average user delay as

argmin
S

Dm(Û) + τ (13)

τ = ϵ
(
Rtotcpu/Ce + Rtotmem/Me

)
(14)

Rtotcpu =

∑
Î ,di=edge

S(Î)Rcpu(Î) (15)

Rtotmem =

∑
Î ,di=edge

S(Î)Rmem(Î) (16)

subject to: Rtotcpu ≤ Ce, Rtotmem ≤ Me (17)

S(Û) = 1 (18)

S(Î) = 1 ∀i, di = cloud (19)

S(Î) = 0 ∀i ∈ 0, di = edge (20)

Rtotcpu and Rtotmem are the total CPU and memory resources
required for the S solution. The cost τ combined with a
very small value of ϵ avoids the unnecessary use of edge
resources when, practically, the same delay can be achieved
with only cloud resources. For example, if we use ϵ = 10−6

the minimization will select among the solutions that offer
a minimum delay at less than 2 microseconds the one that
uses fewer edge resources. As for the constraints, the first
takes into account the CPU and memory limits of the edge
data center.9 The second constraint requires the user to be on
the edge. The third constraint requires each microservice to
have an instance in the cloud. The last constraint takes into

9Other resource constraints can be added, for simplicity we have consid-
ered only CPU and memory limits because they are the only ones taken into
account by Kubernetes.

49930 VOLUME 11, 2023

A. Detti: Microservices From Cloud to Edge

account the possibility that a set of 0 microservices cannot
be replicated outside the cloud. For example, this could be
the case for databases used by microservices in different edge
data centers that must remain centralized to ensure high data
consistency.

In the next sections, we call optimal strategy the one that
solves the placement problemwe presented.Wewere not able
to find an efficient algorithm to solve the minimization, also
because the problem is NP-complete as we will comment on
in the next Sec. IV. Consequently, we resort to implementing
the optimal strategy with a mere exhaustive search over all
possible placement solutions.

IV. INTUITIONS AND PAMP HEURISTIC ALGORTHM
In this section, we propose a heuristic algorithm to com-
pute a suboptimal placement S. We had to devise this algo-
rithm because the complexity of an exhaustive search for
the optimal placement solution prevented us from perform-
ing the analysis for medium/large-scale microservice appli-
cations. The design of the algorithm is driven by some
intuitions on the optimal solution that we present. Next,
we describe the algorithm and show that its performance is
close enough to the optimal solution. This makes us confident
that we can use it to draw general conclusions about the
impact that application properties have on the exploitability
of resources at the edge for delay reduction. In fact, we do
not run the risk that our conclusions are flawed by seri-
ous inefficiencies in the placement algorithm used to derive
them.

A. INTUITIONS ON OPTIMAL SOLUTIONS
Suppose that we have an application consisting of 3 microser-
vices, whose dependency graph is a simple chain 1 → 2 →

3. The user sends his requests to microservice 1. In an initial
configuration, all microservices run in the cloud. Suppose
at this point that we also run an instance of microservice
2 in the edge. This placement decision is completely ineffec-
tive in terms of performance improvement and unnecessarily
reserves the edge resources. In fact, the user calls microser-
vice 1, whose instance is in the cloud. The cloud instance of
microservice 1 calls the cloud instance of microservice 2 to
comply with the locality load balancing policy. As a result,
the edge instance of microservice 2 will never be called.
It follows that,

Necessary Condition 1 - Assuming a locality load balanc-
ing routing policy, if in an optimal placement the microser-
vice i runs in the edge data center, then at least one of its
upstreams also runs in the edge data center.

Proof - If necessary condition 1 is not respected, the
execution of the microservice i in the edge would consume
edge resources without reducing the delay, because it would
never be called due to locality load balancing. This occur-
rence would be suboptimal with respect to a state without
microservice i running in the edge because of the τ cost in
Eq. 13.

B. PAMP ALGORITHM
The necessary condition 1 makes it possible to reduce the
number of states to be explored to find the optimal one
and allows the placement problem to be turned into a knap-
sack problem as follows. We call dependency path of the
microservice i a set of microservices of the dependency
graph Gm that connect the user to i. For example, in Fig. 3,
the microservice 5 has a single dependency path made of
microservices {1,2,5}. The union of all the dependency paths
of each microservice forms a set that we call 5.10

If the optimal placement S executes the microservice i in
the edge, the necessary condition 1 implies that the microser-
vices of at least a dependency path of i are running in the
edge. For example, in Fig. 1, if optimal placement S executes
microservice 5 in the edge, then microservices 2 and 1 must
also be executed in the edge. Consequently, the search for the
optimal placement can also be done by exhaustively exploring
all possible combinations of dependency paths and selecting
the combination that provides the lowest latency and meets
the constraints. This resembles an NP-complete knapsack
problem, where the items are the dependency paths π ∈ 5.
Calling S the new state we have by running the microservices
of dependency path π in the edge data center, the value v(π)
of a path is the inverse of the request delay Dm(Û) we get
with S, and the weight w(π) is the amount of edge resources
consumed by state S.

Consequently, we can address the problem with a typical
greedy suboptimal algorithm that sorts the items in decreas-
ing order of value per unit of weight (δ = v/w) and add an
item to the knapsack at a time until resources are exhausted
or all items are inserted [17]. We name the algorithm Path
Adding Microservice Placement (PAMP) and its pseudocode
is shown in Algorithm 2.
In what follows, we evaluate the effectiveness of PAMP

algorithm with respect to complexity reduction and achieve-
ments of near-optimal placements.

C. COMPLEXITY ASSESSMENT
Computing the optimal value of S with an exhaustive search
requires exploring 2M−1 states, so the complexity grows
exponentially as the size of the application increases. The
complexity of the PAMP algorithm is a function of the
number of dependency paths ||Pi||. For highly meshed Gm
dependency graphs, ||Pi|| can be close to 2M−1.11 Practically,
typical microservice applications do not have these extremely
meshed dependency graphs, and the PAMP algorithm greatly
reduces computational complexity.

To support this hypothesis, we consider the dependency
graphs Gm of 30 microservice applications provided by the
µBench tool [4], which are derived from real Alibaba cloud
traces [18], [19]. For each microservice application, the

10In a DAG, the search for all possible paths can be done in linear time by
topological sorting and then using dynamic programming.

11E.g., consider a DAG for which node i has a link to node j if i < j. The
number of dependency paths is 2M−1

− 1.

VOLUME 11, 2023 49931

A. Detti: Microservices From Cloud to Edge

Algorithm 2 Path Adding Microservice Placement (PAMP)
1: Compute the dependency paths 5

2: 5r = 5 ▷ remaining paths to add
3: Sopt (Î) = 1 for di =cloud ▷ initialize Sopt
4: Sopt (Î) = 0 for di =edge
5: Sopt (Û) = 1
6: while 5r not empty do
7: for path π ∈ 5r do
8: S = Sopt
9: S(⟨i, edge⟩) = 1, ∀i ∈ π ▷ New state with π

10: if S doesn’t respect Eqs. 17,18,19 then
11: δ(π) = −∞

12: else
13: v(π) = 1/Dm(Û) ▷ value
14: w(π) = Rtotcpu/Ce + Rtotmem/Me ▷ weight
15: δ(π) = v(π)/w(π) ▷ value per weight unit
16: end if
17: end for
18: set πopt as the path π with maximum δ

19: if δ(πopt) == −∞ then
20: break ▷ edge resource exhaustion
21: else
22: Sopt (⟨i, edge⟩) = 1, ∀i ∈ πopt ▷ New opt state
23: remove πopt from 5r
24: end if
25: end while
26: return Sopt

FIGURE 5. N. of microservice and links of the microservice dependency
paths Gm for the Alibaba-derived microservice applications offered by
µBench repository [4].

µBench repository contains some traces of calls made among
microservices to serve user requests. Using these traces,
we created the microservice dependency graph Gm of the
application, inserting a link between the microservice i and j
if there is at least one call from i to j in the traces. Fig. 5 shows
the number of microservices and the number of links of the
resulting dependency graphGm of each application.We note a
rather heterogeneous set of applications, ranging from a small
application with 5 microservices and 7 links, to a medium-
sized application with 78 microservices and 217 links.

FIGURE 6. Ratio between the dependency paths and the total number of
possible placements representing a measure of the complexity reduction
provided by PAMP algorithm with respect to the exhaustive search of the
optimal placement for microservice applications derived by Alibaba
traces in [4].

TABLE 2. Coonfigurations (cfg.) of Albert-Barabasi dependency graphs.

For each application, we computed the ratio between the
number of dependency paths and 2M−1 as a measure of the
reduction in complexity provided by PAMP. Fig. 6 shows
that this ratio tends to decrease exponentially with a rate on
the order of 10−M/4. Consequently, PAMP strongly reduces
the computational complexity compared to exhaustive search,
and this reduction is greatest when it is most needed, i.e., for
applications with a large number of microservices.

D. PERFORMANCE ASSESSMENT
Besides complexity reduction, we measured the effective-
ness of the PAMP algorithm by comparing its performance
with that achievable with an exhaustive search of the opti-
mal placement. For this evaluation, we generated the depen-
dency graphs of microservice applications according to the
Barabási-Albert (B-A) model [20]. The graph is built by
adding one node at a time and connecting it to a single parent
(e = 1). A node i is chosen as the parent with a probability
(unnormalized) equal to p = f α

i +a, where fi is the number of
nodes that have already chosen node i as the parent, α is the
power of preferential attachment and a is the attractiveness
of nodes without children. Literature studies report that the
B-A model fits well with the dependency graph of different
classes of microservice applications [21]. Table 2 shows B-A
parameters of 4 representative configurations named A, B,
C and D. Fig. 7 shows an example of dependency graphs built
using these parameters.We note that increasing the parameter
α increases the presence of few ‘‘hubs,’’ i.e., nodes with
many children, because of the preferential attachment effect.

49932 VOLUME 11, 2023

A. Detti: Microservices From Cloud to Edge

Increasing a mitigates this effect by making the graph more
homogeneous and reducing the size of the hubs.

After generating the dependency graph with the B-A algo-
rithm, we configured the values Pmc (i, j) for all microservices
i, j that have a dependency equal to a constant p, which
we adjusted using Eq. 4 so that the average number mxc
of microservices involved per request is equal to 9. This
value is approximately the median value of the measurements
reported in [19].

Fig. 8 shows the average computation time of a placement
solution as the number of microservices varies. Each value
is an average computed over 20 applications, whose depen-
dency graphs were generated with the B-A algorithm and
with a configuration randomly chosen from those in Table 2.
The absolute times depend on the power of the machine on
which the computation is performed; however, as a general
result, we note that the complexity of the exhaustive search
grows exponentially, while that of the PAMP algorithm grows
linearly. In fact, for dependency graphs generated with the
B-A algorithm with only one parent per node (e = 1),
the number of dependency paths is equal to the number of
microservices.

Fig. 9 shows the ratio between the delay of user requests
using the PAMP placement algorithm and the minimum delay
obtained from an exhaustive search for the optimal solution.
As expected, PAMP is a suboptimal algorithm, since this
ratio is greater than one. However, the relative increase in
the request delay is limited to a few percentage points. This
makes us confident that we can use the PAMP algorithm in
the next section to draw reliable conclusions on the impact of
properties of microservice applications on edge computing
exploitability for reducing user delay, without the risk of
possible bias due to placement algorithm inefficiencies.

V. ANALYSIS OF RISKS, OPPORTUNITIES AND ENABLERS
In this section, we analyze the performance of microservice
applications by varying the amount of resources available in
the edge data center. For any considered application, running
microservice instances at the edge exhausts CPUs before
memory. Therefore, we consider the number of CPUs (Ce)
as a representative parameter of edge resources, as it is the
only factor that limits edge deployment. When not explic-
itly stated, the parameter configurations are the default ones
shown in Table 1.

The generic methodology used to perform the various
analyzes is to consider a representative microservice appli-
cation whose dependency graph (Gm) is randomly generated
through the B-A algorithm, use a placement strategy to select
microservice instances to run in the edge, and then the model
in Sec. II to evaluate performance. Reported results are the
average of 20 trials and concern the following performance
metrics:

• ratio between the user delay achieved with and without
edge computing, where without edge computing means
that microservices instances run only in the cloud;

• edge distribution factor ηe, defined as the ratio of the
number of microservices running in the edge to the total
number M − 1 of microservices;

• edge the utilization factor ρe equal to the ratio between
the number of CPUs used by edge microservice
instances and the total number Ce of available CPUs;

• cloud-edge network traffic;
• average number of edge/cloud interactions NRT .

A. RISKS AND OPPORTUNITIES OF USING EDGE
COMPUTING FOR MICROSERVICE APPLICATIONS
The first analysis compares the delay reduction provided by
optimal placement strategy versus that provided by a greedy
random strategy that executes in the edge a random subset of
microservices that can saturate the edge’s resources.12

The objective of the analysis is to show and comment
on a rather surprising result, never presented in the liter-
ature before to the best of our knowledge, that is: with a
well-designed placement strategy, edge computing offers an
opportunity to reduce user delay, but with a wrong placement
strategy, the use of edge computing risks to worsen delay
performance compared to the case in which the application
is executed only in the cloud.

To support this finding, we considered a microservice
application consisting of 13 microservices. Each microser-
vice requires a random amount of computing resources
(CPUs), the total number of required CPUs is 13, and
Fig. 10 shows the dependency graph among the microser-
vices. Microservice 1 receives user requests, which arrive
according to a Poisson process with an average arrival rate
of 40 requests per second. Each microservice performs its
internal function and then calls its downstream microser-
vices sequentially, according to a call probability Pmc equal
to 0.79 so that the average number of microservices per call
(mxc) is equal to 9.

The metric used to evaluate the effectiveness of a place-
ment strategy is the ratio of user delay achieved with and
without edge computing. Without edge computing, the place-
ment strategy is not utilized, as all microservices are exe-
cuted only in the cloud. Therefore, this metric measures the
ability of the placement strategy to leverage edge computing
to reduce delay. Note that if this ratio is less than one, the
placement strategy reduces user delay; otherwise, it worsens
it, i.e., with such a strategy it would be better not to use edge
computing. Fig. 10b shows this delay ratio as edge computing
resources (CPUs) increase.

We note that with a good placement strategy, such as
optimal one,13 the delay ratio is less than one, and thus
the exploitation of edge resources results in a useful delay

12Specifically, the random algorithm repeatedly selects a microservice at
random from those not yet running in the edge and for which the edge has
enough resources. The loop ends when no other microservice can be selected
due to the exhaustion of edge resources.

13We also considered the PAMP algorithm for placement, but since in this
case the results are the same as the optimal ones, we do not show them in the
plots.

VOLUME 11, 2023 49933

A. Detti: Microservices From Cloud to Edge

FIGURE 7. Examples of microservice dependency graphs Gm for configurations in Table 2.

FIGURE 8. Time for computing placement solutions with 2,3 GHz 8-Core
Intel Core i9 in case of PAMP algorithm and exhaustive search of the
optimal solution showing the reduction of PAM computation time as a
consequence of its reduced complexity.

FIGURE 9. Average value and 95% error bars of the ratio between the
user delay provided by placement solutions of PAMP algorithm and the
minimum user delay provided by the optimal placement. Results show
the near-optimal behavior of the PAMP algorithm in minimizing the user
delay.

reduction. In contrast, a bad placement strategy, such as the
random one, risks making the delay greater than if no edge
computing is used; and the worsening of performance occurs
in the middle of Fig. 10b, because in the extreme configura-
tions of 0 or 13 CPUs, none or all of the microservices can be
executed on the edge, and therefore the performance of the
random and optimal strategy is the same.

The reason why a not-well-designed placement strategy
can so critically affect user delay is the fact that a bad choice
of microservice instances to run in the edge can create the

need to perform many interactions between microservices in
the edge and cloud to resolve a request. This occurrence dras-
tically worsens the delay performance compared to a cloud-
only execution of the application, for which the number of
edge/cloud interactions is always equal to 1.14 For example,
consider the case of a placement solution for the application
in Fig. 10a for which microservice 1 runs in the edge while
all others run only in the cloud. To serve a user request,
the edge instance of microservice 1 sequentially calls the
cloud instances of microservices 2, 3, and 4. This results in
3 edge/cloud interactions to resolve the request. Conversely,
if the entire application ran only in the cloud, there would
be only a single edge/cloud interaction between the user
and the microservice 1. Therefore, the placement of only
microservice 1 in the edge is a bad choice that worsens user
delay as it increases the number of edge/cloud interactions to
solve a request. Our hypothesis is confirmed by the results
shown in Fig. 10c, in which we see that a not-well-designed
placement strategy such as the random one creates an average
number of edge/cloud interactions greater than one, which
worsens the delay performance with respect to a cloud-only
execution of the application (Fig. 10b).

In contrast, when there are sufficient resources (i.e., edge
CPUs> 8), a well-designed strategy such as the optimal strat-
egy (or even PAMP) places in the edge a group of microser-
vices that are able to locally resolve a quota of service
requests while avoiding contacting instances ofmicroservices
running in the cloud. As a result, the average number of
edge/cloud interactions becomes less than one (Fig. 10c)
and thus the user delay is less than that provided by a cloud-
only execution of the application (Fig. 10b). As the number of
edge CPUs increases, the strategy may have the opportunity
to execute additional groups of microservices able to locally
process user requests, and thus the quota of locally resolved
requests increases, thereby further reducing user delay.

The results of this analysis showed the following.
• The design of placement strategies for microservices
is extremely critical. In fact, by using a well-designed
placement strategy, edge computing is a friend of
microservice applications, i.e., it provides the opportu-
nity to reduce user delay by leveraging edge resources

14We recall that we are assuming that user requests are always routed
through the edge data center.

49934 VOLUME 11, 2023

A. Detti: Microservices From Cloud to Edge

FIGURE 10. Comparison of performance achieved with optimal and random placement strategy versus edge CPUs.

compared to not using edge resources. In contrast, using
strategies that are not-well-designed may instead turn
edge computing into a foe of microservice applications,
i.e., exploitation of edge resources with such strategies
risks to increase user delays compared to the case of not
using edge resources.

• Microservice developers should try to ‘‘cluster’’ the
application into possibly small groups of microservices
that can independently resolve a request, so that it is
convenient and feasible to activate them in the edge, even
in the case of limited resources. In a way, we can identify
this microservices clustering approach as an edge-native
design style, in that it enables a microservice applica-
tion, combined with a well-designed placement strategy,
to effectively leverage edge computing to reduce user
delay.

B. APPLICATION-LEVEL EDGE COMPUTING ENABLING
FACTORS
In this section, we analyze application performance using
the PAMP placement strategy and varying an application-
level property at a time. The properties examined are the
number of microservices, the topology of the microservice
dependency graph, the number of microservices involved
per request, and the presence of databases and data caches.
The analysis reveals which configuration of these properties,
combined with an optimal or near-optimal strategy, enables
a more significant reduction in user delay by using edge
resources. The findings of the analysis can be used in the
design phase of microservice applications to make themmore
edge-native, that is, providing placement strategies with the
possibility of more significantly reducing user delay by using
edge resources.

1) NUMBER OF MICROSERVICES
In this paragraph, we analyze whether the decomposition of
the workload of an application into a set of microservices is
a convenient design style to allow the reduction of user delay
by exploiting edge resources.

To perform the analysis, we considered applications with
different numbers of microservices, 10, 30, and 50, and to
make a fair comparison, we scaled the number of CPUs
required by microservices (Rcpu) so that the compared appli-
cations required, on average, the same total amount of CPUs
equal to 31.

Fig. 11 and Fig. 12 show the result of this analysis.
Each figure presents the values of a different performance
metric with respect to the number of edge CPUs and
for microservice applications with a different number of
microservices (M − 1).

First, we discuss the impact of edge CPUs on performance.
Fig. 11a shows that the increase in edge CPUs allows the
placement strategy to increase the number of microservices
executed in the edge data center, that is, an increase in the
distribution factor (ηc), which grows slowly at first, then,
in the middle area of the plot, the increase is more than linear
to saturate at the end when all microservices are executed in
the edge.

Fig. 11b shows the increase in edge utilization factor ρe
with edge CPUs. We recall that ρe is the total CPU consumed
by edge microservices ‘‘normalized’’ to the number of edge
CPUs. Therefore, its growth with edge CPUs means that the
number of microservices instantiated to the edge increases
more than linearly, as also confirmed by ηc (Fig. 11a). As a
result, the available edge resources are used more efficiently
when there are many of them. Obviously, when all microser-
vices are executed on the edge, additional edge CPUs are
unused, and thus the utilization factor starts to decrease.

Fig. 11c shows the ratio between the average delays with
and without edge computing. As edge CPUs increase, more
and more microservices are activated in the edge by the
placement strategy, and this reduces the delay compared to
the case of a cloud-only execution of the application. When
all microservices are executed in the edge, the curves flatten
because the delay reaches the lower bound equal to the sum
of the execution times (Di) of the internal functions of all
microservices involved in a request. Fig. 12 shows a similar
behavior for cloud-edge network traffic (Tnce), which drops
to zero when the entire application is executed in the edge.

VOLUME 11, 2023 49935

A. Detti: Microservices From Cloud to Edge

FIGURE 11. Edge computing performance for applications with different numbers of microservices (M − 1).

FIGURE 12. Cloud-edge network traffic for applications with different
numbers of microservices (M − 1).

Let us now discuss the impact of the number of microser-
vices on performance. If we had a monolithic application,
i.e., a single microservice requiring 31 CPUs, we would be
able to instantiate that giant microservice in the edge when
the edge CPUs are greater than or equal to 31. Therefore,
for smaller values of edge CPU values, edge computing can
not be used. In contrast, the splitting of the workload of a
monolithic application into microservices, i.e., an increase
in the number of microservices, allows only a portion of
the application to be executed in the edge, thus enabling the
exploitation of edge computing resources for reducing user
delay even in resource-limited settings.

This insight is confirmed by the behavior of ρe in Fig. 11b,
delay ratio in Fig. 11c and network traffic in Fig. 12. Appli-
cations with 10 microservices have a lower ρe value than
applications with more microservices. This is due to the fact
that placement strategies have more difficulty in activating
themicroservices of applications with 10microservices in the
edge data center because, being fewer in number than those
of the other applications considered, each of them requires
more CPU and is more difficult to fit into the edge resources.
This lower ability to exploit edge resources leads applications
with 10 microservices to have worse delay and traffic per-
formance, as shown in Fig. 11c and Fig. 11c, respectively.

FIGURE 13. Edge distribution factor for applications whose dependency
graphs Gm differs in the B-A a paramenter.

Applications with 30 or 50 microservices behave similarly
because in both cases the microservices are tiny enough to be
smoothly fit into the available edge resources.

The result of this analysis showed that the decomposition
of theworkload of an application intomicroservices improves
the possibility of using edge computing resources to reduce
user delay.15 In this sense, the architectural style of structur-
ing an application into microservices is an enabling factor of
edge computing.

2) TOPOLOGY OF THE MICROSERVICE DEPENDENCY
GRAPH
In this section, we analyze how the characteristics of the
dependency graph of an application impact the possibility of
a placement strategy to take advantage of edge resources to
reduce delays.

To carry out the analysis, we considered applications made
by 30 microservices and three classes of dependency graphs,
which follow the B-A model presented in Sec. IV and differ
in the attractiveness of nodes without children (a); the other
parameter α is set equal to 0.9. The first class has a = 0.01

15We talk about ‘‘possibility’’ because the delay reduction actually takes
place only using a well-designed placement strategy, as in the case of our
PAMP strategy.

49936 VOLUME 11, 2023

A. Detti: Microservices From Cloud to Edge

FIGURE 14. Ratio of the average user delay with and without edge
computing for applications whose dependency graphs Gm differs in the
B-A a paramenter.

and is representative of applications with highly centralized
dependency graphs, such as those in Fig. 7a and Fig. 7b.
The last class has a = 3.25 and consists of applications with
highly distributed dependency graphs, such as those in Fig. 7c
and Fig. 7d. The second class consists of applications whose
topology has an intermediate level of distribution.

Fig. 13 and Fig. 14 show the edge distribution factor and
the delay ratio with and without edge computing of the three
application classes, respectively. The results in Fig. 13 reveal
that a placement strategy has more difficulty in executing in
the edge applications made of few hub microservices with
a very large number of downstream microservices, such as
those with a = 0.01, than applications with more distributed
dependency graphs, such as those with a = {0.5, 3.25},
in which the microservices have a smaller fanout. And the
lower edge exploitation also implies a lower delay reduction
with respect to the case of cloud-only execution, as shown in
Fig. 14.

This can be explained by the following example. If the
placement strategy executes in the edge a microservice i that
has a number F of downstream microservices surely called
to serve a request, this microservice would create F edge-
cloud interactions per request, thus worsening the delay. It is
convenient to execute the microservice i in the edge only
when all its downstream microservices can also be activated
in the edge. This requirement makes it more difficult to use
edge resources for applications that have microservices with
high fanout.

Consequently, this analysis showed that designing
microservice applications with a more distributed depen-
dency graph with low-fanout microservices is an enabling
factor of edge computing, in the sense that increases the pos-
sibility of reducing user delay by exploiting edge resources.

3) NUMBER OF INVOLVED MICROSERVICES PER REQUEST
In this analysis, we analyze the performance of microservice
applications made of 30 microservices that involve a different
average number of microservices per request (mxc).
Fig. 15 shows the edge distribution factor versus mxc. The

results show that microservice applications that use more

FIGURE 15. Edge distribution factor for applications with different
number of microservices per request mxc .

FIGURE 16. Ratio of the average user delay with and without edge
computing for applications with different numbers of microservices per
request mxc .

microservices per request (mxc) exploit edge resources worse,
i.e., the placement strategy executes a lower quota of them in
the edge data center. Consequently, the delay reduction with
respect to the case of not using edge computing is also worst,
as shown in Fig. 16.

We motivate this behavior as follows. As discussed earlier,
to take advantage of edge computing, microservices usually
need to be instantiated in groups that are rather autonomous
in serving a request to avoid interactions with the cloud.
At higher mxc, the microservices interoperate more with each
other; the autonomous groups are larger, making it more
difficult to activate them with limited edge resources.

Consequently, this analysis showed that designing an
application with a small number of microservices involved
per request is an enabling factor to allow the reduction of user
delay by exploiting edge computing resources.

4) PRESENCE OF DATABASES
Microservice applications often have a centralized database
that microservices use to store and read global data [22],
[23], [24]. This database can only run in the cloud because
its replication in edge data centers could create data con-
sistency problems. In this paragraph, we analyzed whether
this database has an impact on the possibility of a placement
strategy to use edge resources for reducing user delay.

VOLUME 11, 2023 49937

A. Detti: Microservices From Cloud to Edge

FIGURE 17. Dependency graph of microservices (Gm) with database.

FIGURE 18. Edge distribution factor for applications without cloud
database and with cloud database for different percentage pdb of
microservices using it.

FIGURE 19. Ratio of the average user delay with and without edge
computing for applications without cloud database and with cloud
database for different percentage pdb of microservices using it.

To undertake the analysis, we modeled the constraint of
running the database only in the cloud with Eq. 20. We mod-
ified the B-A algorithm to build the dependency graph so
that the last microservice is the database and the other
microservices have the database among their downstream
microservices with a probability equal to pdb. Furthermore,
if a microservice i has the database among its downstream
microservices, the relative call probability Pmc (i, database) is
equal to 1, simulating the fact that the microservice i always
needs the database data to process a request. Fig. 17 depicts

an example of a possible dependency graph in the presence
of a database.

Fig. 18 shows the edge distribution factor for applica-
tions made up of 30 microservices (including the database),
in the absence and presence of a database for pdb =

{0.1, 0.3}. The results reveal that the presence of a central-
ized database severely reduces the possibility of using edge
resources to reduce user delay, even for a small percentage
pdb of microservices that use it. For example, when we
have 40 CPUs, without a database, the placement strategy
runs the entire application in the edge (ηe = 1). On the
contrary, when 10% of the microservices use the database
(pdb = 0.1), the placement strategy runs only 55% of the
application in the edge and almost nothing when pdb grows
further. As a consequence of fewer microservices running
in the edge, the presence of the database dramatically wors-
ens the delay reduction achieved by using edge computing
compared with that achieved by not using edge resources,
as shown in Fig. 19.

The reason for this dramatic impairment provided by cen-
tralized databases is due to a kind of ‘‘gravitational’’ effect
that the database creates around it, which attracts microser-
vices that use the database, as well as their children and
parents, to stay close to it in the cloud. This effect can
be motivated as follows. It is useless to run an instance of
microservice i that uses the database in the edge because this
action does not save any edge-cloud round trip. This effect
also propagates around i, in the upstream and downstream
direction of the dependency graph. Since i remains in the
cloud, according to the necessary condition 1, all of its chil-
dren which have i as their only parent must also remain in the
cloud. Moreover, the parents of i that call it with high proba-
bility Pcm remain in the cloud as well because their execution
on the edgewould create a non-beneficial interaction between
edge and cloud. This reasoning can be repeated recursively
for children of children and parents of parents, thus expanding
the gravitational effect of the database both upstream and
downstream of i in the dependency graph. This gravitational
effect of the database is very strong and grows as the number
of microservices that use the database increases.

Consequently, the results of this analysis showed that
the design of microservice applications with centralized
databases in a not enabling factor for the exploitability of
edge computing, i.e., the presence of a centralized database
seriously jeopardizes the possibility of using edge resources
to reduce user delay.

5) DATA CACHING
We note that many microservice applications use caching
systems [25], such as Memcached or Redis, to limit database
access and speed up data retrieval. We argue that these
caching systems can also effectively mitigate the negative
effect that a centralized database brings in the exploitability
of edge resources for delay reduction. Indeed, data caching
can avoid going to the cloud every time whenever there

49938 VOLUME 11, 2023

A. Detti: Microservices From Cloud to Edge

FIGURE 20. Edge distribution factor for applications with database
(pdb = 0.1) and data caches for different cache hit probabilities (h).

FIGURE 21. Ratio of the average user delay with and without edge
computing for applications with database (pdb = 0.1) and data caches for
different cache hit probabilities (h).

is a need for database data. Accordingly, in this section,
we support this hypothesis by analyzing the performance of
microservice applications made of 30 microservices that use
a centralized database and also data caching. Performance is
measured by varying the effectiveness of the cache, that is,
the probability h of finding requested data in a local cache
that each microservice is assumed to have, also known as the
cache hit probability [26].

To carry out the analysis, we modeled the presence of
a local cache as follows. A microservice i that has the
database as a downstream microservice calls it with proba-
bility Pmc (i, database) = 1 − h

Fig. 20 shows the edge distribution factor when 10% of the
microservices use the database and in the presence of local
microservice caches with different cache hit probabilities h.
We note that an increase in the cache hit probability leads to
an increase in the number of microservices that the placement
strategy executes in the edge. Consequently, as shown by
Fig. 21 there is a better reduction in user delay. However,
even in the best case of 40 CPUs and h = 0.5, although
Fig. 20 shows that all microservices, except for the database,
are executed in the edge, the delay ratio is on the order of
70%, compared to the better 55% in the absence of database
(Fig. 19). In fact, a quota of requests must still reach the
database in the cloud being h < 1 thus increasing the average
user delay.

Overall, this analysis has shown that the introduction of
local caching systems can mitigate the difficulties of using
resources at the edge to reduce delays for microservice appli-
cations that use centralized databases. However, even for a
very ambitious cache hit probability of 0.5, the penalty of
having a central database can not be completely eliminated.

VI. RELATED WORKS
To the best of our knowledge, this is the first work that pro-
vides insight to microservice developers on application-level
parameters that influence the placement of microservices at
the edge and thus the ability to use edge resources to reduce
user delay. To achieve this contribution, we had to develop a
new delay model and a PAMP placement strategy because
those we found in the literature did not take into account
key aspects of the targeted analysis all together, such as the
presence of a cloud back-end where microservice instances
are always executed, routing policies of the service mesh,
the random spanning of the dependency graph to simulate
the involvement of different microservices per call, sharing
of CPU and network resources among multiple requests and
their modeling through queuing systems with processor shar-
ing, and the presence of databases and data caches. In the
next subsections, we motivate these statements by revising
related works and discussing the differences with respect to
our contributions.

A. MICROSERVICE PLACEMENT STRATEGIES AND DELAY
MODELS
Microservice placement is a research topic of great interest in
the literature, as it involves finding the optimal location for
each microservice to run efficiently and effectively. Place-
ment strategies can take advantage of both cloud and edge
infrastructures. Cloud infrastructures provide the flexibility
and scalability needed to handle large workloads, while edge
infrastructures bring services closer to end users, poten-
tially reducing latency and improving response times [8],
[9]. Many studies propose methods to control resources to
avoid QoS violations and take full advantage of cloud ser-
vices [27], [28], [29], [30], [31], [32], [33].When the scenario
is extended by adding peripheral data centers, the methods
become more complex due to the possible heterogeneity of
resources, the presence of a network between data centers,
etc.

In [34], the authors propose an online placement algo-
rithm for the deployment of applications consisting of service
graphs in a hierarchical cloud scenario. While our objective
function is delay minimization, their goal is load balancing
among the nodes of the cloud hierarchy. Also, probabilistic
dependency graphs are not considered, i.e., the fact that the
microservices involved for each request may be randomly
different. It is also assumed that a microservice is executed in
a single node, whereas we consider the possibility of running
a microservice in both edge and cloud, and this also led us to
consider the service mesh routing policy.

VOLUME 11, 2023 49939

A. Detti: Microservices From Cloud to Edge

In [35], the authors propose a Bayesian Optimization-
based iterative reinforcement learning algorithm for the
placement of containerized microservices in IoT consider-
ing the time-varying resource availability. Their objective
function is to minimize the delay of the worst microservice,
rather than the delay experienced by the user as in our case.
Moreover, they assume that a microservice can run only in a
single (fog) node.

In [36], the authors propose a learning-based mechanism
to proactively place microservices on edge servers consider-
ing a ‘‘linear’’ microservice dependency graph and leaving
for future work the case of DAG dependency graphs as in
our case. The authors formulated the problem as a Markov
decision process in which at the beginning of each time
slot the agent observes the usage of microservice applica-
tions and can perform one of the following actions: proac-
tively place all microservices of the chain in neighboring
edge servers, migrate microservices from one edge server to
another because the requesting user has changed location.
The problem is quite different in that we are not considering
user mobility, and we are not limiting the placement options
to only two options, but we are considering the best place-
ment.

In [37], the authors jointly consider the problem of place-
ment and on-demand scheduling of dependent tasks. If a task
is not present on edge nodes, it is transferred from the cloud
and executed at the edge, in case replacing unneeded tasks.
An edge task is used by only one request, unlike the case
of a microservice instance that is used by many requests
concurrently. As a result, the authors do not need to account
for processor-sharing issues of computing resources, and the
internal processing of a microservice lasts a constant time
independent of load. In addition, the authors do not model the
random spanning of the dependency graph and the sharing of
network resources. However, unlike us, their work addressed
a multi-edge placement problem although, in our opinion,
more task-oriented than microservice-oriented.

In [38], the authors consider a multi-edge scenario with
a cloud back-end running microservice applications. Their
microservice application model is quite different from ours.
Based on experimental results [39] and demo microservice
applications [4], [22], [40], [41], [42], we modeled microser-
vice interactions with a randomly spanned DAG whose inter-
actions between parent and child nodes occur sequentially
and follow a request-response pattern, for which the child
always responds to the parent and the parent responds to its
parent when all its children have responded. The presence of
request-response interactions (as in the typical case of REST
APIs) and the DAG form of the call graph create many edge-
cloud round trips if the placement strategy is not optimized
accordingly. The application model considered in [38], on the
other hand, is very different and much representative of ‘‘task
pipelines’’ in which there is a sequence of tasks to be per-
formed and the output of one task is the input of the next task.
There is never any back and forth between child and parent,
only moving forward. To account for the fact that the user

must receive feedback, the output of the last task is sent to the
user. Also in this paper, processor-sharing is not considered
since it is assumed that a task/microservice serves one request
at a time, unlike our microservice work model, in which it
concurrently serves multiple requests. Also, the sharing of
network resources, and thus the impact of network load on
delay, is not considered.

B. PLACEMENT STRATEGIES AND DELAY MODELS FOR
SERVICE FUNCTION CHAINING
Studies in the literature that are close to the world ofmicroser-
vices are those that concern the area of service function
chaining (SFC), where services are virtual network functions
(VNFs) that process ‘‘traffic flows’’ through them [43]. The
placement problem is to determine the best set of network
nodes to execute the VNFs required by a flow, considering
both the availability of computing and network resources
and the optimizations of network routing [44]. However, the
service model is different from that of microservice appli-
cations. There is no request-response interaction between
successive VNFs as there is between microservices. There
are no dependency graphs but simpler dependency chains.
Usually, a VNF serves one flow, whereas a microservice
instance serves multiple requests at a time with a processor-
sharing approach. Flows can be served with request quality
or not served at all in the absence of the required resources
for their VNFs, differently, microservice requests are always
served and at most slowed down in the presence of limited
resources to share like CPU quota or network connection.

C. DATA CHAINING FOR MICROSERVICE APPLICATIONS
Other works related to this paper are those addressing solu-
tions for data caching in the case of microservice and/or edge
computing applications. For example, in [45], the authors
advocate the importance of data caching in microservice
applications and propose a new replacement policy, whose
performance has been evaluated through a simulation assum-
ing that the application runs in a single data center and taking
into account the microservice dependency graph. In [46], the
authors extend the caching scenario to a set of distributed
edge servers and address the Edge Data Integrity (EDI) prob-
lem. Analyzing the threat model and audit objectives, they
propose a probabilistic lightweight sampling-based approach
to verify data integrity in distributed edge caches. In [47], the
authors address the problem of cooperative caching among a
set of edge nodes and propose an online algorithm based on
Lyapunov optimization to minimize data latency. In [25], the
authors discuss the pros and cons of introducing caching in
microservice applications, where the cons are mainly due to
incomplete support of application protocols, such as gRCP,
and data consistency issues. The authors develop and imple-
ment caching in service meshes [7], which also works with
the gRPC protocol; themechanism is application independent
(based on sidecar patterns such as Istio [14]) and therefore
does not require changes in the source code. The authors

49940 VOLUME 11, 2023

A. Detti: Microservices From Cloud to Edge

measured a valuable reduction in network traffic with a real
microservice application.

VII. CONCLUSION
In this work, we analyze the properties of microservice appli-
cations that can affect the ability of a placement strategy to
deploy microservices in edge data centers to reduce the aver-
age user delay. The analysis is supported by a new analytical
model of delay and a new placement strategy, called PAMP,
which takes into account key aspects of the application, and
of the supporting computing and network systems not consid-
ered all together in previous literature models. Our findings
are as follows.

• Decomposing an application’s workload into microser-
vices improves the ability to leverage edge computing
for reducing user delay, as it allows only part of the
application to run in the edge when the edge’s resources
are insufficient to run the entire application (Fig. 11c).

• The use of edge resources decreases user delays when
it reduces the average number of network interactions
between edge and cloud required per request (Fig. 10b,
Fig. 10c). This observation leads to the conclusion
that it is convenient to design applications consist-
ing of autonomous groups of microservices that can
independently resolve a quota of user requests, since
these groups can be deployed in the edge when avail-
able resources permit and resolve user requests locally,
reducing the need to use the network to reach the cloud.

• Applications whose microservices have a more dis-
tributed dependency graph or fewer microservices
involved per call have a better possibility of using
edge resources to reduce user delay as the autonomous
microservice groups are likely smaller and thus easier
to deploy in case of limited edge resources (Fig. 14,
Fig. 16).

• The presence in the microservice architecture of a cen-
tralized database that must necessarily run in the cloud
drastically reduces the possibility of gaining an advan-
tage from edge computing for delay reduction (Fig. 19).
In fact, it is not convenient to deploy in the edge those
microservices (as well as all the related downstream
microservices and part of their upstreams) that require
database data to resolve a request, since this would create
edge/cloud interactions that nullify the effectiveness of
using edge resources to reduce user delay. Figuratively,
the database has an effect similar to that of a gravita-
tional mass that prevents microservices close to it from
leaving the cloud, i.e., having user delay benefits by
moving them to the edge data center.

• When it is not convenient to avoid a centralized database,
for example, because it strongly simplifies implementa-
tion, it would be better to use local data caching systems
that reduce the need for interaction with the database,
thereby allowing the advantages of edge computing to
reduce delay to be partially recovered (Fig. 21).

In addition to these application-level considerations, the
analysis also highlighted some critical issues in the use of
edge computing formicroservice applications, which relate to
the ‘‘mandatory’’ use of well-designed placement strategies.
In fact, the use of optimal or near-optimal placement strate-
gies provides the opportunity of using edge computing for
reducing user delay. However, the use of a not-well-designed
strategy that places the wrong set of microservices in the edge
can even risk making worse delay performance than in the
case of not using edge computing (Fig. 10b). In that sense,
edge computing can be a friend or a foe of microservice
applications, depending on the skill of the placement strategy.

Our work has a narrow focus, and therefore future work can
extend it beyond the following limitations. We refer primarily
to widespread microservice applications, used by a large set
of fixed and mobile clients, for which the geographic pattern
of requests is stable enough so that user mobility is not critical
for the microservice placement. There are no edge-to-edge
interactions, only edge-cloud interactions. We mainly con-
sidered applications based on request-response interactions
rather than streaming; that is, microservice requests are of
short duration.

ACKNOWLEDGMENT
The authors would like to thank the stimulating conversations
with Ludovico Funari and Luca Petrucci, who provided help-
ful comments for the research direction.

REFERENCES
[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,

R. Mustafin, and L. Safina, ‘‘Microservices: Yesterday, today, and tomor-
row,’’ in Present And Ulterior Software Engineering. Springer, 2017,
pp. 195–216.

[2] J. Thönes, ‘‘Microservices,’’ IEEE Softw., vol. 32, no. 1, p. 116, Jan. 2015.
[3] C. Richardson, Microservices Patterns: With Examples Java. New York,

NY, USA: Simon and Schuster, 2018.
[4] A. Detti, L. Funari, and L. Petrucci, ‘‘µBench: An open-source factory of

benchmarkmicroservice applications,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 34, no. 3, pp. 968–980, Mar. 2023.

[5] D. Merkel, ‘‘Docker: Lightweight Linux containers for consistent devel-
opment and deployment,’’ Linux J., vol. 2014, no. 239, p. 2, 2014.

[6] Kubernetes: Production-Grade Container Orchestration. Accessed:
Mar. 21, 2023. [Online]. Available: https://kubernetes.io/

[7] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, ‘‘Service mesh: Chal-
lenges, state of the art, and future research opportunities,’’ in Proc. IEEE
Int. Conf. Service-Oriented Syst. Eng. (SOSE), Apr. 2019, pp. 122–1225.

[8] B. Li, Q. He, G. Cui, X. Xia, F. Chen, H. Jin, and Y. Yang, ‘‘READ:
Robustness-oriented edge application deployment in edge computing envi-
ronment,’’ IEEE Trans. Services Comput., vol. 15, no. 3, pp. 1746–1759,
May 2022.

[9] S. Deng, Z. Xiang, J. Taheri, M. A. Khoshkholghi, J. Yin, A. Y. Zomaya,
and S. Dustdar, ‘‘Optimal application deployment in resource con-
strained distributed edges,’’ IEEE Trans. Mobile Comput., vol. 20, no. 5,
pp. 1907–1923, May 2021.

[10] T. Ouyang, Z. Zhou, and X. Chen, ‘‘Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,’’ IEEE J.
Sel. Areas Commun., vol. 36, no. 10, pp. 2333–2345, Oct. 2018.

[11] Y. Li, W. Dai, X. Gan, H. Jin, L. Fu, H. Ma, and X. Wang, ‘‘Coopera-
tive service placement and scheduling in edge clouds: A deadline-driven
approach,’’ IEEE Trans. Mobile Comput., vol. 21, no. 10, pp. 3519–3535,
Oct. 2022.

[12] S. Fan, I. Hou, V. S. Mai, and L. Benmohamed, ‘‘Online service caching
and routing at the edge with unknown arrivals,’’ in Proc. IEEE Int. Conf.
Commun., May 2022, pp. 383–388.

VOLUME 11, 2023 49941

A. Detti: Microservices From Cloud to Edge

[13] A. O. Duque, C. Klein, J. Feng, X. Cai, B. Skubic, and E. Elmroth,
‘‘A qualitative evaluation of service mesh-based traffic management for
mobile edge cloud,’’ in Proc. 22nd IEEE Int. Symp. Cluster, Cloud Internet
Comput. (CCGrid), May 2022, pp. 210–219.

[14] Istio Service Mesh. Accessed: Mar. 21, 2023. [Online]. Available:
https://istio.io/

[15] Linkerd Service Mesh. Accessed: Mar. 21, 2023. [Online]. Available:
https://linkerd.io/

[16] L. Kleinrock,Queueing Systems: Computer Applications, vol. 2. Hoboken,
NJ, USA: Wiley, 1976.

[17] J. Csirik, ‘‘Heuristics for the 0–1 min-knapsack problem,’’ Acta Cybernet-
ica, vol. 10, nos. 1–2, pp. 15–20, 1991.

[18] Cluster Trace Microservices v2021. Accessed: Mar. 21, 2023. [Online].
Available: https://github.com/alibaba/clusterdata/tree/master/cluster-
trace-microservices-v2021

[19] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He, and C. Xu,
‘‘Characterizing microservice dependency and performance: Alibaba trace
analysis,’’ in Proc. ACM Symp. Cloud Comput., Nov. 2021, pp. 412–426.

[20] A.-L. Barabási and R. Albert, ‘‘Emergence of scaling in random net-
works,’’ Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.

[21] V. Podolskiy, M. Patrou, P. Patros, M. Gerndt, and K. B. Kent, ‘‘The weak-
est link: Revealing and modeling the architectural patterns of microservice
applications,’’ in Proc. 30th Annu. Int. Conf. Comput. Sci. Softw. Eng.
(CASCON). New York, NY, USA: ACM, 2020, pp. 113–122.

[22] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, and
S. Kounev, ‘‘TeaStore: A micro-service reference application for bench-
marking, modeling and resource management research,’’ in Proc. IEEE
26th Int. Symp. Modeling, Anal., Simulation Comput. Telecommun. Syst.
(MASCOTS), Sep. 2018, pp. 223–236.

[23] Y. Gan, ‘‘An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems,’’ in Proc.
24th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Apr. 2019, pp. 3–18.

[24] R. Jung and M. Adolf, ‘‘The JPetStore suite: A concise experiment setup
for research,’’ in Proc. Symp. Softw. Perform., 2018, pp. 1–3.

[25] L. Larsson, W. Tärneberg, C. Klein, M. Kihl, and E. Elmroth, ‘‘Adaptive
and application-agnostic caching in service meshes for resilient cloud
applications,’’ in Proc. IEEE 7th Int. Conf. Netw. Softwarization (NetSoft),
Jun. 2021, pp. 176–180.

[26] N. B. Melazzi, G. Bianchi, A. Caponi, and A. Detti, ‘‘A general, tractable
and accurate model for a cascade of LRU caches,’’ IEEE Commun. Lett.,
vol. 18, no. 5, pp. 877–880, May 2014.

[27] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer, ‘‘FIRM:
An intelligent fine-grained resource management framework for SLO-
oriented microservices,’’ in Proc. 14th USENIX Symp. Operating Syst.
Design Implement. (OSDI), Nov. 2020, pp. 805–825. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/qiu

[28] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, ‘‘Sinan: ML-
based and QoS-aware resource management for cloud microservices,’’ in
Proc. 26th ACM Int. Conf. Architectural Support Program. Lang. Operat-
ing Syst., Apr. 2021, pp. 167–181, doi: 10.1145/3445814.3446693.

[29] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and C. Delimitrou,
‘‘Seer: Leveraging big data to navigate the complexity of performance
debugging in cloud microservices,’’ in Proc. 24th Int. Conf. Architec-
tural Support Program. Lang. Operating Syst., Apr. 2019, pp. 19–33, doi:
10.1145/3297858.3304004.

[30] W. Lv, Q. Wang, P. Yang, Y. Ding, B. Yi, Z. Wang, and C. Lin, ‘‘Microser-
vice deployment in edge computing based on deep q learning,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 11, pp. 2968–2978, Nov. 2022.

[31] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, ‘‘Sage: Practical and
scalable ML-driven performance debugging in microservices,’’ in Proc.
26th ACM Int. Conf. Architectural Support Program. Lang. Operating
Syst., Apr. 2021, pp. 135–151, doi: 10.1145/3445814.3446700.

[32] M. R. Hossen, M. A. Islam, and K. Ahmed, ‘‘Practical efficient microser-
vice autoscaling with QoS assurance,’’ in Proc. 31st Int. Symp. High-
Perform. Parallel Distrib. Comput., Jun. 2022, pp. 240–252.

[33] G. Yu, P. Chen, and Z. Zheng, ‘‘Microscaler: Cost-effective scaling for
microservice applications in the cloud with an online learning approach,’’
IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 1100–1116, Apr. 2022.

[34] S. Wang, M. Zafer, and K. K. Leung, ‘‘Online placement of multi-
component applications in edge computing environments,’’ IEEE Access,
vol. 5, pp. 2514–2533, 2017.

[35] S. B. Nath, S. Chattopadhyay, R. Karmakar, S. K. Addya, S. Chakraborty,
and S. K. Ghosh, ‘‘PTC: Pick-test-choose to place containerized micro-
services in IoT,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2019, pp. 1–6.

[36] K. Ray, A. Banerjee, and N. C. Narendra, ‘‘Proactive microservice place-
ment and migration for mobile edge computing,’’ in Proc. IEEE/ACM
Symp. Edge Comput. (SEC), Nov. 2020, pp. 28–41.

[37] L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang,
‘‘Dependent task placement and scheduling with function configuration
in edge computing,’’ in Proc. Int. Symp. Quality Service, Jun. 2019,
pp. 1–10.

[38] H. Zhao, S. Deng, Z. Liu, J. Yin, and S. Dustdar, ‘‘Distributed redundant
placement for microservice-based applications at the edge,’’ IEEE Trans.
Services Comput., vol. 15, no. 3, pp. 1732–1745, May 2022.

[39] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, J. He, and C. Xu, ‘‘An in-
depth study of microservice call graph and runtime performance,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 3901–3914, Dec. 2022.

[40] DeathStarBench. Accessed: Mar. 21, 2023. [Online]. Available:
https://github.com/delimitrou/DeathStarBench

[41] Sock Shop:MicroservicesDemo. Accessed:Mar. 21, 2023. [Online]. Avail-
able: https://microservices-demo.github.io/

[42] Distributed Version of the Spring Petclinic Adapted for Cloud Foundry
and Kubernetes. Accessed: Mar. 21, 2023. [Online]. Available:
https://github.dev/spring-petclinic/spring-petclinic-cloud

[43] T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. P. Fitzek, ‘‘SAP:
Subchain-aware NFV service placement in mobile edge cloud,’’ IEEE
Trans. Netw. Service Manage., vol. 20, no. 1, pp. 319–341, Mar. 2023.

[44] R. Chen and J. Zhao, ‘‘Scalable and flexible traffic steering for service
function chains,’’ IEEE Trans. Netw. Service Manage., vol. 19, no. 3,
pp. 2048–2062, Sep. 2022.

[45] L. Li, C. Ye, and H. Zhou, ‘‘Cache replacement algorithm based on
dynamic constraints in microservice platform,’’ in Proc. Int. Conf. Service
Sci. (ICSS), May 2022, pp. 167–174.

[46] B. Li, Q. He, F. Chen, H. Jin, Y. Xiang, and Y. Yang, ‘‘Auditing cache
data integrity in the edge computing environment,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 5, pp. 1210–1223, May 2021.

[47] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, ‘‘Online col-
laborative data caching in edge computing,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 2, pp. 281–294, Feb. 2021.

ANDREA DETTI (Member, IEEE) is currently a
Professor in wireless networks and cloud com-
puting with the Department of Electronic Engi-
neering, University of Rome ‘‘Tor Vergata.’’ He
is the coauthor of many papers in journals and
conference proceedings and has participated in
several EU-funded projects with coordination
and research roles. His current research inter-
ests include 5G networks, cloud/edge comput-
ing, and AI applied to these sectors. Currently,

he is an Associate Editor of IEEE TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT.

Open Access funding provided by ‘Università degli Studi di Roma "Tor Vergata"’ within the CRUI CARE Agreement

49942 VOLUME 11, 2023

http://dx.doi.org/10.1145/3445814.3446693
http://dx.doi.org/10.1145/3297858.3304004
http://dx.doi.org/10.1145/3445814.3446700

