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Abstract: Hemoproteins include several heme-binding proteins with distinct structure and function.
The presence of the heme group confers specific reactivity and spectroscopic properties to hemopro-
teins. In this review, we provide an overview of five families of hemoproteins in terms of dynamics
and reactivity. First, we describe how ligands modulate cooperativity and reactivity in globins, such
as myoglobin and hemoglobin. Second, we move on to another family of hemoproteins devoted to
electron transport, such as cytochromes. Later, we consider heme-based reactivity in hemopexin, the
main heme-scavenging protein. Then, we focus on heme–albumin, a chronosteric hemoprotein with
peculiar spectroscopic and enzymatic properties. Eventually, we analyze the reactivity and dynamics
of the most recently discovered family of hemoproteins, i.e., nitrobindins.

Keywords: heme; hemoproteins; globins; cytochromes; albumin; heme-albumin; hemopexin;
nitrobindin; allostery; heme-based reactivity

1. Introduction

Heme (i.e., the iron(II) protoporphyrin IX complex) is a key cofactor of several proteins,
conferring them oxygen-binding capability and redox reactivity with both physiological
and pathological relevance [1–3]. Heme is found in the great majority of known life forms,
and the organisms that utilize heme usually possess a complete pathway to synthesize
the compound [4]. Five main families of heme-binding proteins exist, characterized by a
peculiar heme coordination mode (Figure 1), and each is endowed with specific structure
and function and spectroscopic properties (Table 1).

Myoglobin (Mb) and hemoglobin (Hb) were the first proteins whose structure was
determined with X-ray crystallography, since the presence of the iron ion led to the so-
lution of the phase problem [5]. Therefore, Mb and Hb gained a role of prototypical
hemoproteins and were investigated with a variety of techniques to obtain a full kinetic
and thermodynamic characterization of oxygen and ligand(s) binding [6,7]. To stress this
aspect, Mb is defined as “the hydrogen atom of biology” [8]. In particular, Hb assumed the
role of exemplary protein to describe cooperativity and allostery [7,9,10]. Related to Mb
are neuroglobins and cytoglobins. These globins probably arose from an early vertebrate
evolutionary divergence that led to moonlighting proteins (i.e., proteins with more than
one function) [11–13].

A second class of heme proteins includes cytochromes, where the iron ion is in re-
versible equilibrium between the oxidized (Fe3+) and reduced (Fe2+) forms. Slight changes
in the heme environment can finely tune the reduction potential to allow the transport of
electrons across protein complexes [14]. In addition, cytochromes can bind ligands at the
heme site either at the distal (canonic) side or at the proximal side of the heme group [15].

Another hemoprotein that plays a pivotal role in the control of the toxic side of heme
reactivity is hemopexin. Indeed, heme can be present in plasma following intravascular
hemolysis. Hemopexin is an acute-phase protein able to bind heme with high affinity,
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thus preventing the formation of reactive oxygen species catalyzed by free heme, and
transfer it to the liver through CD91 receptor-mediated endocytosis [16,17]. In addition, it
modulates anthracycline cardiac toxicity [18]. Hemopexin is also able to bind oxygen and
other ligands, showing heme-based reactivity [19].
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Figure 1. Principal heme coordination modes: (a) globins (PDB ID 4HHB); (b) cytochromes (PDB
ID 3ZCF); (c) hemopexin (PDB ID 1QHU); (d) serum albumin (PDB ID 1O9X); (e) nitrobindin (PDB
ID 6R3W).

Before binding to hemopexin, plasma heme binds transiently to human serum albu-
min (HSA). This is a single-chain, all-alpha protein (585 amino acids) constituted by the
repetition of three paralogous domains, probably arising from the reorganization of an
ancestral nine-domain multipurpose protein still present in cyclostoma (lampreys), such
as Lethenteron japonicum and Petromyzon marinus [20]. Although HSA is composed of a
single polypeptide chain, it shows two main stable conformations called the N (neutral)
and B (basic) forms. The transition between these two forms is cooperatively gated by the
binding of fatty acid anions to seven main sites numbered from FA1 to FA7 [21]. Ferric
heme (hemin) binds with high affinity (Kd = 1.0 × 10−8 M at pH = 7.0 and 24 ◦C [22]) to a
D-shaped cavity that usually binds one fatty acid anion [23–25]. Consequently, heme–HSA
acquires spectroscopic properties typical of heme proteins and heme-based reactivity [26].

Nitrobindin (Nb) indicates a family of mainly beta proteins that show a 10-stranded β-
barrel resembling that of lipocalins and fatty acid binding proteins (FABPs) [27]. However,
they appear to be an independent ubiquitous family of heme-binding proteins with respect
to lipocalins [28–30]. All the Nb-like proteins display conserved residues in the pocket
involved in the coordination and recognition of the heme–Fe(III). The crystallographic
structure of the human Nb homolog (THAP4) showed a partial exposure to the solvent of
the heme ring, suggesting a heme-based reactivity [29,31].
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Table 1. Main spectroscopic properties of representatives of the hemoprotein classes described in this
review.

Protein UV–Vis Resonance
Raman

Fe Coordination
Mode and Spin

State
References

Sperm whale
deoxy-

myoglobin(II)

Soret band at 434 nm;
Q band at 556 nm

1558 cm−1;
1341 cm−1,
1356 cm−1

(Fermi doublet);
1010 cm−1

5cHS [32–35]

Human deoxy-
Hemoglobin(II)

Soret band at 411 nm;
Q band at 535 nm

1607 cm−1;
1552 cm−1;
1473 cm−1

5cHS [32,36,37]

Human
hemoglobin(III)

Soret band at 405 nm;
several weaker Q

bands at 450–650 nm

1639 cm−1;
1585 cm−1;
1372 cm−1

6cHS [38,39]

Horse heart
Cytochrome c(II)

Soret band at 415 nm;
Q1 band at 520 nm;
Q0 band at 550 nm

1361 cm−1;
1491 cm−1;
1592 cm−1;
1621 cm−1;
1546 cm−1

6cLS [40–42]

Horse heart
Cytochrome

c(III)

Soret band at 409 nm;
Q band at 529 nm;
CT band at 695 nm

1372 cm−1;
1502 cm−1;
1584 cm−1;
1635 cm−1;
1560 cm−1

6cLS [43,44]

Rabbit serum
hemopexin(II)

Soret
band at 426 nm;

Q1 band at 526 nm;
Q0 band at 556 nm

Not
available 6cLS [45,46]

Rabbit serum
hemopexin(III)

Soret
band at 413 nm;

Q1 band at 530 nm;
Q0 band at 563 nm

Not
available 6cLS [46,47]

Human serum
albumin(II)

Soret
band at 418 nm;

shoulder at 405 nm;
Q1 band at 536 nm;
Q0 band at 572 nm

5cHS:
1358 cm−1;
1472 cm−1;
1557 cm−1;
1602 cm−1

4cIS:
1370 cm−1;
1502 cm−1;
1580 cm−1;
1635 cm−1

Mixture of 5cHS
and 4cIS [48,49]

Human serum
albumin(III)

Soret band
at 404 nm;

Q1 band at 501 nm;
Q0 band at 533 nm;
CT1 band at 622 nm

1493 cm−1;
1568 cm−1;

ν10 1624 cm−1
5cHS [48]
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Table 1. Cont.

Protein UV–Vis Resonance
Raman

Fe Coordination
Mode and Spin

State
References

Homo sapiens
nitrobindin(III)

Soret band at 407 nm;
CT1 band at 631 nm

ν3 1487 cm−1;
ν2 1561 cm−1;
ν10 1611 cm−1

6cHS [31]

Danio rerio
nitrobindin(II)

5cHS:Soret band at
430 nm;

6cLS:shoulder at 417
nm

5cHs:
ν3 1473 cm−1;
ν2 1561 cm−1;
ν10 1606 cm−1

6cLS:
ν3 1498 cm−1;
ν2 1585 cm−1

ν10 overlapped
to vinyl

stretching modes
(νC = C)

Mixture of 5cHS
and 6cLS [50]

2. Globins

Globins are a superfamily of globular heme-binding proteins, including several mem-
bers with a wide range of functions [51,52]. The two most prominent members are
tetrameric Hb and monomeric Mb, which are often used as macromolecular models for
structural and functional studies. However, globin genes have been discovered in almost
every genome, ranging from prokaryotes to higher eukaryote organisms. Of note, novel
globin family members were recently found in vertebrates, e.g., neuroglobin (Ngb) in
neuronal and glial cells [53,54] and cytoglobin (Cygb) in fibroblasts [55], endowed with
peculiar functions.

From a structural point of view, in all 3/3 α-helical globins, the heme group is located
between the A-B-E α-helices on one side and the F-G-H α-helices on the other side with the
fifth coordination bond of the Fe atom formed by the proximal HisF8 residue [56–58]. On the
contrary, the 2/2 fold is composed of four α-helices (B, E, G, and H), which create a bundle
around the heme group (B/E and G/H antiparallel pairs connected by a loop) [59] (Figure 2).
Interestingly, several internal cavities were recently discovered, which play an important
role in orchestrating the diffusion of ligands and reshaping the heme pocket [60–62].
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Figure 2. X-ray structure of Physeter catodon myoglobin showing the typical 3/3 alpha helical sand-
wich (a) (PDB ID 1A6K [63]) compared to the structure of truncated hemoglobin from Chlamydomonas
eugametos showing the 2/2 alpha helical sandwich (b) (PDB ID 1DLY [64]). Ribbons are colored
following secondary structure succession.



Biomolecules 2023, 13, 683 5 of 21

As for the functional activity of globins, in addition to O2 transport and storage,
they also display pseudo-enzymatic properties, including peroxidase activity, NO/O2
metabolism, fatty acids metabolism, gas sensing, antiapoptotic and antiproliferative effects,
cytoprotection in neuronal and cancer cells, and antimicrobial and anti-inflammatory
functions [65]. The binding kinetics for the main ligands (O2, CO, and NO) to globins have
been investigated and fully characterized during the past decades (Table 2).

The functional properties of globins can be modulated both allosterically and cova-
lently [66]. The noncovalent regulation implies the transient variation of ligand-binding
properties due to the interaction with a second ligand at the level of a distinct binding
site [61,67,68]. Instead, covalent regulation implies the long-lasting presence of the modified
species (e.g., phosphorylated) [69]. Basically, the way globins are functionally regulated re-
flects the specific type of modulating signal: a quick transition between two conformations
in response to rapidly changing conditions requires an allosteric modulation, whereas a
stable modulation signal requires a covalent modification [70].

Table 2. Rate constants of ligand binding to globins.

Protein Ligand kon
(µM−1s−1) koff (s−1) Reference

Human Hb
(R-state, pH = 7, 20–25 ◦C)

O2
CO
NO

66
6
60

20
0.008

0.00003

[71]
[71]
[71]

Sperm whale Mb
(pH = 7, 20 ◦C)

O2
CO
NO

14
0.5
17

12
0.02

0.00012

[72]
[72]
[73]

Human Ngb
(pH = 7, 25 ◦C)

O2
CO
NO

140
38

150

0.8
0.007

0.0002

[74]
[75]
[76]

Human Cygb
(pH = 7, 20 ◦C)

O2
CO

30
5.6

0.35
0.003

[75]
[75]

2.1. Hemoglobin

Hb is broadly recognized as a paradigm of cooperativity and allosteric modulation
in proteins whose main function in vertebrates is oxygen binding and transport from the
lung to tissues. However, Hb has been extensively studied and characterized during the
last decades, unveiling its behavior as a polyfunctional molecule endowed with catalytic
activity (e.g., nitrite reductase, NO dioxygenase, monooxygenase, alkylhydroperoxidase,
esterase, lipoxygenase) and involved in several physiological processes, such as nitric oxide
metabolism, metabolic reprogramming, pH regulation, and redox balance maintenance [70].
Structurally, Hb is a tetramer consisting of two α-subunits (α1, α2) and two β-subunits
(β1, β2). The two αβ dimers (α1β1, α2β2) are arranged around a two-fold symmetry axis,
resulting in the central water cavity whose shape is influenced by the Hb state. Indeed,
O2 binding and release from Hb has been historically explained based on the two-state
allosteric model of Monod, Wyman, and Changeux (MWC) [67] in terms of equilibrium
between two states: the tense (T) state (unliganded), which exhibits low affinity for O2,
and the relaxed (R) state (liganded), which exhibits high affinity for O2. This provided
a structural explanation for the cooperative effects that facilitate binding and release of
O2 in vivo [77]. This model assumes equivalence of all four subunits and relies on an
equilibrium between the two quaternary conformations. Based on the presence of both
chemically different subunits (α and β) and a single two-fold axis of symmetry, extensions
of the MWC model have been proposed as well as alternative models, such as the sequential
one [78,79] and the Herzfeld–Stanley (HS) model [80]. Later on, Perutz introduced the
stereochemical model, which proposes that the breaking of inter-subunit salt bridges
promotes the transition to the R state; indeed, oxygen binding to the T state results in an in-
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plane movement of the heme–Fe accompanied by the movement of the proximal HisF8 and
the associated F-helix, which causes salt bridge breaking [81–84]. Szabo and Karplus further
revised this model by including thermodynamic and energetic observations, proposing that
low oxygen affinity in the T state mainly arises from the steric repulsion between HisF8 and
the porphyrin [85,86]. The most recently proposed model, which highlights differences in
the tertiary structure, is the Tertiary Two State (TTS) model, originally described by Henry
and coworkers and based on spectroscopic evidence of tertiary transitions [87,88]. This
model states that high and low affinity conformations of individual Hb subunits exist in
equilibrium within each quaternary structure, which allows incomplete coupling between
tertiary and quaternary transitions.

The balance between the T and R states is affected by both endogenous heterotropic
ligands (e.g., 2,3-bisphosphoglycerate, protons, carbon dioxide, chloride) and synthetic
allosteric effectors that modulate Hb–O2 affinity. In hemoglobin, one of the two axial
coordination positions of the heme–Fe is occupied by the proximal His, while the other
is available for external ligands. Thus, the five-coordinate heme–Fe is characteristic of
unliganded Hb; the sixth coordination position is unoccupied, the heme is domed in the
direction of the proximal His, and the iron is out of the heme nitrogen plane by ∼0.2–0.4 Å.
Oxygen binding occurs via coordination of O2 to the vacant axial position, and the heme–Fe
becomes six-coordinate. A difference exists between the alpha and beta subunits; the
heme group is nearly planar in the alpha but ruffled in the beta. Indeed, the Fe–O(1)–O(2)
angles in the alpha and beta subunits are 153 degrees and 159 degrees, respectively. The
oxygen molecule forms a hydrogen bond to the N epsilon of HisE7 in the alpha subunit,
but either none or a weak one in the beta subunit [89]. Carbon monoxide is a stronger
ligand than oxygen. The Fe–CO complexes of Hb are bent with the Fe–CO axis, which
is not orthogonal to the heme plane. Nitric oxide displays a 1500-fold higher affinity for
the heme–Fe than CO, and the Fe–NO complex of Hb is bent with an angle similar to
that observed in the Fe–O2 complex. Other ligands of ferrous Hb are isocyanides and
nitroso aromatic compounds. The O2 affinity of Hb may vary over a large range due to
the effect of heterotropic ligands that bind to a different site. These include hydrogen ions,
chloride, phosphate and other inorganic anions, organic phosphates (e.g., 2,3-bisphospho-D-
glycerate and inositol hexakisphosphate), and carbon dioxide. All physiologically relevant
heterotropic ligands lower the Hb oxygen affinity [90]. In addition to endogenous ligands,
Hb is also known to interact with several xenobiotics, which are capable of allosterically
modulating the equilibrium between oxygenated and deoxygenated Hb. Compounds,
such as 5-hydroxymethylfurfural, pyridyl derivatives of vanillin, voxelotor (GBT440), and
triazole sulfide, shift the equilibrium to a high-oxygen-affinity Hb and, therefore, have
clinical value in treating sickle cell anemia. By contrast, compounds, such as nitroglycerine,
amyl nitrite, isosorbide dinitrate, nicorandil, sinitrodil, and efaproxiral (RSR13), decrease
the Hb affinity for oxygen and, therefore, are good candidates for the treatment of hypoxic
or ischemic conditions [91]. The effects caused by xenobiotic binding are due to the
conformational changes that occur in the Hb tetramer (allosteric modulation), which in
turn cause sequential changes in the affinity at other heme sites. Eventually, even though
Hb is not an enzyme, it has been found to be endowed with catalytic activity for which
it has been elected an “honorary enzyme”. Indeed, Hb displays enzymatic behavior as a
nitrite reductase with maximum NO generation rates occurring near the R-to-T allosteric
structural transition [92].

2.2. Myoglobin

In the context of monomeric globins, sperm whale Mb (swMb) represents a good
model to describe quickly adapting allosteric modulation by heterotropic effectors [8,93].
swMb acts as a reserve supply of O2 and facilitates the O2 flux within myocytes. Lactate, a
product of glycolysis under anaerobic conditions (e.g., during prolonged physical effort),
behaves as a heterotropic allosteric effector, which leads to decreased O2 affinity for swMb.
Mechanistically, lactate seems to impair the access of O2 to the heme distal pocket of swMb
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by hydrogen bonding to the Arg(Lys)CD3–HisE7–Thr(Val)E10 triad, thus stabilizing the
closed HisE7 conformation [93].

2.3. Neuroglobin

An example of covalent modulation of globin activity is represented by the human
neuroglobin (Ngb). Ngb is the third discovered member of the human globin family. It
is a small monomeric, hexa-coordinated hemoprotein expressed in neuronal cells of both
central and peripheral nervous systems, which binds several ligands (e.g., O2, CO, and
NO) and also displays pseudo-enzymatic properties [94]. Ngb plays a crucial role in neu-
roprotection from hypoxia in vitro and in vivo. Indeed, it undergoes hypoxia-dependent
phosphorylation, which affects the coordination of the heme Fe atom and, in turn, the
reactivity of the hemoprotein. The kinetics and thermodynamics of the binding between
the distal HisE7 and the heme Fe atom are indeed modulated by two different mechanisms,
i.e., (i) phosphorylation and (ii) the redox state of the CysCD7/CysD5 residues pair (Fig-
ure 3). Ngb phosphorylation by intracellular kinases was shown to increase the nitrite
reductase activity of the hemoprotein by three-fold, altering the coordination of the heme
Fe atom [95]. On the other hand, the reduction of the CysCD7–CysD5 disulfide bond was
shown to reduce the dissociation rate of HisE7 from the hexa-coordinated Fe atom and
increase the value of the equilibrium constant for HisE7 binding to the sixth coordination
position of the Fe atom by approximately one order of magnitude. In turn, O2 affinity
decreased to the same extent [74]. Thus, the neuroprotective role of Ngb is regulated by
a ligand-linked, slow phosphorylation/dephosphorylation cycle and by intramolecular
disulfide bond formation and dissociation. This facilitates heme Fe–ligand binding and
enhances the rate of anaerobic nitrite reduction to NO, eventually contributing to the
cellular response to hypoxia.

2.4. Cytoglobin

A hybrid regulatory mechanism has been described for human cytoglobin (Cygb),
which couples the allosteric modulation by lipid binding with the formation and disso-
ciation of an intramolecular disulfide bond. Cygb function is not yet clearly understood;
however, it seems to have a role in protecting cells against oxidative stress. Indeed, it has
been proposed that it assists O2 transport to the mitochondrial respiratory chain, functions
as a NO dioxygenase, and facilitates nitrite reduction and NO generation under anaerobic
conditions [96–100]. Similarly to Ngb, Cygb displays a bis-histidyl, hexa-coordinated heme
Fe atom, so that the cleavage of the distal HisE7–Fe bond is a prerequisite for the binding of
exogenous ligands [101,102]. The heme reactivity depends on the lipid (e.g., oleate) binding
to the long N- and C-terminal disordered protein extensions, which promotes the transition
from a hexa- to penta-coordinated heme Fe atom, thus stabilizing the penta-coordination
geometry [103,104]. Moreover, the redox state of the CysB2/CysE9 residue pair in ferrous
Cygb directly influences the heme Fe reactivity (Figure 3). The CysE9 and HisE7 residues
are located on opposite sides of the E-helix; therefore, the formation of the CysE9–CysB2
bond seems to exert some strain on HisE7 [105]. This conformational change may perturb
the local molecular dynamics, thus influencing ligand binding.
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3. Cytochromes

Cytochromes are ubiquitous, evolutionary-conserved, electron-carrying proteins in-
volved in central redox catalysis. They show characteristic strong absorption of visible light
due to the presence of the iron-containing heme prosthetic group. Thus, they are grouped in
different classes based on their longest wavelength absorption band in their reduced (Fe2+)
state: cytochrome a (605 nm), cytochrome b (≈565 nm), and cytochrome c (550 nm). All
classes are involved in the mitochondrial respiratory chain. Cytochrome c (cytc) is the most
abundant protein in mitochondrial cristae, where it transports electrons from cytochrome
c reductase (complex III) to cytochrome c oxidase (complex IV). Its six-coordinated heme
iron is, therefore, able to cycle from the reduced form to the oxidized form. This redox
property is mainly due to the axial coordination of the M80 sulfur atom (Fe–S bond). Under
these conditions, the heme-related reactivity of cytc is negligible in both the reduced and
oxidized forms. However, the redox potential of cytc is not only dependent on M80 axial
coordination. In this context, Bren and coworkers demonstrated that deformations of metal
porphyrins (i.e., ruffling, saddling, doming) affect the redox potentials, electron transfer
kinetics, and ligand-binding properties of heme-binding proteins. Ruffling is the main de-
formation in cytc. Density Functional Theory (DFT) calculations of His/Met-ligated heme
demonstrated that, in addition to decreasing the electronic coupling of the cofactor with an
external reductant, the ruffling also modified the reduction potential of the heme [107,108].

Upon binding to anionic lipids, cytc acquires peroxidase activity. This implies a
conformational change of the protein, which also involves partial unfolding of its tertiary
structure [109–111]. The protein has to change the ligation state of the heme group and
also the spin state of the heme–Fe, which is a pH-dependent process, in order to acquire
peroxidase activity [112,113]. Indeed, the native protein with its heme–Fe in the six-
coordinate low-spin state with His and Met as axial ligands displays low accessibility of
the active site to the solvent and the inability of M80 to accept a proton. Cardiolipin (CL), a
glycerophospholipid enriched in the mitochondrial inner membrane, plays a major role in
regulating both the binding and function of cytc on the mitochondrial inner membrane,
owing to its two phosphate head groups that can strongly interact electrostatically with
cytc. Upon binding to CL, cytc acquires heme-related, ligand-binding properties and
reactivity similar to that of globins [114–120]. In particular, CL–cytc acquires the peroxidase
activity that is critical for CL redistribution across the intermembrane space [114]. This is
crucial for mitochondrial biology since CL in the inner membrane maintains the protein
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complexes’ structure and function, while its oxidation and subsequent redistribution on
the outer membrane allows cytc to be released in the cytosol, thus triggering the apoptotic
process [121]. As reported for CO and O2, nitric oxide (NO) also binds to the heme, causing
conformational changes and allosteric regulation of the activity [56,122–124]. Indeed, NO
binds to the distal side of the ferrous heme giving rise to hexa-coordinated adducts with
His as the axial proximal ligand. Alternatively, NO binding to the heme distal side induces
the dissociation of the proximal His residue, leading to penta-coordinated complexes. In its
ferric form, CL–cytc can reversibly bind NO to form the CL–cytc(III)–NO complex, which
undergoes reductive nitrosylation to form the CL–cytc(II)–NO complex [116]. It has been
demonstrated that CL binding induces a change in the cytc tertiary structure that leads to
a rearrangement of K72, K73, and K79 with a consequent cleavage of the M80 Fe–S bond,
thus leading to a five-coordinated species with globin-like reactivity [15,125].

Recent advances in bacterial genome sequencing revealed many genes encoding
novel c-type cytochromes, which contain multiple heme cofactors [126]. One example
is the Geobacter sulfurreducens, whose genome contains 111 cytc genes, and 73 of them
display two or more heme groups (one containing 27 heme groups). This huge number of
multi-heme cytochromes helps these bacteria survive in energy-limited environments by
utilizing a diverse range of respiratory pathways and terminal electron acceptors, including
metal ions. In particular, extracellular electron transport allows some bacterial species
to use solid minerals as electron sources. The electron uptake process involves integral
outer-membrane, multi-heme cytochromes that contain at least four heme groups, which
are essential to form a direct electron-transport pathway [127]. The activity of multi-
heme cytochromes is not limited to electron transfer with several proteins able to bind
substrates at one of the heme groups and display enzymatic activity, such as the pentaheme
cytochrome c nitrite reductase. The latter is a homodimer; the protein folds into one
domain composed by three long alpha-helical segments, two of which are key elements
for dimerization. Within each monomer, the five heme groups form both near-parallel and
near-perpendicular arrangements. The active site is located at heme 1, which displays an
unusual lysine coordination arising from the presence of a CXXCK motif in the protein
sequence, which results in an amine nitrogen as the proximal ligand. The distal ligand
varies across species but has been observed as water/hydroxide, sulfate, and azide; the
latter two being inhibitors of nitrite reductase activity [128–130] (Figure 4).
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are in black.

Multi-heme, cytochrome-mediated extracellular electron transfer is being pursued
for wiring bacteria to electrodes in bio-electrochemical renewable energy technologies,
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especially in the context of fuel-to-electricity and electricity-to-bioproduct conversions.
Emerging topics include the role of multi-heme cytochromes in interspecies electron transfer
and in supporting the design of novel protein-based bioelectronic components [132].

4. Hemopexin

The glycoprotein hemopexin is the plasma protein that displays the highest binding
affinity for heme. It is mainly expressed in the liver as an acute-phase protein upon inflam-
mation, and it is the major carrier of heme in the plasma, thus preventing heme-mediated
oxidative stress and heme-bound iron loss [133]. After heme binding, hemopexin under-
goes a conformational change allowing for interaction with the CD91 receptor, mainly
expressed on hepatocytes, followed by internalization. Inside the cell, heme is catabolized
while the hemopexin-receptor complex is recycled [134]. Thus, the most important physio-
logical role of hemopexin is to act as an antioxidant after blood heme overload, which is
critical to cope with severe pathological situations such as sepsis [135].

Human hemopexin consists of a single 439-aminoacid polypeptide chain with six
intrachain disulfide bridges [136]. The protein comprises two homologous domains of
approximately 200 residues each joined by a 20-aa linker. These domains have a unique
four-bladed, β-propeller fold that is a variant of the larger β-propeller domains found in het-
erotrimeric G proteins, clathrin, and integrins, which play a crucial role in protein–protein
interactions. The N-terminal threonine residue is blocked by an O-linked galactosamine
oligosaccharide, and the protein has five glucosamine oligosaccharides N-linked to the
acceptor sequence Asn–X–Ser/Thr. A unique feature of hemopexin is the high content of
tryptophan residues (i.e., eighteen residues arranged in four clusters). The heme binds
between the two propeller domains in a pocket bounded by the interdomain linker. Two
histidine residues coordinate the heme iron, His213 from the linker and His266 from the
C-terminal domain, giving a stable bis-histidyl Fe(III) complex (Figure 5).
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A body of evidence suggests that heme-bound plasma proteins may display ligand
binding and (pseudo-) enzymatic properties [19]. In particular, ferrous hexa-coordinated
heme–hemopexin (HPX–heme(II)) binds CO, NO, and cyanide by detaching the H213
nitrogen–iron coordination bond [19]. O2 binds transiently and is followed by fast HPX–
heme(II) oxidation [45,138].
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CO reversibly binds to penta-coordinated rabbit HPX–heme(II) (at pH < 7.0) with
a second-order rate constant kon = 1.9 × 103 M−1s−1 and a first-order rate constant
koff = 5.0 × 10−4 s−1. These values reflect both slower carbonylation and decarbonylation
kinetics compared to other penta-coordinated hemoproteins [19]. On the other hand, at
pH > 7.0, CO binds to hexa-coordinated rabbit HPX–heme(II) with a second-order rate
constant kon = 2.1 × 102 M−1s−1 and a first-order rate constant koff = 5.0 × 10−4 s−1, the
latter not being affected by the protonation state of H213.

NO binds reversibly to rabbit HPX–heme(II) with a second-order rate constant kon = 6.3
× 103 M−1s−1 and a first-order rate constant koff = 9.1 × 10−4 s−1 [138]. NO also binds
to ferric HPX–heme(III) with a second-order rate constant kon = 1.3 × 101 M−1s−1 and
a first-order rate constant koff < 1.0 × 10−4 s−1. The binding is followed by reductive
nitrosylation [139].

Eventually, O2 and peroxynitrite are reported to react with HPX–heme(II)–NO yielding
HPX–heme(III) and NO3

−
, thus conferring pseudo-enzymatic properties to HPX–heme(II)–

NO [139,140].

5. Human Serum Heme–Albumin

HSA displays an extraordinary ligand binding capacity, providing a depot and car-
rier for many endogenous and exogenous compounds [21]. HSA influences the phar-
macokinetics and pharmacodynamics of several drugs (e.g., antibiotics, anticoagulants,
antineoplastics, antivirals, anesthetics, anxiolytics, and nonsteroidal anti-inflammatory
drugs) [141]. Heme–HSA has been characterized by several spectroscopic techniques,
such as optical [142], NMR [23], Raman and resonance Raman [48], EPR [45], and X-ray
absorption spectroscopy (XAS) [143] (Figure 6). As reported in Table 1, the spectroscopic
characterization of Fe(III)heme–HSA highlights a 5cHS heme and a weak Fe(III)–OTyr

coordination in agreement with the remarkable Fe(III)–O distance (2.73 Å) determined
from the crystal structure.
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Although HSA is a globular, monomeric protein, its multidomain structural organi-
zation resembles that of multimeric proteins [144]. Therefore, the heme-binding thermo-
dynamics and reactivity are regulated by heterotropic interactions as well as by ligand
competition [145]. Specific binding of drugs to Sudlow’s site I can allosterically decrease
heme-binding affinity to its site and vice-versa [146]. The allosteric mechanisms have
been observed for several drugs: warfarin [147]; imatinib [148]; the anti-HIV drugs aba-
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cavir, atazanavir, didanosine, efavirenz, emtricitabine, lamivudine, nelfinavir, nevirapine,
ritonavir, saquinavir, stavudine, and zidovudine [149]; isoniazid and rifampicin [150];
flavonoids [151]; ∆9-tetrahydrocannabinol [152]; apomorphine [153]; and bezafibrate and
clofibrate [49]. Some drugs display an allosteric effect by binding to secondary sites as
observed for ibuprofen [154] and benserazide [153]. Eventually, some drugs can competi-
tively displace heme from its HSA binding site as observed for cantharidin, retinoic acid,
and retinol [155,156].

Ferrous heme–HSA (Fe(II)heme–HSA) displays globin-like reactivity [157–159].
Fe(II)heme–HSA has been demonstrated to be a mixture of several species, mainly a
four-coordinated intermediate-spin species, a five-coordinated high-spin species, and a
six-coordinated low-spin species, with different abundances at different pH values [160].
Association and dissociation constants for Fe(II)–NO binding in Fe(II)heme–HSA were
reported by Coletta and coworkers [157]. The second-order rate constant for Fe(II)heme–
HSA nitrosylation was observed to decrease by one order of magnitude in the presence of
a saturating concentration of ibuprofen and warfarin [157]. In addition, the denitrosylation
kinetics of Fe(II)heme–HSA were affected by ibuprofen [158] and warfarin [159]. Table 3
reports NO association and dissociation constants to Fe(II)heme–HSA in the absence of
drugs and in the presence of warfarin and ibuprofen. Both drugs decrease the second-order
nitrosylation reaction rate by one order of magnitude with a concomitant effect on the first-
order denitrosylation rate. Warfarin binds primarily to Sudlow’s site I that is functionally
linked to the modulatory site FA2, which in turn regulates HSA conformation [142,145,146].
However, ibuprofen binds primarily to Sudlow’s site II, which is not functionally linked to
the heme site, indicating that ibuprofen may bind at three different sites with thermody-
namic dissociation constant values of 3.1 × 10−7 M, 1.7 × 10−4 M, and 2.2 × 10−3 M [158].
NO also binds reversibly to Fe(III)heme–HSA to form a transient Fe(III)–NO complex
followed by dismutation to Fe(II)–NO+. This species undergoes nucleophilic attack by
OH− (at pH > 6.5) with the formation of Fe(II)–NO [161].

Table 3. Rate constants for nitrosylation (kon) and denitrosylation (koff) of ferrous heme–HSA.

Drug kon (M−1s−1) koff (s−1)

No drug 6.3 × 106 [157] 1.4 × 10−4 [158]

Ibuprofen 4.1 × 105 [157] 9.5 × 10−3 [158]

Warfarin 4.8 × 105 [157] 8.6 × 10−4 [159]

Fe(III)heme–HSA also catalyzes peroxynitrite isomerization to nitrate (kon = 4.1 ×
105 M−1s−1), thus preventing nitration of free added tyrosine [162]. In the presence of
ibuprofen, isoniazid, rifampicin, chlorpropamide, digitoxin, furosemide, indomethacin,
phenylbutazone, sulfisoxazole, tolbutamide, and warfarin, the reaction is allosterically
impaired with a reaction kinetics superimposable to that observed in the absence of
Fe(III)heme–HSA [150,162,163].

6. Nitrobindin

In 2010, structural studies on the 166-residue protein coded by Arabidopsis thaliana (At)
gene locus At1g79260.1 revealed specific and high affinity binding to heme with the ferric
derivative of this heme protein binding NO. The protein was named nitrobindin (Nb) due to
its structural and functional similarity to nitrophorins (NPs), a group of lipocalins involved
in NO transport [27]. The compact barrels of both proteins have a large hydrophobic
cavity with the heme iron coordinated by a proximal histidine and the end opposite of the
heme-binding site enclosed by a 310 helix. However, Nb forms a compact ten-stranded,
β-barrel structure (whereas NPs contain eight β-strands) and a more open entry to the heme
pocket with the heme positioned at the rim of the cavity and well exposed to the solvent.
Structural crystallographic analysis of At–Nb shows that the metal center of the heme is
coordinated by His158 and, contrarily to globins, no distal histidine was identified as the
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sixth ligand [27]. However, at the opposite side of the heme plane, an additional histidine
(His76) is found to be parallel to it, although located too far away from the heme–Fe atom
to coordinate it (with a distance of 6.9 Å calculated on PDB ID 3EMM using CCDC Mercury
software). Multiple van der Waals interactions contribute to the stabilization of the binding
with the heme. The cavity where the heme is located is delimited by highly hydrophobic
residues (Phe44, Met75, Thr98, Leu100, Val128, Ile131, Met148, and Leu159) placed within
4 Å from it. A heme propionate forms hydrogen bond interactions with Thr40, while the
other propionate is exposed to the solvent, and no close contacts with any aminoacidic side
chains are found [29]. Furthermore, while NPs feature an Asp residue in the distal pocket
to stabilize the protonated primary amine of the bound histamine, Glu78 is present in the
distal pocket of At–Nb but does not seem to stabilize bound imidazole (Figure 7).
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Homologs of At–Nb were identified and structurally characterized later on, such
as a human homolog containing the thanatos-associated protein 4 (THAP4) domain (Hs–
THAP4) and two structural homologs in Mycobacterium tuberculosis (Mt–Nb), suggesting
that nitrobindins could represent a novel family of all β-barrel, heme-binding proteins
present in prokaryotes and eukaryotes. A bioinformatics investigation based on the amino
acid sequences and 3D structures of At–Nb and Hs–THAP4 showed that all Nb-like proteins
from bacteria to H. sapiens show conservation of the His158 residue coordinating the heme–
Fe atom and the His76 side chain in contact with the heme moiety on the distal side [28].

Kinetic studies of NO binding to Mt–Nb(III), Hs–Nb(III), and At–Nb(III) revealed
similar values of NOkon for NO binding in agreement with those reported for nitrosylation
of Rhodnius prolixus nitrophorin Rp–NP1(III) and Rp–NP4(III) but lower than Rp–NP2(III)
and Rp–NP3(III). A much lower value was determined for Physeter catodon myoglobin
Pc–Mb(III) due to a remarkable solvent inaccessibility to the heme in comparison with the
corresponding ferric Nbs. In accordance, denitrosylation kinetic studies assessed that the
NOkoff values of At–Nb(III), Mt–Nb(III)–NO, Hs–Nb(III)–NO, and Rp–NP2(III-NO match
well with those of Rp–NP3(III)–NO but are higher than Rp–NP1(III)–NO, Rp–NP4(III)–NO,
and Pc–Mb(III) [27,30,164,165]. The variability in NO dissociation rates could be related
to differences in the stabilization of the NO–Fe(III) bond controlled by different hydrogen
bond interactions.

Despite the structural similarities between Rp–NPs and Nbs, the affinity of histamine
for Mt–Nb(III), At–Nb(III), and Hs–Nb(III) was found to be seven to eight orders of magni-
tude lower than Rp–NPs. A docking simulation showed that the side chains of His85 and
Ser87 in Mt–Nb(III), Ser97, and Thr98 in At–Nb(III), and Thr91 and Asn90 in Hs–Nb(III)
sterically encumber the binding of the heme groups’ Fe (III) to histamine [30,166,167]. More
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recently, the kinetic and spectroscopic features of nitrosylation of ferric and ferrous ni-
trobindin from Danio rerio zebrafish were found to match those of the other Nbs previously
investigated. Such nitrosylation kinetics are associated with a high free-energy barrier
for NO association to the heme (~38.3 ± 1.0 kJ/mol), which may be due to the crowded
network of water molecules that shields the heme distal pocket in Nbs. A different trend is
observed in the NO dissociation process with dissipation of the distal water molecules’ wall
and the more open heme pocket of Nbs leading to a lower energy barrier [50,168]. This is
reflected in a much faster NO exchange rate than other hemoproteins (such as myoglobins),
electing nitrobindins as regulators of NO levels in the blood.

With nitric oxide playing a key role in disease resistance in plants, such as Arabidopsis
thaliana, ferric At–Nb was hypothesized to be involved in wounding and pathogenic infec-
tions by transporting and rapidly releasing NO at the infection site, therefore, contributing
to the generation of reactive oxygen species (ROS) as NO may reduce O2 to superoxide
radicals that can dismute to H2O2 [27,120,121]. The inability of At–Nb to establish stable
complexes with O2, CO, or NO in the presence of air excludes possible roles in O2 storage
or transport.

Over the past years, De Simone et al. [30] characterized the structure and potential
physiological function of nitrobindins through multiple in vitro assays and cell survival
analyses and highlighted their evolutionary conserved function role in NO sensing and
scavenging of reactive nitrogen species (RNS) and ROS as components of pools of antioxi-
dant protein systems.

An investigation of the effect of Mt–Nb(III) on the peroxynitrite-induced nitration of
L-tyrosine demonstrated its protective role over L-tyrosine nitration, while the process
is not prevented when it comes to Mt–apo–Nb. The ability of ferric Mt–Nb to detoxify
peroxynitrite was confirmed in vivo upon transformation in the BL21 (DE3) Escherichia coli
strain, subsequently treated for 24 h with increasing concentrations of the peroxynitrite gen-
erator 3-morpholinosydnonimine (SIN-1), demonstrating how it ensures bacteria growth
also in the presence of RNS [30]. The survival of M. tuberculosis in the host suggests ferric
Nb as part of a detoxifcation system scavenging RNS and ROS produced by the immu-
nity response, as reported for mammalian globins [169,170] and mycobacterial truncated
hemoglobins [171]. If confirmed with future additional in vitro and in vivo experiments,
Nb may emerge as a therapeutic target for the treatment of not only pulmonary tuberculosis
but also extra-pulmonary manifestations, such as ocular infections involving conjunctiva,
cornea, and sclera [172].

Hs–Nb could act as a sensor of peroxynitrite levels in which peroxynitrite binding to
the C-terminal Hs–Nb domain of THAP4 may regulate the transcriptional activity residing
at the N-terminal domain. In vitro tests on HEK293 cells ectopically overexpressing Hs–Nb
suggested that Hs–Nb, which localizes mainly in the cytoplasm and partially in the nucleus,
may play a role in the detoxification process of human cells from peroxynitrite in a similar
way to Mt–Nb as protein nitration upon treatment with SIN-1 was detected to be reduced
by 40% and 60% after 2 h and 24 h, respectively. In addition, significantly increased cell
viability was observed for HEK293 cells overexpressing Hs–Nb after a 2 h treatment with
SIN-1 with respect to untransfected HEK293 cells and HEK293 transfected with an empty
vector [30].

Finally, the recently observed nitrosylation dynamics of Dr–Nb confirm the importance
of a potential role of Nbs as a regulator of NO levels in poorly oxygenated tissues, such as
the fishes’ eye retina, which is subjected to high hydrostatic pressure under deep diving
conditions [50,168].
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