
PhD in
Industrial Engineering

Cycle
XXXIV

A Predictive Maintenance Model for
Heterogeneous Industrial Refrigeration Systems

Ron van de Sand, M. Eng.

A.Y. 2020/2021

Tutor: Prof. Dr. Sandra Corasaniti

Co-Tutor: Prof. Dr.-Ing. Jörg Reiff-Stephan

Coordinator: Prof. Dr. Marco Marinelli



Abstract
The automatic assessment of the degradation state of industrial refrigeration systems is
becoming increasingly important and constitutes a key-role within predictive maintenance
approaches. Lately, data-driven methods especially became the focus of research in this
respect. As they only rely on historical data in the development phase, they offer great
advantages in terms of flexibility and generalisability by circumventing the need for specific
domain knowledge. While most scientific contributions employ methods emerging from
the field of machine learning (ML), only very few consider their applicability amongst
different heterogeneous systems. In fact, the majority of existing contributions in this field
solely apply supervised ML models, which assume the availability of labelled fault data for
each system respectively. However, this places restrictions on the overall applicability, as
data labelling is mostly conducted by humans and therefore constitutes a non-negligible
cost and time factor. Moreover, such methods assume that all considered fault types
occurred in the past, a condition that may not always be guaranteed to be satisfied.

Therefore, this dissertation proposes a predictive maintenance model for industrial
refrigeration systems by especially addressing its transferability onto different but re-
lated heterogeneous systems. In particular, it aims at solving a sub-problem known as
condition-based maintenance (CBM) to automatically assess the system’s state of degra-
dation. To this end, the model does not only estimate how far a possible malfunction
has progressed, but also determines the fault type being present. As will be described
in greater detail throughout this dissertation, the proposed model also utilises techniques
from the field of ML but rather bypasses the strict assumptions accompanying supervised
ML. Accordingly, it assumes the data of the target system to be primarily unlabelled
while a few labelled samples are expected to be retrievable from the fault-free operational
state, which can be obtained at low cost. Yet, to enable the model’s intended function-
ality, it additionally employs data from only one fully labelled source dataset and, thus,
allows the benefits of data-driven approaches towards predictive maintenance to be further
exploited.

After the introduction, the dissertation at hand introduces the related concepts as
well as the terms and definitions and delimits this work from other fields of research.
Furthermore, the scope of application is further introduced and the latest scientific work
is presented. This is then followed by the explanation of the open research gap, from which
the research questions are derived. The third chapter deals with the main principles of the
model, including the mathematical notations and the individual concepts. It furthermore
delivers an overview about the variety of problems arising in this context and presents the
associated solutions from a theoretical point of view. Subsequently, the data acquisition
phase is described, addressing both the data collection procedure and the outcome of the
test cases. In addition, the considered fault characteristics are presented and compared
with the ones obtained from the related publicly available dataset. In essence, both
datasets form the basis for the model validation, as discussed in the following chapter. This
chapter then further comprises the results obtained from the model, which are compared
with the ones retrieved from several baseline models derived from the literature. This
work then closes with a summary and the conclusions drawn from the model results.
Lastly, an outlook of the presented dissertation is provided.
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ṁC Cooling water mass flow
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1 INTRODUCTION

1 Introduction
This dissertation is about a novel approach towards predictive maintenance for industrial
refrigeration systems. The proposed model aims to bridge the gap between research and
practical implementation by being specifically designed for its transferability between
different but related heterogeneous systems. In this first chapter, the main terms arising
in this context are introduced and the scope of this work is further explained. Furthermore,
the related research works are discussed and the open research gap is derived.

1.1 Motivation
The field of predictive maintenance (PM) has attracted researchers for many years and is
known to play a key-role in the transformation process from conventional manufacturing
strategies towards highly efficient value chains in the course of ‘Industry 4.0’. By combin-
ing new emerging technologies, such as machine learning (ML), artificial intelligence, big
data or the internet of things [1], PM is changing the face of production activities [2] as it
enables automated real time degradation assessment of technical equipment. It has, thus,
developed to a prominent strategy to minimise machinery downtime and associated costs
[3]. Based on actual machine data, this methodology tries to reduce unnecessary mainte-
nance actions [4] and to predict unplanned downtimes [5, p. 37] or efficiency losses [6] of
machine components. In contrast to other maintenance approaches, it enables to schedule
maintenance actions depending on the actual machine condition [7, pp. 7-9] rather than
on predetermined intervals or after machine failure, which is often referred to as mainte-
nance on demand. This leads to increased system availability from the perspective of the
overall equipment effectiveness [8, p. 37] and, thus, may lower operation and maintenance
expenditures. Furthermore, it is known to improve the productivity and product quality
of a production plant as well as to increase operator safety [9, pp. 61-72]. As an actual
alternative to the existing state-of-the-art maintenance types, PM has recently evolved
into a basis for new business models.

In the survey “Predictive Maintenance – Market Report 2019 - 2024” [10], the authors
predicted a worldwide rise in the predictive maintenance market from US$ 3.3 billion in
2018 to US$ 23.5 billion in 2024, which indeed illustrates the importance of the issue. This
is moreover underlined by the fact that maintenance tasks are increasingly conducted
as services through service providers or the manufacturers themselves [11, p. 19]. For
example, the Federal Statistical Office of Germany has identified around thirteen thousand
companies in this sector with a total revenue of 3.6 billion Euro for the year 2017, of
which around two thousand companies are active in the field of data processing and
telecommunications equipment [12]. In the same year, the German Engineering Federation
concluded that 81 % of the companies within the German engineering sector considered
PM to be an important industry trend and 40 % even considered it to be a differentiator
and success factor for future businesses [13]. With data becoming more accessible and
ubiquitous [14], the use of data-driven PM methods has been especially promoted in
recent years and has become a well established solution [15] for the automatic degradation
assessment of technical equipment. As such approaches observe the underlying pattern
of machine data instead of relying on a mathematical formulation of the physical system
[16], they require no domain knowledge [17, p. 28] and are therefore particularly suitable
for technical systems with high complexity. On the contrary, however, data-driven PM
methods commonly utilise training datasets with labelled observations that may suffer
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from the lack of faulty samples [18], as faults are rare events [6]. In addition, data
labelling is still performed by humans and therefore constitutes a considerable cost factor
[19], which inhibits the broad application of such approaches.

Particularly in the field of heating, ventilation, air-conditioning and refrigeration sys-
tems (HVAC&R), PM offers great potential for energy and cost savings. In the European
Union alone, HVAC&R applications account for about half of the energy demand [20]
and even more for countries with higher temperatures and humidity. In Abu Dhabi for
instance, 61 % of the total annual energy consumption can be ascribed to such applica-
tions, of which 47 % is accounted for by chillers [21]. As described in [22], these figures
will most likely increase in the upcoming years due to climate change, but can also be
affected by factors beyond that, such as economic and population growth, or social and
cultural trends. This, in conjunction with the fact that refrigeration systems can lose
as much as 30 % efficiency due to performance degradation whilst appearing fully func-
tional [23], shows the potential for reducing energy waste [24] through proper maintenance
strategies. Especially in the industrial refrigeration sector, PM can add significant value
in terms of process reliability. One particularly important branch is the food industry,
where chiller breakdowns may lead to the obstruction of the production process causing
reduced product quality or even product loss [25]. But also other branches, such as the
chemical or pharmaceutical industry, rely on properly maintained refrigeration systems
and can therefore benefit from the advantages of PM.

Although data-driven approaches offer many advantages, their broad application in
the industrial refrigeration sector is not yet well advanced. This is mainly due to the
fact that the industry is dominated by custom-made chillers built on-site and thus vary
in their system design as well as their operating characteristics [26, p. 464]. As a conse-
quence, machine data acquired from various domains are subject to different distributions
leading to inconsistent classification behaviour if one PM model is applied across different
domains. Common state-of-the-art models are therefore often trained independently for
each system using labelled normal and fault data samples, resulting in high costs in their
development.

One solution to this problem is represented through the application of transfer learn-
ing or, as will be introduced later, domain adaptation approaches as has already been
successfully applied in other engineering sectors, such as robotics [27] or rolling bearing
diagnostics [28]. Such transferable models are of great value as they allow the benefits of
data-driven approaches to be further exploited. By embedding prior-knowledge [29] from
a fully labelled source domain, such models may adapt to a target domain where few
or no labelled observations are available. A major problem, however, is the insufficient
number of available datasets of different chiller types [30], which may be important [6] for
promoting transferable data-driven diagnostic models and accelerating progress in this
research area. Even though many PM approaches for assessing a chiller’s degradation
state by using associated labelled data are well described across the literature, practices
that avoid costly data labelling are still lacking and remain a challenge in this field.

1.2 Scope
Despite the advantages of data-driven PM, the lack of sufficiently labelled datasets is
still a major obstacle [4], hindering its widespread application. Yet, this statement does
not necessarily hold for the availability of labelled data stemming from the normal, or
fault-free, operation condition as these can be obtained during the commissioning phase
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or directly after maintenance measures have been performed. Similarly, unlabelled data
are often readily available [31, p. 610] in great numbers because many system operators
already collect data as part of their control strategies [32] for optimisation, documentation
or traceability purposes.

As will be pointed out in the following sections, the main scope of this dissertation is
on a certain subsystem of the refrigeration cycle, namely the chiller, as it is critical with
regard to malfunctions and energy losses [33]. Therefore, based on the aforementioned
aspects, a novel data-driven model to automatically assess a chiller’s degradation state
is proposed in this dissertation. More specifically, the model enables the detection of
faults and supports the analysis of their root cause by providing comprehensive fault
diagnosis capabilities. This process involves a multi-level approach known as condition-
based maintenance (CBM) [34, p. 1], often used as a synonym for PM. The difference
between both terms as well as the distinction to related research areas will be discussed
in more detail in the following section.

In general, the proposed model deals with a common problem originating from data-
driven methods, namely the absence of labels. In fact, the model aims at utilising only
a minor fraction of available labelled data stemming from the normal chiller operation
as well as a greater number of unlabelled data in the training phase. This is achieved
by exploiting methodologies from the field of one-class classification (OCC) [35] and do-
main adaptation [36], both of which are problems in ML. While the former is used for
anomaly detection tasks, the latter is used for estimating the fault type by embedding
prior-knowledge from another fully labelled chiller dataset, the source dataset.

The main goal of the proposed model is more ambitious than requiring only fewer la-
belled data samples of the target system in the training phase. It rather aims at exploiting
primarily unlabelled data with a small number of labelled observations associated with the
normal operating condition and, thus, avoids costly and time-consuming data labelling
tasks. This dissertation therefore describes the principles of the model, the underlying
ideas, and validates its general functionality. To this end, two datasets are employed, one
of which was collected within the scope of this work.

1.3 Outline
This dissertation is divided into six chapters, of which this introduction is the first. Chap-
ter 2 introduces the terms related to industrial maintenance but also to ML. Another
important aspect of this chapter concerns the delimitation of this work from other fields of
research, whereby the categorisation of the sub-fields within the context of PM is clarified.
Yet, the most important contribution of this chapter lies in the derivation of the research
gap and research questions arising from it. The third chapter describes the problem
at hand from a theoretical perspective and introduces the mathematical notations used
throughout this work. Moreover, the algorithmic principles of the proposed model are
described, starting from an abstract description to a detailed procedure. The subsequent
chapter then deals with the presentation of the test rig and the experiments conducted
to collect the dataset, which, in turn, is used to validate the model. Moreover, the inves-
tigated fault patterns are discussed and compared with the results obtained from other
studies. Chapter 5 demonstrates the overall functionality of the model with a particular
focus on its classification performance, for which a comparison is made with common
state-of-the-art algorithms. Finally, the results are summarised and an outlook is given
in the concluding chapter.
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2 State of the Art
In the following, the topic of predictive maintenance is described in more detail and its
individual components are explained. Furthermore, an overview of the current state of
the art with regard to industrial refrigeration systems is provided and the main terms are
introduced and differentiated from each other. Most importantly, the relationship between
PM and condition based maintenance is presented. This is followed by the introduction
of this technology to the field of industrial refrigeration, whereby typical fault types are
presented and current challenges are discussed. The final part covers the related works in
this research field, from which the open research gap is derived in the concluding section.

2.1 Industrial Maintenance
The term maintenance is i.a. defined within the DIN EN 13306 as the “combination of all
technical, administrative and managerial actions during the life cycle of an item intended
to retain it in, or restore it to, a state in which it can perform the required function” [37,
p. 8]. This does not only include active measures such as repair or refurbishment, but also
comprises observation and analysis of a technical asset’s state. It should be noted that
the latter is the main subject of the present work, focusing on the automated analysis
procedure.

2.1.1 Objectives
In the last decades, industrial maintenance has garnered increased attention, as more and
more production companies see it as a factor to generate added value for their business
processes [38, p. 17]. As stated in [39, p. 10], its scope has further evolved from solely
ensuring the availability of machinery. Nowadays, industrial maintenance stretches well
beyond that, as it has become an aspect of development and competitiveness. Thus, it is
often associated with the reduction of production costs or the increase of product quality.
In [37, p. 9], the maintenance objectives are summarised as follows:

• Ensure availability of machinery • Environment preservation
• Cost reduction • Asset value preservation
• Increase useful life • Safety
• Product quality

As outlined in [40, p. 2], maintenance can even be considered a value-adding factor,
as it is the preliminary work for the actual value-added process. Although maintenance
itself is typically not considered part of the value chain, it offers enormous potential for
its improvement [41]. Stephens [42, p. 6] distinguished between primary and secondary
goals of maintenance. Primary goals include early and appropriate response to equipment
failures, development of critical situation detection procedures, or improvement of system
efficiency. Secondary goals, on the other hand, are not directly related to the production
process but may include measures to improve plant protection and security or to reduce
pollution and noise.

In general, planning maintenance procedures for a certain asset is a trade-off between
system reliability and maintenance costs [44]. This is described in [43, p. 25] and [42, p. 3-
7], among others, where maintenance-related costs and the degree of preventive measures
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Figure 2.1: The maintenance optimisation problem as a trade-off between system reli-
ability and maintenance costs according to [43, p. 24].

are compared in the context of improving system reliability. As shown in Figure 2.1, both
repair costs and costs caused by unscheduled system downtimes decrease with a rising
degree of preventive measures. This contrasts with a disproportionate increase in the
costs incurred by the preventive measures to satisfy higher system reliability requirements
[43, pp. 22-24]. By adding up these costs, it becomes apparent that both a too low as well
as a too high degree of preventive measures cause excessive costs and that the costs for
ensuring a 100 % preventive maintenance strategy even tend towards infinity. Besides, the
technical feasibility of such a measure would be questionable. Consequently, the definition
of a maintenance strategy for an asset can be considered as an optimisation problem, with
the objective of achieving the highest reliability at minimum cost. Therefore, selecting a
suitable strategy is of great importance to achieve the aforementioned objectives.

2.1.2 Strategies
Industrial maintenance has progressively become a major concern for manufacturing com-
panies over the years and has also changed with the appearance of new requirements and
technologies. As a result, various concepts have emerged since the first industrial rev-
olution, as shown in Figure 2.2. While the 19th century was primarily characterised by
reactive maintenance measures, preventive strategies were increasingly applied from the
middle of the 20th century. From the 1970s onwards, minimising operating costs over
the entire product life cycle became more important [45], which led to initial attempts
to plan maintenance measures based on the actual asset condition. Furthermore, with
increasing numbers of real-time sensor data being available as well as the introduction of
computers into the production processes, maintenance strategies became more advanced.
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Figure 2.2: Developmental stages of maintenance strategies derived from [40, p. 2].

This has led to a paradigm shift towards proactive planning of maintenance tasks using
new mathematical methods, which is still a field of ongoing development [46, p. 22].

This does not necessarily mean that nowadays all maintenance measures are purely
proactive in nature. In fact, most maintenance actions are still reactive [47, p. 9] and
consequently repair measures are accorded a high degree of significance for the mainte-
nance staff. As described in the previous section, the trade-off between reliability and the
associated costs determines the extent of the measures required to maintain the technical
equipment. The individual concept comprising these measures is usually referred to as the
maintenance strategy, which is to be defined by the responsible management [37]. Yet,
this should not be confused with maintenance types, as maintenance strategies rather
describe how such types are combined to achieve certain technical benefits [38, p. 373].

Mikat [48, pp. 15-17] describes three maintenance strategies that can be distinguished;
run-to-failure-maintenance, on-condition-maintenance and condition-based maintenance,
whereby the terms fault and failure should be regarded separately from one another.
According to [34, p. 2], a failure is the “termination of the ability of an item to perform a
required function”, whereas a fault is considered to be the degradation process or abnormal
behaviour that could possibly cause a failure.

While run-to-failure strategies aim at using an asset until its wear reserve [49, p. 8] is
completely used up, on-condition strategies take into account the realisation of reactive
measures for subsystems with low reliability demands and preventive measures for critical
technical equipment [17, p. 14]. This can reduce costs arising from longer machine down-
times and the associated production inactivity. Yet, one advantage of the run-to-failure
approach is that it fully uses up the useful lifetime of a system [43, p. 20]. However, as
this can cause unexpected system failures, it is often more expensive compared to the
other two strategies [40, p. 28], as it accepts a high risk of sudden machine failure. To
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circumvent this, on-condition maintenance aims at periodically carrying out maintenance
procedures, including repair or replacement of machine parts. Although this may save
costs caused by production downtime, it is carried out independently of the actual asset
condition and thus leads to costs caused by unnecessary maintenance activities. Accord-
ingly, it is assumed that 85 % of maintenance measures are initiated too early and that
there are strong dependencies between the asset degradation process and its operating
conditions [43, p. 18]. This results in the need for alternatives proving cost-effective so-
lutions while meeting high reliability standards. One solution to this can be to carry out
maintenance actions based on the actual condition of the asset rather than on a pre-set
schedule [50, preface].

This is the idea behind CBM, which allows to incorporate information about the
actual condition of the asset into the planning of the maintenance programme. By using
suitable monitoring concepts, fixed inspection intervals can be replaced by dynamically
planned maintenance actions [48, p. 16] that aim for a maximum time span between
maintenance-related downtimes [47, p. 4].

This concept can help save maintenance costs by reducing machine downtime while
utilising the asset’s wear reserve to a large extent. Another category worth mentioning has
recently come to the fore, namely prescriptive maintenance [51], [52]. This strategy aims
at extending the lifetime of an asset by embedding the information about the predicted
fault evolution into the ongoing control process. Although some recent studies indicate
promising results using this approach, it is beyond the scope of this work.

In addition to the many differences among existing definitions, there is great incon-
sistency in the use of the term CBM, as it can refer to a maintenance strategy, a mainte-
nance type, or to an information processing model. Thus, the following section provides
an overview of the different maintenance types described in the literature. The meaning
of CBM in the context of this dissertation will be clarified in Section 2.2.2.

2.1.3 Types
Unlike maintenance strategies, a maintenance type refers more to the specific activities
that are performed. The literature shows that most researchers try to classify these types
into three categories. Jardine et al. [53] and Cachada et al. [54] have summarized
maintenance activities to three maintenance types; unplanned maintenance or corrective
maintenance [37], preventive maintenance, and CBM. As can be seen in Figure 2.3, the
DIN 13306 [37] similarly categorises maintenance types, whereby two main types are ini-
tially distinguished: corrective maintenance and preventive maintenance. The difference
between the two is that corrective maintenance is initiated upon system failures, while
preventive maintenance aims to avoid such by taking appropriate measures in advance.
Accordingly, this type can be subdivided into predetermined maintenance and CBM.

Corrective maintenance comprises the repair activities conducted after equipment fail-
ure in order to bring the system back to its original state. Because these tasks are per-
formed in the event of a critical system failure, which can occur at inappropriate times,
they often have a high priority and are likely to interfere with other scheduled activities
within the production process. In [37, pp. 34-41], it is likewise stated that corrective
maintenance can be further distinguished between deferred corrective maintenance and
immediate corrective maintenance. While the former is scheduled after a fault is detected,
the latter requires instant action in the event of a machine failure. Since these failures
often occur unexpectedly, costs are incurred not only from the actions required to restore
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Figure 2.3: The maintenance types according to [37] and [55, p. 819] subdivided accord-
ing to their preventive measures.

the system to its original operating condition, but also from production line downtime.
Dhillen [56, p. 64] describes four downtime components in this context, namely active
repair time, administrative time, logistic time, and delay time. Actions to be performed
in the context of active repair may comprise the following [57, p. 113], [56, p. 64]:

• Failure recognition • Fault localisation
• Fault correction • Fault diagnosis
• Function checkout

Depending on the failed system, the times associated with these actions have different
effects on the total system downtime. For example, electrical failures may result in higher
troubleshooting times, whereas mechanical failures are likely to cause higher repair times
[56, p. 65]. In contrast to corrective maintenance, preventive maintenance involves the
planning of maintenance activities in order to reduce the probability of machine failure
[37, p. 34]. In fact, the goal is to completely avoid unplanned system downtimes [43,
pp. 19-20]. This can be achieved by performing maintenance activities on a regular basis,
such as scheduled routine inspections, periodic cleaning, lubrication and overhaul [42,
p. 11], which is part of predetermined maintenance. The determination of the mainte-
nance intervals depends on the respective maintenance strategy and can, for example, be
performed after a certain operating time or after exceeding a predefined number of load
cycles.

When maintenance tasks are scheduled based on the provided condition information
of an asset, they are assigned to the maintenance type CBM. Its core concept consists
of the accurate prediction of faults and failures as well as the determination of their root
cause [58, p. 5]. Although its simplest form only requires human expertise to asses the
current degradation state [40, p. 31], modern approaches exploit machine data repre-
senting the actual physical state of an asset. This process is commonly referred to as
condition monitoring (CM) [59], [34], [37, p. 41], which will be described in more detail
in Section 2.2.2. By continuously analysing the physical quantities such as, for instance,
pressure, temperature or electrical current, it allows to automatically identify changes in
the operating conditions [60, p. 44]. As such anomalies can indicate the presence of faults,
real-time diagnostic approaches can be utilised in order to schedule maintenance actions
on demand. Some techniques even support the identification of future failure risks by
predicting the degradation process, thus helping to determine the most favourable time
to perform maintenance from an economic standpoint. Although this research area has
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attracted many researchers and a large number of scientific contributions exist in the lit-
erature, the associated terminologies are rather inconsistent. There are particularly large
discrepancies in the use of the terms PM and CBM, which are sometimes used inter-
changeably. Therefore, in Section 2.2.1, the various terms and definitions in this context
will be described and distinguished from each other. In addition, the individual compo-
nents that drive these concepts will be presented and the scope of this work is explained
in more detail.

2.1.4 Measures
Several measures are known to fulfil the maintenance objectives, which can be classified
according to their respective tasks. In [49, p. 12] they are divided into: service, repair,
inspection and improvement. The term service includes all actions that are carried out to
delay the degradation process of an asset and to maintain its operational readiness. For
example, this may comprise lubrication, conservation or replacement of machine parts or
components. If service actions are scheduled on time, they can extend the useful life of the
technical equipment and may lower maintenance costs [62, pp. 42-44]. Inspection, on the
other hand, refers to asset assessment with regard to its operational condition [49, p. 5].
The aim is to avoid interruptions of the production process by detecting worn equipment
before it causes a system breakdown [62, p. 48]. If a technical component has failed or
can no longer be operated, repair measures must be carried out to restore the intended
functionality of a failed asset [49, p. 4]. Finally, all measures taken to improve the system
reliability as well as its maintainability can be ascribed to improvement. It should be
noted that such measures are not intended to change the original function of the asset
and may involve, for example, system redesign or the identification and elimination of
critical vulnerabilities [49, p. 6].

As shown in Figure 2.4, the maintenance type often determines which measures are
prioritised to achieve the respective objectives. For example, repair is the key point in
corrective maintenance while service and inspection are neglected. In contrast, the other

Figure 2.4: Maintenance measures related to different maintenance types during the
asset degradation process based on [61, p. 21] and [62, p. 300].
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two types primarily focus on service and inspection with the aim of avoiding system
failures and, consequently, performing repair actions under high time pressure. CBM,
in particular, focuses on inspection [43, p. 18], as it determines the actual condition of
the asset, whereupon maintenance actions can be planned. When real-time data are
automatically analysed for diagnostic purposes, the time required for manual inspections
can be reduced. The reason for this is that the system status can be tracked continuously
[40, p. 31] and faults can be located automatically. This makes it particularly attractive
from an economical point of view, as human and material resources can be planned more
efficiently [39, p. 274].

2.2 Terms and Definitions
Although PM approaches have been a research subject for decades, the related terms
and definitions vary widely in the literature. The following sections therefore outline the
terminology used in this work and distinguish the content from other fields of activity.
First, the term PM is clarified and its components are introduced. The remainder of this
section then explains the difference between diagnosis and prognosis and describes CBM
in more detail.

2.2.1 Predictive Maintenance
Predictive maintenance covers a wide range of meanings and aggregates multiple sub-
disciplines. Surprising as it may seem, it is used inconsistently and repeatedly surfaces
within the literature in connection with varying concepts. There are particularly large
discrepancies in the distinction between PM and CBM. This is mainly because the former
is viewed as a maintenance philosophy that utilises the actual operating condition of a
technical system to optimise its overall productivity [47, p. 4], on the one hand, and as a
maintenance type, as described in Section 2.1.3, on the other. The main components of a
PM concept can generally be divided into two consecutive steps known as fault diagnosis
and prognosis [63, p. 315]. While fault diagnosis aims to provide detailed information
about the current system state, such as the type or magnitude of a identified fault, prog-
nosis is concerned with estimating the time to failure [34, p. 12]. It goes without saying
that there is a dependency between the two technologies. In fact, the accurate predic-
tion of the remaining asset lifetime is only possible through the use of appropriate fault
assessment methods. As outlined in [64, pp. 1-10], this may also be referred to as health
assessment and its outcome shall indicate the current health state of the physical asset as
well as the nature of the monitored fault, including its type or location. This information
is then incorporated into the prognosis step to predict the remaining useful life (RUL),
also known as remaining service life, i.e. the time left before a failure can be recognised
[53]. The core of this concept is to estimate the point in time when a component is most
likely to fail with the aim of replacing it before it causes unplanned production downtimes.

A more detailed distinction between fault diagnosis and prognosis is carried out in
a series of scientific contributions. Accordingly, many authors distinguish between the
terms CBM and prognostic health management (PHM) to designate these two main steps
of the PM information processing chain, such as in [58] or [65]. Similar to the definition
given in the beginning of this section, CBM is considered in this context as the estimation
of the current fault condition. PHM, on the other hand, is known to represent all fault
prognostic and forecasting procedures needed to predict future behaviour including the
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RUL [58, p. 13]. Furthermore, it deals with the scheduling of required maintenance tasks
and, thus, supports the decision making for the maintenance management. Even though
both terms are closely related, they should not be equated. The reason for this is that
PHM depends solely on actual machine data, with the aim of appropriately planning the
required maintenance activities [58, p. 13], while CBM can also be performed based on
human expertise [66, p. 91] and includes, among other things, the actual maintenance ac-
tivities. To avoid any confusion in the following, this dissertation uses the terms CBM and
PHM for their respective tasks, while PM represents the holistic maintenance philosophy.

2.2.2 Condition-Based Maintenance
So far, the term CBM has been introduced several times in varying contexts, more pre-
cisely to denote a maintenance strategy, but also as a maintenance type, as has been dis-
cussed in Section 2.1. Yet, it is more commonly used to express the information-processing
approach to automatically assess the current state of technical equipment, which will be
referred to hereinafter. Vachtsevanos [58, p. 13] states that CBM can be seen as the use of
runtime data to identify a fault condition. To achieve this, several successive steps are to
be taken in the processing of machine data in order to automatically extract fault-related
information. The aim is to generate relevant indications that serve as a decision support
for determining the optimal time to perform maintenance activities.

An immediate consequence of this is that software for evaluating machine information
must focus on data acquisition and processing, which is referred to as condition monitoring
(CM) [34, p. 1]. In general, this is understood as the measurement of characteristics and
parameters [37, p. 41] that allow the actual physical condition of the machine to be
assessed. Determining the type of signals to monitor depends on the application and can
be viewed from two perspectives: process-related measurements, such as temperature,
contamination or tribology [67, introduction], and signal types characterised by high-
frequency components, such as vibration or ultrasonic measurements [58, p. 96]. Jardine
et al. [53] provide an overview of how machinery data used for diagnostic and prognostic
purposes can be classified, which is shown in Table 2.1.

However, extracting useful information from raw measurement data to infer a fault
condition requires further steps in terms of data processing and analysis. In an effort
to structure these subtasks of a CBM system, many authors have proposed different ap-

Table 2.1: Categories of machinery data according to [53] with examples.

Category Description Examples

Value type Single value logged at a spe-
cific point in time represent-
ing, for example, one physical
quantity

Temperature, pressure, flow
rates, humidity

Waveform type Normally a time series ac-
quired at high frequency data
sampling intervals

Vibration, acoustic, ultra-
sonic

Multidimensional type Data presented in more than
one dimension, which are
most commonly images

Thermography images, X-ray
images
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Figure 2.5: Data processing layers within CBM based on [64], [58], [68].

proaches, of which the open system architecture for condition-based maintenance (OSA-
CBM) [69] is one of the most widely used. The model developed by the Machinery Infor-
mation Management Open Systems Alliance aims at providing a detailed communication
framework for a wide range of applications by defining seven layers of data exchange
conventions that act interoperably and can be exchanged individually [70, p. 52]. An-
other, but related, view is given within the standard DIN ISO 13374 [64], where the
provided framework covers 6 data processing layers starting from the sensory acquisition
of machinery data to the support in the planning of upcoming maintenance tasks.

Although these layers are mainly derived from the OSA-CBM model, both guidelines
differ slightly in their definitions as well as their purpose. While the DIN ISO 13374
defines a stepwise approach to develop CM based diagnostic systems, the OSA-CBM
additionally provides the tools for their implementation [71]. Another framework covering
the phases of a CBM system is presented by Vachtsevanos [58, pp. 13-16], who, starting
from the collection of relevant data, describes five steps in the information processing
chain in accordance with the above layers. In particular, the author refers to the steps
pre-processing, feature extraction, fault classification, prediction of fault evolution and the
scheduling of required maintenance, whereas the latter two are considered part of of PHM
as outlined in the following section.

In [17, pp. 15-18], both the layers defined within [64] and [58, pp. 13-16] are further
particularised to a detailed model representing the entire information process chain of
a CBM system. As shown in Figure 2.5, the model covers all steps to be taken to
automatically derive the system’s health condition from machinery data represented by
its sensor readings. It should be noted that this framework serves as the basis for the
model presented in this dissertation and is therefore described in more detail below. In
addition, further sub-processes of the information processing chain are introduced and
the various terms that arise in this context are clarified.
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Preprocessing

The aim of signal preprocessing is to extract useful information from the raw mea-
surement by use of both hardware and software components [58, p. 97]. This must be
carried out because sensor acquired data is subject to interference, such as measurement
noise, and can thus lead to inaccurate diagnostic information [72]. Thus, the most im-
portant task of this step is to improve the signal-to-noise ratio (SNR) [55, p. 903], which
includes several tools, such as data validation, data compression, amplification or filtering
[58, pp. 97-103]. Accordingly, data validation is used to verify the correctness of the data
obtained and, for example, to detect inconsistencies in the measurement or errors during
the data transmission. Amplification, on the other hand, deals with physical quantities
whose values can only be monitored at weak signal. The aim is thus to increase the sig-
nal’s amplitude so that the information it contains can be further facilitated throughout
the information processing chain. When developing CBM models for various applications,
one may encounter the problem that the amount of data is difficult to handle due to the
number of sensors installed or the required data sampling rate, the latter being especially
critical when dealing with vibration data, where large amounts of data must often be
processed [73, p. 239]. In such scenarios, data compression and decomposition techniques
can be applied to reduce the amount of data obtained from the system. Another impor-
tant tool for improving SNR is filtering, as it aims at de-noising the signal to improve
the subsequent data analysis. A typical example constitutes a low-pass filter, since it al-
lows lower band frequencies to pass through the evaluation unit, while higher frequencies,
which often represent measurement noise, are discarded [58, p. 98], [17, p. 21].

Another data filtering concept that is especially important in context of this disser-
tation is steady-state detection, which is used to filter out data stemming from transient
system states such as, for example, during system start-up or shut-down periods [74].
As such states indicate high operating dynamics within the monitored system, they may
not adequately represent its actual fault condition leading to lower diagnostic accuracy
in the following steps. Although few researchers consider the use of transient data in the
system health evaluation phase [75], [76], most contributions focus on steady-state data
in the development of chiller CBM systems [6]. As will be further described in Section
3.2, exploiting these states for chiller fault diagnostics and prognostics through data anal-
ysis techniques is appropriate in many cases, as such systems operate near steady-state
conditions for most of the time [6]. Therefore, transient data should be discarded for the
data-based health assessment, as this avoids the misinterpretation of the real operating
state. Preprocessing may also comprise the estimation of variables that cannot directly
be measured. However, one may be able to measure related quantities and then draw
conclusions about the quantity of interest [58, p. 97].

Feature Extraction

Feature extraction, or sometimes called feature generation [68, pp. 1-2], is applied
to infer more relevant information from the available data [55, p. 906] with the aim of
accurately assessing a fault condition if present. Hereby, the term feature is known to be
an attribute or variable that describes certain aspects of any data object [68, pp. 1-2]. The
main goal of this phase is to improve the accuracy of the prediction step [77] by deriving
additional information from the dataset. Especially with regard to CBM, these features
should be highly sensitive to faults [6] in order to ensure a reliable assessment of the system
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Table 2.2: Overview of the different feature types with examples.

Feature Type Examples

Engineering knowledge features Coefficient of performance, heat flow, pressure differ-
ence, enthalpy, polytropic efficiency

Time Series features Lagged features, derivatives
Statistical features Average, standard deviation, mode, median, range

state. As outlined in [55, p. 906], three domains can be defined in which features may
be extracted, namely time domain, frequency domain and time-frequency domain. While
the former focusses on processing the data sampled at certain points in time, such as
temperature measurements [58, p. 97], the latter two are more about analysing vibration
data that require the transformation of data in a new domain by applying for instance
fast Fourier transformation [55, p. 906]. As will be described in Section 4.1, the work at
hand exploits process data in the time-domain, which is why the data transformation into
the frequency domain or the time-frequency is beyond the scope of this dissertation.

In [78, pp. 18-20], the extraction of features within the time domain and with respect to
fault assessment is divided into the three categories: engineering knowledge features, time
series features and statistical features. Accordingly, deriving features based on engineering
knowledge involve specific domain expertise and therefore require an overall understanding
of the field of application. This takes on even more importance in terms of chiller CBM, as
many thermodynamic quantities, such as enthalpy or entropy, cannot be measured by use
of standard sensors but can be estimated through, for example, arithmetic operations or
refrigerant property tables [6]. As listed in Table 2.2, time series features take into account
the previous observations from which additional information can be obtained. This can be
the time derivative of a certain signal or simply the difference of a measurement between
two or more time intervals, which eventually provide additional information about the
state of a technical asset. Lastly, statistical features can be derived by analysing the
given dataset, such as determining the feature average in a predefined time period.

Feature Transformation

Feature transformation is often associated with feature extraction and sometimes even
used as a synonym for it, as both approaches can refer to the construction of additional
features [79, p. 189] and are therefore often performed in a single step throughout the
information processing chain. Nonetheless, they should not be equated. This is mainly
due to the fact that feature extraction aims at generating new features from the given
data pattern, which may also include domain-specific computations, while feature trans-
formation is more about defining some sort of mathematical mapping of the dataset that
benefits the prediction process. In other words, features generated throughout the feature
extraction phase are not the result of feature transformations [68, p. 3]. There are several
ways to find a mathematical mapping that leads to a new data representation of which
principal component analysis (PCA) or linear discriminant analysis (LDA) belong to best
known ones [80, p. 153]. Section 3.1.3, provides an overview about the mapping methods
used in dissertation and explains their working principles in more detail.

Another important feature transformation procedure is data scaling, which is also often
attributed to the feature transformation step [80, p. 151]. This is especially important for
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data-driven approaches in order to prevent particular variables from dominating the fault
assessment approach [81, p. 14]. As will be pointed out in Section 3.4, multiple scaling
methods are described in the literature, of which normalisation and standardisation are
most commonly used [82, p. 19]. Even though scaling is usually understood to be part
of the preprocessing layer [17, p. 21], in this work it is performed within the feature
transformation layer for simplicity reasons. This is mainly due to the fact that some
features rely on substance-specific parameters that depend on one or more original values
of the sensory recorded physical quantities for their calculation.

Feature Selection

After generating further relevant information from the original variables, feature se-
lection methods should be applied to find a smaller feature subset for the final prediction
step [78, p. 20]. In fact, the primary goal of this step can be expressed as minimising
feature redundancy on the one hand, and maximising feature relevance on the other [83].
This can have a positive effect on the processing of larger amounts of data, as it reduces
the amount of exploited features and, thus, leads to lower computing times [78, p. 20].
Even more, it may enable the use of certain algorithms [68, p. 3] in the subsequent phases,
which would otherwise be technically impossible or only possible to a limited extent.

Especially with regard to CM, this can also mitigate the cost of implementing a CBM
system by reducing the number of necessary sensors [74]. Another convenient aspect
on feature selection is that it could also improve the predictive quality of the applied
algorithms [68, p. 3], as it allows to cut down the available data to the most essential
components. This addresses a problem that often arises in the context of ML, namely
the curse of dimensionality [68, p. 118], [17, p. 25], which describes a phenomenon in
which the generalisation ability of the predictor is reduced by high data dimensionality
in combination with small amounts of available observations [84]. The aim of this step
is therefore to discard features with low information density, e.g. by discarding features
with zero variance [78, p. 20] or features that are highly correlated [85]. Several methods
exist to accomplish this: on the one hand, important features may be selected through
expert and domain knowledge, on the other hand, this can be done through the use
of appropriate metrics placing data variance and entropy [17, p. 28] at the center of
consideration. Another common approach is to use sequential search methods [86, p. 21],
which aim at evaluating the information density of the available feature representation by
monitoring the change in the algorithm’s predictive performance as features are added to
or removed from the dataset.

Particularly with view to chiller CBM, many researchers stated that by deploying
certain characteristic quantities for data-driven health assessment purposes, the applied
algorithms can be more effective [6]. Thus, various approaches have been pursued in this
area comprising the selection of features through search methods based on, for example,
evolutionary algorithms [85], domain knowledge [6] or by identifying fault sensitive sub-
spaces after performing PCA on the available data [87]. Further work on this is presented
and summarised in Section 2.5.

Fault Detection

To automatically retrieve the actual system condition, fault classification must take
place, to which in the following will be referred to as fault detection and diagnosis (FDD).
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It should be noted that the term FDD is often used as a synonym for all phases of the
CBM model to estimate the current health state of the system, as in [74] or [85]. In this
work, however, this rather comprises the three steps to infer a fault condition, as [58,
p. 176], [53]: (1) fault detection, (2) fault isolation and (3) fault identification.

In the first layer, the deviations from the normal operational state of a system must
be identified. Thus, the aim of fault detection is to decide whether a fault is present
or not [88, p. 14] and to draw attention to any abnormal operating conditions [59]. In
most cases, it is a binary statement that represents the presence of anomalies and gives
no indication of causes or specific faulty components. To this end, several approaches are
known that enable the detection of faults at an early stage of development. A widely
applied approach is to monitor the difference between a reference model and the actual
process. By selecting a specific subset of features that indicate the presence of the faults
to be monitored, one can define some rules that support the automatic differentiation
between normal and abnormal operating condition [53]. Other considerations relate to
the use of statistical, or machine learning (ML), models that rely on historical machine
data for their development [58, p. 9]. Further explanations regarding the classification
and working principles of fault detection approaches are provided in Section 2.3.

Fault Isolation

In the second step, fault isolation is performed to identify the faulty component or
subsystem [53]. While some authors consider this step as a procedure for narrowing
down the number of components affected by a particular fault, others also interpret the
determination of the respective fault type as its constituent part [17, p. 26], which is
also considered in this dissertation. Therefore, the main task of this layer is to perform
an accurate classification of the corresponding fault after abnormal behaviour could be
detected, for which a wide range of approaches exist. For example, decision tables that
relate predetermined characteristic features to a certain fault [6], or ML models that
capture specific fault patterns can be exploited for fault classification tasks [74]. Yet, this
process relies on the early detection of abnormal system behaviour and is therefore often
directly combined with the former step.

A major challenge in the development of such systems is that a wide variety of oper-
ating conditions can prevail within the system to be monitored, which can lead to wrong
system diagnostics if the underlying model design does not capture these dynamics or ex-
ternal influences. The goal in developing such systems is to provide a scheme that is both
robust to uncertainties and sensitive to faults [89, p. 5]. Moreover, it should accurately
identify impending or incipient faults by simultaneously providing a low false-alarm rate
[58, p. 176].

Fault Identification

In the final FDD step, fault identification is conducted in order to determine the
extent and the nature of the identified fault [58, p. 177]. The former is also known
as severity estimation and is particularly important for the subsequent PHM system,
as it forms the basis for the prediction of the future degradation process [17, p. 26].
According to [64], the outcome of the health assessment phase, and therefore of fault
identification layer, should be the actual system condition described by a health index
ranging from 0 to 10, whereby 0 represents a system failure and 10 a fault-free state that
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might be present after commissioning or directly after maintenance has been performed.
Still, estimating how far a fault has progressed can be a difficult task, as it is subject
to a number of uncertainties. In some reports, however, approaches can be found which
apply, for instance, statistical property and residual signals [90] or distance metrics after
applying a classification algorithm on the provided data [91] for severity level estimation.
This is particularly important for the subsequent PHM system, as it forms the basis for
the prediction of the future degradation process [17, p. 26].

2.2.3 Prognostic Health Management
After determining the current system state through the information processing within the
layers described in the previous section, a PHM system is used to schedule the best possible
maintenance time. As illustrated in Figure 2.5, this is considered the fault prognosis
scheme and consists of two consecutive steps: predict fault evolution and schedule required
maintenance [58, p. 15].

Predict Fault Evolution

The first layer within the PHM process deals with the prediction of the future system
degradation process by focusing on the estimation of the RUL [58, p. 13]. To this end, it
uses the information provided by the FDD block, which includes both the type of fault
and its severity, using the health index as an indicator. In the event that a fault is present
in the system under consideration and its severity can be reliably estimated, the task of
this step is to determine the time at which the identified fault causes a failure, i.e the RUL
[64]. Ideally, the output of this layer should provide a reliable estimate of when the wear
reserve of the monitored device will be completely depleted so that it can be replaced at
the most economically advantageous time [50, preface]. However, since this might not be
practically feasible due to the many uncertainties along the fault assessment process, this
layer should also provide uncertainty bounds indicating the confidence in its prediction
[58, pp. 285-314].

Schedule Required Maintenance

The final layer supports the decision making based on the analysed system state by
providing actionable information in terms of performing maintenance actions or changing
the operational condition of the considered system [64, p. 3]. Thereby, the scheduling
of the required maintenance tasks depends on the overall maintenance strategy of an
organisation and may thus, vary according to its needs.

Although PHM is indeed important for planning cost-effective maintenance, the present
work focuses primarily on assessing a chiller’s current fault condition while following all
phases of the CBM scheme. The reasons for this are twofold: firstly, accurate fault diag-
nosis is a prerequisite for the integration of a PHM system and therefore special attention
must be paid to the associated phases. Secondly, as will be outlined in more detail in
Section 2.4.3, there are particularly high challenges for deriving chiller CBM models due
to vastly varying system designs and operating conditions, which complicates their de-
velopment. Therefore, a core aspect of this work is a novel approach towards a reliable
model that overcomes these challenges while offering significant cost benefits for use in
industrial refrigeration systems.
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2.3 Approaches
The development of CBM systems has been the subject of research for decades, as a result
of which many approaches exist today in various engineering disciplines. As a consequence,
the models underlying these systems are subject to different theoretical perspectives and
use a variety of techniques to fulfil the respective domain-specific task. To this end,
this section provides an abstract overview on the fault evaluation task and introduces
the concepts exiting in the literature. The remainder of this section then outlines the
categories into which these approaches can be divided.

2.3.1 Overview
The aim of a CBM system is the accurate fault assessment of the monitored asset by
continuously observing its system parameters. Following the data processing sequence
presented in Section 2.2.2, the respective model analyses the current system state rep-
resented by both the set-point variables and the sensor readings. In [88, p. 13] this is
depicted as follows (see Figure 2.6): Let u be the set of input variables and x̀ the mea-
sured output of the monitored system affected by disturbances d and some fault fti (later
referred to as a fault type index). At a specific point in time, the model evaluates the
system health state by observing u and x̀ and estimates the fault type fti as well as its
severity level represented by a health index hi. As will become clearer at a later stage of
this work, u must not necessarily be an input to the CBM model.

Even though this well describes the primary goal of a CBM model, it does not illustrate
the methods used to extract fault-related information from the system. As it has been
mentioned in Section 2.2.2, the acquired data are processed through multiple layers to
assess the current fault condition, with each layer serving a different task. Throughout the
years, general research has predominately been focussed on FDD, as the most critical part
is to detect and isolate faults at an early stage of development [58, p. 3]. This has led to
a large number of scientific contributions in this field considering chillers as well as other
technical equipment, which can generally be classified into model-based and data-based,
or sometimes also called model-free, approaches [92].

According to Zhang et al. [92], each of these schemes can further be classified into
quantitative and qualitative approaches leading to three more detailed categories. As

Figure 2.6: General approach towards CBM showing a system affected by disturbances
and a fault as adapted from [88, p. 13].
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Figure 2.7: Overview FDD approaches divided into model-based and data-based follow-
ing the suggestions of [92] and [93].

shown in Figure 2.7, quantitative model-based approaches are also known as analytical
methods and rely on an accurate dynamical model [58, p. 178] to perform real-time FDD
[92]. Knowledge-based methods, in turn, can be assigned to both model-based and data-
based approaches and are qualitative in nature in both cases. These methods usually rely
on domain-specific knowledge in the form of engineering experience or historical failure
cases and often represent an alternative to analytical methods, especially when a detailed
process model is not available [93]. The third type of method includes quantitative data-
based approaches, which are referred to as data-driven methods [94]. Approaches falling
in this category often deploy methods from the field of ML [95] and can thus benefit
from the availability of large amounts of machine data [6] to capture the fault intrinsic
relationship. Nonetheless, some proposed FDD approaches do not fall into just one of
these categories but rather combine them, which are known as hybrid methods [96].

2.3.2 Analytical
The underlying concept of analytical FDD methods is that these approaches aim at replac-
ing hardware redundancy with a software-based process model that adequately represents
dynamic process behaviour [97, p. 6]. During operation, this model is used to generate
residuals between the artificial output and the actual system output Y that may indicate
the presence of a fault [58, p. 179]. Throughout many scientific contributions, the model
simulating the real system condition based on some input information U is often desig-
nated as the reference model [24], [97]–[101]. As it aims to predict normal (fault-free)
system behaviour, it allows the monitoring of consistencies with the observed process.
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Figure 2.8: Analytical approach towards FDD as derived from [94] and [17, p. 27].

If a fault is present, deviations between the reference model and the process are to be
expected on a larger scale, allowing faults to be detected [102]. Several methods are
known for deriving such a model, including state estimation, parameter estimation, par-
ity space evaluation, or a combination of these [92]. As shown in Figure 2.8, the residuals
of some predefined features are then evaluated within the FDD block in order to deduce
the current fault condition, which can i.a. be archived through the use of some predefined
residual thresholds.

In general, analytical methods require the construction of a mathematical model, usu-
ally created through the use of first principles, and therefore often incorporate a physical
understanding of the system [93], [103, pp. 6-10]. However, defining an accurate model
being capable of capturing all dynamic relationships can be a very challenging, if not
infeasible, task, especially when the dependencies of the monitored process are highly
non-linear [89]. Thus, these types of methods may not be an adequate choice for systems
with high complexity [94] due to the increased effort in the development phase. If, on
the other hand, analytical methods are applicable, they are often superior to the meth-
ods assigned to the other two categories and should therefore be preferred if the physical
dependencies can be suitably expressed in mathematical form [103, pp. 6-10]. Despite
the reference models aiming to simulate the physical system behaviour, some authors also
tried to apply both linear [24] or non-linear [99] regression models such as, for example,
support vector regression [104]. This leads to another categorisation approach of reference
models that, according to [105], can be divided into black-box (regression) and white-box
(first principles) models.

2.3.3 Knowledge-Based
It is understood that analytical methods have their limitations, as they rely on an accu-
rate dynamic and sometimes highly non-linear model. One way to cope with this problem
is to apply knowledge-based methods that define a set of rules [93] to infer fault informa-
tion from system parameters. However, these methods are mostly used for fault isolation
rather then for fault detection as, for example, in [6], [99] or [106]. Thus, many authors
apply either analytical or data-driven methods for fault detection tasks, and isolate their
root cause through some predefined rules, which can generally be assigned to both qual-
itative model-based and data-driven approaches [93], [103, pp. 6-10], as shown in Figure
2.7. While qualitative model-based methods comprise i.a. abstraction hierarchy [107]
or causal methods, such as fault trees [93], qualitative data-based methods are based on
the evaluation of real-time machinery data [108]. Today, most of the knowledge-based
FDD methods fall within the latter category and are usually based on rule-based expert
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systems [109], such as decision tables [6] or fuzzy expert systems [110]. In these cases,
one attempts to implement the operator’s or engineer’s domain-specific knowledge into
decision-making software, including information about input and output variables, abnor-
mality conditions, fault symptoms or operational constraints [108]. These methods can
be especially applied if an analytical model is not available or difficult to obtain and if
the number of input and output variables is comparatively small [103, pp. 6-10]. Despite
that, with the rapid growth in computational power and the increasing amount of FDD
related software packages being available, these methods become more and more suitable
for complex problems [109]. Although they can greatly benefit from such human level
knowledge and often indicate their robustness for fault isolation tasks [96], they may suf-
fer from the lack of detailed fault information. Because the deduced rules are based on
historic failure cases as well as experience, it may be difficult to infer new fault types that
are beyond the scope of the available expert knowledge [109].

2.3.4 Data-Driven
Due to the rapid development in the field of ML, data-driven models have particularly
gained the attention of researchers in recent years. In essence, these methods exploit
machinery life-cycle data [103, pp. 6-10] by capturing the intrinsic and fault related re-
lationships underlying the data. This is especially beneficial for FDD scenarios in which
the monitored technical system has non-linear properties [92] or when one has to deal
with high dimensional datasets [95]. As these methods neither rely on a reference model
such as, for example, based on first principles, nor require expert knowledge, they are
best suited for large and complex system architectures and can therefore save time and
costs in their development [103, pp. 6-10].

As shown in Figure 2.9, the core of a data-driven FDD method forms the trained fault
model that is developed by use of historic system data. This model may consist of one or
multiple classifiers that, during the development phase, aim to find well describing decision
boundaries between various fault patterns [111], e.g. for each fault class fti respectively,
which is hereinafter referred to as the training phase. In this regard, many approaches

Figure 2.9: Data-driven approach towards FDD [17, p. 28], [58, p. 179].
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exist in the literature that greatly vary throughout the various domains and applications
and can generally be divided into supervised, unsupervised and semi-supervised ML [112,
pp. 10-12]. While supervised ML aims to exploit the respective class labels by inducing
prior knowledge about the target output [53] during the training phase [58, p. 108], unsu-
pervised machine learning allows the use of data patterns that are not directly assigned
to a specific fault [94].

Following these definition, it appears that unsupervised learning may be advantageous
compared to supervised machine learning in terms of FDD. The reason for this is that
these approaches can omit time-consuming data labelling, e.g. assigning each observation
in the dataset to a specific class representing a system condition, such as fault-free, faulty
or the respective fault type [95]. This is, however, somewhat misleading because unsuper-
vised machine learning models are also often limited in their application. For example,
they are more likely to find hidden similarities across the data, such as in clustering [95],
or to reduce the data dimensionality [91]. As a consequence, they are often less suitable
for fault isolation tasks, as automatically assigning an unknown observation to a specific
fault type requires associated labels to be exploited in the model training phase [91]. On
the other hand, unsupervised machine learning may be applied in the feature engineering
block or in the fault detection phase of the CBM scheme. The latter applies to the case
where normal samples can be assumed to be more frequent than faulty ones, which allows
their use for anomaly detection tasks [112, pp. 11].

In some cases, however, one encounters the problem that only a limited number of
the available observations are labelled, while the rest of the dataset remains unlabelled.
In this way, semi-supervised machine learning can be applied to exploit the unlabelled
data patterns within the minority labelled training dataset to enrich the overall infor-
mation content [113]. This can also be beneficial since supervised machine learning as-
sumes all data to be correctly classified before training the respective classifier, which
cannot always be guaranteed due to uncertainties during the labelling process. Therefore,
semi-supervised approaches can be used to improve the overall classification accuracy by
embedding unlabelled data in the training process [96]. Such models are often superior
to supervised machine learning models, as it is usually difficult to obtain training data
covering all facets of anomalous behaviour that can possibly occur [112, p. 11]. Another
but strongly related concept is one-class classification (OCC) [35], where only one class
is accurately labelled. One well known algorithm used for fault detection tasks is, for
example, the one-class support vector machine (OC-SVM) [114], as applied in [91] or [85],
where only a small amount of normal labelled samples and a large amount of unlabelled
data are available. Note that this algorithm can be used in both a semi-supervised as well
as an unsupervised setting. While the former is primarily used for novelty detection, in
which only some labels of the target class are available, the latter applies to find outliers
with no explicit labels being used in the training phase [115, pp. 181-188]. As a con-
sequence, different types of algorithms exist, which are subject to varying concepts and
mathematical formulations. Table 2.3 provides examples on some algorithms assigned to
their respective category in the context of FDD. However, even though most algorithms
may fall in one of these three categories, there are also other ML approaches, such as
transfer learning, which aims to circumvent expensive and time consuming data labelling
by transferring knowledge from one learning task or domain to another [116]. As will be
outlined in Section 3.1, this methodology is also applied throughout this dissertation.

Although the use of data-driven FDD models is beneficial in many respects, there are
also some shortcomings that should be addressed. As mentioned by many authors [6],
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Table 2.3: Examples of algorithms used for data-driven FDD.

ML Type Algorithm Source

Supervised
Machine Learning

Artificial Neural Network Han et al. [117]
Support Vector Machine Han et al. [74]
Nearest Neighbour Jardine et al. [53]
Random Forest Shrivastava et al. [118]

Unsupervised
Machine Learning

Association Rules Mining Yairi et al. [119]
K-Means Clustering Jung et al. [96]
One-Class Support Vector Machine Harrou et al. [120]

Semi-supervised
Machine Learning

PCA T2 Statistic Beghi et al. [6]
Generative Adversarial Network Yan et al. [30]
One-Class Support Vector Machine Beghi et al. [91]

[53], [101], [103], [112], the lack of available labelled data often inhibits the successful
application of data-driven methods in this area. In addition, some models may not be
robust to rapidly changing system operating conditions or unknown fault situations [6],
resulting in lower health assessment accuracy. Nevertheless, with increasing amounts of
data [14] being available from various domains, data-driven methods have gained rising
interest in recent years due to their ability to capture complex relationships in the data
provided [109] and because they can be developed regardless of a physical understanding
of the respective system [121].

2.3.5 Hybrid
As the three aforementioned methods have specific strengths and flaws, some authors
have also tried to combine these in order to archive better classification performance [95].
While hybrid approaches allow to take advantage of both model-based and data-based
approaches, their development is often motivated by the lack of fault specific training
data, which complicates the exclusive use of data-driven methods [29]. The most frequent
case of hybrid methods in the context of this work is fault detection, where analytical and
a data-driven models are combined in such a way that the former are used to generate
fault-specific residuals, while the latter provide alarm-triggering thresholds, as described
in [96]. Other authors, in turn, applied analytical methods, such as filtering techniques
[85], to stationarise the time series data from a certain system and to improve the SNR.
Then, a classifier is trained using the new data representation to identify the respective
fault related decision boundary. Although combining multiple methods for FDD brings
new opportunities, there exist also some challenges in their development. One problem is
that aggregating and fusing heterogeneous information stemming from different models
may be a difficult [122] and time-consuming task. Furthermore, when combining several
methods, one can benefit from their advantages, but also inherit their disadvantages.
If, for example, an analytical model should be utilised in a hybrid fashion, it remains
questionable whether it can be obtained at low development costs [123].
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2.4 Application
The following section provides an overview of the system that is the scope of this disserta-
tion and clarifies the type of related faults that can possibly occur. For this purpose, the
vapour compression refrigeration cycle and its basic thermodynamic principles are first
introduced. Secondly, the associated fault categories are presented with corresponding
examples and distinguished from each other. It is also clarified what types of faults are
particulary considered throughout this work. The final part then deals with the challenges
arising from the development of suitable CBM systems for chillers.

2.4.1 Principles
Among the existing refrigeration technologies, vapour compression refrigeration is one of
the most commonly [125, p. 61] used in both commercial as well as industrial applications.
These systems exploit refrigerants as working fluid with the aim of removing heat from
a chilled system [124, p. 272]. To this end, such systems take advantage of the latent
heat released or absorbed during a phase transformation [126, p. 32], such as in boiling or
condensation. According to [124, p. 272] and [125, pp. 61-75], the idealised refrigeration
cycle is described as follows: As shown in Figure 2.10, the compressor draws gaseous
refrigerant from some suction pressure pre with an associated temperature Tre and com-
presses it, which requires work wt, in the state transition 1-2 leading to a higher pressure
prc and temperature Trc.

In the ideal case, this state transition takes place isentropically, i.e. reversibly and
adiabatically, and thus under constant entropy. This, however, is not necessarily true
for real world processes, since irreversibilities occur during the state transitions along the
refrigeration cycle causing a rise in the entropy. In the following step, heat is transferred
from the refrigerant as it passes a heat exchanger, hereinafter referred to as the con-
denser, while the vapour is liquefied. The heat QC to be dissipated from the refrigerant
is transferred to another medium, such as water [125, p. 62]. In the state transition 3-4,
the working fluid is expanded while the specific enthalpy he is maintained. Finally, the
refrigerant evaporates within the evaporator while absorbing heat QE from the chilled
system.

In HVAC&R terminology, the system providing the cooling load (chilled water or air)
is called the chiller and primarily consists of the aforementioned subsystems compressor,
evaporator, condenser and expansion valve [127, p. 10]. Nonetheless, further parts are
needed to ensure the functionality of the chiller including oil and refrigerant separators,
water pumps or oil recirculation systems. Although the chiller itself is also a subsystem of
a large-scale HVAC&R system [85], which may consists of further heat-exchangers, pipes,
air handling units or rooftop units [128], it is considered the most critical part, as it is
responsible a significant amount of the overall energy consumption [129]. Thus the scope
of this dissertation is placed on chiller systems with special view to industrial applications.
Besides, the focus of the work at hand is on the vapour compression technology, while
other types, such as absorption chillers, are not specifically addressed. For more details
regarding the design and operation of refrigeration systems, the reader is referred to [124],
[125], [127].
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Figure 2.10: Refrigeration cycle as derived from [124, p. 272] showing the scheme of a
T-S (temperature-entropy) diagram (upper) and the scheme of a p-h (Mollier) diagram
(lower).

2.4.2 Fault Classification and Delimitation
As with all technical equipment, one or more faults may occur that affect the overall
functionality of the respective system. These can generally be divided into hard and
soft faults, whereas hard faults usually occur abruptly and may cause the system to stop
functioning [130] and can, thus, also be referred to as hard failures (see Section 2.2.1
for a detailed distinction between faults and failures). On the other hand, soft faults
usually lead to a progressive degradation of system performance [131], while at the same
time, however, continued system operation is possible. In the context of the present
work, a hard fault is, for example, a compressor failure, while a soft fault can be caused
by dirt accumulation in heat exchangers [130] or refrigerant losses [131]. According to
[130], hard faults are typically easy to detect and to isolate because their occurrence
is obvious and they cause an immediate stop of system operation. On the contrary, the
reliable detection and isolation of soft faults is fraught with difficulty, as the affected chiller
system may appear fully functional to the operator [23] while its overall performance is
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already degraded. Despite these two categories, many authors also distinguish between
system-level and component-level chiller faults [23], [117], [130], [132], whereas the former
fault types are not limited to a specific location [133, p. 11] but rather affect the holistic
system. Wang et al. [23] further divide system-level faults into sensor faults, where
there may be erroneous sensor readings or measurement bias, and process-related system
faults. In contrast, component-level faults affect only a certain component or subsystem
including, for example, mechanical or electrical units [133, p. 11] from which other effects
on the system may originate [132].

In a study conducted by Comstock et al. [133], the authors identified the most critical
faults occurring in chiller systems, of both hard and soft type, by including five chiller
manufacturers and a total number of 508 service reports in their study. The investigated
faults and failures were ranked according to their frequency of occurrence as well as their
cost impact. From the faults investigated during their survey, the authors concluded that
not all of them are critical in the development of CBM systems. This is mainly due to
the fact that many faults can be detected with little effort and simple equipment. In
contrast, soft faults related to system degradation processes are not easy to detect and
consequently special attention must be paid to these types. The survey concluded that
the following faults are the most critical due to their difficult detection characteristics,
some of which are also considered in this dissertation:

• Reduced condenser water flow • Reduced evaporator water flow
• Refrigerant leak • Defective expansion valve
• Excess oil in the system • Condenser fouling
• Non-condensables in the refrigerant

Although some of these faults did not occur frequently during the data collection phase
of the study, they accounted for about 42 % of the overall performed services and resulted
in 26 % of the total repair costs. It should be noted that in addition to repair-related
costs, there may be additional costs due to the reduction in the coefficient of performance
ε, resulting in higher overall energy consumption. Consequently, their early detection as
well as their root cause identification can be of high value, which increasingly emphasises
the use of sophisticated CBM systems. As will be described in more detail in Section
2.5, accurate assessment of such faults can be achieved by analysing the thermodynamic
conditions of the respective chiller [133, p. 25] as represented by its sensor readings.

2.4.3 Problem Description
A major challenge in the development of chiller CBM models, or FDD in particular,
constitutes the high system complexity as well as the multitude of different system ar-
chitectures and operation conditions, as this complicates the nature of faults [102]. In
particular, chillers utilised for industrial purposes are often custom-built [26, p. 464], while
they are developed for specific application requirements. The energy- and cost-efficient
design of the system is primarily based on the actual application and determines both its
structure and its operating conditions. This results in greatly varying system architec-
tures being applied for various cooling tasks. One examples is the choice of working fluid.
While older systems often utilise chlorofluorocarbon or hydrochlorofluorocarbon-based re-
frigerants, which are known to contribute to global warming or ozone layer destruction
when released into the environment [127, p. 9], newer systems are mostly based on envi-
ronmentally friendly refrigerants, such as ammonia (R-717) [125, p. 65-69]. Other factors
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include the selection and design of individual components, such as heat exchangers or
the compressors used, as well as the addition of further modules, such as components for
storing thermal energy, the introduction of multi-stage refrigeration cycles [125, p. 85],
the required cooling load or the ambient conditions.

This suggests a general problem arising from the highly differing systems and appli-
cations in the development of chiller CBM models, as they are usually developed for a
dedicated system only [29]. On the other hand, deriving a model that generalises well to
a wide range of chiller operating characteristics and architectures is not a trivial task, due
to the high technological complexity involved [29], [132], [134]. This especially empha-
sises the motivation of this work for mainly two reasons: firstly, to develop a model with
reliable fault assessment capabilities, and secondly, to propose a cost effective solution by
avoiding the CBM model development from scratch for each system.

2.5 Related Works
This section provides an overview of the state-of-the-art CBM models and highlights
the latest research work carried out in this field. Existing models used for chiller fault
assessment are reviewed and their results are compared, whereby their transferability to
heterogeneous systems is evaluated. Finally, the presented scientific contributions are
summarised and the open research gap is discussed in detail.

2.5.1 Models
CBM, and more specifically FDD, has been subject of research for years and many scien-
tific contributions exist throughout the literature with application across many industrial
sectors. Especially chiller CBM has been extensively studied as it has been shown to
offer great opportunities for energy and cost savings [6], [87], [135]. To this end, the topic
related models are presented and assigned to their respective working principle in the fol-
lowing, which has been introduced in Section 2.3.1. It should be noted that the focus of
the following section is on contributions concerning FDD published within the last decade.
In general, deciding whether a model is to be assigned to a particular category tends to
be fuzzy because authors often mix several FDD approaches in their work. Consequently,
the following models are categorised based on their novelty detection principle when both
fault detection and fault isolation are addressed in the respective paper.

Analytical

First attempts to integrate chiller FDD strategies have led to the development of
white-box reference models aiming to find a mathematical formulation to describe the
thermodynamic and fault related dependencies, as introduced in Section 2.3. Some recent
work on this is presented in [101], where a simplified physical model is proposed by
exploiting first principles and the computation of certain performance indicators, whereby
the alarm triggering residual threshold was manually tuned.

However, more recent work primarily considers black-box reference models, of which
both linear and non-linear approaches were studied. Xiao et al. [100] deployed the
multiple linear regression (MLR) model proposed in [133] in this context while an adaptive
estimator served for determining the alarm triggering residual threshold. An MLR based
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reference model was also introduced in [24] and compared with a simple linear regression
and a decoupling based FDD approach, whereby the latter was found to yield the highest
fault detection performance. Another approach is presented by Beghi el al. [102], where
various models for statistical analysis of time series data (ARMAX, ARX, etc.) were
empirically evaluated and applied for predicting the values of some preselected features.

Other authors, in turn, studied the application of non-linear regression models. Zhao et
al. [98], combined support vector regression with exponentially weighted moving average
control charts. Similarly, Tran et al. [135] concluded that by replacing the support
vector regression model with a radial basis function (RBF) neural network, the overall
classification ability can be improved, which was later confirmed within an additional
comparison study [136]. Shortly thereafter, the authors proposed a least squared support
vector regression model and applied an evolutionary optimisation algorithm for tuning
the hyperparameters [99], a term whose meaning will be clarified later.

Knowledge-Based

Although many analytical fault detection models differ greatly in terms of their respec-
tive working principle, their approach towards fault isolation appears quite similar because
most contributions employ decision tables, which belong to the group of knowledge-based
methods. Other works consider the application of Bayesian networks as, for example,
proposed by Zhao et al. [101], He et al. [137] or Wang et al. [134] for FDD. However, it
seems that in the case of fault detection, contributions that use knowledge-based systems
were rarely considered.

Data-Driven

Data-driven approaches are, in turn, widely investigated in this context. Han et al. [74]
combined the fault detection and isolation task by employing a support vector machine
(SVM) classifier in a multi-class fashion, whereby the classes represented the normal
operating states and each investigated fault respectively. The authors further used a
genetic algorithm to select significant features from the dataset, which they employed to
demonstrate improved classification accuracy. In general, the feature reduction problem
has been widely addressed in a great amount of scientific contributions. The reason for this
is that the overall performance of the model can be improved if only the most significant
features are used to derive a data-driven classifier [6].

One of the most important dimensionality reduction algorithms used for feature se-
lection tasks is principal component analysis (PCA), as it allows the identification of
a lower dimensional space of uncorrelated features by decomposing the data into the
principal component space, which represents the largest proportion of variance, and the
un-modelled residual space [138]. In [139] a SVM classifier for both fault detection and
isolation was trained by exploiting the principal component space. Li et al. [87] followed a
similar idea by proposing a one-class classifier for detecting fault related anomalies, known
as support vector data description (SVDD). However, instead of training the algorithm
by use of the principal components, the authors exploited the residual subspace while only
observations stemming from the normal chiller operating condition were used to perform
PCA. It was found that by considering the residual subspace, most of the system vari-
ability caused by changing operating conditions rather than faults is filtered out and the
model becomes more sensitive to anomalies [6]. Their model could, thus, outperform the
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model proposed by Zhao et al. [138], which was trained on the original input space by
exploiting a total number of 16 features that were partly derived from a study published
in [140]. Beghi et al. [91] followed a similar approach, but replaced the SVDD classifier
with a one-class support vector machine (OC-SVM), originally proposed by Schölkopf et
al. [114]. However, both the SVDD and the OC-SVM algorithm are known to yield the
same results when translation invariant kernels are employed, such as the RBF kernel
[141, p. 233]. Two years later, Beghi et al. [6] enhanced their former model by identifying
the respective control limits through Hotelling’s T2 statistic and the squared prediction
error (SPE), rather than by training an OC-SVM classifier. The major advantage of the
model is that it bypasses complex hyperparameter optimisation methods, which usually
require that both labelled normal and fault related data are available.

One-class classification (OCC) also gained attention in [142], where a SVDD classifier
was trained for each class of both normal and faulty operating conditions respectively.
This is particularly advantageous in the later use of the model, as it enables the classifi-
cation of unknown faults, i.e. the ones not considered during the classifier training phase.
Another concept is introduced by Han et al. [132], who used a least squared support
vector machine for FDD and demonstrated that it can outperform a SVM as well as a
probabilistic neural network. Despite the use of SVM based methods, some authors ap-
plied further data-driven concepts in their work, some of which have proven to be at least
equivalently effective. One example is demonstrated by Li et al. [121] who applied linear
discriminant analysis in this context. Lately, artificial neural networks (ANNs) have come
to the fore, as proposed by Yan and Hua [143], who developed a long short-term memory
network for chiller fault isolation. Another data-driven concept is the aggregation of sev-
eral types of algorithms in order to circumvent individual model weaknesses. One such
an example, known as ensemble learning, is provided by Zhang et al. [144].

One of the greatest challenges arising from the development of data-driven models
constitutes the general lack of appropriate datasets that are needed to successfully train
FDD models. This was addressed by, for example, Yan et al. [30], who proposed a
generative adversarial network to augment the available labelled training dataset with
artificially generated observations and showed that this measure indeed improved the
final classification performance of the applied model. Recent work also considered the
transferability of FDD models across different chiller types, which is also the subject of
this dissertation. One approach is proposed by Fan et al. [29] who applied the synthetic
minority oversampling technology on the PCA transformed and reduced dataset, whereas
the principal component space was considered. In their work, the authors assumed that
labelled data from the source domain, the majority dataset, is more common than from
the target domain, to which they refer to as the minority dataset. After oversampling
the latter, the trained SVM classifier showed improved classification performance on the
combined dataset.

Hybrid

Even though most FDD models proposed during the last decade use either analytical
or data-driven models for fault detection, only a few papers also address the application
of hybrid approaches. Yan et al. [145] suggested the use of an auto-regressive model with
exogenous variables (ARX) to stationarise the time series data before applying a SVM
for both fault detection and diagnosis. To this end, a parameter vector was derived from
the ARX regression coefficients at each iteration and used as input for a classifier. A
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few years later, the authors extended their work in [85], where an online learning fault
detection model was proposed by combining an extended kalman filter with a recursively
refined OC-SVM.

2.5.2 Summary
From the reviewed papers, a clear trend in the development of CBM approaches towards
the use of data-driven models can be deduced. As shown in Figure 2.11, about 50 %
applied data-driven methods, while only 11.5 % considered hybrid and 7.7 % knowledge-
based approaches. The reason for this may be explained due to the progress in the field
of ML in recent years, which allows the use of self-adapting algorithms by simultaneously
requiring less a priori information about the observed process [17, p. 33] and no deep
understanding of the physics of the system concerned [142]. This is also underlined by
the fact that, at 30.8 %, analytical models are still being developed in non-negligible
numbers, with most of the work relying on reference models based on either linear or
non-linear regression, which can also be attributed to the field of ML. Interestingly, the
most common algorithm used for both regression and classification is the SVM or one of
its many derivatives, as it is a powerful algorithm for dealing with data characterised by
non-linearity and, quite often, high dimensions [139]. It can be concluded that 77 % of
all of the above reviewed papers concerning data-driven approaches applied this concept.

Both data-driven and analytical FDD models seem to be highly valued in the research
community, and so far promising results have been presented by using these approaches.
The development of the latter, however, can be a challenging task due to un-modelled
system dynamics, model uncertainty or incomplete knowledge of key parameter values
[6]. In addition, the alarm-triggering features and the associated threshold values must
be defined, which may require additional effort. Data-driven methods, in turn, can bypass
many of these limitations as they enable the use of hidden information buried within the
training dataset [121]. Since such models aim to identify patterns from the underlying
distribution, they can reliably distinguish between different chiller operating conditions,
even if important features are not present [142]. This results in decisive advantages in

Figure 2.11: An overview of reviewed papers concerning chiller CBM models.
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terms of cost efficiency and model accuracy if appropriate datasets can be obtained, as
confirmed by the proportion of papers in this area targeting data-driven approaches, which
is the motivation behind this dissertation.

2.6 Research Gap and Questions
Although CBM has been subject of research for a long period of time and to this day many
papers exist dealing with their application for chillers, there is still a lack of available
datasets needed for their development. In particular, data corresponding to different
chiller fault types would be of high value [6], but are rarely available, which inhibits the
broad application of such methods. In fact, from the total number of 26 papers reviewed in
the previous section, only the works carried out in [6], [24], [29] exploited other datasets
rather than the one collected by the American Society of Heating, Refrigerating, and
Air-Conditioning Engineers (ASHRAE) within the project 1043-RP [133], which will be
further discussed in Section 4.1. This indicates that the influence of different chiller
characteristics on the CBM model performance has rarely been investigated and that
most previous works have been shown to be functioning for a dedicated system only. It
can thus be assumed that the model development process will have to be repeated for
another type of chiller, which implies that both labelled normal data and data related
to faults from the respective system are available. However, this assumption does not
hold in practice mainly for two reasons: first, most training datasets lack from labelled
anomalous data, which curbs the application of common supervised ML methods [6], and
second, the CBM model development as well as the data labelling phase are both time-
consuming and costly [29], resulting in low economic attractiveness. On the other hand,
labelled data associated with a normal operating state of the chiller can easily be obtained
from the system [142], e.g. directly after the commissioning phase or after maintenance
work has been carried out, whereas most of the available data are often unlabelled. This
leads to the assumption that the cost-effective development of data-driven CBM models
for chillers can only be archived by using primarily unlabelled data as well as a fraction
of labelled data derived from the normal operating condition of the respective system.
However, this especially poses greater challenges for the derivation of fault detection and
fault isolation algorithms, since the majority of existing models originate from the field
of supervised machine learning and thus assume the completeness of all labels within
the available dataset. As shown in Table 2.4, there are only few contributions in this
context that deal with the development of data-driven models when labels are scarce.
Although most existing novelty detection approaches enable the identification of faults
by exploiting only labelled normal data in the training phase, they often require labelled

Table 2.4: Overview of papers considering data-driven FDD models.

Task
Available chiller dataset

Fully labelled Partially labelled Unlabelled

Fault detection
(normal data)

[30], [74], [87], [121], [132],
[138], [139], [142], [144]

[6], [91] -

Fault isolation
(fault related data)

[30], [74], [121], [132], [139],
[142]–[144]

[29] -

31



2.6 Research Gap and Questions 2 STATE OF THE ART

abnormal observations in the model validation phase. The reason for this is that model-
specific parameters, also called hyperparameters [138], have to be tuned for controlling
the learning process by applying, for example, cross-validation [132], [139], [142]. So far,
only the work carried out in [91] and [6] particularly addressed this problem by applying
heuristic parameter tuning methods.

It is noteworthy that the development of fault detection models in the presence of
exclusively unlabelled data has hardly been investigated in the past. Furthermore, the
limited availability of labelled fault data becomes an even greater challenge for the fault
isolation task, as the automatic assignment of data patterns to specific faults requires the
exploitation of the associated class labels. One promising approach to this is proposed
by Fan et al. [29] where a knowledge transfer from a fully labelled source dataset and a
partially labelled target dataset was realised to train a cross-domain classifier. In spite of
the fact that their model achieved reliable classification performance on the target chiller
dataset, it leaves open the question how this task can be accomplished when labelled, and
even unlabelled, fault instances are not present in the target dataset. As a consequence,
the aim of this dissertation is to propose a holistic chiller CBM model that enables the cost
and time benefits of data-driven approaches to be further exploited. Table 2.5 summarises
the research questions and their associated hypotheses in this context.

Table 2.5: Research questions and hypotheses.

Research questions Hypotheses Proof

RQ1 - Does
heterogeneity between
different chillers influence
the affect the overall
CBM model classification
performance?

H1.1 - fault patterns differ due to unequal
operating conditions and design characteristics

4.4

H1.2 - the fault isolation ability is reduced if the
CBM model is applied to different systems
without taking into account their heterogeneity

2.4.2

RQ2 - How can partially
labelled data from the
target system be
optimally exploited in the
CBM model development
process?

H2.1 - specifically emphasising fault-indicating
features improves knowledge transfer between
heterogeneous systems and requires only labelled
data from the normal operating state

2.4.2

H2.2 - the use of additional unlabelled data can
benefit the development of a classification
algorithm

5.3.1

RQ3 - Can costly data
labelling be omitted while
fulfilling the demands
imposed by CBM?

H3.1 - fault detection can be performed solely
depending on the partially labelled data from the
target system

5.3.1

H3.2 - shared fault indicative features exist
across domains enabling the CBM model
transferability

4.4

RQ4 - How is the CBM
model development
decoupled from the
availability of
fault-related data of the
target system?

H4.1 - transfer of knowledge can be achieved
through the identification of a shared latent space
by use of labelled (normal) data only

2.4.2

H4.2 - highly fault-indicating features are shared
between heterogeneous systems and, therefore,
fault patterns of the source system are sufficient
to develop the fault isolation algorithm

2.4.2
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3 CBM Model
This chapter presents the proposed CBM model including its subcomponents, deriving
its architecture from the research questions presented previously. First, the overall archi-
tecture design is introduced which is then followed by the description of the principles
underlying each concept, from the data filtering techniques used to the fault assessment
algorithms located within the FDD block. This section furthermore presents the essential
sub-modules from a theoretical standpoint and introduces the mathematical notation in
the context of this work.

3.1 Architecture
In the following, the model architecture from the layers defined in Section 2.2.2 is presented
by first outlining the problem formulation, which is then followed by the description of
the assumptions made. Subsequently, an abstract view of the proposed CBM model is
elaborated on in more detail.

3.1.1 Task Formulation
The initial concern driving the proposed CBM model is placed on the acquisition of data,
which is processed in a way that fault sensitive features are provided within the scope
of the fully automated health assessment task. It starts with the conversion of the raw
measurements recorded through a condition monitoring system [17, p. 44], whereby the
mapping of measurable to non-measurable state variables as well as the increase of the
SNR are the core objectives of the prepossessing and the feature extraction layer. As not
all information provided through the CM system is useful in terms of machinery health
assessment, one may preselect fault sensitive quantities based on domain knowledge or
through adequate feature selection methods to reduce both the number of sensors installed
as well as the computational complexity [138]. Accordingly, these two layers can be
summarised primarily in finding a mapping of the existing signals onto a feature vector
x̀ containing useful information about the current machinery health status [58, p. 180].
Yet, further data transformation and mapping may be required throughout the CBM
information processing and, thus, feature extraction is not only limited to the initial
layers of the model, as will be further emphasises in the remainder of this section.

Although determining an appropriate set of features is indeed important in order to
perform condition assessment measures for a dedicated system, most recent research has
been devoted to fault detection, fault isolation or even both. This might be explained
by the complexity in the development of convenient algorithms induced by, for example,
non-linear state variables or limited amounts of available data [134]. However, since these
algorithms represent the knowledge about certain faults and their characteristics [58,
p. 180], they are at the very heart of the automatic machinery degradation assessment.

One intuitive way to derive an appropriate CBM solution appears to be the training
of an arbitrary ML classifier using an existing dataset that contains a sufficient repre-
sentation of the underlying faults patterns tied to their associated labels. Although this
seems to be a straightforward approach, and most works employ such supervised machine
learning models [6] in this context, it neglects the heterogeneity amongst the various
chiller types. This places a detrimental constraint on the applicability of such models, as
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they can be deployed for a single system only. As concluded in the previous sections, the
transferability of data-driven models onto a different chiller system has rarely been inves-
tigated [29], which implies that most existing models are expected to exhibit degraded
fault classification performance when applied to a system other than the one they were
trained on. Recall that this is the core of Hypothesis H1.2, which will be verified later
in Section 5.3.2. In order to circumvent costly data labelling for each system individu-
ally, an alternative to existing approaches must therefore be found. From the hypotheses
presented in Section 2.6, it is assumed that this problem can be coped with by utilising
only unlabelled and a fraction of normal labelled data stemming from the target chiller,
which may be obtained at low cost. In addition, knowledge transfer from a fully labelled
source dataset shall be applied within the model training process to meet the requirements
imposed by the fault isolation task.

Based on the definitions and notations of [116] and [146], the core problem at hand
can be formulated as follows: Let Xs ∈ R(ns×k) be the available data from the source
chiller, with k representing the number of features and nS the number of observations
contained, with the marginal probability distribution P(Xs) and the feature space Xs.
Then Ds = {Xs,P(Xs)} can be denoted as the source domain with a specific learning
task Ts = {Ys,P(Ys | Xs)}, YS = {ys1 , ys2 , . . . , ysns

} ∈ Ys representing the labels and
P(YS | Xs) the conditional source domain probability distribution. Here, the labels can
represent either the normal operating condition or a fault considered within the fault
isolation phase. Similarly, let Xt ∈ R(nt×k) be the data sampled from the target domain,
where nt represents the number of available observations. The target domain, i.e. the
application domain of the CBM model, can be denoted as DT = {Xt,P(Xt)} including its
learning task Tt = {Yt,P(Yt | Xt)}, where the feature space Xt, the marginal probability
distribution P(Xt), the label space Yt and the conditional probability distribution P(Yt |
Xt) are describing the representation of the target system.

Recall that in the case where the conditions Ds = Dt and Ts = Tt holds, the task
becomes a traditional machine learning problem [116] and can thus be solved by training
a supervised ML classifier in Ds. However, based on the problem description above, this
does not necessarily apply to the detection and isolation of chiller faults, especially when
the design characteristics between the source and the target system differ greatly. From
this it can be deduced that the primary task is to develop a model h(xt) that enables
the fault detection and fault isolation task to be performed in the target domain. By
including the information provided through Ds and Ts in the model training process,
the model shall additionally avoid costly data labelling to a large extent. To avoid any
confusion hereinafter, it should be noted that according to [116], the classifier h(xt) can
be written as P(yt | xt), i.e. both notations are equivalent, whereby the former will be
used throughout this work.

3.1.2 Assumptions
The key aspects driving the model development process in this work can be reduced
to a few core assumptions that significantly determine the concepts and methods to be
applicable. Accordingly, from the conclusions described so far, the following assumptions
can be reported:

1. Availability of normal labelled data in the target domain
As faults are rare events [6], normal data samples are usually available in the target
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domain, which can be obtained e.g. directly after commissioning the target chiller
or after maintenance measures have been carried out. As a consequence, this infor-
mation may be introduced in the model training phase to improve the classification
accuracy of h(xt). Accordingly, one can define the available target domain labels
as Yt = {yt1 , yt2 , . . . , ytnt

} ∈ {−1, 1}, whereby yti = −1 refers to unlabelled and
yti = 1 to normal labelled observations. Similar to the work in [6] and [91], the fault
detection task may thus be completed through the use of target domain information
only.

2. Shared feature space
Although the presence of different system designs complicates the development of
domain insensitive CBM approaches, it is assumed that there exists a shared feature
space, which is sensitive to the monitored faults. The assumption therefore is that
Xs = Xt.

3. Discrepancy between both domains
The difference between the distributions is caused by the heterogeneity amongst
industrial chiller systems on the basis of their design and operating conditions. As
a consequence, it can be assumed that a domain shift is present in the available
data and the marginal distributions are misaligned P(Xs) 6= P(Xt), as illustrated
in Figure 3.1. This will be referred to as domain discrepancy in the following.

4. Fault characteristics are similarly pronounced across domains
As faults are detected and isolated through a change within the thermodynamic con-
dition of the target chiller system [133, p. 25] they follow certain patterns caused by
physical laws and dependencies. Therefore, it can be assumed that the conditional
probability distributions of the source and target domain are strongly related as
P(Ys | Xs) ≈ P(Yt | Xt). Thereby, it should be noted that, according to Csurka
[146], the relation P(Ys | Xs) = P(Yt | Xt) can be too strong and may not hold in
practice.

5. Shared label space
Since the proposed shall benefit from the information provided by the fully labelled
source domain, the labels space must similarly be shared. It is consequently deduced
that Yt = Ys = Y . From the opposing point of view, it cannot always be guaranteed
whether the target domain fully represents the aimed label space at the model
training time and, thus, the model should also be robust in the case Yt ⊂ Ys.

6. High process variability
Both Ds and Dt are subject to a high degree of variability caused by changing
operating conditions, as concluded in [6], [87], [91]. This leads to the assumption
that by removing the process-related dynamics from the available data, the fault
patterns can be distinguished with higher confidence.

7. Relation between fault severity and statistical distance
Following the considerations of [91] or [121], severity level estimation can be per-
formed by introducing a reasonable distance metric as a measuring tool to meet the
requirements induced by the fault identification task. This is motivated by the idea
that observations associated with low SL are expected to lie closer to the normal
data cluster, while high SL are most likely to cause strong differences.
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Figure 3.1: Toy example of domain discrepancy between the marginal distributions of
two heterogeneous systems as derived from [36].

By concluding the assumptions above, the main objective of the proposed CBM model
can be divided in two consecutive tasks, namely: (1) partially-supervised [147, pp. 171-
208] fault detection, for which OCC is employed, and (2) unsupervised domain adaptation
[36] in the context of fault isolation, which is often also referred to as cross-domain fault
diagnosis (CDFD) [148]. The fault detection approach should therefore build on the
utilisation of normal labelled and unlabelled target domain data. Although this form of
learning task is often referred to as semi-supervised ML, it is perhaps not quite correct
to introduce this term for the problem at hand, since it assumes the availability of labels
from all classes [147, p. 9], albeit in small numbers.

To fulfil the demands induced by the fault isolation task, the model shall enable the
transfer of knowlegde from a fully labelled dataset to partially labelled one. Therefore it
is considered a domain adaptation problem, which is known to be a subfield of transfer
learning where the relations Ds 6= Dt and Ts = Tt hold [116]. As stated above, it is
particularly considered an unsupervised domain adaptation problem. However, by taking
into account the precondition that one class of the target system is accurately labelled,
namely the one associated to the normal system operating conditions, one may argue
that the term unsupervised is not well placed in this respect. Nevertheless, it has to be
acknowledged that the other closely related term, semi-supervised domain adaptation, is
far less suitable, as no labelled fault patterns are available during the training process.
Furthermore, the remainder of the section will show how unsupervised techniques can be
employed to reduce the domain discrepancy, which is why the term unsupervised domain
adaptation is considered to be applicable throughout this work.

3.1.3 Model Principles
Against this background, a holistic CBM model can be derived to solve the individual
problems inferred from the above task formulation with regards to the previously identi-

36



3.1 Architecture 3 CBM MODEL

fied data processing layers. The model is divided into two phases, namely training and
deployment. While the former refers to the use of historical data from both the source
and target domains, the latter phase designates the continuous observation of online data
in the scope of the application, i.e. the data recorded during the model runtime. Through
the sequence of data processing layers presented in Section 2.2.2, the system’s data are
automatically evaluated in such a way that conclusions can be be drawn about the sys-
tems degradation state. It also allows information to be derived about any fault condition
that may be present while placing fault detection and isolation in the center of attention.

As illustrated in Figure 3.2, steady-state detection and filtering techniques are required
within the data preprocessing layer to improve the SNR. This ensures that the informa-

Figure 3.2: Flow chart diagram showing the principles of the proposed CBM model.
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tion content provided though the available data is appropriately representing the actual
thermodynamic system condition and is less affected by disturbances. Nonetheless, the
data filtering process strongly relates to the respective chiller application as well as the
respective CM system and may therefore be implemented for each system individually. To
extend the available sensory acquired information, feature extraction is performed within
the following layer. According to [6] and [133], the determination of new features with
high sensitivity to chiller faults is beneficial to the predictive accuracy of the model and
is thus an essential factor to be considered. Since it is assumed that the feature space
is fully shared between the two domains, it should be noted that the use of same state
variables from the source and target systems is necessary under the proposed approach.

The first action that is performed as part of the data transformation layer is known
as data scaling. This step is particularly important since the magnitudes amongst the
different features can differ greatly due to their units of measurement or simply because
of the different physical quantities they represent. Therefore, data scaling is introduced
to avoid the domination of high magnitude features, i.e. features representing a wide
range of values, during the model training process [81, p. 14] to improve its classification
performance [142]. Although the above steps of the data processing scheme are indeed
necessary to fulfil the requirements set by CBM, they are common in the context of
data-driven techniques and thus do not specifically address the core issues determined
from the task formulation presented in Section 3.1.1. However, both fault detection with
partially labelled data and CDFD require further feature transformations and selection
procedures for mainly two reasons: first, the fault isolation step requires the alignment of
the two distributions of Ds and Dt to enable the transfer of knowledge from the source
to the target domain, and second, both steps rely on features that are less affected by
the process variability induced through varying operating conditions. In the final fault
evaluation step, the CBM model aims at estimating the health index (hi), representing
the fault severity level, for the case when a fault has been detected and isolated. Thereby,
a statistical distance metric is introduced using the discrepancy between the anomaly
and the normal labelled data cluster as an indicator, which will be discussed in greater
detail in Section 3.7. Note that the pseudo-code for the CBM model training is shown in
Appendix A.1.2, while the Appendix A.1.3 shows the model deployment.

3.2 Preprocessing
The first action performed in the data preprocessing layer is the separation of data origi-
nating from transient system states, such as during start or shut-down phases, or in case
of rapidly changing chiller operating conditions [149]. Yet, completely ensuring a steady-
state operation of the system does not seem feasible from a practical point of view due
to minor disturbances, such as deviations caused by the applied control or as a result
of measurement noise. This leads to a criterion that is introduced as an indicator for
the automatic rejection of observations that represent transient system states, hereafter
referred to as steady-state detector.

Although there exists a great amount of proposed steady-state detectors across the
literature, such as the work carried out in [150] or [151], this work utilises the approach
proposed by Beghi et al. [6] due to its fast convergence capability. It goes without say-
ing that one may employ other techniques towards steady-state detection by considering
additional factors like computational complexity or robustness, which is not particularly
addressed in this thesis. In general, the technique proposed in [6] relies on computing
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Figure 3.3: Example of Savitzky-Golay smoothing and steady-state detection for ws = 5
and pd = 3.

the local derivatives of some preselected signals representing the time course of specific
thermodynamic state variables using the backward difference approach. The resulting
signal is then smoothed through a Savitzky-Golay filter to remove high-frequency noise
through least-square polynomial approximation. Then, by setting an appropriate thresh-
old, steady-states are detected when the observed signal does not exceed the upper bound
or does not fall below the lower bound for a certain period of time, as exemplary demon-
strated in Figure 3.3. As can be seen from this example, the algorithm of [6] builds up
on three preselected parameters, namely the sliding window size ws, the polynomial de-
gree of the approximated target function pd and the predefined threshold, which is set
δthr · σdev, whereby σdev denotes the standard deviation of all computed derivatives and
δthr is a pre-set scalar. For a practical example, the reader is referred to Section 4.3.3
and Figure 4.7 in particular. Furthermore, the pseudo-code for the implementation of the
steady-state detector can be found in Appendix A.1.1.

Another concern is placed on random fluctuation of the sensor readings, known as
measurement noise. Certainly, the impact on the overall CBM classification performance
may arguably be less significant as the integration of a steady-state detector. However,
this constitutes a non-negligible factor to be considered to increase the SNR [17, p. 16].
To achieve this, a Savitzky-Golay filter is again applied for smoothing the signals recorded
through the CM system. Lastly, the remaining outliers must be removed from the dataset
as they have a negative impact on the fault assessment performance [152], for which this
work simply applies a set of predefined rules.

3.3 Feature Extraction
The problem of extracting features that are highly sensitive to chiller faults has been dis-
cussed in a variety of scientific contributions, but the selected the feature spaces considered
in the scope of CBM differ across the literature. For example, Beghi et al. [6] specifically
constructed the feature space to be sensitive to the investigated faults by introducing i.a.
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the isentropic compressor efficiency or the overall heat loss coefficient. Other authors [85],
[138], [149], in turn, followed the results of the study conducted by Comstock et al. [133]
as a basis for deriving their feature space, whereby various feature selection techniques
were later applied to reduce the amount of features. However, most feature extraction
approaches, unlike feature selection, have in common that they essentially rely on domain
knowledge to be defined.

The research provided by Comstock et al. [133] also constitutes the basis for the
definition of the feature space throughout this dissertation. However, two notes should
be outlined here in particular. First, as has been discussed in Section 3.1.1, the shared
feature space between the source and the target domain must be employed for the fault
isolation relying on domain adaptation. This implies that some features, even though
they might be indicative of some faults, are to be discarded from the available dataset
unless they represent the same physical quantities across both domains. While this is true
for the demands placed on the fault isolation layer, this does not necessarily apply to the
other two layers within the FDD block. Secondly, it cannot always be guaranteed that
sufficient information is available on how well some features indicate certain faults, and
therefore the subsequent feature selection phase should be decoupled from the availability
of domain knowledge, which will be addressed in more detail below. It should also be
noted that the features considered in this work will be introduced in Section 4 and are
furthermore summarised in Appendix A.5.

3.4 Feature Transformation
After defining the set of suitable features, scaling must be performed to reduce the in-
fluence of the order of magnitude of certain physical state variables on the respective
classification algorithm. In general, two approaches are commonly considered in this con-
text, min-max scaling and standardisation [153, p. 37]. Accordingly, min-max scaling
scales all features within the dataset in the range [0,1]. However, sometimes this places
some impediments in the model training process, as the data might be distorted due to
the presence of outliers. As a consequence, most existing work in the field of chiller CBM
applies the standardisation technique, as in [74] or [149], which scales the data to zero
mean and a standard deviation of one.

Assuming that for each available feature x̀j, regardless of whether it originates from the
source or the target domain, its standard deviation σj and its mean µj can be computed.
Then the scaling for each value x̀i,j is defined as [153, p. 37]

xi,j =
x̀i,j − µj

σj

(1)

with xi,j representing all values of the dataset after performing standardisation. At this
point, an important remark should be made from a theoretical point of view. As can
clearly be seen from the definition of the standardisation scaling approach, the data is
assumed to be Gaussian distributed. However, previous studies [138], [154] showed that
chiller data actually violate this assumption. In contrast, there exist a large number of
scientific contributions in this field, for example [6], [87], [91], [139], that employ tech-
niques that have emerged from dealing with Gaussian distributed data. One of the most
common algorithms building upon this is principal component analysis (PCA), which has
been shown to yield excellent results in terms of improving the overall fault classifica-
tion accuracy despite the distributional assumption. From this it can be deduced that
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although one has to deal with non-Gaussian distributed data, such methods can still be
applied for chiller CBM in practice. This increases the set of possible algorithms to be
applied, but also simplifies the way in which the problem at hand can be coped with.

Following the abstract representation of the proposed CBM model shown in Sec-
tion 3.2, further feature transformation and selection steps are necessary to meet the
requirements induced by partially-supervised fault detection and CDFD. Yet, these pro-
cesses, of which PCA will play a key-role too, can be assigned to one of these two tasks
and are therefore described in more detail in the following sections.

3.5 Fault Detection
This section introduces the approach towards the detection of novelties, which are con-
sidered to be faults in the context of this work. To this end, an overview of the algorithm
is first provided, followed by an explanation regarding the reduction of process variability
induced by changing chiller operating conditions that affects the available data. Sub-
sequently, the classification algorithm is introduced that exploits both labelled normal
samples and unlabelled target domain samples during training to optimise for a decision
boundary that best separates novelties from normal data patterns. The last section then
introduces the way the model handles unknown data patterns, i.e. observations that do
not originate from the marginal distribution of the target domain at the time of model
training.

3.5.1 Overview
According to the previously presented task descriptions, the proposed fault detection
algorithm should be insensitive to process variability. This implies that a matrix de-
composition method should be introduced to filter out features explaining most system
dynamics while maintaining features emphasising the available fault characteristics. As
has been shown in previous studies [6], [87], [91], one solution on this is to transform
the design matrix using PCA, which is an unsupervised technique that has been widely
applied for many data dimensionality reduction tasks. To do so, PCA aims at identify-
ing a lower dimensional feature space that explains most of the data variance [139]. In
this context, however, it is adapted to solve for a manifold representing the majority of
different chiller operating conditions. As shown in Figure 3.4, PCA is first performed
on the normal labelled data to identify the lower dimensional manifold. In the following
step, the design matrix is decomposed into the modelled principal component subspace
(PCS) and the un-modelled residual component subspace (RCS) [87], the former of which
is supposed to represent at least a predetermined cumulative percentage value (CPV) of
the variance associated with the normal labelled patterns. As will be described in greater
detail in the following section, instead of considering the PCS, the RCS is exploited to
train the fault detection classifier because it is expected to be increasingly sensitive to the
presence of novelties.

The second task in this context leads to the definition of the type of classification
algorithm to be applied, which is known to be a one-class classification (OCC) problem
[155]. Recall from the task formulation (1), the problem at hand deals with the learning
of a decision boundary to detect novelties by exploiting the available target domain data
of both labelled and unlabelled observations and is thus considered to be a partially
labelled learning problem. More specifically, a classifier is to be developed from positive,
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the normal labelled, observations and unlabelled data, which is commonly referred to as
positive-unlabelled (PU) learning [156, p. 171]. To deal with this kind of problem, this
dissertation follows the approach of Liu et al. [157], who proposed the biased support
vector machine (BSVM), which will be more accurately elucidated in Section 3.5.3. One
of the key benefits arising from this approach is that it allows the hyperparameter of the
classifier to be selected in a meta-heuristic manner, such that common parameter tuning
methods, e.g. grid-search and cross-validation, can be applied for this, which otherwise
proves to be difficult.

Unfortunately, the BSVM has its limitations when it comes to the detection of novel-
ties associated with unknown data patterns, a problem that is comprehensively explained
in Section 3.5.4. Thus, the model is additionally enhanced by a one class support vec-
tor machine (OC-SVM). By combining the algorithms above, a novel fault detection
algorithm for chillers can be derived, the principles of which are presented hereinafter.

Figure 3.4: Flow chart showing the fault detection algorithm.
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3.5.2 Reducing Process Variability
To identify the lower dimensional manifold that models the normal chiller operation, PCA
is introduced. In this way, a transformation, or more precisely a rotation, of a matrix into
such an axis system is solved so that the largest part of the variance is captured by the
first axis, the principal components (PCs) [153, p. 42]. An important aspect of using PCA
to reduce the process variability is that is performed by solely utilising the labelled data
instances originating from the normal chiller operating condition. Following the notations
given above, the resulting matrix can be defined as

Z = {xti ∈ Xt | yti = 1} (2)

whereby Z ∈ R(nn×k) denotes the design matrix containing the known nn fault-free obser-
vations sampled from the target domain. It is worth underlining again that any observa-
tion associated with yti = −1 is unlabelled, which can potentially represent a novelty but
also a sample belonging to the normal class. In any case, this information is not available.
Furthermore, it should be noted that the design matrix Z should be centred according to
its mean vector µn = {µn1 , µn2 . . . , µnk

}. Then, one can compute the covariance matrix
of Z as:

Σ = cov(Z) = 1

nn − 1
ZTZ (3)

Since Σ is both symmetric and positive semi-definite, one can apply eigendecomposition
to diagonalise the representation as [153, p. 42]

Σ = PΛP T (4)

where the columns of P , also known as the loading matrix, represent the linear indepen-
dent eigenvectors of Σ, while Λ is a diagonal matrix containing the associated eigenvalues.
It should be noted that one can alternatively apply singular value decomposition directly
on the design matrix Z to perform PCA, which is also the general framework in this
respect [153, pp. 42]. Following the notation given in [6], the design matrix Z can conse-
quently be decomposed as

Z = Ẑ + Z̃ = T̂ P̂ T + T̃ P̃ T (5)

where the columns of P̂ ∈ R(k×kpc) are the first kpc, a hyperparameter whose meaning will
be especially discussed later, eigenvectors corresponding to the highest eigenvalues of Λ
spanning the PCS. Furthermore, T̂ ∈ R(nn×kpc) is the associated principal score matrix.
Conversely, P̃ ∈ R(k×(k−kpc)) represents the unmodelled RCS, while T̃ ∈ R(nn×(k−kpc)) is
the residual score matrix.

As shown in Figure 3.5, the intuition behind this approach is to identify the subspace
from Z which explains most system variability. Since only known normal samples are
selected for performing PCA, the direction of the PCs are excepted to model a large part
of the various chiller operating conditions. From the opposing point of view, the residual
components (RCs) essentially represent both measurement noise and, most importantly,
novelties. Thus, by mapping the target domain data onto the un-modelled RCS space,
the overall fault sensitivity may significantly be improved, which benefits the subsequent
classification process.
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Figure 3.5: Example of matrix decomposition into principal component and residual
component subspaces showing the effect of the reduction of process variability contained
within the data.

Accordingly, the decomposition of any target domain sample into the two orthogonal
subspaces can be defined as [6]

xti = P̂ P̂ Txti + P̃ P̃ Txti (6)

whereby P̂ P̂ Txti is the modelled and P̃ P̃ Txti is the unmodelled part of the target do-
main observation. Accordingly, the data dimensionality can be reduced by mapping any
observation to its residual components as:

x̃ti = P̃ Txti (7)

It goes without saying that this equally applies to the unknown observations xu
ti

in the
model deployment phase, while both are centred according to µn. With the data rep-
resentation of x̃ti exploited in place of the original input xti , a classification algorithm
can be trained to solve for an appropriate decision boundary to separate novelties from
normal data.

However, one challenge arises from the determination of kpc, e.g. the number of dis-
carded PCs, which is a trade-off in terms of improving the overall fault classification
performance. On the one hand, a low number of discarded PCs preserves much informa-
tion content, but the data may still be affected by high system dynamics. On the other
hand, a high value of kpc can also lead to the reduction of the fault sensitivity, as signifi-
cant features are removed. One intuitive approach towards the determination of kpc is to
relate it to the cumulative percent value (CPV) of the explained variance represented by
the columns of P̂ , as described in [87] or [139]. According to Han et al. [139], the number
of discarded PCs can then be computed by means of the eigenvalues of Λ, which, in turn,
represent the variance along the axis of the PCA transformed coordinate system, as

CPV (j) =

∑j
i=1 Λi,i

tr(Λ)
· 100 % (8)
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with Λi,i representing the eigenvalues along the diagonal of Λ in descending order. By
setting a predefined threshold CPVkpc , kpc can be computed as:

kpc = min
(
{ j ∈ {1, 2, . . . , k} | CPV (j) ≥ CPVkpc }

)
(9)

Yet, a reasonable value for CPVkpc must be chosen, which is not uniformly defined in the
literature. For example, in [91] the minimum CPV was chosen to be greater than 99.3 %
while in [6] it was 95 %. Other contributions, in turn, indicate CPVkpc = 85 % to be an
appropriate threshold [158], [159]. It is obvious that a correct parameter setting is needed
for the model to converge to an appropriate solution and therefore a sensitivity analysis
with regard to this parameter will be performed and presented in Section 5.3.

It becomes evident from the definitions above that by finding a linear transformation
of the design matrix Z through PCA, most system variability can be captured by the PCs.
By decomposing Z into its PCS and RCS, the latter in particular can be used to derive
the classification algorithm. This way, the model becomes more sensitive to novelties and
the overall fault detection performance is expected to be increased.

3.5.3 Learning from Positive and Unlabelled Observations
So far, several data processing steps have been introduced, ranging from data filtering
techniques to reducing the process variability contained in the available data of the target
domain, all serving one goal: improving the overall classification performance of the
proposed model. This still leaves open the question how a classifier can be derived in
this regard. Referring to Hypothesis H2.2 presented in Section 2.6, exploiting labelled as
well as unlabelled target domain samples can benefit the fault detection process, as the
latter may carry important information about certain fault characteristics, even though
their actual labels are not available. Since this particular problem addresses the case of a
binary classification, i.e. indicating a normal or abnormal chiller operating condition, it
can be ascribed to a special subfield of ML, which is commonly known as PU-learning. In
fact, this differs from most fault detection algorithms applied in this field of research in
that it does not attempt to perform density estimation [160], but rather aims at modelling
the class probability distribution with respect to the binary classification problem.

As was concluded in Section 2.5.2, most data-driven approaches in the field of CBM
employ variations of the SVM classification algorithm, as it comprises decent capabilities
in terms of dealing with problems affected by non-linearity, high dimensions, local minima
as well as the availability of only small amounts of observations while utilising principles
originating from the statistical learning theory [139], [161, pp. 7-60], [162]. The algorithm
itself is a binary classifier, but can also be extended to operate in a multi-class fashion,
which will be introduced in Section 3.6.3. In general, the concept behind SVMs is to find
a separating hyperplane between two sets of samples, in which a margin between them is
maximised.

As shown in Figure 3.6, the algorithm aims at identifying the support vectors (SV)
that are critical for the given classification task. There are two cases to consider: In the
first scenario, there exists a hyperplane that best separates the samples of two classes
and the algorithm can solve for what is known as a hard margin hyperplane. In practice,
however, this does not always hold, e.g. due to the presence of outliers, and often one
has to deal with problems in which the patterns are not linearly separable. Therefore,
allowing the algorithm to violate this assumption [141, pp. 203-205] to a certain degree
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Figure 3.6: SVM classification as hard margin hyperplane (left) and soft margin hyper-
plane (right), as partially derived from [161, pp. 10-16] and [141, p. 191].

can be of great value. This is the idea behind soft margin hyperplanes. The primal form
for an arbitrary two class optimisation problem can then be defined as

minimise
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi
(
wTxi + b

)
≥ 1− ξi, ξi ≥ 0

(10)

where w is a vector orthogonal to the hyperplane, C is a regularisation parameter for
handling the trade-off between minimising the margin error and maximising the margin
and ξi a slack variable that is ξi > 0 for observations located on the wrong side of the
hyperplane or the ones that lie within the margin [141, p. 206]. Furthermore, b is a bias
term and yi ∈ {−1, 1} is the actual label of xi.

The definition of (10) applies in the case when the data is fully labelled and is consid-
ered the ground truth in such as scenario. It is worth noting that the above optimisation
problem will play a further role in the context of fault isolation and is therefore referenced
again in Section 3.6. However, for the problem at hand, where the majority of observa-
tions remain unlabelled, the standard soft margin SVM does not seem to lead to a suitable
solution. To cope with this, this work follows a certain variation of the SVM proposed
by Liu et al. [157], known as the biased support vector machine (BSVM). Although its
principles are not much deviated from the one given above, it allows to deal with the case
of PU-learning by weighing positive errors, i.e. the ones induced by observations from
the normal class yti = 1, and those provoked from unlabelled data yti = −1 differently.
This is achieved by assigning different regularisation parameters in the two cases during
the optimisation process. Following the notations introduced previously for the target
domain, the primal optimisation problem can hence be defined as

minimise
w,b,ξ

1

2
‖w‖2 + C+

nn∑
i=1

ξi + C−
nt∑

i=nn+1

ξi

subject to yti
(
wT x̃ti + b

)
≥ 1− ξi, ξi ≥ 0

(11)
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where C+ and C− are the regularisation parameters assigned to the positive and unlabelled
patterns respectively. Thereby, one should note that instead of solving (11) using the
original input data representation of the target domain, it is performed on its RCS by
exploiting x̃ti . Unfortunately, the primal form is commonly not the optimal approach to
deal with and (11) restricts itself to solve for a linear decision boundary only. A more
suitable way towards solving the problem at hand might be to look at its Lagrangian dual
form instead, which can be defined as

L(w, ξ, b, α, β) = 1

2
‖w‖2 + C+

nn∑
i=1

ξi + C−
nt∑

i=nn+1

ξi

−
nt∑
i=1

αi

(
y
i

(
wT x̃ti + b

)
− 1 + ξi

)
−

nt∑
i=1

βiξi

(12)

where αi and βi are the Lagrangian coefficients, also known as dual variables. Since (12)
must be minimised with respect to w, ξ, b, and maximised by means of the Lagrangian
coefficients, the primal variables must first be differently expressed by first forming the
corresponding partial derivatives [141, p. 207], which leads to the following conditions:

w =
nt∑
i=1

αiyti x̃ti (13)

αi + βi = C+, ∀i ∈ [1, nn] (14)
αi + βi = C−, ∀i ∈ [nn + 1, nt] (15)
nt∑
i=1

αiyti = 0 (16)

Then, by substituting (13)-(15) into (12), one can derive the quadratic optimisation prob-
lem of the BSVM algorithm. Besides minimising the number of variables to optimise for,
the main advantage of dealing with the Langragian dual form instead of the primal form
arises from the inclusion of the dot product of the observations x̃T

ti
x̃tj . This circumstance

allows this term to be replaced by a kernel function k(·), for which the problem can now
be defined as

maximise
α

nt∑
i=1

αi −
1

2

nt∑
i ̸=j∧i,j=1

αiαjytiytjk
(
x̃ti , x̃tj

)
subject to 0 ≤ αi ≤ C+, ∀i ∈ [1, nn]

0 ≤ αi ≤ C−, ∀i ∈ [nn + 1, nt]
nt∑
i=1

αiyti = 0

(17)

where the constraints on αi already imply the different treatment of positive and unla-
belled patterns. Since (17) enables the use of kernels, the algorithm can now be extended
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to problems affected by non-linear dependencies. As shown in Figure 3.7, the idea of ap-
plying kernels in the context of SVMs is to map the original input space into a, possibly,
higher-dimensional feature space through Φ(·), where a separating hyperplane can now
be constructed [141, p. 15].

There exist a variety of kernel functions, such as the polynomial or sigmoid kernel,
which all have to satisfy Mercer’s theorem to be considered as such. Accordingly, the
resulting kernel matrix K, which is also a Gram matrix, must be positive semidefinite
[153, p. 323]. Although many different kernels are described in the literature that satisfy
this condition, most contributions [74], [85], [91], [132], [138] in the field of chiller CBM
have shown that the fault detection performance can be increased by utilising the Gaussian
radial basis function (RBF) kernel, which is therefore introduced in this work as well. The
RBF kernel function is defined as

k
(
x̃ti , x̃tj

)
= 〈Φ (x̃ti) ,Φ

(
x̃tj

)
〉 = exp

(
−γ‖x̃ti − x̃tj‖2

)
(18)

where γ is the kernel bandwidth coefficient. Furthermore, it follows that (17) and (18)
show that non-linear problems can be treated without ever explicitly computing the map-
ping function Φ(·), but considering the dot product in the feature space, which is consid-
ered a reproducing kernel Hilbert space (RKHS) [141, pp. 35-39] and may span an infinite
number of dimensions, as in the case of the RBF kernel [153, p. 324]. This is commonly
referred to as the kernel trick [141, p. 34], as it avoids expensive, and sometimes even
infeasible, computations to be performed. From this it follows that a decision function for
any unknown target domain sample x̃u

t towards the fault detection task can be defined as

h(x̃u
t )

∗
bsvm =

nt∑
i=1

αiyik (x̃
u
t , x̃ti) + b (19)

whereby the threshold parameter b can simply be determined from the first constraint
introduced in (11) and the condition (13), whereby the SVs with non-zero slack vari-
ables should be taken into account for the approximation, i.e. the ones associated with
Lagrangian coefficients that satisfy 0 > αi > C+ or 0 > αi > C− respectively. As a

Figure 3.7: Example of a 2D problem mapped into a 3D feature space, based on [141,
p. 29].
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consequence, (19) relates to the distance of an arbitrary observation vector x̃u
t to the

separating hyperplane within the feature space and will be referred to again later in Sec-
tion 3.7. The actual classifier, however, is defined as h(x̃u

t )bsvm = sgn(h(x̃u
t )

∗
bsvm). One

further important aspect should be outlined in this regard. Since the dual variables αi are
non-zero for SVs only, the prediction time reduces accordingly, a property that is equal
for all SVM based classifiers considered in this work. Moreover, since its Lagrangian dual
form differs from that of the standard SVM only by a slightly different constraint, it has
an equal time complexity of training time.

It appears that the above formulations lead to a solution of a PU classifier to be applied
for chiller fault detection tasks. Yet, the question of how to determine the hyperparameters
just presented remains open. This problem is also known as the bias-variance dilemma in
classical statistics [141, pp. 126] and affects the final classification performance to a large
extent. For example, the kernel bandwidth parameter γ must be chosen wisely, since a
high value of γbsvm can allow the model to adapt to a more complex decision boundary,
but can also lead to overfitting [153, p. 324]. Similarly, C+ and C− must be determined
as they represent the trade-off between margin errors attributed to positive or unlabelled
samples and therefore additionally affect the overall fault detection performance.

In supervised ML, the selection of a set of appropriate hyperparameters is straight-
forward as it allows to apply empirical risk minimisation [141, pp. 126] by employing,
for example, cross-validation [163] and suitable search strategies, such as grid-search, to
tune them with respect to the learning problem at hand. Unfortunately, PU learning
adds some complexity in this regard because only one class is assumed to be accurately
labelled, whereas other labels remain unknown. To cope with this kind of problem, Liu
et al. [157] proposed a modified metric related to the well known F-score metric as a
performance measure. According to the authors, the modified metric can be defined as

F-MOD =
r2

Pr
[
h
(
X̃t

)
bsvm

= 1
] (20)

where r is the recall and Pr[h(X̃t)bsvm = 1] the probability of a sample being classified as
normal. As a result, (20) can be employed as a performance measure indicating a suitable
set of hyperparameters in the context of the respective search strategy, for which this
work applies cross-validation and grid-search in the following.

3.5.4 Handling Unknown Patterns
The BSVM algorithm has been demonstrated to perform well in classification and appears
to obtain better results than pure density estimation [155], [157] as it can, at least partially,
recover the faults discriminative structure of the target data. This leads to a problem in
the deployment phase, namely when emerging novelties lead to unknown data patterns,
as in the case of a fault occurring for the first time within a dedicated chiller system for
example. In such a scenario, the BSVM algorithm alone is likely to be prone to type II
errors, also known as false negatives (see Section 5.2.2 for more detailed explanations), as
no associated support vectors are available to recover a suitable decision boundary.

To cope with this, the fault detection model presented in this section additionally
comprises a one class classifier relying on density estimation of the available normal data
of the target domain. While this covers the case where the discriminative structure
between the fault-free operational states and the states associated with anomalies cannot
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Figure 3.8: Toy example of the combination of density estimation and PU learning.

be recovered from the distribution of the target domain at training time, it may comes at
the cost of lowered classification performance. A corresponding experimental proof with
regards to this application domain will be presented in Section 5.3.1. There are mainly
two OCC algorithms that have emerged from the principles of SVMs and are based on
the principles of density estimation that have been successfully applied to the detection of
chiller faults, namely the SVDD [87], [138], [142] and the OC-SVM [91], [113] classifiers.
The difference between the two is that Tax and Duin [164] constructed the former such that
all target vectors are enclosed by a hypersphere with minimal radius, whereas Schölkopf
et al. [114] developed the latter as a hyperplane that best separates them from the rest
of the feature space with maximal distance from the origin [155]. Interestingly though, if
both algorithms are applied with translation invariant kernels, as in the case of (18), they
both converge to equivalent solutions [141, p. 234]. In this dissertation, the OC-SVM
algorithm is employed, the fundamentals of which are described in [114].

Figure 3.8 illustrates the advantages of combining PU-learning and density estima-
tion in terms of the expected fault detection performance. The concept underlying the
proposed approach is based on the results of a multitude of scientific reports [157], [165],
[166] indicating the superiority of PU-learning over density estimation in various applica-
tion domains. Although they tend to model the underlying conditional distribution well,
they may not be fully adequate for fault detection purposes, since not all patterns might
be available within the training dataset. To overcome this problem, the proposed model
combines the two methodologies to achieve both improved classification accuracy for fault
patterns buried within the training data and the ability to recognise emerging novelties.
Similar to the challenge posed by the estimation of the hyperparameters in the previous
section, the OC-SVM relies on the two corresponding parameters ν, the trade-off param-
eter, and γocsvm, the RBF kernel bandwidth. To tune these parameters in an efficient
manner, this dissertation follows the suggestions of [91] as follows: Since ν aims at char-
acterising he number of outliers and SVs [114], it is usually set to a small value indicating
that the majority of observations from the training dataset are contiguously enclosed. In
addition, γocsvm must be estimated for which the tightness detection algorithm [167] is
applied.
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3.6 Fault Isolation
Accurately distinguishing between normal system operations and the ones incurred through
faults constitutes an important step towards CBM and is indeed the prerequisite to deter-
mine a fault type and to estimate its SL. To accomplish the former, further steps are to
be taken because labels associated with faults are not expected to be available from the
target domain. One solution to this is to exploit the labelled patterns of a different but
related domain to enable fault isolation to be performed, which is described hereinafter.
The first part of this section elucidates the principles of the proposed fault isolation al-
gorithm. The domain adaptation method is then presented, followed by the approach
towards fault classification.

3.6.1 Overview
The domain discrepancy between the source and the target domain is assumed to be a
significant impact factor onto the overall fault classification performance, as stated in
Hypothesis H1.2. This is often because some features do not adequately represent the
similarities between the two datasets and thus inhibit the application of a fault isolation
model to different heterogeneous chiller systems. For some examples, the reader is referred
to Section 4.4. In fact, if the domain discrepancy is too large, the model may have a high
bias in the target domain [168, p. 23], which must be avoided.

To solve such a problem in a way that the available, and fully labelled, source do-
main dataset (Xs and Ys) can be exploited, the similarities between the datasets must
first be emphasised more strongly. This leads to a problem known as domain adaptation
[169], a special case of transfer learning [146], as has been already described in Sec-
tion 3.1.1. Although there are multiple methods in this regard, which can be categorised
into instance-based, model-parameter-based, relational-based and feature-based transfer
learning [168, pp. 10-11], [116], the latter will be applied in this work. In general, the
principles underlying this approach are based on the learning of domain-invariant fea-
tures, which generalise well on the target domain [170]. The aim of this measure is to
minimise the domain discrepancy caused by the different system-specific characteristics
in order to reduce the model’s generalisation error.

Although up to this point it can be assumed that most faults can be correctly identified
by the fault detection algorithm presented in the previous sections, the actual classes
associated with such novelties have so far been disregarded. Accordingly, this dissertation
proposes a simple yet effective domain adaptation method based on subspace identification
via PCA, whereby both the domain discrepancy as well as the process variability are
reduced simultaneously. Due to the same challenge identified as part of the fault detection
layer, namely the presence of chiller operating dynamics in the data, this measure allows
improving the overall fault sensitivity of the resulting model by decomposing the design
matrix through the use of PCA. Subsequently, domain-invariant features are identified by
mapping the source domain information into the RCS. In the following step, a classifier is
derived from the transformed source domain dataset, with the remaining tasks following
common supervised ML procedures.

Since fault isolation aims at identifying the nature of abnormal system behaviour
from a variety of possible fault types, it is considered a so-called multi-class classification
problem. There are a variety of different algorithms that can be employed for this type
of problem. Yet, this work applies the concept of SVMs, but extends it so that it is
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Figure 3.9: Flow chart showing the fault isolation algorithm.

not limited to a binary classification problem. Even though a large number of scientific
contributions indicate its superior properties compared to other ML algorithms, the SVM
is also subject to the problem of overfitting, an obstacle that must be overcome. Just as in
the case of the fault detection algorithm, the problem of finding appropriate and problem-
specific hyperparameters arises. However, after reducing the domain discrepancy between
both distributions, the classifier is trained solely on the labelled source domain samples
allowing the benefits of common techniques, such as cross-validation and grid-search, to
be exploited.

3.6.2 Domain Adaptation
Much work has been attributed to the field of chiller fault isolation, in which the authors
have achieved promising classification results by applying various supervised ML tech-
niques, mostly based on SVMs. Even though one intuitive attempt is to simply train the
classifier on the input space originating from Ds, it may not be an adequate choice because
the domain discrepancy may cause the classifier to misinterpret the patterns contained in
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Dt. Nonetheless, if one can find domain-invariant features that well capture similarities
between the datasets, a cross-domain classifier can be derived yielding decent fault isola-
tion results in the target system. Note that since the feature space Xs = Xt as well as the
label space Ys = Yt are expected to be the same and only the marginal distributions differ
from one another Ds 6= Ds, the problem at hand is considered a homogeneous domain
adaptation problem [146]. Yet, the case Yt ⊂ Ys at the model’s training time cannot
be neglected in the problem at hand, which therefore differs from many existing domain
adaptation approaches, a problem that will be elucidated in more detail below.

One chiller CDFD model has been proposed by Fan et al. [29], whereby a fault
classification accuracy of 96.7 % could be achieved for Tt. However, their model relies
on a few correctly labelled fault instances from each observed fault class in the target
domain to enable the adaptation process, which is not usually available or at least not
easily retrievable with little cost and time effort. Consequently, the problem at hand
focusses on the more general case, namely unsupervised domain adaptation [171], [172].

In particular, models based on ANNs have been proposed in recent years that allow
to align the two given distributions in such a way that the fault discriminative structure
of the target domain is well recovered from the source data, whereby promising classifi-
cation results have been demonstrated in a variety of applications. For example, some
researchers aimed at minimising the maximum mean discrepancy (MMD), a discrepancy
metric proposed by Gretton et al. [173], between the domains by use of convolutional neu-
ral networks [171], [174]. Other authors, in turn, followed the idea of adversarial learning
instead [175], [176] that originates from the idea of generative adversarial neural networks
[177]. Albeit much research has been devoted to the application of ANNs for domain
adaptation purposes, they also bring some limitations that should not be disregarded.
The first crucial aspect constitutes the estimation of a reasonable set of hyperparameters
[178], since the majority of classification metrics rely on the availability of labelled obser-
vations from the target domain. Secondly, deep architectures in particular are notoriously
computationally intensive [179] and often require large amounts of data to be trained on,
which may not be available.

Apart from the ANN based methods towards unsupervised domain adaptation, there
are also other well-known methods for this task, such as transfer component analysis
(TCA) [180], correlation alignment (CORAL) [181] or PCA-based subspace alignment
(SA) [182], the latter of which is closely related to the proposed approach. Note that
these domain adaptation algorithms will be compared to the presented approach in Sec-
tion 5.3.2.

There are certainly more methods to align the source and target domain distributions
for the purpose of fault isolation. However, many of these algorithms are subject to an
assumption that is difficult to be satisfied under real conditions. In fact, they assume the
occurrence of the observed fault patterns in both the source and target domain dataset.
Even though the availability of target domain labels is not a prerequisite for the ap-
plication of common unsupervised domain adaptation techniques, observing whether or
not certain fault patterns are contained in the target data seems to be impractical from
an economical perspective and diminishes the added value of data-driven approaches for
CBM. Thus, this work proposes an alternative method to reduce the domain discrepancy
for chiller fault isolation via the identification of domain-invariant features through PCA,
the principles of which are introduced subsequently.

The idea essentially builds on the considerations presented in [6], [87], [91], where
better fault detection performance could be achieved by mapping data into the RCS.
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Table 3.1: Methods for PCA based identification of transferable features for the pre-
sented domain adaptation problem.

Designation Description Comments

PCA(Xs),
PCA(Xt)

Perform PCA on each
dataset separately

Features are mixed up and the residual compo-
nents retrieved from Ds may not be well rep-
resentative in Dt

PCA(Xs) Map target domain
data to the source do-
main RCS

The resulting feature space might be skewed
towards Ds and is only conditionally applica-
ble for the target system

PCA(Xs, Xt) Apply PCA on the
combined dataset

The feature space results in a compromise be-
tween the distributions of Ds and Dt but may,
however, be less representative for the target
chiller

PCA(Xt) Map source domain
data to the target do-
main RCS

The process variability is reduced by solely
concerning the target domain data and a de-
cent feature representation is retrieved for Dt

In fact, if the fault discriminative structure occurs in a highly distinguishable pattern
through the identification of the residual components, as described in Section 3.5.2, it
may also be well representative across a multitude of related domains. Thus, applying
PCA to reduce the process variability and to emphasise a transferable fault structure
could constitute a straightforward approach towards CDFD for chillers and, possibly,
other sub modules within industrial refrigeration systems. However, the question of how
to appropriately apply this method to retrieve a cross-domain fault isolation algorithm
arises. There generally exist four approaches to achieve this, which are listed in Table 3.1
by way of comparison. As a consequence, mapping the source domain data to the target
domain RCS is conspicuously the better choice and is thus the method considered below.
An experimental proof concerning this assumption will be presented in Section 5.3.2. The
algorithm can be described as follows:

Let Zns ∈ R(nns×k) be the design matrix containing nns observations from the normal
operating condition of the source dataset. Similarly, the observations from the target
system are represented by the matrix

Znt = {xti ∈ Xt | yti = 1 ∨ h(x̃ti)fd = 1} (21)

where Znt ∈ R(nnt×k) contains nnt samples of labelled data as well as the observations
assigned to the normal class via the previously introduced fault detection algorithm. To
reduce the process variability in the following step, Znt can be decomposed into its PCS
and RCS through PCA in a similar fashion as within the fault detection layer by use of
the relations (4)-(6), from which the residual space loading matrix P̃t ∈ R((k−kpc)×k) can be
obtained. For consistency, kpc is equivalently chosen as in the fault detection layer to split
the two subspaces within the fault isolation layer. A sensitivity analysis in this regard
will also be presented in Section 5.3.2. Moreover, let the set of labelled fault samples of
Ds be

Zfs = {xsi ∈ Xs | xsi /∈ Zns} (22)
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with Zfs ∈ R((ns−nns)×k). From this it follows the mapping of source domain observations
into the target domain RCS as

Z̃fs = ZfsP̃
T
t (23)

where Z̃fs ∈ R((ns−nns)×(k−kpc)), including the associated labels, now represents the training
dataset for deriving a cross-domain classifier as exemplary shown in Figure 3.10. Note
that (23) simultaneously applies to any unlabelled f : xt 7→ z̃t or unknown target domain
observation f : xu

t 7→ z̃ut . As can be seen from the definitions above, the proposed approach
performs an asymmetric feature transformation of the source data towards the target
domain. Thus, it differs from many other approaches, such as TCA, which try to find a
latent space of domain shared features by minimising the MMD distance. According to
Sun et al. [181], such domain alignment procedures are often superior to their symmetric
counterparts in terms of performance and flexibility, a statement which is also confirmed
by other studies [183], [184].

However, one should bear in mind that, although reducing the domain discrepancy
is the primary objective of this measure, one crucial factor distinguishes the proposed
approach from many CDFD methods. Since most models assume all classes to be fully
covered by both domains during the adaptation process, they primarily aim at aligning
the fault patterns of the two distributions. Unfortunately, the assumption Ys = Yt may
be too strong in practice, as the presence of certain fault patterns within the unlabelled
data of the target domain can only be assessed to a limited extent. Since this is usually
observed by humans during the model development process, the cost benefit arising from
the data-driven fault isolation procedure remains questionable in this scenario.

Recall from the research question RQ4 and the assumptions presented in Section 3.1.2,
that the case Yt ⊂ Ys must additionally be taken into account. Even more, this must also
cover the worst case, i.e. the unavailability of any fault classes at the time of training.
Either way, it must be assumed that this information cannot be obtained, at least not
at reasonable cost. In conclusion, the proposed approach towards fault isolation raises
promising expectations because;

1. it does not require any target domain fault patterns to be available to converge to
a suitable solution and therefore circumvents time-consuming data analysis proce-
dures,

2. there is no hyperparameter estimation required, except for kpc, as in the case of
TCA, for example, and is therefore more practical since one can bypass complex
parameter search methods that prove to be difficult in unsupervised domain adap-
tation problems

3. and it is a comparatively simple solution that can be practically implemented with
only a few lines of code and may therefore be well suitable for practitioners.

An important aspect of the proposed approach is that the remaining development of
the fault isolation classifier can be treated as a supervised ML problem. Thus, a classifica-
tion algorithm can be derived by exploiting common methods, metrics and optimisation
approaches with the only difference being the training on the transformed source dataset,
as explained in more detail below. In summary, this leads to decisive advantages in terms
of robustness and flexibility, as the fault isolation model can be obtained independently of
the availability of particular anomalies in the target dataset. Yet, it must be underlined

55



3.6 Fault Isolation 3 CBM MODEL

Figure 3.10: Toy example illustrating the mapping of observations from both domains
into the target domain residual component subspace.

that the presented fault isolation model may only be applicable for minor domain shifts.
In any case, as refrigeration systems are subject to the same thermodynamic principles,
the occurrence of related fault patterns are expected to be on a comparable scale.

3.6.3 Multi-Class Classification
In contrast to the fault detection problem, which constitutes a binary decision problem,
fault isolation mostly deals with the distinction of more than two fault classes. The
number of recognisable classes depends on the available label space Ys and may contain a
great variety of different fault types to be distinguished. Of course, the number of classes
is practically limited due to some constraints, such as richness of data to enable the
accurate distinction between the various patterns or simply the costs associated with the
labelling process. In any case, the obstacles imposed by the fault isolation step generally
lead to a problem known as multi-class classification.

Overall, it is barely possible to make a statement about the general classification
performance of a particular algorithm due to the myriad of existing classifiers that can
potentially be used for such tasks. Thus, the selection of a particular method is difficult
and often follows a trial and error approach. Fortunately, the latest research results in
the field of chiller CBM, indicate the use of SVMs to be a viable choice due to their
superior properties. Originally developed for binary classification problems, they can also
be extended to multi-class classification problems, which is the approach chosen for fault
isolation in this work. Schölkopf et al. [141, pp. 211-214] describe multiple methods in this
regard, of which the "one versus rest" and "one versus one" approach belong to the most
common ones. Yet, as shown in previous studies [74], [185], [186], the latter especially
shows slightly better performance and is therefore chosen hereinafter.

As illustrated in Figure 3.11, the idea is to define a set of binary classifiers, one for
each possible pair of fault types, assigning any arbitrary observation to either of the two
respective classes [141, p. 212]. Consequently, a dataset consisting of m fault classes
observed within the fault isolation layer results in (m − 1)m/2 binary classifiers to be
trained. The actual class is then determined via a voting mechanism that is employed
to estimate the probability of a particular class affiliation. To explain this principle,
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Figure 3.11: Example of a multi-class problem for a linearly separable case.

consider any unlabelled target domain observation z̃ut mapped to the RCS using the
relation (23). Let h(·)i,j be the classifier for each possible pair of classes, where i 6= j and
h(·)i,j = −h(·)j,i. The Lagrangian dual form of the SVM decision function originating from
the optimisation problem presented previously in (10) for any binary class combination
with nsi,j samples being assigned to either class can then be defined as

h(z̃ut )
∗
i,j =

nsi,j∑
k=1

ysi,j,kαi,j,kk
(
z̃ut , z̃fsi,j,k

)
+ bi,j (24)

with αi,j,k being the dual coefficients, ysi,j,k the labels associated to the source domain
observations z̃fsi,j,k in the respective binary classification context and bi,j representing the
bias term of the respective classifier. To determine the class with the highest probability
of a correct assignment, a voting system can be introduced, where the class with the
maximum count of votes wins as [187], [188]

argmax
i

m∑
i ̸=j,j=1

f(h(z̃ut )i,j), ∀i ∈ {1, 2, . . . ,m} (25)

with

f(h(z̃ut )i,j) =

{
1, if h(z̃ut )i,j = 1

0, otherwise
(26)

where h(z̃ut )i,j = sgn(h(z̃ut )∗i,j), as mentioned previously, and f(h(z̃ut )i,j) denotes a scoring
function. Since this approach may lead to a case where multiple classes receive the same
numbers of votes, it might be advisable to additionally include the decision-functions in
the decision-making process [187] in such scenarios. To this end, the class with the highest
probability can be selected, which is related to the distance of any observation from the
separating hyperplanes in the feature space. In the following, the function representing
this decision-making process will be referred to as h(z̃ut )fi. It is worth noting that unlike
the fault detection phase, where the class associated with the normal operating condition
of the chiller is primarily considered, in this layer only data associated with faults are
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considered in the classifier training process. This is due to the fact that the fault isolation
algorithm distinguishes between the different fault patterns, without trying to model the
fault-free operational state. It is also worth mentioning that both the RBF as well as the
linear kernel function will be comparatively implemented in the validation phase presented
later in Section 5.3.2.

3.7 Fault Identification
The two previous layers of the CBM model are clearly the essential key elements proposed
in this work. Nonetheless, following the conclusions drawn from Section 2.2.2 as well as the
demands presented within the DIN ISO 13374 [64], only detecting and isolating emerging
faults may not be sufficient to fulfil the requirements imposed by PHM, as this does not
provide any indication about a fault severity. Therefore, the fault identification layer aims
at estimating a health indicator representing the severity level. Despite the fact that this
is important for estimating the RUL, it should be noted that further activities related to
PHM are beyond the scope of this dissertation.

One effective way of performing this task has been proposed by Li et al. [87] and
Beghi et al. [91], who both argued that the distance between the fault data cluster and
the normal cluster increases with higher SLs. This is further emphasised by the fact
that the RCS is particularly sensitive to novelties, as exemplified earlier in Figure 3.5.
The introduction of a suitable statistical distance metric that allows conclusions to be
drawn about the extent to which a fault cluster differs from a normal cluster therefore
seems to be a viable way forward. In fact, this information is already available and
has been introduced in Section 3.5 along with the SVM decision function. As has been
demonstrated in [87], [91], observations located close to a classifier’s decision boundary
are likely to represent a fault at low severity, whereas higher distances are considered to
be associated with high SL, which is illustrated in Figure 3.12.

So far, several SVM-based classifiers have been introduced in the context of the pro-
posed CBM model, each performing a different task. This, however, leaves open the
question which of the resulting decision boundaries should be taken into consideration for
severity estimation. The logical consequence though leads to the fault detection model, as
it already aims at identifying faults by observing the distance of unknown target domain

Figure 3.12: Severity level estimation based on distance from decision boundary in the
feature space.
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samples to the normal data cluster in the feature space. Recall that two classifiers were
introduced for this task, of which the aim of the BSVM algorithm is placed on recovering
a discriminative structure from normal and unlabelled data, whereas the OC-SVM deals
with the case of detecting unknown patterns during the deployment phase. In general,
both classifiers are theoretically eligible for severity estimation by employing their respec-
tive decision functions as statistical distance metrics. Yet, one obstacle arises from the
demands placed by the ISO 13374 [64], which describes the outcome of the CBM evalua-
tion phase to be a health index (hi) ranging from 0 to 10, whereby 0 refers to a complete
failure and 10 to a fully functioning system. Following the ideas described above, one
intuitive way to achieve this might be to scale the outcome of the classifier’s decision
function accordingly. Since novelties are characterised by the outcome of negative val-
ues of the BSVM or OC-SVM, scaling the negative range seems a reasonable approach,
whereby h(·)∗ = 0 represents the upper bound of the decision function.

Unfortunately, the lower bound of the decision function may not appear that clear at
first, since it can theoretically take on any negative value. Yet, by paying attention to
the SVM principles, this value can also be obtained. For example, consider the OC-SVM
decision function, which is defined as [141, p. 232]

h(x̃u
t )

∗
ocsvm =

nt∑
i=1

αik (x̃ti , x̃
u
t )− ρ (27)

where ρ is the hyperplane offset. Assuming the kernel function k(·) to be the RBF,
then one can observe that the first term approaches zero for high distance between the
SVs and the unknown observation x̃u

t in the feature space, resulting in the lower bound
being −ρ. Unfortunately, the BSVM differs in this regard, as (19) can theoretically yield
lower values as obtained by the bias term and some values can fall below the alleged lower
bound. However, the bias term may still be a good indicator to approximate the lower
bound, as will be demonstrated later in Section 5.3.3. Accordingly, the negative range of
(19) and (27) can be scaled to the desired magnitude to meet the requirements placed on
hi.
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4 Data Source
The two datasets exploited to validate the proposed model, one of which has been exten-
sively used in most scientific papers on the subject since the late 1990s, are introduced in
this section. As concluded in Section 2.5.2, this area of research lacks from experimental
studies of chiller faults. Therefore, suitable datasets for the development of data-driven
CBM models are scarcely available, an issue addressed in this dissertation. The following
sections therefore provide an overview of the available datasets, focusing on the experi-
mental investigation of typical chiller faults carried out as part of this work. First the
experimental set-up is presented, including a description of the test rig used as well as
the data acquisition procedure, followed by the experimental design. Subsequently, the
results are depicted and summarised, with particular emphasis on the individual fault
characteristics.

4.1 Available Chiller Datasets
Two chiller datasets containing data from both normal operation and multiple faults are
used as the basis for the validation procedure. On the one hand, this allows the model’s
generalisation ability to be assessed and, on the other hand, the presented approach
requires labelled source domain as well as partially labelled (minor amount of labelled
samples from the normal operating condition) target domain data as a prerequisite.

The first dataset originates from the experimental investigation of chiller faults con-
ducted by Comstock et al. [133] within the ASHRAE financed project 1043-RP. By
adapting a 316 kW centrifugal chiller in their test rig, different operating conditions could
be simulated, whereas the cooling water temperature at the condenser inlet Tci, the chilled
water temperature at the evaporator outlet Teo and the evaporator heat flow QE were used
as control variables. For the experiments, the authors identified some predefined set-points
from the control variables resulting in a test sequence consisting of a total number of 27
system states. During their experiments, each of these states was approached one after
another, while the test sequence was kept unchanged throughout the study. In addition,
they introduced a gradient-based steady-state criterion calculated for a 10 minute time
window, which had to be met at least once by each operating state before moving to the
next state. After performing a series of benchmark tests to reliably identify the normal
operating chiller condition, the authors artificially induced several faults, which have been
presented in Section 2.4.2, at varying severity levels (SL) and examined their impact on
the system variables. For all performed test series, the data were recorded at 10 sec inter-
vals, taking into account primarily analogue sensors, binary states, and thermodynamic
variables computed via the programmable logic controller (PLC). To date, the dataset
collected as part of this research project is the most widely used in the recent literature
[6] and still represents a key-role in the development of modern CBM models.

As shown in Table 4.1, the second dataset stems from the experiments conduced by
use of a 100 kW screw chiller in the scope of this dissertation. Similar to the project
founded by the ASHRAE, three control variables as well as an associated test sequence
were defined to study the effect of certain faults on the overall operational condition. To
achieve comparability between the two research projects, some of the faults considered in
[133] were also examined as part of this work.

As stated in Hypothesis H3.2, this work assumes the existence of similarities of fault
indicative features across heterogeneous chiller systems in order to enable the use of
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Table 4.1: Properties of the considered chiller systems.

Property/Component Centrifugal chiller Screw chiller

Compressor type Centrifugal Screw
Specified cooling load 316 kW 100 kW
Refrigerant R-134a R-717
Heat exchanger type Shell-tube Plate
Secondary-coolant Water Water-glycol
Evaporator design Dry Flooded

domain adaptation techniques for fault isolation purposes. Moreover, since there are only
few studies on the experimental investigation of chiller faults and their effects on overall
chiller operating performance, this work is intended to contribute to the research in this
area. Therefore, detailed information about the experiments conducted on an adapted
screw chiller test rig is provided in the following sections. Note that the data for the CBM
model validation was partially obtained from these experiments.

4.2 Experimental Setup
In the following, an overview of the experimental investigation is provided, which is based
on the adaptation of an ammonia-based screw chiller system. First, the test rig is pre-
sented including its concept, its function-preserving components as well as its final design.
Then, the data collection procedure is described in more detail and the available sensor
suite is presented.

4.2.1 Test Rig
The test rig utilised throughout the experiments primarily consists of an ammonia based
(R-717) chiller system adapted to enable the simulation of some predefined faults. The
main components of the chiller include a screw compressor driven by a three-phase
synchronous motor with an electrical rated output of 35 kW controlled via a variable-
frequency drive (VFD). Plate heat exchangers are used for both the condenser and the
evaporator, the latter being a flooded type. A horizontal vapour-liquid separator, also
known as receiver, is integrated to separate the liquid and gaseous phases of the working
fluid. This prevents the compressor from drawing liquid refrigerant, which could poten-
tially lead to its destruction. In addition, the circulating refrigerant passes through an
expansion valve between the condenser and the receiver before entering the evaporator.

One of the most crucial aspect of setting up a test rig for experimentally investigating
chiller faults is the wide variety of different operational states that can possibly occur
in practice due to external influences. Comstock et al. [133] narrowed down three key
influencing quantities impacting the chiller operation, namely: the ambient temperature,
the provided cooling load and the cooling temperature. The test rig design must therefore
allow for the investigation of different operating conditions in order to study the effects
of faults under a wide range of operating conditions. In addition, these conditions must
meet sufficiently accurate repeatability to ensure comparable operating states. To meet
these requirements in a cost effective manner, two bypasses are introduced: one between
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Figure 4.1: An abstract view of the simplified test rig piping diagram.

chilled water circuit and the cooling water circuit, and another between the cooling water
circuit and the cooling tower circuit.

As shown in Figure 4.1, the two three-way valves allow to control the water-glycol
mass flows entering each circuit, which in turn enables the inlet temperatures to the
condenser and evaporator to be set. The excess heat is furthermore released into the
external environment via a cooling tower located outside the test facility. Hence, the test
rig allows for the simulation of different ambient temperatures that would affect Tci the
most. Furthermore, the water-glycol entering temperature at the evaporator inlet Tei can
be controlled.

At this point, it should be pointed out that there is a significant difference between real-
world refrigeration systems and the test rig presented in this work. In practice, the control
strategy of a refrigeration system includes several other subcomponents in addition to the
chiller and is often considered a more complicated task, since its objective stretches well
beyond the provision of the desired cooling temperature. Both for reasons of trouble-free
operation and energy efficiency, several control loops are often part of the holistic control
system, which may influence each other [189, p. 269], making the individual controller
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Figure 4.2: Presentation of the test rig and its main components.

design difficult. However, since the objective of the test rig design differs from that of a
real-world system, the control strategy is essentially limited to the variables Tci and Tei

and results from the considerations presented in [133].
As listed in Table 4.2, the PLC forms the core of the test rig control system by

providing multiple communication standards and aggregating all process information.
More importantly, it enables the implementation of the control strategy of the chiller
system. Likewise, it controls other peripheral devices, such as the position of the three-
way valves for controlling the water temperatures as they enter the heat exchangers or the
switching of the cooling tower’s cooling water pump. Moreover, the system is equipped
with a human machine interface (HMI) to be used by the operator to change set-points
variables or to monitor the process. The PLC as well as the HMI and the associated
electronics are installed within the control cabinet, whereby the overall system is tested
and approved by the manufacturer according to the applicable norms and standards.

The test rig illustrated in Figure 4.2 contains a water-glycol mixture being applied as a
convector fluid, with ethylene glycol added for corrosion and frost protection as suggested
by the system manufacturer. Although the system was initially not expected to yield
chilled water-glycol temperatures below 0 °C, it operates close to the freezing point of
water at ambient pressure and may drop below it during the start-up sequence or shortly
after changing the set-point variables due to time-delays along the closed loop control
system. This is especially critical when changing the set-point of Tei (T ∗

ei) from high to
low values, which justifies the use of water-glycol rather than water only.

In the final step of the commissioning phase, several tests were performed on the overall
system, including software and hardware components, to ensure that the test rig provides
its full intended functionality. In a broader sense, this step also includes the determination
of the controller parameters for controlling Tci and Tei as well as the operating limits of
the chiller, which in turn affect the test sequence to be derived. Thereby, attention is
paid to the pressure within the high pressure line prc, i.e. the refrigerant pressure at
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Table 4.2: A collection of the main test rig components.

Subsystem Component Qty Type reference Manufacturer

Refrigeration
cycle

Condenser &
Evaporator 2 AlfaNova 76-80H Alfa Laval

Oil cooler 1 AlfaNova 52-50H Alfa Laval
Screw compressor 1 OSKA5341-K Bitzer
Oil separator 1 OA1954A Bitzer
Vapour-liquid
separator 1 Custom Pakt GmbH

Expansion valve 1 HR 2-H for NH3 WITT

Drive
technology

Motor 1 5500 LSRPM
160 MP Leroy Somer

VFD 1 Powerdrive
MDR60T Leroy Somer

Water-glycol
circuits

Pumps 2 Movitec VF 45-1-1 KSB
Three-way valves 2 Typ 3260/5824 SAMSON
Cooling tower 1 ATW-24-4G-2 Evapco
Glycol 1 TYFOCOR TYFO

Control system
PLC 1 S7-1512C1 PN Siemens
HMI 1 Simatic MP 277 Siemens
IO-Link Master 2 AL1402 ifm

the compressor discharge, since the test rig is equipped with a high pressure emergency
shut-down for safety reasons. In fact, this is considered to become critical in case of high
cooling water temperatures, high cooling loads or as a result of some induced faults. The
reason for this is that these quantities can lead to an increase in the refrigerant condensing
temperature Trc and thus also in the pressure prc. Accordingly, the operating envelope
of the chiller is chosen as a compromise between exploiting a wide range of operating
conditions and avoiding interruptions within the measurement series triggered by safety
devices.

4.2.2 Data Acquisition
Since the goal of this work is to accurately assess faults by analysing the thermodynamic
state of a chiller, their representation by the available sensor technology is of great im-
portance to validate the proposed CBM model. Thus, the test rig is equipped with a
comprehensive set of sensors introduced for control and state monitoring purposes. Both
analogue and digital sensors are included in the system architecture, whereas data are
relayed to the PLC via multiple analogue extension modules, a Profibus and a Profinet
interface. As shown in Figure 4.3, the latter is used to interface the IO-Link based sensors
via the IO-Link Master devices and to aggregate the information provided through the
power monitoring system (PMS). To access the information provided by the VFD, it is
connected to the PLC through a Profibus fieldbus, which is primarily used for setting and
monitoring the compressor speed ncomp. Another important communication standard pro-
vided is the Open Platform Communication - Unified Architecture (OPC-UA) protocol,
as it allows the access of process variables including set-point values, sensor readings, or
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Figure 4.3: Communication architecture for the acquisition of sensor data.

computed quantities. During the test series, the data are acquired from the sensor suite
by iteratively requesting data from the PLC integrated OPC-UA server. The counterpart
represses a computer deployed for process monitoring purposes, whereby both the cyclic
data acquisition and transmission as well as the persistent data storage via a relational
database management system are realised by a customised software developed within the
scope of this work. Thereby, the data are recorded during the test cases with a sampling
interval of 1 sec.

As shown in Table 4.3, the accessible information provided by the test rig is primarily
focused on the sensor signals used to monitor its thermodynamic state, most of which
are resistance temperature detectors. Following the suggestions of Comstock et al. [133,
p. 41], the analogue temperature transmitters were first calibrated with an ice water bath,
while the other sensors were already calibrated at the factory and also do not allow any
adjustment on site. However, the authors also concluded in their work that for faults
assessment purposes absolute accuracy is not as important as precision.

While most temperature sensors are introduced to draw conclusions about the thermo-
dynamic state of the system, those monitoring the water-glycol inlet temperatures at the
condenser and evaporator, respectively, are given special attention because they largely
determine the operational state of the chiller and therefore serve as process variables to
be controlled. As can be seen from the listed sensor suite, the measurements of the evap-
orator inlet and outlet temperatures on the water-glycol are duplicated for reasons of
redundancy, as these values are used to calculate the cooling load, which is often consid-
ered a decisive thermodynamic quantity of a chiller system [189, p. 269]. Consequently,
some additional redundant sensors are introduced, either for monitoring the stability of
the measurements or for safety reasons.

In addition, pressure transducers are included within the sensor suite in both the high
pressure line and the suction line within the refrigerant cycle. This is done for monitoring
compliance with safety-relevant threshold values during operation. These quantities are
furthermore important because they are utilised in this work to generate features from
thermodynamic dependencies or from refrigerant property tables. The sensory recording
of the volume flows, on the other hand, is used exclusively for the simulation of faults with
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Table 4.3: The accessible test rig sensor suite.

Desig-
nation Description Sensor/Source Interface Unit

Tci Water temperatur at condenser inlet

ETF02
PT100 Analogue °C

Tco Water temperature at condenser outlet
Tei Water temperature and evaporator inlet
Teo Water temperature at evaporator outlet
Toil Oil feeding temperature
Tamb,i Test rig ambient temperature (inside)
Tsuc Refrigerant suction temperature AT102 Analogue °C
Tdis Refrigerant discharge temperature
T 1
ei Water temperature and evaporator inlet

TA2435 IO-Link °CTeo
1 Water temperature at evaporator outlet

Tamb,o Test rig ambient temperature (outside)
prc Refrigerant pressure at compressor outlet AKS3000 Analogue bar
pre Refrigerant pressure at compressor inlet
pre

1 Refrigerant pressure at compressor inlet PV7004 IO-Link bar
V̇C Cooling water volume flow rate Proline

Promag 50 Analogue m3/h
V̇E Chilled water volume flow rate
Icomp Instantaneous motor current (compressor) SENTRON

PAC3200 (PMS) Profinet A
Pcomp Instantaneous motor power (compressor) kW
ncomp Compressor rotational speed VFD Profibus min−1

Q̇C Condenser heat flow PLC2 kW
Q̇E Evaporator heat flow kW
1 Redundant sensor used for data validation
2 Computed variables

predefined severity levels, as described below, and has no direct influence on the CBM
model training. Likewise, both energy data via the PMS and the compressor speed via
the VFD are acquired and stored, whereby the latter is also used to determine the test
sequence, as explained in more detail in the following section.

During operation, the PLC also automatically computed further thermodynamic quan-
tities, namely the condenser and evaporator side heat flow, that cannot directly be mea-
sured. Along with the data acquired from the given sensor suite, this information is
provided through the PLC, which are used for process monitoring tasks. Thus, the heat
flows at the evaporator and the condenser can be computed. For the chilled water-glycol
mass flow ṁE passing through the evaporator, the heat flow absorbed or rejected by that
medium is given as [125, p. 127]

Q̇E = ṁE∆he = ṁEcp∆Te = V̇Eρwcp(Tei − Teo) (28)

where ∆he is the difference in the specific enthalpy and ∆TE the difference in water-glycol
temperatures before and after passing the evaporator, cp the specific heat capacity of the
respective single-phase medium and ρw denotes its density. It goes without saying that
this relation similarly holds for both the condenser as well as the evaporator, i.e. Q̇C and
Q̇E respectively. The heat flow dissipated through the condenser comprises the heat flow
absorbed from the chilled system and the compressor power Q̇C = Q̇E + P . It should
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be borne in mind that both cp and ρw slightly differ from those values of water due to
the presence of glycol in the water circuits. Nonetheless, for simplicity, the coefficients
for water are used in (28) to compute the theoretical heat flow at the condenser and
evaporator throughout this work.

In general, all substance-specific coefficients used throughout this dissertation are de-
rived from [190] unless stated otherwise. Although these two features were already com-
puted during the measurement series, most of the computed features used in the following
sections have been computed after the data acquisition phase. However, as these quan-
tities play an important role during the test rig commissioning phase as well as for the
comparison of the different operating conditions, they are already introduced in this sec-
tion. For an overall view of the features extracted from the datasets, the reader is referred
to Appendix A.5.

4.3 Procedure
This section provides an overview of the procedure for simulating different operational
states of the chiller contained within the test rig, whereby the test sequence is firstly
derived from the operational envelope. Secondly, steady-state analysis is performed and
the applied steady-state criterion is introduced in more detail. Finally, the different classes
of the dataset are presented.

4.3.1 Fault Examination
The fault examination procedure described in the following outlines the applied approach
to study the effect of some predetermined faults onto the overall chiller operation condi-
tion. Consequently, the data acquired during this phase are finally exploited to derive the
model in the scope of this dissertation, whereby the overall approach is derived from the
one presented by Comstock at al. [133].

As shown in Figure 4.4, during the commissioning of the entire system, all software
parts responsible for data storage, control and visualisation as well as all hardware com-
ponents of the test stand were first tested for faultless functionality. In addition, it had
to be ensured that the various operating states could be approached with sufficient re-
peatability. In the following phase, a benchmark test was performed in order to determine
the operating envelope of the system and to determine whether or not the steady-state

Figure 4.4: The fault examination procedure.
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criterion is suitable with regard to the applied control strategy. Most importantly, This
test represent the normal operation baseline and is used for recurring data validation
along the examination procedure such as, for example, to determine whether the chiller
indeed operates under a fault-free condition, i.e. after a previously induced fault has been
successfully removed.

During the experiments, only one fault in the system is considered at a time, as faults
occurring simultaneously are beyond the scope of this work. To study the effect on the
system variables with increasing severity, each fault has been gradually induced by defining
four severity levels (SL), approached on after the other. Subsequently, the fault was then
removed from the system, which was followed by a normal test run. By comparing the
data with the data from the benchmark test, it was then determined whether the fault-free
initial state could be restored or traces of the induced fault were still present in the system
before starting a new measurement series. If the data of the normal test run showed too
large deviations from those of the benchmark test, further measures had to be taken until
the fault-free state could be fully restored.

4.3.2 Test Sequence
In order to be able to compare the measurement series, a constant test sequence was
defined throughout the experiments, which was reviewed for its feasibility during the
commission phase and the benchmark test. This sequence was kept unchanged throughout
all measurement series of both faulty and fault-free chiller operations. Based on the
concept presented in [133], three control variables were determined making it possible to
cover a large operating spectrum of the chiller.

As partly described above, the reference variables Tci and Tei were chosen for this
purpose. In addition, the compressor rotational speed ncomp is additionally chosen to
derive the test sequence shown in Appendix A.2, with the set-points T ∗

ei ∈ {5, 10, 15},
T ∗
ci ∈ {23, 28, 33} and n∗

comp ∈ {65, 50, 35}. Consequently, by use of these variables,

Figure 4.5: The test sequence data plot at normal chiller operation.
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a 3x3x3 tensor could be determined representing a total number of 27 system states
[133]. As can be seen in Figure 4.5, all predefined operating states were approached one
after the other, with each experiment lasting about 12-16 hours before it was completed.
Furthermore, a steady-state criterion was introduced that had to be met at least once
by each state. Figure 4.5 also depicts the evaporator cooling load Q̇E as well as the
power consumption through the compressor power unit Pcomp to show the increase in the
coefficient of performance ε at low values of Tci and high values of Tei.

4.3.3 Steady-State Detection
The data collected throughout the experiments consists of both transient and a steady-
state chiller operating conditions, whereas transient system behaviour is generally con-
sidered to occur during start-up or shut-down phases as well as during state transitions,
i.e. after changing the set-point variables. As demonstrated in Figure 4.6, such states
are often subject to high system dynamics and therefore complicate the fault assessment
procedure, as statements about the chiller’s thermodynamic state are only possible to a
limited extent. Moreover, different dynamic response times may occur across the various
chiller subcomponents [191] resulting in time lags at the various sensor locations. As can
be seen from the figure, transient data are essentially related to rapidly changing ther-
modynamic states. Although in this work this is primarily caused by the controllers that
control the water-glycol inlet temperatures in order to enable the simulation of various
operating states with the test rig presented, transient system states also occur in the real
application and must therefore be treated accordingly with regards to CBM. In addition,
Figure 4.6 illustrates the issue incurred by the definition of the chiller operating range
discussed in the previous sections, as it shows the pressure in the high pressure line prc
following the controlled condenser temperatures while overshooting the targeted value for
Tci. This example demonstrates the importance of an appropriate buffer to the operating
limits of the chiller when determining the test sequence to avoid triggering the integrated
emergency shut-down and thus aborting the experiment.

Figure 4.6: Illustration of the transient operating condition during the start-up phase.
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Even though some studies exist on the use of transient data for developing a CBM
model as described, for example, by Armstrong et al. [192], most authors prefer to
follow the harnessing of steady-state data to fulfil this task [6], which is also the focus of
this work. However, as no system is ever steady and the respective sensor readings will
therefore vary to some degree throughout its operation [193], a meaningful criterion for
distinguishing between data stemming from transient system states and from a presumed
steady-state must be introduced, for which steady-state filters, or steady-state detectors,
are usually employed. As has already been described in Section 3.2, this work follows
the approach proposed in [6] for isolating data corresponding to a steady-state. The
implemented algorithm within the scope of this work can be found in Appendix A.1.1.

In general, the steady-detector computes local derivatives for each point in time, which
are then filtered using a Savitzky-Golay filter, whereby high frequency noise is reduced
and the SNR is improved. As this type relies on least-square polynomial approximation
within a certain time frame, the polynomial degree pd, the window size ws and an ap-
propriate threshold must be determined. As previously introduced, the latter is defined
as some scalar variable δthr times the standard deviation of the computed local deriva-
tives σdev following the suggestions of Beghi et al. [6]. As shown in Figure 4.7, a steady

Figure 4.7: Example of chiller approaching steady-state condition (grey area): (upper)
time signal of Teo and (lower) steady-state criterion with filtered local derivatives of Teo

using the approach of [6].
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state is determined when the peaks of the filtered signal are within a predefined threshold
for a certain period of time. Furthermore, one must define the variables indicating the
steady state. These should be chosen carefully, as a high number of indicators can lead to
long estimated transient states and thus reduces the information content exploited within
the FDD block [6]. On the other hand, using only one variable may cause inconsistent
definitions of the alleged steady-state, since some essential system conditions may not
be monitored. As proposed in the original paper, the water-glycol temperature at the
evaporator outlet Teo as well as the refrigerant pressure at the lower pressure side of the
refrigerant circuit pre are utilised for steady-state indication. Moreover, the following pa-
rameters were defined from earlier observations during the test rig commissioning; pd = 4,
ws = 241 and δt = 0.1. It should also be noted that a stead-state had to be continuously
active for at least 5 minutes (tmin = 5 min) to be recognised as such.

4.4 Fault Simulation and Patterns
The presented test rig enables the investigation of several faults which, in turn, forms
the basis for the data collection phase in this work. Thereby, the faults of interest are
artificially induced at different severity levels and monitored within a predefined chiller
operating range. Therefore, this section describes the approach towards the fault simula-
tion procedure, whereby the specific fault patterns are presented as determined from the
experiments.

4.4.1 Classes
This dissertation focuses on five distinct classes of the collected dataset. The normal, or
fault-free, class originates from the test sequences performed during the commissioning
phase, the benchmark test and from the successful normal tests after a removing a certain
fault. The remaining classes represent faulty operating conditions at different SL, whereas
a subset of faults were selected from [133] in this study. This is mainly due to the fact
that the proposed CBM model should be applied across multiple domains and, therefore,
the same types of faults must be included in the two validation datasets employed in this
work.

In addition, the fault types investigated in this work are generally classified as critical,
as discussed in Section 2.4.2, and were selected for investigation with the provided test
rig on their feasibility. For example, condenser fouling has been identified by Comstock
et al. [133] as a severe issue, as it leads to a reduced heat transfer coefficient and thus
causes performance losses. The authors simulated this fault type by blocking some water
tubes within the shell and tube heat exchanger. Although this does not change the actual
heat transfer coefficient, it reduces the heat transfer surface area and therefore induces a
similar thermodynamic effect. However, brazed plate heat exchangers were used in the
test rig applied in this work, which do not allow the simulation of a reduced heat transfer
coefficient in the same manner. This applies equally to refrigerant overcharge simulated
in [133], since the test rig used in this work is based on an integrated refrigerant receiver
and, thus, a deviation from the normal operational state was only to be expected in the
event of liquid refrigerant being drawn by the compressor, an effect also known as liquid
slugging. Since screw compressors can only withstand limited amounts of liquid slugging
without severe degradation or even destruction [194], this fault was not investigated in this
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Table 4.4: Computed thermodynamic variables for state comparison.

Equation Designation

Tre =
BA

AA − log10(pre)
− CA Refrigerant evaporation temperature

Trc =
BA

AA − log10(prc)
− CA Refrigerant condensing temperature

∆Tea = Teo − Tre Evaporator approach temperature
∆Tca = Trc − Tco Condenser approach temperature
∆TE = Tei − Teo Evaporator water-glycol temperature difference
∆TC = Tco − Tci Condenser water-glycol temperature difference
∆Tsh,dis = Tdis − Trc Superheat temperature at compressor discharge
∆Tsh,suc = Tsuc − Tre Superheat temperature at compressor suction line
ε = Q̇E/Pcomp Coefficient of performance

work. Furthermore, the simulation of excess oil in the system and a defective expansion
valve could not be simulated due to the chiller design characteristics.

As a consequence, four faults were selected to be simulated, namely: (RVE) re-
duced evaporator water-flow rate, (RVC) reduced condenser water-flow rate, (NC) non-
condensable gases and (RL) refrigerant leak. While the first two are component-level
faults, as their root causes are locally bounded, the other two are considered system-level
faults. Thereby, non-condensable gases usually refer to air being trapped in the refrig-
erant line, often caused by improperly performed maintenance [133, p. 88]. Refrigerant
leak, in turn, refers to the loss of working fluid throughout the chiller operation.

The applied approaches for simulating the faults as well as their impact on the chiller
operating condition in comparison to the normal state are presented in more detail below.
Besides the thermodynamic state variables presented in Section 4.2.2, the remainder of
this section introduces additional features to enable better comparability with the results
presented in [133]. It is noteworthy, however, that one can compute them from the
information provided by the available sensor suite. As shown in Table 4.4, these variables
include, among others, the refrigerant evaporation Tre and condensing Trc temperatures,
which are approximated using the Antoine equation. It should be noted that the Antoine
coefficients AA, BA and CA listed in [195, p. A.59] are used in this work to calculate
both the evaporating and condensing temperatures of the circulating refrigerant for the
temperature range in which the test rig was expected to be operating. Furthermore,
this work applies a multiple linear regression model in a similar manner as in [133] for
comparing the various operating conditions as

yv(Tei, Tci, Q̇E) =β∗
0 + β∗

1 · Tei + β∗
2 · Tci + β∗

3 · Q̇E

+ β∗
4 · Tei · Q̇E + β∗

5 · Tci · Q̇E + β∗
6 · Q̇2

E

(29)

whereby yv can represent any variable from the dataset and β∗
i are the regression coeffi-

cients.
As can be seen from Appendix A.2, a total number of 31 experiments were performed,

of which 18 were used to extract the dataset. Table 4.5 shows the average deviation δe
from all normal test cases compared with the benchmark test, whereby the coefficient of
determination R2 is additionally listed to show the quality of the prediction through the
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Table 4.5: Average deviations of data of the normal test cases from benchmark dataset.

Variable BM N-RVE N-RVC N-NC
R2 δe R2 δe R2 δe R2

Pcomp 0.996 -0.49 % 0.996 1.36 % 0.997 -0.05 % 0.997
pre 0.999 -0.75 % 0.999 -1.18 % 0.998 -0.97 % 0.998
prc 0.999 -0.30 % 0.999 0.31 % 0.998 0.37 % 0.998
∆Tsh,suc 0.944 -9.50 % 0.935 3.31 % 0.964 12.52 % 0.949
∆Tsh,dis 0.930 -1.10 % 0.850 2.48 % 0.912 12.81 % 0.982
∆Tea 0.989 3.97 % 0.989 8.37 % 0.989 3.71 % 0.989
∆Tca 0.996 0.02 % 0.996 0.23 % 0.997 -1.35 % 0.997
∆TE 0.999 0.37 % 0.999 1.22 % 0.999 1.34 % 0.999
∆TC 0.989 -1.77 % 0.990 1.78 % 0.995 5.23 % 0.996
ε 0.947 0.58 % 0.946 0.52 % 0.958 2.26 % 0.959
Toil 0.995 -0.89 % 0.992 0.81 % 0.994 2.52 % 0.991

regression model (29). One may expect from this table a slight impact of seasonal trends
on the entire measurement series, as the data collection phase took about 7 months
starting in winter and ending in autumn. For example, the benchmark test ‘BM’ was
conducted about 5 months earlier than the normal test case ‘N-NC’, which led to slight
deviations of some sensor values between the two experiments due to the varying ambient
temperatures that affected the measurement series. In this regard, it should be noted
that the deviations of ∆Tsh,suc and ∆Tsh,dis, although appearing high, only amount to a
difference of less than ±0.4 K, with the only exception of ∆Tsh,dis in the ‘N-NC’ dataset,
which is about +1.67 K. Nevertheless, the repeatability appears to be stable under the
circumstance of varying ambient temperatures of Tamb,i ranging from 18 °C to 34 °C and
Tamb,o ranging from 0 °C to 35 °C throughout the conducted experiments. As will be
pointed out in the following, the impact of the investigated faults on these state variables
is significantly larger compared to the experimental uncertainty.

The following sections provide a detailed overview of the faults induced in this study,
the definition of their respective severity levels and their impact on the overall operating
condition. Besides the experimental results depicted subsequently, the reader is also
referred to Appendix A.4 for further details. It should be further noted that the evaluation
points of respective regression models shown in the figures below, are all evaluated at
T ∗
ei = 10 °C for simplicity reasons. The results can be directly compared to the findings

presented in [133] and show that both Hypothesis H1.1 (varying fault characteristics across
domains), but also Hypothesis H3.2 (existence transferable fault indicative features) can
be confirmed.

4.4.2 Reduced Evaporator Water-Flow Rate
In this work, the fault RVE was induced by reducing the water-flow rate through the
evaporator V̇E through the integrated ball valve in the chilled water circuit (see Figure 4.1).
As both integrated pumps are pressure controlled, the flow rate could be decreased by
carefully adjusting the valve position which, due to the change in pressure differences, led
to a reduction in the flow rate. Furthermore, the flow rate could be tuned by directly
utilising the respective sensor readings from the electromagnetic flowmeters integrated in
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Table 4.6: The severity gradation of the reduced evaporator flow rate.

Test Test scenario Desired condition Actual condition

0 Severity Level 1 15 % reduced flow rate 20.8 m3/h
1 Severity Level 2 30 % reduced flow rate 17.0 m3/h
2 Severity Level 3 45 % reduced flow rate 13.6 m3/h
3 Severity Level 4 60 % reduced flow rate 9.9 m3/h
4 Normal 25.0 m3/h

Table 4.7: The average deviations of RVE datasets from benchmark dataset.

Variable RVE1 RVE2 RVE3 RVE4
δe R2 δe R2 δe R2 δe R2

Pcomp -1.22 % 0.997 0.09 % 0.996 3.39 % 0.997 6.59 % 0.997
pre -1.34 % 0.999 -3.08 % 0.999 -5.75 % 0.998 -9.63 % 0.998
prc -0.13 % 0.998 -0.10 % 0.999 -0.01 % 0.998 0.29 % 0.999
∆Tsh,suc -3.93 % 0.915 -2.80 % 0.909 -4.07 % 0.937 2.51 % 0.936
∆Tsh,dis 1.08 % 0.890 -5.61 % 0.830 -2.33 % 0.687 0.89 % 0.826
∆Tea -2.10 % 0.989 -4.46 % 0.988 -8.78 % 0.990 -16.96 % 0.987
∆Tca -0.30 % 0.997 0.27 % 0.997 0.74 % 0.998 1.41 % 0.999
∆TE 18.53 % 0.999 42.87 % 0.999 79.54 % 0.999 147.16 % 0.999
∆TC -1.32 % 0.994 -1.27 % 0.993 -1.35 % 0.996 -0.90 % 0.997
ε 2.01 % 0.946 0.76 % 0.961 -2.77 % 0.952 -4.23 % 0.952
Toil -0.54 % 0.994 -0.49 % 0.987 -0.39 % 0.992 0.53 % 0.997

the chilled water circuit. As shown in Table 4.6 the flow rate was gradually decreased in
15 % steps starting from the initial rate of V̇E = 25.0 m3/h.

As can be seen from Table 4.7 as well as Appendix A.4.1, this fault is i.a. charac-
terised by rising values of ∆TE, as can be directly inferred from (28). Accordingly, the
temperature drop causing the trend of pre was expected. Figure 4.8 illustrates the effect of
increasing SL on the evaporator pressure, which decreased analogously to the evaporating
temperature Tre, especially at high cooling loads. It was further observed that this fault is
accompanied by an increased power consumption Pcomp as it resulted in lower evaporator
outlet temperatures Teo which in turn affected the refrigerant evaporating temperature
Tre. Consequently, the chiller had to maintain a lower pressure within the evaporator,
whereby the pronounced pressure difference between the suction and high pressure line led
to an increase in the overall power consumption. However, one should bear in mind that
these values are slightly larger than the measurement uncertainty and should therefore
be interpreted with caution.

Although these patterns are similar to those presented in [133], they still differ in their
characteristics. In particular, the difference in the evaporator approach temperatures ∆Tea

should be underlined in this respect. As can be seen from Figure 4.9, ∆Tea decreases at
higher SL, whereby this characteristic is particularly pronounced at lower chiller cooling
loads. Interestingly, this contrasts with results presented by Comstock et al. [133], where
∆Tea is increased while reducing the evaporator water flow rate. This seems to be mainly
due to the use of different types of heat exchangers within the two test rigs. The operation
of the shell and tube heat exchanger utilised within the ASHRAE 1043-RP project is
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Figure 4.8: The deviation of pre for RVE.

differently affected by this fault compared to the plate heat exchanger, which exemplary
confirms Hypothesis H1.1. As the latter provides a highly turbulent flow, a smaller
hydraulic diameter and a comparatively higher effective heat transfer area, it promotes
an enhanced heat transfer coefficient [196, pp. 6-8], even at lower water flow rates. Most
importantly, the chiller used in the test rig integrates a flooded evaporator, allowing lower
evaporator approach temperatures to be achieved [197, pp. 476-478] compared to its dry
expansion counterpart used in [133]. Consequently, the lower flow velocity caused by the
lower flow rate allowed more time for heat exchange, resulting in lower values of ∆Tea,
whereas by use of a shell and tube type evaporator this value is likely to be increased
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Figure 4.9: The deviation of ∆Tea for RVE.

75



4.4 Fault Simulation and Patterns 4 DATA SOURCE

due to the degraded heat transfer between the tube wall surface and the working fluid.
This once again underlines a key assumption made at the beginning of this dissertation,
i.e. that the transferability of certain fault characteristics amongst heterogeneous chiller
systems may not be possible to a full extent.

4.4.3 Reduced Condenser Water-Flow Rate
Similar to the previous considerations regarding RVE, this fault was induced by reduc-
ing the water-flow rate through the condenser, which was tuned by gradually closing the
respective ball-valve while monitoring the measured volume flow rate provided through
the flow meter within the cooling water circuit. Compared to the previous fault, a high-
pressure emergency shut-down was likely during the measurement series when investigat-
ing this fault, especially at high water inlet temperatures at both the evaporator and the
condenser. This is mainly due to the fact that higher pressure values within the high
pressure line of the investigated chiller were to be expected with this fault as a direct
result of the increased refrigerant condensing temperatures Trc. Thus, a smaller SL fault
gradation had to be chosen, as shown in Table 4.8, to avoid interruptions during the
data collection. Besides, the reduction in water flow through the condenser resulted in
increased power consumption by the chiller, which is shown in Table 4.9.

A further similarity can be identified in the risen difference between the condenser
inlet and outlet temperatures of the cooling water ∆TC . As illustrated in Figure 4.10,
the deviation compared to the benchmark dataset was more than 35 % for the highest

Table 4.8: The severity gradation of the reduced condenser water-flow rate.

Test Test scenario Desired condition Actual condition

0 Severity Level 1 7.5 % reduced flow 20.5 m3/h
1 Severity Level 2 15.0 % reduced flow 18.6 m3/h
2 Severity Level 3 22.5 % reduced flow 17.0 m3/h
3 Severity Level 4 30.0 % reduced flow 15.4 m3/h
4 Normal 22.0 m3/h

Table 4.9: The average deviations of RVC datasets from the benchmark dataset.

Variable RVC1 RVC2 RVC3 RVC4
δe R2 δe R2 δe R2 δe R2

Pcomp -0.17 % 0.996 1.25 % 0.996 5.20 % 0.995 5.88 % 0.994
pre -0.62 % 0.998 -0.55 % 0.999 -0.70 % 0.999 -0.81 % 0.998
prc 0.53 % 0.999 1.90 % 0.998 3.51 % 0.998 4.91 % 0.998
∆Tsh,suc -5.19 % 0.879 -7.37 % 0.938 -6.10 % 0.959 -6.83 % 0.912
∆Tsh,dis -4.77 % 0.775 -5.09 % 0.764 -7.00 % 0.868 -3.89 % 0.665
∆Tea 2.26 % 0.988 3.26 % 0.988 5.33 % 0.987 4.55 % 0.986
∆Tca 0.93 % 0.996 2.20 % 0.996 3.19 % 0.995 3.55 % 0.995
∆TE 0.11 % 0.999 0.19 % 0.999 0.34 % 0.999 0.19 % 0.999
∆TC 3.29 % 0.990 12.76 % 0.988 24.92 % 0.987 35.55 % 0.988
ε 1.21 % 0.959 0.09 % 0.940 -5.33 % 0.949 -4.44 % 0.958
Toil -0.54 % 0.986 0.44 % 0.988 1.73 % 0.987 2.76 % 0.984
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Figure 4.10: The deviation of ∆TC for RVC.

SL. As a consequence, the refrigerant condensing temperature Trc was similarly increased
due to the change in the water condenser outlet temperature Tco. From Figure 4.11,
one can additionally see the impact on the pressure within the high pressure line prc,
which as expected was increased especially at high chiller cooling loads. Furthermore,
Appendix A.4.2 shows slightly higher oil temperatures Toil as well as an increased con-
denser approach temperature ∆Tca, whereby the higher measurement uncertainty should
be taken into account when interpreting the latter. In addition, the reduction of the
water-flow through the condenser caused an increased chiller power consumption, which
is depicted in Table 4.9. A further similarity can be identified in the risen difference
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Figure 4.11: The deviation of prc for RVC.
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between the condenser inlet and outlet temperatures of the cooling water ∆TC . As illus-
trated in Figure 4.10, the deviation compared to the benchmark dataset was more than
35 % for the highest SL. As a consequence, the refrigerant condensing temperature Trc

was similarly increased due to the change in the water condenser outlet temperature Tco.
From Figure 4.11, one can additionally identify that impact on the pressure within the
high pressure line prc, which as expected was increased especially at high chiller cooling
loads. Furthermore, Appendix A.4.2 shows slightly higher oil temperatures Toil as well
as an increased condenser approach temperature ∆Tca, whereby the higher measurement
uncertainty should be taken into account when interpreting the latter.

4.4.4 Non-Condensable Gases
The fault NC is commonly caused by entrapped air within the refrigerant line. To simulate
this condition, predefined amounts of nitrogen were injected into the high pressure line.
Since its chemical properties are similar to those of air, comparable results can be achieved
without the risk of moisture contamination [133, p. 88]. Table 4.10 shows the selected
severity gradation by the gradual addition of nitrogen. As the nitrogen was expected to be
mainly trapped in the condenser, the chosen SL were based on the theoretical displacement
of the refrigerant by the induced nitrogen within the heat exchanger. The calculation of
the displaced volume was based on the mean pressure prc and the corresponding refrigerant
condensing temperature Tre prevailing in the normal operating condition of the chiller
using the data from the benchmark test. Accordingly, SL1 corresponds to approx. 10 %
of the condenser volume at the computed mean pressure, SL2 to approx. 20 % of the
condenser volume, etc.

However, as was recognised throughout the experiments, the nitrogen was not only
located within the condenser, but was also trapped within the expansion valve, resulting
in anomalous system behaviour even after the high-pressure line was completely evacuated
and refilled with refrigerant. Only after the explicit evacuation of the expansion valve,
the initial chiller operating state could be restored. In order to determine the amount
of gas injected into the system, the weight of the nitrogen gas cylinder was continuously
monitored by use of a precision scale with a measurement resolution of ±0.1 g. Yet, this
also led to inconsistencies in the reproducibility, as the exact determination of the cylinder
weight during the filling process was only possible to a limited extent, which explains the
sometimes larger deviations between the SL increments. In general, this fault caused the
most severe impact on the operating conditions of the overall system in all the experiments
carried out. Thus, the fault patterns it caused are comparatively easy to be identified, as
can be seen in Table 4.11. Thus, SL1 already led to a significant increase in pressure within
the high-pressure line, which is why the operating condition in Test 25 (see Appendix A.2)

Table 4.10: The severity gradation of non-condensable gases in refrigerant line.

Test Test Scenario Desired Condition Actual condition

0 Severity Level 1 Add 10 % by volume nitrogen 17.2 g added
1 Severity Level 2 Add 20 % by volume nitrogen 38.2 g added
2 Severity Level 3 Add 30 % by volume nitrogen 53.5 g added
3 Severity Level 4 Add 40 % by volume nitrogen 68.2 g added
4 Normal No nitrogen present
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Table 4.11: The average deviations of NC datasets from the benchmark dataset.

Variable NC1 NC2 NC3 NC4
δe R2 δe R2 δe R2 δe R2

Pcomp 7.46 % 0.995 18.02 % 0.995 20.61 % 0.995 27.69 % 0.993
pre -1.09 % 0.998 -2.06 % 0.999 -1.23 % 0.999 -1.33 % 0.999
prc 7.10 % 0.998 16.42 % 0.996 21.23 % 0.993 26.97 % 0.995
∆Tsh,suc 11.54 % 0.960 8.75 % 0.927 -9.15 % 0.879 -15.24 % 0.950
∆Tsh,dis -7.17 % 0.944 -6.36 % 0.825 -13.62 % 0.762 -35.22 % 0.717
∆Tea 7.15 % 0.989 14.98 % 0.992 11.74 % 0.994 10.58 % 0.988
∆Tca 41.69 % 0.996 97.45 % 0.994 127.19 % 0.995 166.18 % 0.995
∆TE 1.40 % 0.999 1.28 % 0.999 0.73 % 0.999 0.69 % 0.999
∆TC 4.01 % 0.993 5.44 % 0.995 2.55 % 0.996 1.97 % 0.993
ε -5.02 % 0.955 -16.31 % 0.958 -20.09 % 0.973 -26.93 % 0.967
Toil 5.32 % 0.993 8.01 % 0.983 6.71 % 0.981 7.58 % 0.975

could no longer be approached due to the risk of an emergency shut-down. As illustrated
in Figure 4.12, the pressure continuously increased with higher SL leading to fewer and
fewer reachable operating states, especially at high condenser water inlet temperatures.
The test scenario to investigate the highest SL consequently only allowed 17 operating
states to be approached, whereby high cooling loads in particular had to be avoided.
As expected, the differences in the high pressure range are mainly due to the nitrogen
located within the condenser. Since the gas occupies a certain volume inside the heat
exchanger, the heat transfer area available for refrigerant condensation is reduced. Since
the expansion valve controls the refrigerant to be completely liquefied after passing the
condenser, the corresponding highside float regulator causes an increase in the pressure
ratios.
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Figure 4.12: The deviation of prc for NC.
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Figure 4.13: The deviation of ∆Tca for NC.

Furthermore, this fault appears to be associated with a drop in the refrigerant super-
heat temperature at the compressor discharge ∆Tsh,dis. Although the regression model
does not seem to approximate the underlying data structure of this variable well, as shown
by the lower values of R2, a clear trend is evident. Appendix A.4.3 shows that ∆Tsh,dis

was only slightly affected in SL1, but decreased as more nitrogen was induced into the
system, with deviations from the benchmark dataset of more than 35 % observed in SL4.
Although this property seems unambiguous for this type of fault, it is somewhat mislead-
ing from a thermodynamic point of view. Thus, the reason for the drop in ∆Tsh,dis is
essentially the increasing heat flow over the oil cooler as a result of the control mechanism
designed to stabilise the oil feeding temperature Toil. Due to the increased pressure lift
between the suction and high-pressure lines, the compressor is subject to higher power
consumption and, therefore, the coefficient of performance ε is significantly reduced. One
can furthermore recognise a significant difference in the condenser approach temperature
∆Tca, as shown in Figure 4.13. From the regression analysis presented in this section,
it appears that the fault patterns are the most pronounced for lower condenser water
inlet temperatures Tci. Moreover, it can be concluded that, although some patterns show
similar characteristics to the fault RVC, the deviations from the benchmark dataset of
most features appear to be larger at low chiller cooling loads.

4.4.5 Refrigerant Leak
The last fault investigation was carried out during the test rig dismantling phase and could
therefore be realised with little effort. Due to the behaviour of the flooded evaporator
in case of refrigerant loss, a significant change in the operating conditions was only to
be expected when the refrigerant level fell below a certain limit. Since this limit was
not known, instead of defining a set of predefined SL, the amount of refrigerant was
gradually reduced until a noticeable change became obvious, as shown in Table 4.12.
Consequently, a decisive fault pattern could be recognised after 50 % of the working fluid
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Table 4.12: The severity gradation of refrigerant leak.

Test Test Scenario Desired Condition Actual condition

0 Severity Level 0 10 % reduced refrigerant 12.1 kg
1 Severity Level 0 20 % reduced refrigerant 10.6 kg
2 Severity Level 0 30 % reduced refrigerant 9.2 kg
3 Severity Level 0 40 % reduced refrigerant 7.8 kg
4 Severity Level 1 50 % reduced refrigerant 6.4 kg
5 Severity Level 2 60 % reduced refrigerant 5.0 kg

had been removed from the chiller. On the other hand, the removal of 60 % caused the
entire system to fail and only the operational states at low compressor rotational speed
ncomp, n

∗
comp could be approached. Thus, only two SL can be identified in this fault class,

as shown in Table 4.13. For the deviations of all RL datasets, the reader is referred to
Appendix A.4.5.

It should be noted that this fault was investigated after the system was fully evacuated
and refilled again to determine the quantity of working fluid left within the refrigerant
line, as removing the previous fault also caused some refrigerant loss. As a consequence,
this led to slight deviations between the measured values compared to the benchmark
test. Furthermore, these tests were carried out in midsummer, approx. 4 months after
the last fault test and approx. 6 months after the benchmark test with outside temper-
atures of up to 35 °C. As a result, a comparatively larger deviation could be recognised
throughput these experiments, as shown in the figures below. Even though the regression
model was able to approximate the collected data well, as becomes evident from the high
values of R2, SL2 could only be investigated at rather low cooling loads and therefore a
meaningful interpretation of a characteristic trend would barely be possible. Accordingly,
the illustration of the associated observations shows only the mean values of the specific
operating conditions. As illustrated in Figure 4.14, a significant characteristic of this fault
is the increasing evaporator approach temperature ∆Tea. On the other hand, ∆Tca does
not seem to be affected and therefore represents a discrepancy compared to the centrifugal

Table 4.13: The average deviations of RL datasets from the benchmark dataset.

Variable RL1 RL2
δe R2 δe R2

Pcomp 19.08 % 0.988 49.82 % 0.990
pre -19.28 % 0.965 -44.32 % 0.990
prc 0.79 % 0.998 0.80 % 0.999
∆Tsh,suc 238.48 % 0.905 468.97 % 0.910
∆Tsh,dis 21.67 % 0.930 78.52 % 0.934
∆Tea 323.52 % 0.954 1422.07 % 0.997
∆Tca 1.73 % 0.994 0.69 % 0.930
∆TE 0.12 % 0.999 -0.38 % 0.999
∆TC 4.81 % 0.991 14.11 % 0.880
ε -14.70 % 0.969 -33.24 % 0.990
Toil 6.44 % 0.993 12.95 % 0.998
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Figure 4.14: The deviation of ∆Tea for RL.

chiller dataset. Another fault sensitive feature has turned out to be the refrigerant suction
superheat temperature ∆Tsh,suc, as shown in Figure 4.15. This is an important indication
especially because refrigerant superheat on the low pressure side is likely to be minimal or
non-existent in a flooded evaporator design. As highlighted in Appendix A.4.3, the fault
is accompanied by a pressure drop of pre and further results in a lower coefficient of per-
formance ε as indicated due to the increased power consumption caused by the severely
increased pressure drop. Lastly, the superheat temperature at the compressor discharge
∆Tsh,dis is slightly higher compared to the normal operating condition. Yet, this should
be interpreted with caution due to the implemented oil temperature control loop.
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5 Model Validation
The evaluation of the CBM model performance is of great importance to determine its
general applicability. In order to reveal its strengths but also its weaknesses, it is necessary
to conduct a comprehensive validation using certain performance measures, the task of
which is the essential content of this chapter. To this end, the evaluation concept is
presented first, followed by the introduction of the preconditions, such as the chosen
feature space as well as the applied metrics. Subsequently, the individual FDD results
of the fault detection, the fault isolation and the fault identification layer are reviewed
and evaluated accordingly. Finally, the performance of the holistic model is assessed and
the results are presented. Throughout this chapter, the research questions presented in
Section 2.6 as well as their accompanying hypotheses will be specifically dealt with.

5.1 Concept
When considering testing procedures for software or software parts, a general distinction
is made between the terms verification and validation, whereas the former generally refers
to the examination of whether the respective product complies with the given specifica-
tion. However, verifying the individual facets of ML models may only be feasible to a
limited extent because humans may not be able to explicitly describe the expected system
behaviour [198]. Validation, in contrast, is intended to show whether the system specifica-
tion meets the customer requirements or, in the context of data-driven methods, whether
the model has learned the desired behaviour. According to Hand and Khan [199], this
term is more commonly used in the context of ML to ensure that a model’s classification
results are sufficiently accurate for the specific problem and, hence, whether it learned
the discriminative structure from the data. This term will therefore be used throughout
this chapter.

As shown in Figure 5.1, the model validation phase is divided into two consecutive
steps. First, each layer within the FDD block is reviewed, with the respective parameter
optimisation tasks being performed independently. This also implies that the first layer is
validated for its ability to detect novelties by use of target domain test data. Thereby, the
actual labels related to the fault classes play only a subordinate role, as this layer deals
with a binary decision problem only (deciding between a faulty or fault-free condition).
Nonetheless, for reasons of generality, the fault detection performance is also evaluated
separately for each fault case, i.e. the algorithm is validated for each fault in the dataset
individually. The validation phase of the second layer, on the other hand, is performed to
asses the fault classification correctness, whereby only fault-associated data are considered
for testing. Furthermore, the analysis of the fault identification layer shall confirm the
assumption of a dependency between the presented statistical distance metric and the fault
severity. Referring to Section 3.6.1, one can see the relation between the first and second
FDD layer, namely the effect of the fault detection performance on the functionality of the
fault isolation algorithm. As a consequence, the classification performance of the holistic
model will be considered in the closing section.

Another important aspect of the validation phase concerns the test dataset, which,
although originating from the same distribution as the target domain training data, is
extracted separately. As will be pointed out in Section 5.2.3, splitting the available data
into a training dataset and test dataset serves to provide a general indication of the
model’s generalisation error [200, pp. 119]. Thereby, the term generalisation represents
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Figure 5.1: Overview of the validation approach and the associated sections.

also an important keyword with regard to the heterogeneity of the various chiller systems,
especially concerning Hypothesis H1.1 and Hypothesis H1.2, and is therefore particularly
addressed hereinafter. Hence, the classification performance will be demonstrated by
use of the two datasets presented above, namely the centrifugal chiller (Domain A) and
the screw-chiller dataset (Domain B), the latter of which was collected as part of this
dissertation. Consequently, the domain adaptation approach is performed and evaluated
from Domain A to Domain B and vice versa.

In addition to the validation concept, information about the hardware and software
basis for the experimental implementation of the model may also be an important factor
for some researchers in terms of the interpretability of the results presented below. In
general, the model training, including the parameter optimisation process, was performed
on an HPE rack server with two AMD EPYC 7302 processors and Ubuntu 20.04 (Linux
5.11.0). It was furthermore implemented using Python 3.7 as well as several packages,
including but not limited to Scikit-learn [201], NumPy [202], SciPy [203] and CVXOPT
[204], as well as the standard Python library.

5.2 Preconditions
The following section outlines the precondition set out prior to the model training phase.
In reference to the data source presented above, the considered feature space is summarised
and an overview about the chosen evaluation metrics is given. Finally, the parameter
optimisation approach is described in greater detail.
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5.2.1 Shared Feature Space
The shared feature space consists of both features directly acquired from the control
system during the data collection phase and the ones computed for thermodynamic state
comparison, which were already in Table 4.3. As aforementioned, the feature space of Do-
main A and Domain B is initially not equal due to the respective chiller design constraints,
which, however, represents a challenge one has to deal with in practical applications too.
Therefore, only those features are selected to build up the overall dataset that represent
the same physical quantities across both domains.

Recall that specific domain knowledge is not expected to be available for selecting
fault indicative features to train the FDD classification algorithms. In addition, as the
target domain data remain primarily unlabelled, supervised feature selection techniques,
such as ReliefF [205], may also not be applicable. It can hence be deduced that instead of
trying to manually construct the corresponding feature space, the fault indicative features
should be identified through the CBM model. As a result, a specific feature pre-selection
is neglected in this work, as it requires expert knowledge of the respective specific domain.
Yet, some obvious fault unrelated indications are dismissed from the dataset such as, for
example, the ambient temperatures Tamb,i and Tamb,o. Moreover, the measured water-flow
rates over the evaporator V̇E and condenser V̇C are not included, because the faults RVE
and RVC could otherwise easily be detected and the associated sensors may have a non-
negligible cost impact [137] in practice. Appendix A.5 provides a detailed overview of the
features exploited throughout the model’s validation phase.

For the experiments described below, ns = nt = 1500 observations from both domains
were randomly selected so that the classes were represented in a balanced manner to form
the training dataset. Furthermore, additional 500 observations were extracted from the
target domain, which is referred to as the testing dataset in the remainder of this chapter.
Both datasets were previously balanced, i.e. all classes were ensured to be represented by
an approximately equal number of observations. This step was taken to avoid the model
from being skewed towards one or multiple majority classes and to give all classes the
same priority throughout the model training.

However, since it is expected that unlabelled observations occur more frequently than
the ones being assigned to the normal class, the imbalance ratio of the test dataset validat-
ing the fault detection algorithm cannot be disregarded. A corresponding analysis with
respect to the number of available labels will therefore be performed in Section 5.3.1.
Another important point must be emphasised in this context. Although both domains
are fully labelled in their original form, the labels of the target domain are only exploited
to a full extent for testing the final CBM model classification performance.

5.2.2 Metrics
To evaluate the overall CBM model classification performance, as well as for each of the
FDD layers, appropriate metrics must be defined to allow for proper comparison. These
metrics are applied to numerically indicate the model’s operational capability and to
demonstrate its effectiveness by observing the true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN) of the test dataset classified by the proposed
model and the comparative algorithms. With respect to previous studies closely related
to this work [6], [74], [87], [91], [132], [138], [139], [142] the performance metrics listed
in Table 5.1 are introduced to allow for appropriate comparability. While most of these
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Table 5.1: Performance metrics applied for model comparison.

Designation Definition/Abbreviation

True positive rate, sen-
sitivity, recall TPR =

TP
TP+FN

True negative rate,
specificity TNR =

TN
TN+FP

False negative rate FNR = 1− TPR
False positive rate FPR = 1− TNR
Accuracy ACC =

TP + TN
FP + TP + FN + TN

Receiver operating
characteristic

ROC

Area under the (ROC)
curve

AUC

Matthews correlation
coefficient

MCC =
TP · TN− FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

indications aim at explaining the overall algorithmic performance via a single numerical
value, the ROC rather describes the model performance at varying decision thresholds.
In this dissertation it is particularly used to compare the discriminatory capabilities [91]
between the fault detection algorithm and the respective baseline models presented below.
This is mainly due to the fact that this type of performance representation illustrates the
entire range of threshold variability associated with a binary classifier, and thus the trade-
off between the TPR and the FPR [153, p. 261]. In this way, the model can be evaluated
independently of the threshold, which may better reflect the overall suitability for the
given classification task. To represent the ROC curve as a single numerical value, the
AUC is commonly applied, whereby a value of 1 marks the best possible performance for
the specific problem and 0.5 could represent a random classifier.

A critical factor in the model validation is the class imbalance ratio imposed by the
test dataset, which cannot be disregarded and for which an appropriate metric must be
introduced accordingly. Since the test data is balanced in terms of the available classes,
i.e. the fault-free and all fault classes, it becomes an imbalanced problem with respect to
the fault detection layer. This leads to a problem in that the validity of many metrics,
such as accuracy, is diminished with respect to the evaluation of the model’s classification
ability. In fact, most metrics tend to indicate an overoptimistic estimation of the classifier
ability on the majority class [206]. According to Chicco et al. [207], two evaluation
metrics are alternatively applied in this regard, namely F-score and Matthews correlation
coefficient (MCC), the latter of which should be preferred for binary classification tasks.
The reason for this is twofold: first, MCC provides an unbiased metric [208] that is
invariant to class swapping and, second, it incorporates both the number of positive and
negative samples being correctly classified.

5.2.3 Parameter Optimisation
One of the key challenges when dealing with ML algorithms arise from determination of
the respective hyperparameters that one can use to control their behaviour [200, p. 117],
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for which appropriate search strategies must be employed. With regards to the proposed
CBM model, the parameter optimisation processes of the fault detection and the fault
isolation algorithm are performed successively.

As illustrated in Figure 5.2, the hyperparameter search space is first narrowed down by
manually defining search boundaries from which thereafter an appropriate discretisation is
generated. This process is widely known as grid-search and is often the preferred search
method in conjunction with SVMs [186]. To prevent the model from overfitting [153,
p. 324], k-fold cross-validation is often used to define a suitable subset of hyperparameters
[141, p. 217] and is also applied in this work during the parameter tuning process. Recall
from Section 3.5.3 that the evaluation metric (20) is applied as an performance indicator
as proposed by Liu et al. [157] in the context of PU learning. Another parameter affects
the OC-SVM, namely the Gaussian width parameter γocsvm. Following the approach
presented in [91], this parameter is tuned using the heuristic proposed by Wang et al. [167],
the so-called tightness detection algorithm.

After an appropriate subset of hyperparameters associated with the fault detection
model could be identified, the second FDD layer needs to be taken into account. In fact,
the parameter optimisation process is fairly similar to the former one and, yet, some
differences must be highlighted. As shown in Figure 5.3, both the domain adaptation
procedure and the reduction of the process variability are first conducted. Then, the
parameter optimisation process implies k-fold cross-validation on the fault patterns orig-
inating from the source domain. Thereby, an essential difference to the previous layer
arises.

As a result of the feature transformation and feature selection steps described in Sec-
tion 3.6, both the domain adaptation and the reduction of process variability is conducted,
while the parameter optimisation problem reduces as an ordinary supervised multi-class
ML case. In this way, the source domain, including its labels, is fully exploited through-
out the hyperparameter optimisation process, whereby common performance metrics are
eligible to be used to indicate an appropriate parameter subset. This work applies ACC
in the following. So far, the hyperparameter optimisation process has only been sepa-
rately described for the fault detection and the fault isolation algorithm. The practical

Figure 5.2: Hyperparameter optimisation of the fault detection model.
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Figure 5.3: Hyperparameter optimisation of the fault isolation model. Target domain
training data associated with the normal operating condition are used for domain adap-
tation purposes.

relevance, however, results from the combination of two, which ultimately influences the
overall applicability of the model, a case that will be specifically addressed in Section
5.4. Accordingly, the two layers within the CBM model are optimised consecutively. For
more information about this procedure, see Section 3.1.3. Furthermore, it is worth noting
that for reasons of computational performance, 3-fold cross-validation will be employed
hereinafter.

5.3 Individual FDD Results
This section provides an overview of the results obtained from the model validation phase,
whereby each of the three layers of the FDD block is reviewed, separately. Following the
CBM sequence presented in the beginning of this work, the fault detection ability is first
discussed and the proposed PU learning approach is compared with the two state-of-the-
art baseline models. Subsequently, the results associated with the fault isolation layer
are presented with a special view on the domain adaptation procedure. The section then
closes with the results of the fault identification phase and thus with the estimation of
the health index, i.e. the fault severity.

5.3.1 Novelty Detection
To demonstrate the classification ability of the BSVM classifier, it is compared with the
two baseline algorithms identified in Section 2.6, both of which allow novelty detection
tasks to be performed by solely exploiting partially labelled data in the model training
phase. Thus, the models proposed in [6] and [91] will be employed in the following
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comparison, whereby the former applied squared prediction error (SPE) indices to detect
chiller faults while the latter utilises a OC-SVM. The fact that all three models are trained
using the PCA-transformed residual subspace allows for a reasonable comparison of the
approaches. Figure 5.4 well illustrates the advantage of this method, namely the striking
occurrence of fault patterns.

Even though all three models rely on the reduction of process variability, they differ
in the number of discarded PCs (kpc). Other hyperparameters worth mentioning in this
context are the BSVM parameters, whose search space can be found in Table 5.2. Note
that only the results associated with the highest scored parameter subset are presented
in the figures below.

Besides, recall from Hypothesis H3.1 presented in Section 2.6 that only a minor number
of labelled observations are assumed to be available from the target domain, while the rest
of the observations remain unlabelled. To study the effect of the proportion of labelled
normal data being available on the model’s classification performance, a new parameter
θ is introduced in the remainder of this section to represent the proportion of labelled
samples within the training dataset. For example, θ = 0.1 refers to 10 % of the data
associated with the normal class being actually labelled (yti = 1), whereas the remaining
90 % are assumed to be unlabelled (yti = −1).

As mentioned earlier, one crucial parameter for successfully reducing the process vari-
ability via PCA while maintaining an adequate number of fault-indicating features is the
CPV described by the discarded PCs. Consequently, Figure 5.5 illustrates the achieved
MCC scores of the three models for varying settings of kpc at θ = 0.2. As the figure
shows, the BSVM algorithm was able to achieve the highest scores across both domains.
Additionally, it proves to be less dependant on kpc with regards to its classification per-

Figure 5.4: Examples of principal component and residual component subspaces repre-
sented by the training dataset.

89



5.3 Individual FDD Results 5 MODEL VALIDATION

Figure 5.5: MCC Scores as functions of discarded PCs for θ = 0.2 of (upper) Domain
A and (lower) Domain B.

formance. This is a decisive advantage because this parameter can hardly be, if at all,
estimated in practice due to the unavailability of labelled target domain fault patterns.

It becomes apparent that both the OC-SVM and the SPE approach strikingly tend to
yield degraded fault detection performance for a low CPV, which is especially pronounced
for the latter model. The figure additionally shows the importance of the threshold
parameter CPVkpc, as too low values preserves the majority of the process variability
in the training dataset while too high values could lead to the exclusion of crucial fault
characteristic features. In both situations, however, the data classification leads to poor
results and, in some cases, may even prevent the fault detection algorithm from providing
its intended functionality. This becomes especially obvious for Domain B for kpc ≥ 15,
where the remaining features may not allow for an appropriate recovery of a decision
boundary, which explains the rapid drop of the BSVM performance. For the problem at
hand, Figure 5.5 indicates CPVkpc = 99.9 % to be an appropriate threshold. For reasons
of consistency, the number of discarded features is set to kpc = 7 for both datasets in the
following.

Another aspect concerns the amount of labelled data being available at training time.
Starting from the previously introduced parameter θ, Figure 5.6 shows the achieved MCC
scores of the proposed approach as well as those of the two baseline models. From this
it can be deduced that the BSVM algorithm shows the higher performance compared
to the other two with the only exception being θ = 0.1, where the classification ability
appears to be lower. This indicates that a meaningful ratio between the labelled and
unlabelled data should be present to enable the algorithm to well approximate the fault
discriminative structure. Interestingly, the two baseline models perform nearly equally
well across both domains. However, the OC-SVM model proves to be less influenced by
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Table 5.2: The BSVM search space and selected parameters.

Parameter
designation Search space

Selected parameters
Domain A Domain B

γbsvm 2−10, 2−9, . . . , 24 2−3 21

C+ 100, 101, . . . , 107 106 103

C− 100, 101, . . . , 107 104 102

kpc and is therefore applied in this work in the case the model must deal with unseen
data patterns. Another useful property of this algorithm concerns the fault identification
layer, namely the estimation of the health index, which will be demonstrated later.

Alternatively, the SPE approach can be used for fault detection as it offers distinct ad-
vantages in terms of the hyperparmeter tuning process, while heuristic and meta-heuristic
search strategies must be employed for the OC-SVM and BSVM algorithms, respec-
tively. Accordingly, the highest scored parameter subset of the BSVM hyperparameters
for kpc = 7 and θ = 0.2 are set out in Table 5.2, which are used for the comparison
described hereinafter.

To demonstrate the discriminating power of the proposed fault detection algorithm,
ROC analysis is carried out in this work, as the eponymous metric conceptually allows
conclusions to be drawn about the classification ability for varying thresholds. According
to Fawcett [209], ROC curves are moreover insensitive to changes in the class distribution
and are thus well suitable for evaluating the classification performance by use of an imbal-
anced test dataset. Likewise, they are invariant to class swapping, since this only leads to
a mirroring of the curve along the descending diagonal axis [210]. Figure 5.7 illustrates the
individual class performance of the considered fault detection algorithms, each of which

Figure 5.6: MCC Scores as functions of θ of (upper) Domain A and (lower) Domain B
both at a reduced of CPV ≈ 99.9% with kpc = 7.
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is evaluated at SL=1. It should be noted that in the case of the SVM-based approaches,
the respective class scores used to derive the ROC scores are related to the distances from
the separating hyperplane in feature space, whereas the scores of the SPE represents the
Euclidean distance from the origin computed in the RCS. For more information on the
latter, interested readers are referred to [6] and [211].

The figure also shows the differences between the two datasets, with the fault discrim-
ination capabilities varying due to the different distributions underlying the two datasets.
For example, RL appears to be hardly distinguishable from a normal chiller operational
state in Domain A, whereas Domain B shows a pronounced indication of this fault pat-
tern. On the other hand, the fault NC seems to be detectable with little effort across
both domains as a result of its distinctive fault characteristics, confirming the findings
presented in [133]. Note that further ROC curves as well as the associated AUC scores
for all considered severity levels are presented in Appendix A.6.

The ROC analysis in summary reveals the discriminative power of the investigated
classifiers and demonstrates improved classification performance through PU learning for
fault detection tasks. In particular, the BSVM classifier provides the highest classification
performance. However, although being on a very comparable scale for the presented set-
ting of kpc and θ, the performance gap between the baseline models and the BSVM-based
approach appears to be higher for other parameter settings. It can therefore be concluded
that, although all models confirm Hypothesis H3.1, an improved fault detection algorithm
can be obtained via PU learning in comparison to density estimation and is rather in-
sensitive to the hyperparameter setting. Consequently, this justifies the correctness of
Hypothesis H2.2. Yet, it is important to emphasise that the properties of the BSVM

Figure 5.7: Discriminatory power of the compared novelty detection algorithms repre-
sented by ROC curves for each fault type in both domains at SL=1.
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model can only be taken advantage of in case that certain fault patterns are already
contained in the target domain training dataset, even if only represented by unlabelled
observations. If this condition is not satisfied, then the classification performance of the
proposed fault detection algorithm reduces to that of the OC-SVM-based approach.

This analysis furthermore indicates the correctness of a key assumption introduced in
Section 3.7. That is the existence of a dependency between the fault severity and the
distance from the SVM decision boundary as determined through its training process.
This creates the basis for the fault identification layer, the results of which are further
elaborated in Section 5.3.3.

5.3.2 Fault Classification
In the fault detection layer, one relies only on data originating from the target domain and
therefore the heterogeneity or, more precisely, the domain discrepancy between systems
is not necessarily subject to consideration. This, however, changes in the development of
the fault isolation layer, as the domain adaptation procedure forms an integral part in
terms of improving the overall classification ability, which is hereinafter discussed.

Comparison of Domain Adaptation Models

To demonstrate the effectiveness of the presented model, the PCA-based approaches
presented in Section 3.6.2 as well as the state-of-the-art approaches, also mentioned earlier,
are implemented and their results are comparatively presented. As a reminder, the latter
concerns the three domain adaptation models TCA [180], CORAL [181] and SA [182],
leaving aside the methods based on deep neural networks for computational reasons and,
above all, because of the problem of tuning the associated hyperparameters.

It is important to note that, based on the preliminary considerations, PCA is at the
very heart of the comparison presented below. This not only affects the presented ap-
proach but rather the implementation of all models. As has been argued and shown
previously, fault patterns are especially pronounced in the RCS and, thus, the reduction
of the process variability has a particularly advantageous effect on the overall classifica-
tion performance. Therefore, to achieve comparable results among the various domain
adaptation methods, PCA has also been introduced as a preprocessing step to improve
the overall fault sensitivity for the domain adaptation methods TCA and CORAL. To
this end, the decomposition of the design matrices is first separately performed on the
source and the target domain data. In a second step, the resulting residual components
are mapped back to the original feature space before performing the domain adaptation
process using the relation (6). As will be demonstrated subsequently, this measure avoids
training the SVM classifier by use of highly differing feature representations.

Furthermore, the number of discarded PCs by means of the parameter kpc is crucial.
In fact, if kpc = 0 there is no decomposition and domain adaptation is performed on the
available fault patterns by use of entire input space. For all values kpc > 0, however, only
the resulting residual subspaces are aligned, which is expected to yield comparatively
better results. Furthermore, it is important to emphasise that the previously introduced
parameter θ is set to 1 throughout this section. Nonetheless, its impact on the overall
CBM model performance will be reviewed later.

The state-of-the-art model being closely related to the presented approach is SA. For
reasons of comparability, SA is similarly implemented as the PCA based methods. To this
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Table 5.3: SVM search space and selected parameters for PCA(Xt) and kpc = 7.

Parameter
designation Search space

Selected parameters
Domain A → B Domain B → A

γsvm 2−10, 2−9, . . . , 210 2−9 2−5

C 10−10, 10−9, . . . , 1010 104 101

end, the PCA(Xs), PCA(Xt) model is first applied followed by a mapping of the resulting
features to the target domain RCS. For more details on the latter, see the original paper
[182]. As a result, SA can be implemented independently of the availability of target
domain fault patterns and thus differs from TCA and CORAL.

Besides, these two domain adaptation methods also rely on further hyperparameters
to be tuned, which prove to be difficult in unsupervised domain adaptation problems due
to the general unavailability of target domain labels [178]. Based on this premise, TCA
is only applied using the linear kernel, since the use of other kernel functions, such as the
RBF, introduces further hyperparameters and leaves open the question of how these can
be determined without the use of target domain labels.

Nevertheless, TCA and CORAL require a set of hyperparameters to be determined.
While in the first method the number of transfer components ktca to be chosen is crucial, in
the second method the regularisation parameter λ must be specified, which affects both
the whitening of the source domain data and the re-colouring with the target domain
covariance matrix. Accordingly, the highest scored parameters can be found in Table 5.5.
Note that the associated search spaces result from the original considerations in [180] and
[181]. Other parameters directly affect the SVM classifier, namely C and γ (only for the
RBF kernel function), the search spaces of which are listed in Table 5.3. Again, only the
accuracy of the highest scored parameter subsets is presented hereinafter.

Table 5.4 shows the achieved accuracy scores in dependency on the number of dis-
regarded principal components, the search space of which is set to kpc ∈ {0, 3, 5, 7, 9}.
The first obvious characteristic arises from the significant increase in the classification
performance of the classifier trained using the residual subspace components instead of
the original input space. This indicates a better differentiation of fault patterns in the
RCS as a consequence of the lower discrepancy between the domains. Secondly, in view of
the PCA based methods, both the PCA(Xs, Xt) and PCA(Xt) models showed improved
results compared to PCA(Xs), PCA(Xt) and PCA(Xs). In particular, PCA(Xt) demon-
strates somewhat more stable results for both tasks Domain A → B and Domain B → A
as well as with respect to the kernel functions. Moreover, it is clear to see that training
the SVM on two different feature subspaces obtained from the PCA(Xs), PCA(Xt) model
may not represent an adequate choice.

In addition, the results of the proposed fault isolation algorithm and those of the
state-of-the-art domain adaptation methods are of a comparable order of magnitude, with
CORAL achieving the highest accuracy of all experiments. Yet, it must be noted that it
is based on the assumption that certain fault patterns are equally present in the training
data of both domains, which can hardly be guaranteed. Similarly, the solution obtained
via TCA may be less suitable in this respect, which will be further elaborated throughout
this section. From the opposing point of view, SA could represent a feasible domain
adaptation approach, as it allows the residual components to be aligned and, therefore,
the approach does not rely on any target domain fault patterns (neither labelled nor
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Table 5.4: Classification accuracy scores in [%] of the considered domain adaptation
approaches for comparison.

Model SVM
kernel

Domain A → B Domain B → A
kpc = 0 3 5 7 9 0 3 5 7 9

PCA(Xs), 1 Linear 29.2 25.8 25.3 25.0 21.8 27.6 27.4 25.4 22.6 20.4
PCA(Xt) RBF 28.5 15.7 20.4 30.2 13.3 25.9 27.4 21.1 15.9 12.4
PCA(Xs), 2 Linear 62.7 85.3 81.3 76.4 90.4 61.4 71.1 73.1 73.1 47.5
PCA(Xt) RBF 66.8 78.9 69.3 68.1 33.9 60.2 70.9 72.1 45.0 43.3

PCA(Xs)
Linear 66.6 76.4 73.7 72.0 61.7 60.9 58.7 55.5 52.2 55.0
RBF 68.3 65.1 48.9 48.2 23.3 59.5 57.0 30.1 23.9 28.6

PCA(Xs, Xt)
Linear 66.6 87.7 95.6 95.8 97.3 60.9 75.4 78.9 74.6 77.6
RBF 68.3 77.1 95.3 58.7 41.3 59.5 76.4 79.4 76.4 75.6

PCA(Xt)
Linear 66.6 75.9 79.1 78.9 82.8 60.9 75.1 81.3 81.8 53.2
RBF 68.3 85.0 91.9 86.5 88.9 59.5 75.1 77.6 83.8 46.8

TCA
Linear 73.2 70.3 96.6 99.3 85.3 60.4 66.2 73.1 73.9 47.3
RBF 24.6 73.7 85.3 44.7 49.1 26.6 65.4 68.2 70.6 46.0

CORAL
Linear 66.6 85.3 81.3 98.8 99.5 68.4 73.4 76.1 76.4 50.7
RBF 71.3 86.5 87.5 77.6 43.7 67.4 74.6 76.9 76.4 48.8

SA
Linear 60.0 80.6 74.9 75.2 75.2 52.7 68.9 70.6 73.1 56.7
RBF 60.2 74.0 70.3 49.1 43.2 51.7 69.9 72.9 41.8 51.0

1 SVM trained by use of residual components
2 SVM trained by use of residual components mapped to the original feature space

unlabelled) in the training phase. Nonetheless, as can be seen from the results above, it
yields lower classification results compared to the proposed algorithm.

Interestingly, the linear kernel function seems to produce better results across the ex-
amined models, with the only exception being the proposed one where the RBF kernel
function demonstrates to be the better choice. Even though some models considered in
this comparison may not be feasible for fault isolation tasks in practice, two important
statements can be derived: The fault isolation models aiming to first reduce the domain
discrepancy before training the classifier yield higher and more reliable classification per-
formance and, therefore, Hypothesis H1.2 can be regarded as correct. Furthermore, it
shows that partially labelled target domain data can be utilised to reduce the domain
discrepancy by specifically emphasising fault indicating features and, thus, proves Hy-
pothesis H2.1 to be also correct.

Table 5.5: The hyperparameter search space and the highest scored parameters applied
for comparison of TCA and CORAL.

Parameter
designation

SVM
kernel Search space

Selected parameters
Domain A → B Domain B → A

ktca
Linear

10, 20, 30
10 10

RBF 10 10

λ
Linear

10−3, 10−2, . . . , 101
1 10

RBF 10 10
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Residual Component Subspace Dimensionality

Another important factor is the sensitivity of the fault isolation model with respect
to the number of discarded principal components represented by the hyperparameter kpc,
which should be low to ensure its practical feasibility. This is essentially due to the
fact that the optimisation of this parameter requires labelled fault related observations
from the target domain, which, as discussed earlier, are not expected to be available.
Although CPV seems to be an appropriate indicator for the choice of kpc, it may still be
subject to different results. Due to many problem-specific factors, such as the available
feature space, the types of faults observed, or simply the data basis, this can potentially
lead to different parameter settings that are considered appropriate. As shown in Table
5.4, the proposed model reveals decent properties in this respect. Likewise, Figure 5.8
illustrates the dependency of kpc on the classification performance. From this, it becomes
evident that the PCA(Xt)-based domain adaptation approach is robust with respect to
the number of discarded principal components, a property that is particularly pronounced
in task Domain A → B.

The task Domain B → A, however, shows degraded accuracy scores for higher values
of kpc. Similar behaviour could be observed in the previous section describing the fault
detection layer, for which the reader is referred to Figure 5.5. This is clearly not a
coincidence and underlines a statement introduced earlier, namely the trade-off between
reducing the process variability and discarding fault-related information with respect to
choosing kpc being critical in practice. Thus, the conclusion follows to tend to slightly
smaller values of CPVkpc in case of doubts, where values between 99 % and 99.9 % seem
reasonable. This is also consistent with the findings presented in [87] and [91]. In this
study, however, kpc = 7 is chosen, since it demonstrates to yield decent results across
both domains. The associated SVM parameters defined through grid-search and 3-fold
cross-validation are listed in Table 5.3. Moreover, this value is consistent with the results
presented in the previous section, where the number of principal components to discard
is equally set for the fault detection algorithm. Figure 5.9 illustrates the results obtained
from the domain adaptation models for this parameter setting. It can be interpreted
that the proposed algorithm produces stable results for both kernel functions and even
outperforms the state-of-the-art domain adaptation methods for the task Domain B→ A.

Figure 5.8: Achieved accuracy scores for both domains as functions of discarded principal
components (kpc).
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Figure 5.9: Overview of achieved accuracy scores for (far left) the original input space
and the domain adaptation models at kpc = 7.

Availability of Target Domain Fault Classes

Recall from RQ4 that a significant concern is placed on the feasibility of a domain
adaptation model when the label space is not fully covered by the target domain training
data, i.e. Yt ⊂ Ys. This concern, however, is often disregarded in many domain adaptation
problems and the classes are assumed to be equally available in the source but also in the
target domain, with the latter being unlabelled. This also applies to two of the state-of-
the-art models used for comparison in this section, namely TCA and CORAL. To show
the effect of neglecting this condition, a sensitivity analysis is performed with respect to
the availability of (unlabelled) target domain fault classes at the model’s training time.

To this end, the classifier performance for all available fault class combinations in
the target domain dataset was computed. For example, at any iteration, the faults NC
and RVC were selected to be available in the target domain training dataset, whereas
for another iteration it was NC, RVE and RL, etc. It goes without saying that at least
one fault class was present in the target domain dataset allowing to retrieve comparable
solutions for all domain adaptation methods, as otherwise TCA and CORAL may not
converge in the training process.

Figure 5.10 shows the average accuracy scores as well as the score distributions in form
of box plots. As can be seen from this figure, the average results of TCA and CORAL
are significantly reduced and their results also vary widely. Conversely, the proposed
model as well as SA are designed so that they are decoupled the availability of target
domain fault data, whereby the former shows significantly better results. Figure 5.11
illustrates the feature representation of the original input space and the residual subspace
resulting from the proposed model. The higher dimensional feature spaces are reduced to
two dimensions by performing linear discriminant analysis (LDA) on the source domain
fault data. Note that only 40 % of the training data are visualised for reasons of greater
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Figure 5.10: Sensitivity of domain adaptation models in dependence on the availability
of fault patterns in the target domain dataset - bar plots show the average accuracy score
and the box plots demonstrate the score distribution for varying fault classes combinations
of the target domain being available at training time.

clarity. From the figure, one can recognise the benefits arising from the use of the residual
component subspace for fault isolation tasks. This can be explained by the fact that
the discriminative structure of the fault patterns appear much more pronounced and is
therefore better distinguishable.

More importantly, however, the fault patterns appear to be well aligned in the RCS.
In reference to Table 5.4, this fact becomes even clearer and indicates that the residual
components can approximately be considered to be domain invariant features for chiller
fault isolation tasks. As a consequence, this proves the correctness of both Hypothesis H4.1
and Hypothesis H4.2. More feature representations can be found in Appendix A.7.

Figure 5.11: Scatter plots of the two domain for the task Domain A → B with reduced
dimensionality by use of LDA for (left) the original input space and (right) the residual
subspace resulting from the PCA(Xt) model.
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Figure 5.12: Confusion matrices determined from the proposed fault isolation model for
both domains, whereby the severity levels are considered separately.

In this context it should be mentioned that these representation should be carefully
interpreted, as the use of LDA for reducing the problem at hand to two dimensions may
slightly distort the perception of the actual relation between the domains in the higher
dimensional feature space. Nonetheless, it gives an intuition of the overall feasibility with
regards to the considered domain adaptation approaches.

Performance per Severity Level

The individual class related classification performance may also be of high interest.
Figure 5.12 shows the confusion matrices, which indicate the correctness of the key as-
sumption in terms of the fault identification layer, namely the increased confidence of
a fault being correctly classified for higher SL. This is described in more detail in the
following chapter. Besides, the figure also indicates comparatively low classification per-
formance on the fault RL at SL=1 for the task Domain B → A. The reason for this
is twofold; first, the faults RL and RVE indeed occur with similar characteristics and,
second, the fault may not be very pronounced at low SL, which can similarly be observed
from Figure 5.7 in the previous section. In essence, however, it can be stated that the
discriminative structure of the target domain fault patterns is well recovered from the
source domain data and the proposed fault isolation approach appears to be viable in
practice.

5.3.3 Health Index
The last step within the FDD block, and therefore also the last step to be taken to
complete the CBM model, leads to the fault identification layer. Here, the fault severity
is to be estimated, which in turn is the prerequisite for estimating RUL within the PHM
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scheme. It should be emphasised again, however, that PHM is beyond the scope of this
dissertation.

In general, the ISO 13374 [64] prescribes the estimation of a health index (hi), i.e. the
estimation of the fault severity, to be part of the CBM procedure. As has been described
previously, the application of the SVM and its extensions becomes handy in this respect.
It is in this way that the decision function, i.e. before applying the sign function for
the final classification task, already provides the related information. As a result, hi
can be identified through the fault detection algorithm. Furthermore, by determining a
reasonable scaling approach, it can also be expressed in the range hi ∈ [0, 10] as demanded
in [64].

Figure 5.13 shows the health indices obtained from the test datasets of both domains
for the considered classes. As can be seen from the figure, choosing the bias terms of both
the BSVM and the OC-SVM algorithm to be the lower bound to scale the respective
outcome of the decision functions appears to be a practical and straightforward approach.
This property is particularly convenient and therefore explains the choice of the OC-SVM
instead of SPE for the handling of unknown data patterns during the model deployment
phase, although both yield comparable fault detection performance rates.

Another aspect comes to the fore when taking into account the box plots obtained
from the BSVM algorithm in Domain B. In fact, one can see a few outliers exceeding the
lower limit of hi. In such a scenario it might be advisable to limit the index so that the

Figure 5.13: Health index estimation demonstrated by use of box plots for each consid-
ered severity level. Both classifiers are eligible for estimating hi.
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lowest value possible is 0. Yet, this problem does not apply to the OC-SVM algorithm
because its decision function only allows to take on the smallest value in the representation
of the associated bias term. Of course, this assumption is not always true, but is valid
in the case of the RBF kernel function. It goes without saying that the upper limit shall
not be disregarded in this context, since any value above 10 indicates a fully functional
system. Therefore, this value is also to be limited upwards.

Figure 5.13 well demonstrates the outcome of the decision function to be an eligible
metric to estimate hi. Nonetheless, three aspects should be taken into account when inter-
preting this value: first, the fault severity estimation is highly dependent on the considered
algorithm, i.e. the BSVM or the OC-SVM with regards to the presented model. Secondly,
hi may not achieve comparable values when applied to different heterogeneous refriger-
ation systems. Ultimately, it must be underlined that according to the DIN ISO 13374
[64], hi = 0 shall represent a compete failure, which cannot be fully guaranteed by use of
the presented fault identification approach.

In one form or another, this is yet a convenient approximation of the overall condition
of a machine, which can be a good indicator of how far a particular fault has progressed.
Therefore, it can be a useful metric for the subsequent PHM phase. In practice, however,
one may be more interested in a trend of hi over time rather than separate estimates
for each new observation recorded. This could be achieved by computing the average hi
within a specified time window, which, however, is beyond the scope of this dissertation.

5.4 Holistic Model Assessment
In this section, the holistic applicability of the proposed CBM model is investigated. To
this end, the overall classification performance is assessed by combining the FDD layers
presented above. This is then followed by a sensitivity analysis in regards to the number
of available training samples as well as an analysis concerning the stochastic robustness
of the model. The section then closes with the final comments on the model’s results.

5.4.1 Classification Performance
As discussed at the beginning of this work, most scientific papers on data-driven models
related to industrial refrigeration systems consider their application to a single system
only. In these scenarios, the problem often reduces to a supervised ML problem and can
be easily dealt with. Yet, the previous sections have proven that system heterogeneity can
drastically affect the classification performance. To exemplify this impact and the loss
of predictive performance when system heterogeneity is neglected, the proposed model
is compared to a supervised ML classifier below. For this purpose a SVM classifier is
derived as a baseline model by simply training it on the source domain data in a multi-
class fashion, including the normal class. To observe its classification performance, the
model is then tested on the target domain test dataset. This also means that it comprises
the fault detection and the fault isolation layer within one single step. Similar models were
proposed, for example, in [74], [132] or [139]. It should be noted that the same boundary
conditions apply as mentioned in the previous sections. Firstly, only 20 % of the normal
target domain training data are expected to be accurately labelled and, consequently, θ
is set to 0.2. Yet, this does not apply to the source domain and, thus, does not affect the
training of the baseline model. Secondly, the SVM, but also the BSVM, search spaces
presented previously are taken into account for the results presented hereinafter.
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Figure 5.14: Kiviat diagrams showing the TPR and the FPR per class - the baseline
model represents a classical supervised ML approach by training a SVM on the source
domain data and applying it in the target domain.

Figure 5.14 shows the TPR and FPR for each class respectively with respect to the
results obtained from the baseline and the proposed model. Here, attention needs first
to be drawn to the normal class, i.e. the fault detection performance. Of particular note
is that the baseline model appears to yield strongly degraded classification rates. This
allows the assumption that the fault detection problem should be considered specific to the
dedicated system. Therefore, fault detection is to be solved by incorporating data from
its domain, the target domain, as in the case of the fault detection algorithm presented
in this work.

This can furthermore be theoretically underlined from a thermodynamic point of view
by considering the two domains presented in this work. For example, consider the evapo-
rator design in Domain A, which is a dry expansion type. Unlike in a flooded evaporator
(Domain B), the suction superheat temperature ∆Tsh,suc may be subject to comparatively
higher fluctuations due to the varying superheat temperatures of the gaseous refrigerant
and is therefore only comparable to a limited extent. This exemplifies that transferring
such conditions to other heterogeneous systems may not be an adequate choice.
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Figure 5.15: Accuracy scores of the holistic CBM model in comparison to the SVM
baseline model.

The Kiviat diagrams in the figure above additionally show the superiority of the pro-
posed model over the baseline model, which in turn emphasises once more the correctness
of Hypothesis H1.2. Nevertheless, the low detection rate of RL for the task Domain B→ A
cannot be neglected. In fact, the poor classification scores result from both the fault de-
tection layer as well as from the fault isolation layer. From the ROC analysis presented
in Section 5.3.1, it can be seen that this fault can only be identified with comparatively
low confidence. However, this is primarily the case for the first two severity levels and
does not only explain the drop of the TPR. Another factor can be identified in the fault
isolation layer. As can be seen from the confusion matrices shown in Figure 5.12, there are
only few correctly classified observations detected for SL=1. From this, it can be inferred
that the data for Domain B does not well represent the fault discriminating structure due
to the smaller number of different operating states that could be observed, a condition
discussed earlier in Section 4.4.5.

In addition, the TPR could be significantly improved by use of the proposed model.
Similarly, the FPR could be reduced to a great extent, with the only exception being the
fault RVC shown in the lower right diagram, which is slightly higher compared to the
baseline model. As can be seen from the accuracy scores presented in Figure 5.15 both
the presented fault detection and fault isolation approach are well suited for practical
applications and surely better than following a strictly supervised ML approach. In
summary, it can be stated that the proposed model outperforms the baseline model by
absolute 29.8 % for the task Domain A → B and 29.6 % for the task Domain B → A.

5.4.2 Sensitivity Analysis
Despite the improved classification performance shown above compared to the supervised
ML approach, the impact of the number of available training data should not be ne-
glected. In general, low sensitivity in this regard is a desirable property in practice, as
the availability of large datasets is not always guaranteed. In other words, the overall
accuracy score of a CBM model should be sufficiently high, even if only a minor number
of training observations can be obtained. Therefore, a sensitivity analysis is performed in
this section taking into account varying numbers of training samples. Thus, the model is
re-trained and tested with different values of ns and nt.

The model is investigated in the range ns = nt ∈ {300, 600, . . . , 1500}, as shown
in Figure 5.16. As can be seen from this illustration, both models tend to yield lower
accuracy score with smaller amounts of training samples. Yet, at about 80 %, the results
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Figure 5.16: Results from the sensitivity analysis as functions of varying numbers of
training samples.

obtained from both tasks still represent acceptable solutions. Interestingly, even higher
scores are obtained compared to the setting described above at ns = nt = 1200. Although
all experiments show acceptable performance, the lowest result can be observed for the
task Domain B → A at ns = nt = 900. However, the proposed model proves to be rather
insensitive to the number of training samples and can therefore be implemented even
when data are scarcely available.

5.4.3 Stochastic Robustness
So far, a single dataset has been considered for both domains throughout the validation
phase. However, the selection of data samples for both training and testing is subject
to a stochastic process and must thus also be addressed to appropriately validate the
CBM model performance. To this end, the training and validation process has been
repeatability performed (12 experiments in total with ns = nt = 1500), each time with a
different subset of training and testing observations being selected. It is in this way that
the varying results can be observed and compared.

As shown in Figure 5.17, one can see that the increased performance of the proposed
model outperforms the baseline model and achieves decent results, especially for the task

Figure 5.17: Stochastic robustness obtained by randomly selecting the training and test
data from the entire dataset. The bar plots show the average accuracy score while the
box plots indicate the accuracy score distribution of the experiments.

104



5.4 Holistic Model Assessment 5 MODEL VALIDATION

Domain A → B. The highest scores were obtained in this task with values up to 96.2 %.
Yet, it must also be concluded that the fluctuations of the achieved accuracy scores
are higher compared to the supervised ML approach. In fact, the fluctuations between
the first and third quantile account for absolute 9.1 % (Domain A → B) and 11.1 %
(Domain B → A), whereas for the baseline model it is only 3.2 % and 4.8 % respectively.
In one way or another, the proposed method yields improved classification performance
compared to the strictly supervised ML approach.
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6 Summary and Conclusion
The core of this dissertation was the proposal of a novel data-driven predictive mainte-
nance model (PM) for heterogeneous industrial refrigeration systems. More specifically,
it dealt with a sub-process known as condition-based maintenance (CBM), the focus of
which is placed on the automatic assessment of the current state of degradation of tech-
nical equipment. To achieve this, the model was developed to allow inferences about the
health of the monitored system by automatically observing various quantities, primarily
thermodynamic state variables, for which it applies data-driven methods from the field of
machine learning.

The main contribution of this work was hence placed on avoiding time-consuming
data labelling tasks and therefore promoting the development of cost effective approaches
in this field. To this end, the CBM scheme was essentially abstracted to two machine
learning (ML) problems, namely one-class classification and domain adaptation. While
the first method was used to identify novelties that may indicate the presence of faults,
the second method was used to assign the correct fault type, a process known as fault
isolation. Here, the underlying idea was placed on inducing information from a fully
labelled dataset, denoted as the source domain, in the model training process to apply
the model to a different but related system, the target domain. The proposed CBM was
additionally designed to estimate the severity of a fault, and therefore its outcome is not
limited to detect faults and determining their class association, but also to provide a
health index of the target system indicating the current state of degradation.

Chapter Review
The introductory chapter provided the reader a comprehensive overview of the scope of
this dissertation, with particular attention to the motivation and structure of the work.
Chapter 2 described the focus of this work in more detail by first outlining the scope of
industrial maintenance and the economical optimisation problem arising in this context.
This was then followed by the introduction of the most important terms and definitions,
which mainly concerned the delimitation and categorisation of PM and CBM. For the
latter, the basic classification of CBM approaches was derived, whereby the terminology
with regard to data-driven methods was elucidated. Based on this, the related works were
reviewed, from which the open research gap as well as the research questions driving this
dissertation had be determined.

Chapter 3 then started with deriving the core assumptions for the model development,
which were simultaneously formulated into a mathematical notation that was maintained
throughout this work. Shortly thereafter, an abstract view of the CBM model was pre-
sented with the different layers of the information processing chain for which the corre-
sponding algorithms are introduced. Including their respective feature engineering proce-
dures, special attention was paid to the layers of the fault detection and diagnosis (FDD)
block within the CBM scheme. The first step introduced in this context was the fault
detection layer. For this purpose, the process variability contained in the data was firstly
reduced by employing principal component analysis (PCA). In a second step, a one-class
classifier was introduced combining both positive-unlabelled (PU) learning and density
estimation. The second layer was assigned to the fault isolation problem, in which the
description of the domain adaptation method was considered to be the core objective.
As well as in the previous layer, PCA has also been employed for this task. Although
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reducing process variability was a key aspect, minimising the domain discrepancy between
the source and target domains was even more important to enable the transfer of fault
related knowledge. The last layer within the FDD block constitutes the fault identifica-
tion algorithm. Here, a statistical distance metric was presented to estimate the health
index of the system.

The contribution of Chapter 4 was placed on the description of the data source used to
validate the proposed model. This consists of two datasets, the first of which is publicly
available and the second of which was collected as part of this work. Particularly in view
of the latter, the data collection phase was described including the test rig design, the
testing procedure as well as the examined fault types. Furthermore, the characteristic
fault patterns were discussed and compared, whereby it was shown that these also vary
across different domains. Yet, it was also found that similarities exist, which form the
basis for knowledge transfer in the context of fault isolation.

Chapter 5 presented the overall CBM model functionality by first addressing the val-
idation strategy as well as the metrics for quantifying its classification performance. Sec-
ondly, the fault detection ability was validated, starting with the model’s sensitivity to
certain parameters. It should be noted that a direct comparison was made to other state-
of-the-art fault detection algorithms. Then, a receiver operating characteristic analysis
has been performed to review the discriminative ability at different fault severity lev-
els. Subsequently, the fault isolation approach was validated. Similarly, the presented
approach to reduce the domain discrepancy was validated by use of three baseline do-
main adaptation methods. It was shown that the presented approach could yield more
consistent solutions and even outperformed the baseline models in the majority of test
cases. Yet, the greatest benefit in this respect arose from the model’s ability to be trained
without assuming the availability fault samples in the target domain training dataset, a
condition that could hardly be assured in practice. This was followed by the validation of
the fault identification layer, where the ability to estimate the health index was reviewed.
Finally, the classification performance of the holistic CBM model was tested and the as-
sociated results were presented. Besides testing the overall accuracy, a sensitivity analysis
with respect to the number of training samples and a stochastic robustness analysis were
also performed.

Conclusion
Although supervised ML has been described extensively in the literature for chiller CBM
tasks, it is rather limited in its broad applicability due to some constraints. In essence,
when applying these types of methods, it must either be assumed that a fully labelled
dataset is available for each target system or that a supervised ML model trained on data
from one chiller system can simply be applied to another. Unfortunately, neither the first
nor the second assumption holds in practice, as the availability of labels is scarce and the
transferability of the model cannot be guaranteed due to the domain discrepancy imposed
by different operating characteristics.

Overcoming this limitation by providing a transferable model available at low devel-
opment cost is therefore the focus of this dissertation. As a consequence, the proposed
model was developed so that it only requires a minor number of labelled data samples
stemming from the target domain. Another advantage results from the fact that only
one class is required to be accurately labelled, namely the normal (or fault-free) chiller
operation. It is in this way that the proposed CBM model circumvents costly labelling
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tasks by making use of one-class classification and domain adaptation. Accordingly, the
following conclusions can be reported:

1. PCA is well suited for reducing the process variability by mapping the data into the
residual component subspace (RCS) and, hence, to improve the fault detection per-
formance. Yet, the definition of the number of principal components to be discarded
(kpc) remains a challenging task.

2. This study can furthermore confirm the findings of previous works, according to
which discarding more than 99 % of the cumulative percent value of the explained
variance associated with the normal chiller operation seems to be a reasonable choice
for defining the number of features contained in the RCS.

3. By combining PU learning and density estimation, a one-class classifier can be
developed, whereby the PU learning algorithm demonstrated to be less affected
by kpc.

4. PCA can also be employed to reduce the domain discrepancy between the source
and target domain. In this work, this was archived by mapping the fault patterns
of the source domain into RCS of the target domain, which is a simple but effective
solution, especially from a practical point of view.

5. By use of the presented fault isolation approach, the model builds only on the fault
patterns of the fully labelled source domain, while the availability of fault patterns
from the target domain, even though these are unlabelled, is not required. It has
been shown that this is particularly beneficial, as observing whether or not certain
fault patterns are hidden within the unlabelled data of the target domain can be a
tedious and potentially time-consuming task.

6. After reducing the domain discrepancy, the development of the fault isolation classi-
fier can be treated as a normal supervised ML classifier trained by use of the source
domain data. As a result, common optimisation techniques, such as grid-search or
cross-validation, can be employed.

7. The health index estimation as part of the fault identification layer can be realised
through the use of the support vector machine decision function. Thereby the scaling
with respect to the ISO 13374 was achieved by taking advantage of the properties
of the radial-basis kernel function.

In general, the proposed CBM model showed decent improvements in its classification
performance in terms of its transferability to other but related heterogeneous systems.
However, some drawbacks must also be discussed in this context. First, it must be noted
that the use of the biased support vector machine, although it outperforms the two base-
line models considered in this work, can be critical. In fact, it can only be reliably
employed for fault patterns already contained in the unlabelled target domain training
dataset and from whose the underlying discriminative structure can be recovered. For
all other types, the problem reduces to the classification results of the presented density
estimation approach.

In addition, the PU learning algorithm requires three hyperparameter to be optimised,
which may have a detrimental effect on the overall training time. Another concern might
be expressed by the stochastic robustness of the holistic model. As it was demonstrated
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in the previous section, the model showed greater variation in its results compared to
its supervised counterpart. It must be emphasised, however, that in all experiments the
classification results of the supervised ML model could be exceeded by the one presented.

Recommendations
With special view to the overall applicability of the proposed CBM model, practitioners
should consider the impact of seasonal trends onto its classification performance. Al-
though the model relies only on a few labelled data samples from the target domain,
they should represent a wide range of different operating conditions to achieve a low false
alarm rate with respect to the fault detection layer. Additionally, one should bear in
mind that in a case of emerging faults during the model deployment phase, the estimated
health index may not be guaranteed to represent the actual state of the degradation. As
prescribed within the ISO 13374, the lowest possible index is determined to be 0 and shall
indicate a complete machine failure, which cannot be fully ensured with the presented
fault identification approach.

Outlook
The most crucial aspect in this dissertation, or with data-driven approaches in general, has
been proven to be the availability of sufficient amounts of data and how well the included
observations model the underlying distributions. Thus, future work will be attributed to
the investigation of the use of multiple source domains to develop a cross-domain fault
isolation classifier. In addition, data augmentation methods will also be explored in this
context to overcome the limitations imposed by the lack of data. Another aspect concerns
the impact on seasonal trends on the overall classification performance, i.e. training the
model by use of insufficient data from the target domain.

Ultimately, it can be assumed that the proposed CBM model, although it was validated
against chiller data, may also be applicable to other sub-systems, such as air handling
units, and could potentially be applied beyond the scope of industrial refrigeration. This,
however, will be subject to future works.
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A APPENDIX

A Appendix
This chapter completes this dissertation with important information on the overall CBM
model development. This information includes the basics for the algorithm implemen-
tations shown in pseudo-code, which might be especially important for practitioners.
Furthermore, additional information regarding the data collection phase are provided,
addressing both the experimental procedure as well as additional results, or fault pat-
terns to be precise. Lastly, the classification performance obtained from the proposed
model is visualised.

A.1 Algorithm Implementation
This section specifically addresses the algorithm implementation concerning both the
model training but also the deployment phase.

A.1.1 Steady-State Detector
Algorithm A.1 shows the pseudo-code for the implementation of the steady-state detector.

Algorithm A.1 The steady-state detector.
1: Input
2: Xraw Unfiltered raw data arranged according to the time of measurement
3: sfeat Collection of steady-sate indicating features ◃ Extracted from Xraw

4: pd Polynomial degree of Savitzky-Golay filter ◃ In this work → pd = 3
5: δt The pre-set scalar defining the steady-state threshold
6: ws The window size in which polynomial approximation is performed
7: tmin The minimum steady-state time
8: Output
9: Xsteady The matrix containing only steady-state data

10: dev ← Compute time derivatives from sfeat
11: σdev ← Compute standard deviation for each feature time derivative in dev
12: dev ← savitzky_golay_filter(dev, pd, ws) ◃ Filter the time derivatives
13: Xraw ← Initialise empty steady-state matrix
14: start time← Initialise time variable with first timestamp of dev
15: for 〈timestamp, i〉 in dev do ◃ Loop through all indices and timestamps of dev
16: for feat in dev do ◃ Loop through all steady-state features
17: if (dev[i, feat] < δt · σdev/2) and (dev[i, feat] > −δt · σdev/2) then
18: if timestamp− start time ≥ tmin then
19: add observation Xraw[i, :] to Xsteady

20: end if
21: else
22: start time = timestamp
23: end if
24: end for
25: end for
26: return Xsteady
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A.1.2 CBM Model Training
The CBM model training process is demonstrated in Algorithm A.2. Note that the design
matrices of the source and target domain contain filtered and steady-state data.

Algorithm A.2 The implementation of the CBM model training process.
1: Input
2: Xs Source domain design matrix with k features and ns − nns samples
3: Ys Source domain labels containing m fault classes and ns − nns labels
4: Xt Target domain design matrix with k features and nt samples
5: Yt Target domain labels Yt ∈ {−1, 1} (unlabelled/normal), with nt labels
6: CPVkpc Minimum cumulative percent variance to be discarded
7: Output
8: kpc The number of principal components to be discarded
9: pcafd The trained target domain PCA algorithm used for fault detection

10: pcafi The trained target domain PCA algorithm used for fault isolation
11: h(·)fd The fault detection model
12: h(·)fi The fault isolation model
13: Z ← Select only fault-free data instances from Xt where yti = 1
14: pcafd ← train(PCA, Z) ◃ Initialise PCA for fault detection
15: CPV = 0
16: for pcindex = 1 < k do ◃ Loop through the principal component indices
17: CPV = CPV + get_explained_variance(pcafd, pcindex) ◃ Variance for each PC
18: if CPV > CPVkpc then
19: kpc ← pcindex
20: break ◃ Exit the for loop and continue
21: end if
22: end for
23: X̃t ← transform_to_rcs(Xt, pcafd, kpc)
24: bsvm grid← define BSVM search space ◃ The hyperparameter search space
25: h(·)bsvm ← train(h(·)bsvm, bsvm grid, X̃t, Yt)
26: for i = 0 < nt do ◃ Update target domain training labels
27: if Yt[i] = −1 then
28: if h(X̃t[i, :])bsvm = 1 then Yt[i] = 1
29: end if
30: end if
31: end for
32: h(·)ocsvm ← train(h(·)ocsvm, X̃t, Yt) ◃ Optimise OC-SVM via tightness detection
33: h(·)fd ← 〈h(·)bsvm, h(·)ocsvm〉 ◃ Stack BSVM and OC-SVM
34: Znt ← Select only fault-free data instances from Xt where yti = 1
35: pcafi ← train(PCA, Znt) ◃ Train PCA with updated target domain labels
36: Zfs ← Select only fault data from Xs

37: Yfs ← Select only fault labels from Ys

38: Z̃fs ← transform_to_rcs(Zfs, pcafi, kpc)
39: svm grid← define SVM search space
40: h(·)fi ← train(h(·), svm grid, Z̃fs, Yfs) ◃ Collection of (m− 1)m/2 bin. classifiers
41: return pcafd, pcafi, h(·)fd, h(·)fi
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A.1.3 CBM Model Deployment
Algorithm A.3 shows the pseudo-code of the CBM model deployment based on any un-
known observation xu

t to be evaluated. The outcome is the fault type index (fti) and the
associated health index (hi). Note that the latter is chosen to be the smaller value of the
BSVM or the OC-SVM algorithm.

Algorithm A.3 The implementation of the CBM model deployment.
1: Input
2: xu

t Unknown observations
3: kpc The number of principal components to be discarded
4: pcafd The trained target domain PCA algorithm used for fault detection
5: pcafi The trained target domain PCA algorithm used for fault isolation
6: h(·)fd The fault detection model
7: h(·)fi The fault isolation model
8: Output
9: fti The fault type index

10: hi The health index
11: x̃u

t ← transform_to_rcs(xu
t , pcafd, kpc)

12: if h(x̃u
t )fd = 1 then ◃ Perform fault detection

13: fti = None ◃ No fault index to be indicated
14: hi = 10 ◃ Fully functioning system
15: else ◃ Novelty detected
16: z̃ut ← transform_to_rcs(xu

t , pcafi, kpc) ◃ Using PCA for fault isolation
17: votes← Initialise empty voting array
18: for i = 0 < m do ◃ Loop through fault class indices
19: for j = 0 < m do ◃ Loop through each combination h(·)i,j in h(·)fi
20: if i 6= j then
21: votes[i] = votes[i] + f(h(z̃ut )i,j) ◃ Get the vote for or against class i
22: end if
23: end for
24: end for
25: fti = argmax(votes)
26: if length(fti) > 1 then ◃ Multiple classes received the same number of votes
27: fti← Choose fault type index with largest outcome of decision function h(·)∗i,j
28: end if
29: h(·)∗bsvm, h(·)∗ocsvm ← get decision functions from h(·)fd
30: hibsvm = scale_to_hi(h(x̃u

t )
∗
bsvm) ◃ Scale outcome to health index range

31: hiocsvm = scale_to_hi(h(x̃u
t )

∗
ocsvm)

32: hi = min([hibsvm, hiocsvm]) ◃ Get the minimum health index
33: end if
34: return fti, hi
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A.2 Test Sequence of Set-Points
Table A.1 shows the test sequence applied throughout the data acquisition phase. Three
control variables were used to derive the sequence consisting out of 27 operational states,
namely: (1) the temperature of the water-glycol entering the evaporator (T ∗

ei), (2) the
temperature of the water-glycol entering the condenser (T ∗

ci) and (3) the compressor ro-
tational speed (n∗

comp).

Table A.1: The test sequence of the data acquisition phase.

Test T ∗
ei [°C] T ∗

ci [°C] n∗
comp [%] ([min−1])

1 5 23 65 (2930)
2 5 23 50 (2254)
3 5 23 35 (1578)
4 10 23 65 (2930)
5 10 23 50 (2254)
6 10 23 35 (1578)
7 15 23 65 (2930)
8 15 23 50 (2254)
9 15 23 35 (1578)
10 5 28 65 (2930)
11 5 28 50 (2254)
12 5 28 35 (1578)
13 10 28 65 (2930)
14 10 28 50 (2254)
15 10 28 35 (1578)
16 15 28 65 (2930)
17 15 28 50 (2254)
18 15 28 35 (1578)
19 5 33 65 (2930)
20 5 33 50 (2254)
21 5 33 35 (1578)
22 10 33 65 (2930)
23 10 33 50 (2254)
24 10 33 35 (1578)
25 15 33 65 (2930)
26 15 33 50 (2254)
27 15 33 35 (1578)
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A.3 Sequence of Conducted Experiments
Table A.2 contains the experiments conducted in this thesis in chronological order, starting
with the commissioning phase and ending with the fault test procedure. The experiments
designated with ‘Cancelled’ refer to the experiments after a fault has been attempted to
be removed but failed to restore the original operating condition. On the other hand,
both ‘RL0-1’, ‘RL0-2’, etc., refer to experiments with induced faults not impacting the
overall chiller operating condition (see Section 4.4.5 for more details).

Table A.2: Overview of all conducted experiments during the data acquisition phase.

Date Acronym Used Description

17-12-2018 CMG1 No First commissioning - PID controller optimisation
18-12-2018 CMG2 No First implementation of the test sequence
19-12-2018 CMG3 No Test sequence adapted to high pressure emergency

shut-down
20-12-2018 CMG4 No Repeated test sequence
03-01-2019 CMG5 No Tests after removing retained refrigerant oil
04-01-2019 CMG6 No Repeated test sequence
07-01-2019 CMG7 No Tests after removing software errors
08-03-2019 BM Yes Benchmark test
11-03-2019 RVE1 Yes SL1-15 % reduced evaporator volume flow rate
12-03-2019 RVE2 Yes SL2-30 % reduced evaporator volume flow rate
13-03-2019 RVE3 Yes SL3-45 % reduced evaporator volume flow rate
14-03-2019 RVE4 Yes SL4-60 % reduced evaporator volume flow rate
15-03-2019 N-RVE Yes Normal test
19-03-2019 RVC1 Yes SL1-7.5 % reduced condenser volume flow rate
22-03-2019 RVC2 Yes SL2-15 % reduced condenser volume flow rate
27-03-2019 RVC3 Yes SL3-22.5 % reduced condenser volume flow rate
02-04-2019 RVC4 Yes SL4-30 % reduced condenser volume flow rate
04-04-2019 N-RVC Yes Normal test
25-04-2019 NC1 Yes SL1-10 % nitrogen added to refrigerant line
26-04-2019 NC2 Yes SL2-20 % nitrogen added to refrigerant line
07-05-2019 NC3 Yes SL3-30 % nitrogen added to refrigerant line
08-05-2019 NC4 Yes SL4-40 % nitrogen added to refrigerant line
28-05-2019 N-NC-

Cancelled1
No Normal test- normal operation condition could not be

restored (nitrogen was still present within the system)
13-06-2019 N-NC-

Cancelled2
No Normal test- normal operation condition could not be

restored (nitrogen was still present within the system)
15-08-2019 N-NC Yes Normal test- nitrogen successfully removed
26-08-2019 RL0-1 No SL0-10 % refrigerant removed
27-08-2019 RL0-2 No SL0-20 % refrigerant removed
28-08-2019 RL0-3 No SL0-30 % refrigerant removed
29-08-2019 RL0-4 No SL0-40 % refrigerant removed
10-09-2019 RL1 Yes SL1-50 % refrigerant removed
12-09-2019 RL2 Yes SL2-60 % refrigerant removed
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A.4 Results from the Fault Simulation Phase
Following from Section 4.4, this section extends the overview of the discussed fault pat-
terns based on the previously introduced regression analysis. Thereby, the plots shown
below illustrate the most important changes in the operating condition of the screw-chiller
being part of the test rig in the presence of certain faults. To emphasise the impact of the
the respective fault severity, the figures show the deviations for the four severity levels
determined for the experimental procedure in this work.

It is worth noting that for reasons of for simplified representations, the plots show the
fault patterns for the set-point T ∗

ei = 10 °C. For the average deviation from the benchmark
dataset across all operating conditions, the reader is referred to the tables provided in
Section 4.4.

A.4.1 Reduced Evaporator Water-Flow Rate
The fault RVE was primary accompanied by a pressure drop if the low pressure side, as
a result of lower evaporation temperatures. As a consequence the chilled water temper-
ature difference between the evaporator inlet and the outlet was increased, as shown in
Figure A.1.
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Figure A.1: Deviation of ∆TE for RVE

A.4.2 Reduced Condenser Water-Flow Rate
The fault RVC was primarily characterised by a higher cooling water temperature differ-
ence between the condenser inlet and the outlet as well as a increased pressure within
the system’s high-pressure line. Yet, the condenser approach temperature was also signif-
icantly affected, as shown in Figure A.2.
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Figure A.2: Deviation of ∆Tca for RVC

A.4.3 Non-Condensables
The most distinct fault pattern occurred for non-condensables gases in the refrigerant
line (NC). In fact, the risen pressure within the high-pressure line indicated a significant
change in the operation conditions, which was already clearly recognisable at low SL.
Interestingly, the superheat discharge temperature decreased with increasing fault sever-
ity, as shown in Figure A.3. However, this statement is deceptive because this behaviour
is caused by the oil temperature control loop (see Figure 4.1). Nevertheless, among
other things, it is an example of the confirmation of Hypothesis H1.1. A further distinct
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Figure A.4: Deviation of Pcomp for NC

characteristic results from the increased pressure difference between the low-pressure and
high-pressure sides of the refrigerant cycle. This increases the torque on the drive shaft
of the screw compressor, which in turn increases the drive power, as shown in Figure A.4.

A.4.4 Refrigerant Leak
The last fault investigated throughout the data acquisition phase was RL. Justified by
the design of the flooded evaporator, the data basis collected from these experiments is
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Figure A.5: Deviation of pre for RL

131



A.4 Results from the Fault Simulation Phase A APPENDIX

30 40 50 60 70 80 90

Q̇E [kW]

−35

−30

−25

−20

−15

−10

−5

D
ev

ia
ti

on
fr

om
n

or
m

al
[%

] T ∗ci: 23, SL: 0

T ∗ci: 23, SL: 1

T ∗ci: 23, SL: 2

T ∗ci: 28, SL: 0

T ∗ci: 28, SL: 1

T ∗ci: 28, SL: 2

T ∗ci: 33, SL: 0

T ∗ci: 33, SL: 1

T ∗ci: 33, SL: 2

Figure A.6: Deviation of ε for RL

present in less detail than in the defects discussed previously. This matter was discussed
in greater detail in Section 4.4.5. Yet, as shown in Figure A.5 using the example of the
pressure in the evaporator, this fault also occurs with strongly pronounced fault patterns.
As a consequence, the power consumption is increased and, thus, affects coefficient of
performance, as shown in Figure A.6.
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A.4.5 Average Deviation of Refrigerant Leak
As aforementioned, due to the chiller design used within the test rig, in particular the
flooded evaporator design, the fault RL was more difficult to be examined. This is mainly
due to the fact that fault characteristics are expected to be recognisable after the refrig-
erant filling quantity fell below a certain limit. As a result, the first test cases did not
show well distinguishable fault patterns, which has been discussed in Section 4.4.5. For
completeness, however, the results of all experiments related to this fault are listed in
Table A.3.

Table A.3: Average deviations of all datasets associated with the investigation of refrig-
erant leak compared to the benchmark dataset.

Variable RL0-1 RL0-2 RL0-3
δe R2 δe R2 δe R2

Pcomp 7.37 % 0.996 8.35 % 0.996 10.52 % 0.995
pre -5.19 % 0.997 -7.95 % 0.996 -8.43 % 0.996
prc 1.44 % 0.999 1.08 % 0.999 1.26 % 0.999
∆Tsh,suc 35.64 % 0.879 46.19 % 0.815 57.08 % 0.737
∆Tsh,dis 15.60 % 0.881 16.24 % 0.911 17.28 % 0.886
∆Tea 73.49 % 0.984 119.58 % 0.943 126.44 % 0.978
∆Tca 3.16 % 0.998 1.54 % 0.997 2.07 % 0.997
∆TE -0.07 % 0.999 -0.04 % 0.999 0.44 % 0.999
∆TC 9.25 % 0.995 8.28 % 0.995 9.35 % 0.995
ε -6.62 % 0.963 -7.34 % 0.966 -8.70 % 0.972
Toil 5.63 % 0.988 6.33 % 0.984 6.63 % 0.987

RL0-4 RL1 RL2
δe R2 δe R2 δe R2

Pcomp 6.80 % 0.996 19.08 % 0.988 49.82 % 0.990
pre -5.59 % 0.998 -19.28 % 0.965 -44.32 % 0.990
prc 0.99 % 0.998 0.79 % 0.998 0.80 % 0.999
∆Tsh,suc 41.45 % 0.911 238.48 % 0.905 468.97 % 0.910
∆Tsh,dis 19.41 % 0.963 21.67 % 0.930 78.52 % 0.934
∆Tea 79.04 % 0.992 323.52 % 0.954 1,422.07 % 0.997
∆Tca 1.11 % 0.998 1.73 % 0.994 0.69 % 0.930
∆TE 0.53 % 0.999 0.12 % 0.999 -0.38 % 0.999
∆TC 8.45 % 0.996 4.81 % 0.991 14.11 % 0.880
ε -5.30 % 0.964 -14.70 % 0.969 -33.24 % 0.990
Toil 5.82 % 0.989 6.44 % 0.993 12.95 % 0.998
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A.5 Dataset Features
Table A.4 shows the features of the two domains selected for the dataset. As outlined
previously, some features mentioned in Section 4.2.2 are discarded, which include the
measured water flow rates as well as the ambient temperatures. Besides, the instantaneous
motor current Icomp has not been particularly considered, as this information is already
aggregated in the motor power consumption Pcomp. Similarly, the compressor rotational
speed ncomp obviously does not provide any fault indication, which has therefore not been
considered. This also applies to the redundant sensor readings presented in Table 4.3.

Table A.4: Overview of the used and domain shared features.

Symbol Designation

Tci Water temperature at condenser inlet
Tco Water temperature at condenser outlet
Tei Water temperature at evaporator inlet
Teo Water temperature at evaporator outlet
Toil Oil feeding temperature
Tsuc Refrigerant suction temperature
Tdis Refrigerant discharge temperature
prc Refrigerant pressure at compressor outlet
pre Refrigerant pressure at compressor inlet
Pcomp Instantaneous motor power (compressor)
Q̇C Condenser heat and heat flow
Q̇E Evaporator heat and heat flow
Tre Refrigerant evaporation temperature
Trc Refrigerant condensing temperature
∆Tea Evaporator approach temperature
∆Tca Condenser approach temperature
∆TE Evaporator water-glycol temperature difference
∆TC Condenser water-glycol temperature difference
∆Tsh,dis Superheat temperature at compressor discharge
∆Tsh,suc Superheat temperature at compressor suction line
ε Coefficient of performance
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A.6 Results from ROC Analysis
Following Section 5.3.1, the remaining results from ROC analysis are presented in here-
inafter. Table A.5 shows the achieved AUC scores for the observed classifiers in depen-
dence on the respective fault SL, the values of which are further graphically underlined
through the ROC curves illustrated in the figures A.7 - A.9. The results also indicate the
expected behaviour for faults occurring at higher SL, as has been discussed in Section 3.7.

Table A.5: The AUC values obtained from ROC analysis separately by severity and
classifier.

Fault
detection
model

Fault
AUC Scores
Domain A Domain B
SL=1 SL=2 SL=3 SL=4 SL=1 SL=2 SL=3 SL=4

BSVM

NC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RVC 0.97 1.00 1.00 1.00 0.99 1.00 1.00 1.00
RVE 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RL 0.72 0.86 0.97 0.99 1.00 1.00 - -

OC-SVM

NC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RVC 0.98 1.00 1.00 1.00 0.95 1.00 1.00 1.00
RVE 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00
RL 0.76 0.73 0.87 0.98 1.00 1.00 - -

SPE

NC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RVC 0.95 0.99 1.00 1.00 0.95 1.00 1.00 1.00
RVE 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00
RL 0.80 0.85 0.90 0.99 1.00 1.00 - -

Figure A.7: ROC curves at SL=2
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Figure A.8: ROC curves at SL=3

Figure A.9: ROC curves at SL=4
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A.7 Feature Representation
This section provides an overview of the feature representation in the discussed domain
adaptation problem. More specifically, it shows the aligned observations as a result of the
models presented and discussed in Section 5.3.3. Thereby, LDA was applied to reduce
the higher dimensional feature space to two dimensions for reasons of visibility. Table
A.6 assigns the plots presented hereinafter to the respective model. The figures presented
subsequently illustrate the representations of the two domains, whereas Figure A.10 shows
the case Domain A→ B and Figure A.11 Domain B→ A. It is important to emphasise that
the figures show the domain adaptation processes after reducing the process variability
using PCA (at kpc = 7), except for plot (a), which shows the original input spaces.

Table A.6: Scatter plots showing the LDA transformed feature representation.

Label Model Label Model

a No domain adaptation e PCA(Xt)
b PCA(Xs), PCA(Xt) f TCA
c PCA(Xs) g CORAL
d PCA(Xs, Xt) h SA

Figure A.10: Scatter plot for the task Domain A → B
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Figure A.11: Scatter plot for the task Domain B → A
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