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Abstract—In software engineering, measuring software func-
tional size via the IFPUG (International Function Point Users
Group) Function Point Analysis using the standard manual
process can be a long and expensive activity, which is possible
only when functional user requirements are known completely
and in detail. To solve this problem, several early estimation
methods have been proposed and have become de facto standard
processes. Among these, a prominent one is High-level Function
Point Analysis. Recently, the Simple Function Point method has
been released by IFPUG; although it is a proper measurement
method, it has a great level of convertibility to traditional Func-
tion Points and may be used as an estimation method. Both High-
level Function Point Analysis and Simple Function Point skip
the activities needed to weight data and transaction functions,
thus enabling lightweight measurement based on coarse-grained
requirements specifications. This makes the process faster and
cheaper, but yields approximate measures. The accuracy of
the mentioned method has been evaluated, also via large-scale
empirical studies, showing that the yielded approximate measures
are sufficiently accurate for practical usage. In this paper, locally
weighted regression is applied to the problem outlined above.
This empirical study shows that estimates obtained via locally
weighted regression are more accurate than those obtained via
High-level Function Point Analysis, but are not substantially
better than those yielded by alternative estimation methods using
linear regression. The Simple Function Point method appears to
yield measures that are well correlated with those obtained via
standard measurement. In conclusion, locally weighted regression
appears to be effective and accurate enough for estimating
software functional size.

Index Terms—Function Point Analysis, Early Size Estimation,
High-level FPA, Simple Function Points, LOcally Estimated
Scatterplot Smoothing (LOESS)

I. INTRODUCTION

This paper extends a previous study that examined a single

functional measure dataset [1].

In the late seventies, Allan Albrecht introduced Function

Points Analysis (FPA) at IBM [2], as a means to measure

the functional size of software, with special reference to the

“functional content” delivered by software providers. Albrecht

aimed at defining a measure that might be correlated to the

value of software from the perspective of a user, and could

also be useful to assess the cost of developing software

applications, based on functional user requirements.

FPA is a Functional Size Measurement Method (FSMM),

compliant with the ISO/IEC 14143 standard, for measuring the

size of a software application in the early stages of a project,

generally before actual development starts. Accordingly, soft-

ware size measures expressed in Function Points (FP) are often

used for cost estimation.

The International Function Points User Group (IFPUG)

is an association that keeps FPA up to date, publishes the

official FP counting manual [3], and certifies professional

FP counters. Unfortunately, in some conditions, performing

the standard IFPUG measurement process may be too long

and expensive, with respect to management needs, because

standard FP measurement can be performed only when rel-

atively complete and detailed requirements specifications are

available, while functional measures could be needed much

earlier for management purposes.

Many methods were invented and used to provide estimates

of functional size measures, based on fewer or coarser-grained

information than required by standard FPA. These methods are

applied very early in software projects, even before deciding

what process (e.g., agile or waterfall) will be used. One of

these methods is the High-level FPA (HLFPA) method [4],

which was developed by NESMA under the name of “NESMA

estimated” method [5].

In 2010, a new FSMM called Simple Function Point (SiFP)

was developed by Meli [6]. In 2019, IFPUG acquired the

method and in 2021 the IFPUG branded Simple Function Point

(SFP) method was delivered to the market [7].

HLFPA and SiFP have been evaluated by several studies,

which found that the methods are usable in practice to ap-

proximate traditional FPA values, since they yield reasonably

accurate estimates. However, the question if it is possible to

get more accurate estimates from the basic information used

by HLFPA remains open.

In this paper, we evaluate—via an empirical study—the us-

age of LOESS (LOcally Estimated Scatterplot Smoothing)—

also known as LOWESS (LOcally WEighted Scatterplot

Smoothing)—to build models that can be used for early

estimation of functional size.

We also compare the standard IFPUG FPA measures, the

estimates obtained via HLFPA and the estimates obtained

via alternative methods (linear regression models and LOESS

models) with the measures obtained via the Simple Function

Point (SFP) method. SFP is a lightweight method that has
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also been adopted by IFPUG as an alternative to full-fledged

FPA. SFP measurement requires even less time and effort than

HLFPA, and it usually yields measures that are very well

correlated with IFPUG standard measures.

The work presented here extends previous work [1] by using

two datasets to evaluate functional size estimation methods.

Specifically, the availability of two datasets allows for cross-

dataset evaluations. That is, one dataset is used as the training

set, and the other one is used as the test set. This is particularly

interesting for practitioners that do not own historical data: our

results show that by using a “foreign” dataset for training, it

is possible to obtain estimates that appear accurate enough for

being used in practice.

In general, the findings reported in this paper contribute to

increase our knowledge of the techniques that are available for

functional size estimation, their applicability conditions, and

the accuracy of the results that can be expected.

The remainder of the paper is organized as follows.

Section II provides an overview of functional size measure-

ment methods, and other background information. Section III

describes the empirical study and its results. In Section IV

the results obtained in the empirical study are discussed, from

the technical and managerial points of view. In Section V,

we discuss the threats to the validity of the study. Section VI

reports about related work. Finally, in Section VII, we draw

some conclusions and outline future work.

Note that FPA defines both unadjusted FP (UFP) and

adjusted FP. The former are a measure of functional require-

ments. The latter are obtained by correcting unadjusted FP in

order to get an indicator that is expected to be better correlated

to development effort. Noticeably, the ISO standardized only

unadjusted FP, recognizing UFP as a proper measure of

functional requirements [8]. Following the ISO, in this paper

we deal only with UFP, even when we speak generically of

Function Points or FP. As a matter of fact, also HLFPA aims

at providing measures that are compatible with UFP, and not

with adjusted FP.

II. BACKGROUND

Function Point Analysis was originally introduced by Al-

brecht to measure the size of data-processing systems from

the point of view of end-users, with the goal of estimating

the value of an application and the development effort [2].

The fortunes of this measure led to the creation of the IFPUG

(International Function Points User Group), which maintains

the method and certifies professional measurers.

The “amount of functionality” released to the user can be

evaluated by taking into account 1) the data used by the appli-

cation to provide the required functions, and 2) the transactions

(i.e., operations that involve data crossing the boundaries of

the application) through which the functionality is delivered to

the user. Both data and transactions are counted on the basis

of Functional User Requirements (FURs) specifications, and

constitute the IFPUG Function Points measure.

FURs are modeled as a set of base functional components

(BFCs), which are the measurable elements of FURs: each of

the identified BFCs is measured, and the size of the application

is obtained as the sum of the sizes of BFCs. IFPUG BFCs

are: data functions (also known as logical files), which are

classified into internal logical files (ILF) and external interface

files (EIF); and elementary processes (EP)—also known as

transaction functions—which are classified into external in-

puts (EI), external outputs (EO), and external inquiries (EQ),

according to the activities carried out within the considered

process and the primary intent.

The complexity of a data function (ILF or EIF) depends on

the Record Element Types (RETs), which indicate how many

types of variations (e.g., sub-classes, in object-oriented terms)

exist per logical data file, and Data Element Types (DETs),

which indicate how many types of elementary information

(e.g., attributes, in object-oriented terms) are contained in the

given logical data file.

The complexity of a transaction depends on the number of

FTRs—i.e., the number of File Types Referenced while per-

forming the required operation—and the number of DETs—

i.e., the number of types of elementary data—that the con-

sidered transaction sends and receives across the boundaries

of the application. Details concerning the determination of

complexity can be found in the official documentation [3].

The core of FPA involves three main activities:

1) Identifying data and transaction functions.

2) Classifying data functions as ILF or EIF and transactions

as EI, EO or EQ.

3) Determining the complexity of each data or transaction

function.

The first two of these activities can be carried out even if

the FURs have not yet been fully detailed. On the contrary,

activity 3 requires that all details are available, so that FP

measurers can determine the number of RET or FTR and DET

involved in every function. Activity 3 is relatively time- and

effort-consuming [9].

HLFPA does not require activity 3, thus allowing for size

estimation when FURs are not fully detailed: it only requires

that the complete sets of data and transaction functions are

identified and classified.

The SFP method [7] does not require activities 2 and 3: it

only requires that the complete sets of data and transaction

functions are identified.

Both the HLFPA and SFP methods let measurers skip the

most time- and effort-consuming activity, which also needs

that requirements are fully specified; thus both methods are

relatively fast and cheap. The SFP method does not even

require classification, making size estimation even faster and

less subjective (since different measurers can sometimes clas-

sify differently the same transaction, based on the subjective

perception of the transaction’s primary intent).

A. The High-level FPA method

NESMA defined two size estimation methods: the ‘NESMA

Indicative’ and the ‘NESMA Estimated’ methods. IFPUG

adopted these methods as early function point analysis meth-

ods, under the names of ‘Indicative FPA’ and ‘High-level FPA,’
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respectively [4]. The Indicative FPA method proved definitely

less accurate [10], [11]. Hence, in this paper, we consider only

the High-level FPA method.

The High-level FPA method requires the identification and

classification of all data and transaction functions, but does not

require the assessment of the complexity of functions: ILF and

EIF are assumed to be of low complexity, while EI, EQ and

EO are assumed to be of average complexity. Hence, estimated

size is computed as follows:

EstSizeUFP = 7 #ILF+5 #EIF+4 #EI+5 #EO+4 #EQ (1)

where #ILF is the number of data functions of type ILF, #EI is

the number of transaction functions of type EI, etc.

B. The Simple Function Point Method

The Simple Function Point measurement method [6] [7]

has been specifically designed to be agile, fast, lightweight,

easy to use, and with minimal impact on software development

processes. It is easy to learn and provides reliable, repeatable,

and objective results. Like IFPUG FPA, it is independent of

the technologies used and technical design principles.

SFP requires only the identification of Elementary Processes

(EP) and Logical Files (LF), based on the following assump-

tions: 1) a user gives value to a BFC as a whole independently

of internal organization and details, and 2) a cost model based

on SFP shows a precision that is comparable to that of a cost

model based on a detailed FPA measure. The latter assumption

has been verified by different studies [12] [13].

SFP assigns a numeric value directly to these BFCs:

SFP = 7 #LF + 4.6 #EP (2)

thus significantly speeding up the functional sizing process,

at the expense of ignoring the domain data model, and the

primary intent of each Elementary Process.

The weights for each BFC were originally given to achieve

the best possible approximation of FPA but as long as the

method has become a measurement method, those weights

became constants, which are not subject to update or change

for approximation reasons and that are crystallized for stability,

repeatability and comparability reasons. We can approximate

the FPA by setting EstSizeUFP = SFP.

III. EMPIRICAL STUDY

A. The Datasets

In the empirical study, we use two datasets. The first is

an ISBSG dataset [14], which was also used previously to

evaluate SFP [12]; this is the dataset we used in our original

work [1].

The second dataset includes data from software projects

developed and used by a Chinese financial enterprise (hence,

sometimes we make reference to this dataset as the “Chinese”

dataset). These data are subject to non-disclosure agreement,

therefore we cannot publish them in a replication package.

Also the Chinese dataset was used previously [15], [16] in

studies concerning the estimation of functional size measures.

Both datasets contain several small project data. As a

matter of fact, estimating the size of small projects is not

very interesting. Therefore, we removed from the dataset the

projects smaller than 200 UFP. The resulting ISBSG dataset

includes data from 110 projects having size in the [207, 4202]

range. Some descriptive statistics for this dataset are given in

Table I (where all values are rounded to integer).

TABLE I
DESCRIPTIVE STATISTICS FOR THE ISBSG DATASET.

UFP HLFPA SFP #EI #EO #EQ #ILF #EIF #LF #EP

Mean 976 888 971 43 46 46 26 24 50 135
StDev 842 739 785 38 71 51 22 23 39 123
Median 639 607 674 29 17 32 20 18 37 82
Min 207 202 223 0 0 0 0 1 12 14
Max 4202 3755 4257 204 442 366 100 172 234 656

While the ISBSG dataset contains data form projects not

greater than 4202 UFP, the Chinese dataset contains data

also from much larger projects (up to a few thousands UFP).

However, to make the results obtained with the two datasets

comparable, we used a subset of the Chinese dataset, so that

the size range covered by the two datasets is the same. Some

descriptive statistics of the resulting dataset (which accounts

for 276 projects) are given in Table II (where all values are

rounded to integer).

TABLE II
DESCRIPTIVE STATISTICS FOR THE CHINESE DATASET.

UFP HLFPA SFP #EI #EO #EQ #ILF #EIF #LF #EP

Mean 1357 1323 1452 34 14 111 44 87 48 242
Sd 1040 1038 1141 39 23 101 60 101 52 200
Median 1041 984 1074 21 4 80 24 52 29 171
Min 200 142 154 0 0 0 0 0 0 2
Max 4079 4689 5349 220 144 524 428 712 276 997

B. Method used

We built models of functional size using LOESS (locally

estimated scatterplot smoothing) [17]. LOESS belongs to the

family of computational methods, based on least squares

regression, for the estimation of functions fitting subsets of

points of a dataset, without the need to yield a global function

as a model. The way it works is capturing the local variability

of neighbour points of the current point analyzed, in order to

build up a function that describes the deterministic part of the

variation in the data, point by point. For this reason, it is said to

combine k-nearest-neighbor-based models into a meta-model.

The regression can be linear and non-linear, i.e., polynomial.

The mechanism of neighbours selection depends on a smooth-

ing parameter, α, which determines the inclusion span of point

neighbours to be included in the fitting polynomial function.

A polynomial function of zero degree turns the LOESS curve

method into a mobile average smoothing curve. A weighted

variant of LOESS is called LOWESS, which stands for “lo-

cally weighted scatterplot smoothing”. In this variant, local

points are weighted for relevance with respect to the analyzed

point, which is proportional to the variance brought by each
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point, with the nearest point receiving more importance and

the furthest ones having less importance during models fitting.

C. Procedure

The analysis was carried out using the R programming

language and environment [18]. Specifically, we used the

loess function from the Stats package, which is provided

as part of the system libraries.

Through the span parameter, the loess function makes it

possible to control the degree of smoothing. In the empirical

study, we tried different values for the span parameter,

namely 0.5, 0.75 and 0.95.

We aimed at building models using the same five variables

(#EI, #EO, #EQ, #ILF, #EIF) used by HLFPA. However, the

loess function from the Stats package does not allow

more than 4 independent variables. To overcome this problem,

we observe that in the HLFPA method, #EI and #EQ get the

same weight; therefore, it is conceivable to consider EIs and

EQs as a single class of transactions (only as far as size

estimation is concerned). Accordingly, for each project we

compute #EIQ = #EI + #EQ. Then we use four independent

variables (#EO, #EIQ, #ILF, #EIF) to build size models via

LOESS. In addition, we built models that use the same two

variables (#LF and #EP) used by SFP. We also built Ordinary

Least Square (OLS) linear regression models.

The evaluation was carried out via 10-time 10-fold cross

validation. For all the estimates obtained from 10-time 10-

fold cross validation, we compute estimation errors and a few

indicators, as follows. The error (alias residual) for the ith

estimation is defined as eei=Si−Ei, where Si is the actual

size of the element involved in the ith estimation (i.e., the size

measured according to the IFPUG standard process) and Ei

is the estimated size. The computed indicators are:

• MAR is the Mean of Absolute Residuals, i.e., MAR =
1

n

∑n

i=0
|eei|, where n is the number of estimates.

• MR is the MAR divided by the mean size 1

n

∑n

i=0
Si. It

gives an idea of the relative importance or the estimation

errors.

• MdAR is the median of absolute residuals.

• MdR is MdAR divided by the median size. It gives an

idea of the relative importance or the estimation errors,

while taking into account that the distribution of sizes is

skewed.

• MMRE is the mean magnitude of relative errors.

MMRE = 1

n

∑n

i=0
|rei|, where rei =

eei

Si

is the relative

error. MMRE has been widely criticized as a biased

metric [19]: we report it for completeness. At any rate,

we also report MR, which is not a biased metric, since

the mean size is a characteristic of the given dataset: MR

is a sort of normalization of the MAR.

• MdMRE is the median magnitude of relative errors.

• Finally, R2 (the coefficient of determination) is given,

since it is a quite reliable indicator of the models’

accuracy [20].

To assess the effect size, we use the non-parametric statistic

A by Vargha and Delaney [21], as provided by the R package

effsize [22].

To evaluate if the estimates provided by a method are

significantly better than those provided by another method, we

tested the statistical significance of the differences among ab-

solute errors yielded by the considered methods [19]. Namely,

we compared the absolute residuals via Wilcoxon sign rank

test [23] (using the wilcox.test function from the R

Stats package).

D. Evaluation procedure

Our study was carried out in two steps, the first one dealing

with within-dataset and the second one with cross-dataset

evaluation.

The within-dataset evaluation was carried out using the

ISBSG dataset (as reported [1]) and the Chinese dataset. In

both cases, we carried out 10-times 10-fold cross validation. In

the process, we did not always get usable results. Specifically,

via OLS regression we sometimes obtained invalid models

(e.g., models with not normally distributed residuals); via

LOESS we obtained models that did not support estimation

in extreme cases, i.e., for too large or too small independent

variables. All these cases were not evaluated. They are a strict

minority, hence the reported results represent the most likely

outcome of estimation in practice.

Cross-dataset evaluation was straightforward: we built a

model (for each of the considered types) using the ISBSG

dataset as the training set, and evaluated it using the Chinese

dataset as the test set. This operation was then repeated using

the Chinese dataset for training and the ISBSG dataset for

testing.

E. Results of within-dataset evaluations

This section reports the results obtained for the within-

dataset evaluations obtained using first the ISBSG dataset, and

then the Chinese dataset.

Results obtained with the ISBSG dataset

The accuracy indicators computed over the estimates that

were obtained for the ISBSG dataset are given in Table III.

Models LMv are built using OLS regression using v inde-

pendent variables; models LWMv (where LWM stands for

Locally Weighted Model) are built using LOESS, based on

v independent variables. For LWMv we give in parentheses

the value of the span value.

Table III suggests that OLS linear models provide quite

good estimates. Surprisingly, LM4, i.e., the model based on

#EO, #EIQ, #ILF, #EIF achieves better results than the LM5,

i.e., the model based on #EO, #EI, #EQ, #ILF, #EIF.

We can also observe that estimation accuracy of LWM

models varies with the span; specifically, accuracy improves

with span. However, the improvement is modest for LWM2

(MAR decreases from 91.4 to 86.6), while it is quite large

for LWM4 (MAR decreases from 93.7 to 55.6). Overall, it

seems that when LOESS is used with two variables it is not
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TABLE III
WITHIN-DATASET EVALUATION USING THE ISBSG DATASET: ACCURACY

INDICATORS.

MAR MR MdAR MdR MMRE MdMRE R2

HLFPA 103.8 0.106 58.0 0.091 0.097 0.084 0.966
SFP 87.1 0.089 60.5 0.095 0.105 0.078 0.978
LM5 62.0 0.064 40.6 0.064 0.074 0.057 0.985
LM4 58.2 0.060 39.0 0.061 0.071 0.055 0.987
LM2 91.6 0.096 52.2 0.089 0.096 0.084 0.971
LWM4(0.5) 93.7 0.107 53.5 0.089 0.109 0.089 0.943
LWM2(0.5) 91.4 0.099 56.5 0.089 0.103 0.082 0.940
LWM4(0.75) 66.5 0.076 39.5 0.066 0.082 0.068 0.972
LWM2(0.75) 88.7 0.096 58.2 0.091 0.101 0.075 0.950
LWM4(0.95) 55.6 0.064 37.4 0.062 0.073 0.064 0.984
LWM2(0.95) 86.6 0.094 53.9 0.085 0.096 0.072 0.958

able to substantially improve the estimates provided by LM2;

instead, LOESS used with four variables achieves good results,

provided that span is sufficiently large. In fact, the minimum

MAR is achieved by LWM4 with span=0.95.

It can also be observed that SFP measures provide an

approximation that is better than HLFPA’s, and not much

worse than the best estimators’. Considering that SFP uses

fixed weights and does not even require classifying data and

transactions, and that the method is not specifically intended

to approximate IFPUG measures, this is a quite remarkable

result.

The results of the Wilcoxon sign rank test (which are all

statistically significant at the usual α = 0.05 level) are given

in Table IV, where symbol “>” (respectively, “<” and “=”)

in the cell at row i and column j indicates that the model

in row i has greater (respectively, smaller and equal) absolute

residuals than the model in column j.

TABLE IV
WITHIN-DATASET EVALUATION USING THE ISBSG DATASET:

COMPARISON OF MODELS’ ABSOLUTE RESIDUALS VIA WILCOXON SIGN

RANK TEST.

HLFPA SFP LM5 LM4 LM2 LWM4 LWM2 LWM4 LWM2 LWM4 LWM2
(0.5) (0.5) (0.75) (0.75) (0.95) (0.95)

HLFPA – > > > > > > > > > >

SFP < – > > > = > > > > >

LM5 < < – > < < < < < > <

LM4 < < < – < < < < < < <

LM2 < < > > – < < > = > >

LWM4(.5) < = > > > – = > > > >

LWM2(.5) < < > > > = – > > > >

LWM4(.75) < < > > < < < – < > <

LWM2(.75) < < > > = < < > – > >

LWM4(.95) < < < > < < < < < – <

LWM2(.95) < < > > < < < > < > –

To assess the effect size, we use the non-parametric statistic

A by Vargha and Delaney [21], as provided by the R package

effsize [22]. We obtained the results given in Table V,

where each numeric result is accompanied by its interpreta-

tion [22]: ‘n’ and ‘s’ indicate negligible and small effect size,

respectively.

LWM4(0.95) appears to be the best model according to

MAR (Table III). However, According to the Wilcoxon sign

rank test, LM4 is the most accurate model. The disagreement

between this two indications is explained by Vargha and

Delaney’s A, which is 0.51 for LM4 vs. LWM4(0.95), showing

that the size effect is practically nil, i.e., LM4 is better, but by

a practically irrelevant extent.

Finally, we look into the error distributions yielded by the

estimation methods that we used in the study.

Figure 1 shows the boxplots of estimation errors for each

of the used methods. It can be noticed that LWM2 models

provide exceedingly large errors in a few cases.

Fig. 1. Within-dataset evaluation using the ISBSG dataset: error boxplots.

Figure 2 provides the same information as Figure 1, but

omitting outliers. It can be seen that the various models do not

yield dramatically different accuracy levels, when the outliers

are excluded. However, it is noteworthy that HLFPA tends

to underestimate (as already noted in [16]). The other models

provide more balanced errors, with medians very close to zero.

Fig. 2. Within-dataset evaluation using the ISBSG dataset: error boxplots (no
outliers).

Figure 3 shows the boxplots of absolute estimation errors

for each of the used methods, excluding outliers. The mean

absolute error (i.e., the MAR) is shown as an orange diamond.

Also according to Figure 3, LM4, LM5 and LWM4(0.95) are

the most accurate models.
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TABLE V
WITHIN-DATASET EVALUATION USING THE ISBSG DATASET: EFFECT SIZE ACCORDING TO VARGHA AND DELANEY’S A.

HLFPA SFP LM5 LM4 LM2 LWM4 LWM2 LWM4 LWM2 LWM4 LWM2
(0.5) (0.5) (0.75) (0.75) (0.95) (0.95)

HLFPA NA 0.52(n) 0.61(s) 0.62(s) 0.54(n) 0.53(n) 0.53(n) 0.59(s) 0.55(n) 0.61(s) 0.56(n)
SFP 0.48(n) NA 0.60(s) 0.62(s) 0.52(n) 0.51(n) 0.51(n) 0.58(s) 0.53(n) 0.60(s) 0.54(n)
LM5 0.39(s) 0.40(s) NA 0.52(n) 0.44(n) 0.42(s) 0.42(s) 0.49(n) 0.43(n) 0.51(n) 0.45(n)
LM4 0.38(s) 0.38(s) 0.48(n) NA 0.42(s) 0.40(s) 0.40(s) 0.47(n) 0.42(s) 0.49(n) 0.43(n)
LM2 0.46(n) 0.48(n) 0.56(n) 0.58(s) NA 0.48(n) 0.49(n) 0.55(n) 0.50(n) 0.57(n) 0.51(n)
LWM4(0.5) 0.47(n) 0.49(n) 0.58(s) 0.60(s) 0.52(n) NA 0.50(n) 0.57(n) 0.52(n) 0.59(s) 0.53(n)
LWM2(0.5) 0.47(n) 0.49(n) 0.58(s) 0.60(s) 0.51(n) 0.50(n) NA 0.56(n) 0.51(n) 0.58(s) 0.52(n)
LWM4(0.75) 0.41(s) 0.42(s) 0.51(n) 0.53(n) 0.45(n) 0.43(n) 0.44(n) NA 0.45(n) 0.52(n) 0.47(n)
LWM2(0.75) 0.45(n) 0.47(n) 0.57(n) 0.58(s) 0.50(n) 0.48(n) 0.49(n) 0.55(n) NA 0.57(n) 0.51(n)
LWM4(0.95) 0.39(s) 0.40(s) 0.49(n) 0.51(n) 0.43(n) 0.41(s) 0.42(s) 0.48(n) 0.43(n) NA 0.45(n)
LWM2(0.95) 0.44(n) 0.46(n) 0.55(n) 0.57(n) 0.49(n) 0.47(n) 0.48(n) 0.53(n) 0.49(n) 0.55(n) NA

Fig. 3. Within-dataset evaluation using the ISBSG dataset: absolute error
boxplots (no outliers).

Results obtained with the Chinese dataset

The accuracy indicators computed over the estimates that

were obtained for the Chinese dataset are given in Table VI.

TABLE VI
WITHIN-DATASET EVALUATION USING THE CHINESE DATASET:

ACCURACY INDICATORS.

MAR MR MdAR MdR MMRE MdMRE R2

HLFPA 119.0 0.088 69.0 0.066 0.095 0.077 0.970
SFP 154.3 0.114 91.9 0.088 0.124 0.108 0.945
LM5 121.0 0.089 78.1 0.076 0.104 0.087 0.972
LM4 128.3 0.095 75.7 0.074 0.105 0.087 0.964
LM2 131.8 0.097 75.8 0.073 0.108 0.088 0.960
LWM4(0.5) 151.9 0.115 82.3 0.081 0.119 0.098 0.942
LWM2(0.5) 116.6 0.087 69.3 0.068 0.104 0.083 0.970
LWM4(0.75) 154.7 0.117 79.9 0.079 0.120 0.104 0.939
LWM2(0.75) 118.7 0.089 74.9 0.073 0.104 0.083 0.970
LWM4(0.95) 123.6 0.094 74.9 0.074 0.106 0.090 0.966
LWM2(0.95) 118.8 0.089 77.8 0.076 0.104 0.082 0.970

Table VI shows that HLFPA provides quite good estimates:

better than those achieved for the ISBSG dataset, according to

MR. OLS linear models provide estimates that are slightly less

accurate than HLFPA’s; as expected, the fewer independent

variables are used, the less accurate the estimates. Surprisingly,

models LM4 (regardless span) perform worse than LMW2,

which achieve the smallest MAR.

The results of the Wilcoxon sign rank test (which are all

statistically significant at the usual α = 0.05 level) are given

in Table VII.

TABLE VII
WITHIN-DATASET EVALUATION OF THE CHINESE DATASET: COMPARISON

OF MODELS’ ABSOLUTE RESIDUALS VIA WILCOXON SIGN RANK TEST.

HLFPA SFP LM5 LM4 LM2 LWM4 LWM2 LWM4 LWM2 LWM4 LWM2
(0.5) (0.5) (0.75) (0.75) (0.95) (0.95)

HLFPA – < < < < < = < < < <

SFP > – > > > = > > > > >

LM5 > < – > > < > < > > >

LM4 > < < – = < > < > > >

LM2 > < < = – < > < = = >

LWM4(0.5) > = > > > – > = > > >

LWM2(0.5) = < < < < < – < < < <

LWM4(0.75) > < > > > = > – > > >

LWM2(0.75) > < < < = < > < – = >

LWM4(0.95) > < < < = < > < = – >

LWM2(0.95) > < < < < < > < < < –

According to the Wilcoxon sign rank test, HLFPA provides

smaller absolute errors than all other models, except for

LWM2(0.5). At any rate, Vargha and Delaney’s A, indicates

that all model pairs are likely to provide very similar absolute

residuals. Finally, we look into the error distributions yielded

Fig. 4. Within-dataset evaluation using the Chinese dataset: error boxplots.

by the estimation methods that we used in the study. Figure 4

shows the boxplots of estimation errors for each of the

used methods. The same boxplots are shown in Figure 5

without outliers, to improve readability. It can be noticed
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TABLE VIII
WITHIN-DATASET EVALUATION USING THE CHINESE DATASET: EFFECT SIZE ACCORDING TO VARGHA AND DELANEY’S A.

HLFPA SFP LM5 LM4 LM2 LWM4 LWM2 LWM4 LWM2 LWM4 LWM2
(0.5) (0.5) (0.75) (0.75) (0.95) (0.95)

HLFPA NA 0.45(n) 0.48(n) 0.48(n) 0.49(n) 0.46(n) 0.50(n) 0.46(n) 0.49(n) 0.49(n) 0.49(n)
SFP 0.55(n) NA 0.53(n) 0.53(n) 0.53(n) 0.51(n) 0.55(n) 0.51(n) 0.54(n) 0.53(n) 0.54(n)
LM5 0.52(n) 0.47(n) NA 0.51(n) 0.51(n) 0.48(n) 0.52(n) 0.48(n) 0.51(n) 0.51(n) 0.51(n)
LM4 0.52(n) 0.47(n) 0.49(n) NA 0.50(n) 0.47(n) 0.52(n) 0.48(n) 0.50(n) 0.50(n) 0.51(n)
LM2 0.51(n) 0.47(n) 0.49(n) 0.50(n) NA 0.47(n) 0.51(n) 0.48(n) 0.50(n) 0.50(n) 0.50(n)
LWM4(0.5) 0.54(n) 0.49(n) 0.52(n) 0.53(n) 0.53(n) NA 0.54(n) 0.50(n) 0.53(n) 0.53(n) 0.53(n)
LWM2(0.5) 0.50(n) 0.45(n) 0.48(n) 0.48(n) 0.49(n) 0.46(n) NA 0.46(n) 0.49(n) 0.49(n) 0.49(n)
LWM4(0.75) 0.54(n) 0.49(n) 0.52(n) 0.52(n) 0.52(n) 0.50(n) 0.54(n) NA 0.53(n) 0.53(n) 0.53(n)
LWM2(0.75) 0.51(n) 0.46(n) 0.49(n) 0.50(n) 0.50(n) 0.47(n) 0.51(n) 0.47(n) NA 0.50(n) 0.50(n)
LWM4(0.95) 0.51(n) 0.47(n) 0.49(n) 0.50(n) 0.50(n) 0.47(n) 0.51(n) 0.47(n) 0.50(n) NA 0.50(n)
LWM2(0.95) 0.51(n) 0.46(n) 0.49(n) 0.49(n) 0.50(n) 0.47(n) 0.51(n) 0.47(n) 0.50(n) 0.50(n) NA

that, as already observed for the ISBSG dataset, HLFPA

tends to underestimate. All the other models either provide

estimation errors that are equally distributed between negative

and positive, or (like SiFP, LWM4(0.75) and LWM4(0.95))

overestimate.

Figure 6 shows the boxplots of absolute estimation errors

for each of the used methods, excluding outliers. The mean

absolute error (i.e., the MAR) is shown as an orange diamond.

Figure 6 shows that most models provide similar accuracy.

The only models that yield evidently less accurate estimates

are SiFP, LWM4(0.5) and LWM4(0.75). Concerning SiFP, it is

useful reminding that it is not an estimation method, hence it is

not correct to talk about estimation errors, in this case; rather,

we should talk about the distance between SiFP measures and

standard FPA size.

Fig. 5. Within-dataset evaluation using the Chinese dataset: error boxplots
(no outliers).

With both datasets, the lowest MAR is obtained by using a

LOESS approach, although with different spans. This confirms

the flexibility of the method and its adaptability to different

datasets after a tuning phase regarding the configuration of the

span based on the peculiarities of each dataset.

F. Results of cross-dataset evaluations

This activity consisted of two steps:

Fig. 6. Within-dataset evaluation using the Chinese dataset: absolute error
boxplots (no outliers).

1) We built models using the ISBSG dataset as the training

set and used the obtained model to estimate the size of

projects in the Chinese dataset.

2) We built models using the Chinese dataset as the training

set and used the obtained model to estimate the size of

projects in the ISBSG dataset.

TABLE IX
CROSS-DATASET EVALUATION (TRAINING SET ISBSG, TEST SET

CHINESE): ACCURACY INDICATORS.

MAR MR MdAR MdR MMRE MdMRE R2

HLFPA 119.0 0.088 69.0 0.066 0.095 0.077 0.970
SFP 154.3 0.114 91.9 0.088 0.124 0.108 0.945
LM5 140.7 0.104 82.8 0.080 0.112 0.088 0.955
LM4 143.1 0.106 85.3 0.082 0.113 0.090 0.953
LWM4(0.5) 403.3 0.322 147.8 0.135 0.273 0.188 0.144
LWM2(0.5) 218.1 0.148 144.5 0.114 0.146 0.123 0.859
LWM4(0.75) 315.7 0.252 129.9 0.119 0.208 0.152 0.534
LWM2(0.75) 180.2 0.122 114.2 0.090 0.119 0.107 0.920
LWM4(0.95) 241.4 0.192 106.4 0.097 0.163 0.115 0.724
LWM2(0.95) 168.5 0.114 113.5 0.090 0.113 0.100 0.929

When considering point 1) the comparison of Table VI

with Table IX shows that prediction accuracy decreases for all

models when “foreign” data are used for training. Of course,

the accuracy obtained by HLFPA and SFP do not change, since

these predictions are not obtained from any dataset.

Noticeably, models obtained via linear regression achieve a

level of accuracy that is quite close to HLFPA’s and slightly
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Fig. 7. Cross-dataset evaluation (training set ISBSG, test set Chinese): error
boxplots.

Fig. 8. Cross-dataset evaluation (training set ISBSG, test set Chinese): error
boxplots (no outliers).

Fig. 9. Cross-dataset evaluation (training set ISBSG, test set Chinese):
absolute error boxplots (no outliers).

TABLE X
CROSS-DATASET EVALUATION (TRAINING SET ISBSG, TEST SET

CHINESE): COMPARISON OF MODELS’ ABSOLUTE RESIDUALS VIA

WILCOXON SIGN RANK TEST.

HLFPA SFP LM5 LM4 LWM4 LWM2 LWM4 LWM2 LWM4 LWM2
(0.5) (0.5) (0.75) (0.75) (0.95) (0.95)

HLFPA – < < < < < < < < <

SFP > – > > < < < < < <

LM5 > < – = < < < < < <

LM4 > < = – < < < < < <

LWM4(0.5) > > > > – > > > > >

LWM2(0.5) > > > > < – = > > >

LWM4(0.75) > > > > < = – > > >

LWM2(0.75) > > > > < < < – > >

LWM4(0.95) > > > > < < < < – =
LWM2(0.95) > > > > < < < < = –

better than SFP’s. However, this applies for models using 4

or 5 variables; no valid model using 2 variables could be

found via linear regression. LOESS models appear definitely

less accurate, although LWM2(0.95) appear only slightly less

accurate than SFP.

The results of the Wilcoxon sign rank test are given in

Table X. The results of the Vargha and Delaney’s A test are

given in Table XI.

According to the Wilcoxon sign rank test, HLFPA is the

most accurate method, although according to A, the difference

in accuracy is negligible when compared to SFP and linear

regression models, and small when compared to LOESS

models.

Figure 7 and Figure 8 show the boxplots of estimation

errors for each of the used methods with and without outliers,

respectively.

From both figures it can be noticed that, as already observed

for the ISBSG and the Chinese dataset, HLFPA tends to

underestimate. All the other models tend to overestimate, in

some cases by fairly large amounts.

Figure 9 shows the boxplots of absolute estimation errors

for each of the used methods, excluding outliers. It can be

noticed that HLFPA, SFP and LM models provide similar and

the better accuracy. All LWM4 models yield evidently less

accurate estimates than LWM2.

When considering point 2) i.e., the estimation of the ISBSG

dataset via models obtained from the Chinese dataset, the

comparison of Table III with Table XII confirms that prediction

accuracy decreases for all models when “foreign” data are used

for training.

However, both linear regression and LOESS models achieve

better results than HLFPA when using 4 or 5 variables. Among

2-variable models, SFP and linear regression appear more

accurate than HLFPA, while LOESS models achieve slightly

worse accuracy.

The results of the Wilcoxon sign rank test are given in

Table XIII. The results of the Vargha and Delaney’s A test

are given in Table XIV.

According to the Wilcoxon sign rank test, LOESS models

using 4 variables are the most accurate. According to A,

LOESS models using 4 variables provide a small advantage
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TABLE XI
CROSS-DATASET EVALUATION (TRAINING SET ISBSG, TEST SET CHINESE): EFFECT SIZE ACCORDING TO VARGHA AND DELANEY’S A.

HLFPA SFP LM5 LM4 LWM4 LWM2 LWM4 LWM2 LWM4 LWM2
(0.5) (0.5) (0.75) (0.75) (0.95) (0.95)

HLFPA NA 0.45(n) 0.47(n) 0.47(n) 0.34(s) 0.36(s) 0.39(s) 0.40(s) 0.42(s) 0.42(s)
SFP 0.55(n) NA 0.52(n) 0.51(n) 0.38(s) 0.41(s) 0.43(s) 0.44(n) 0.46(n) 0.46(n)
LM5 0.53(n) 0.48(n) NA 0.50(n) 0.37(s) 0.39(s) 0.41(s) 0.43(n) 0.45(n) 0.45(n)
LM4 0.53(n) 0.49(n) 0.50(n) NA 0.37(s) 0.40(s) 0.41(s) 0.43(n) 0.45(n) 0.45(n)
LWM4(0.5) 0.66(s) 0.62(s) 0.63(s) 0.63(s) NA 0.54(n) 0.54(n) 0.57(n) 0.58(s) 0.59(s)
LWM2(0.5) 0.64(s) 0.59(s) 0.61(s) 0.60(s) 0.46(n) NA 0.50(n) 0.53(n) 0.54(n) 0.56(n)
LWM4(0.75) 0.61(s) 0.57(s) 0.59(s) 0.59(s) 0.46(n) 0.50(n) NA 0.53(n) 0.54(n) 0.54(n)
LWM2(0.75) 0.60(s) 0.56(n) 0.57(n) 0.57(n) 0.43(n) 0.47(n) 0.47(n) NA 0.51(n) 0.52(n)
LWM4(0.95) 0.58(s) 0.54(n) 0.55(n) 0.55(n) 0.42(s) 0.46(n) 0.46(n) 0.49(n) NA 0.50(n)
LWM2(0.95) 0.58(s) 0.54(n) 0.55(n) 0.55(n) 0.41(s) 0.44(n) 0.46(n) 0.48(n) 0.50(n) NA

over HLFPA and SFP, while the advantage is negligible with

respect to linear regression models.

Figure 10 and Figure 11 show the boxplots of estimation

errors for each of the used methods, with and without outliers,

respectively. The boxplots show that most methods tend to

underestimate. LWM4 models are either well balanced or tend

to overestimate. Similarly, SFP tends to overestimate.

Figure 12 shows the boxplots of absolute estimation errors

for each of the used methods, excluding outliers. It can

be noticed that the better accuracy is provided by LMW4

methods, while HLFPA, LM2 and all the LMW2 provide

similar and worse accuracy with respect to the other methods.

LM methods are between those extremes.

TABLE XII
CROSS-DATASET EVALUATION (TRAINING SET CHINESE, TEST SET

ISBSG): ACCURACY INDICATORS.

MAR MR MdAR MdR MMRE MdMRE R2

HLFPA 103.8 0.106 58.0 0.091 0.097 0.084 0.966
SFP 87.1 0.089 60.5 0.095 0.105 0.078 0.978
LM5 90.3 0.093 51.8 0.081 0.090 0.083 0.976
LM4 81.9 0.084 48.5 0.076 0.086 0.080 0.978
LM2 108.0 0.111 57.8 0.091 0.106 0.100 0.959
LWM4(0.5) 63.6 0.069 35.5 0.057 0.075 0.058 0.980
LWM2(0.5) 115.1 0.118 62.7 0.098 0.107 0.094 0.947
LWM4(0.75) 69.8 0.076 50.8 0.082 0.082 0.063 0.979
LWM2(0.75) 118.5 0.121 65.2 0.102 0.108 0.088 0.941
LWM4(0.95) 66.9 0.073 42.9 0.069 0.077 0.059 0.978
LWM2(0.95) 113.7 0.117 58.4 0.091 0.102 0.087 0.945

TABLE XIII
CROSS-DATASET EVALUATION (TRAINING SET CHINESE, TEST SET

ISBSG): COMPARISON OF MODELS’ ABSOLUTE RESIDUALS VIA

WILCOXON SIGN RANK TEST.

HLFPA SFP LM5 LM4 LWM4 LWM2 LWM4 LWM2 LWM4 LWM2
(0.5) (0.5) (0.75) (0.75) (0.95) (0.95)

HLFPA – > > > = > = > = > >

SFP < – = > < > = > = > =
LM5 < = – > < > < > = > =
LM4 < < < – < > < > < > <

LM2 = > > > – > = > = > >

LWM4(0.5) < < < < < – < < < = <

LWM2(0.5) = = > > = > – > = > =
LWM4(0.75) < < < < < > < – < > <

LWM2(0.75) = = = > = > = > – > =
LWM4(0.95) < < < < < = < < < – <

LWM2(0.95) < = = > < > = > = > –

Fig. 10. Cross-dataset evaluation (training set Chinese, test set ISBSG): error
boxplots.

Fig. 11. Cross-dataset evaluation (training set Chinese, test set ISBSG): error
boxplots (no outliers).

IV. DISCUSSION

In this section we discuss the obtained results from two

points of view: a technical one (in Section IV-A) and a

managerial one (in Section IV-B).
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TABLE XIV
CROSS-DATASET EVALUATION (TRAINING SET CHINESE, TEST SET ISBSG): EFFECT SIZE ACCORDING TO VARGHA AND DELANEY’S A.

HLFPA SFP LM5 LM4 LM2 LWM4 LWM2 LWM4 LWM2 LWM4 LWM2
(0.5) (0.5) (0.75) (0.75) (0.95) (0.95)

HLFPA NA 0.52(n) 0.52(n) 0.55(n) 0.50(n) 0.61(s) 0.51(n) 0.59(s) 0.51(n) 0.60(s) 0.53(n)
SFP 0.48(n) NA 0.51(n) 0.54(n) 0.48(n) 0.60(s) 0.49(n) 0.58(s) 0.49(n) 0.59(s) 0.51(n)
LM5 0.48(n) 0.49(n) NA 0.53(n) 0.47(n) 0.58(s) 0.48(n) 0.56(n) 0.49(n) 0.58(s) 0.50(n)
LM4 0.45(n) 0.46(n) 0.47(n) NA 0.45(n) 0.56(n) 0.45(n) 0.53(n) 0.45(n) 0.55(n) 0.47(n)
LM2 0.50(n) 0.52(n) 0.53(n) 0.55(n) NA 0.61(s) 0.50(n) 0.58(s) 0.51(n) 0.60(s) 0.52(n)
LWM4(0.5) 0.39(s) 0.40(s) 0.42(s) 0.44(n) 0.39(s) NA 0.40(s) 0.47(n) 0.41(s) 0.49(n) 0.42(s)
LWM2(0.5) 0.49(n) 0.51(n) 0.52(n) 0.55(n) 0.50(n) 0.60(s) NA 0.58(s) 0.50(n) 0.59(s) 0.51(n)
LWM4(0.75) 0.41(s) 0.42(s) 0.44(n) 0.47(n) 0.42(s) 0.53(n) 0.42(s) NA 0.43(s) 0.52(n) 0.44(n)
LWM2(0.75) 0.49(n) 0.51(n) 0.51(n) 0.55(n) 0.49(n) 0.59(s) 0.50(n) 0.57(s) NA 0.59(s) 0.52(n)
LWM4(0.95) 0.40(s) 0.41(s) 0.42(s) 0.45(n) 0.40(s) 0.51(n) 0.41(s) 0.48(n) 0.41(s) NA 0.43(n)
LWM2(0.95) 0.47(n) 0.49(n) 0.50(n) 0.53(n) 0.48(n) 0.58(s) 0.49(n) 0.56(n) 0.48(n) 0.57(n) NA

Fig. 12. Cross-dataset evaluation (training set Chinese, test set ISBSG):
absolute error boxplots (no outliers).

A. Technical discussion

The approaches to size estimation presented in the previous

sections correspond to different model building strategies,

which are based on different assumptions and require different

types of knowledge. In fact,

• HLFPA exploits the knowledge of how FPA works.

According to FPA, the measure of size is obtained as

a weighted sum of the numbers of EI, EO, EQ, ILF and

EIF. HLFPA adopts exactly the same schema. HLFPA

does not rely on any data, i.e., the model is fixed and

does not depend on the characteristics of the known

projects. In other words, HLFPA does not try to learn

from data; instead, it simply adopts fixed weights, namely

low complexity weights for data and medium complexity

weights for transactions.

• SFP works along similar lines. Structurally, it is a simpli-

fied version of FPA. Like HLFPA, it does not learn from

data, i.e., it does not try to adapt to the characteristics of

the known projects. Even though the weights to be used

were originally derived by the observation of data from

real projects, these weights are now fixed and apply to

whatever project has to be measured.

• OLS exploit, like HLFPA, the knowledge of the structure

of FPA sizing, in that they model size as a linear function

of the numbers of EI, EO, EQ, ILF and EIF. In addition,

OLS linear regression models also exploit data from

known projects, since they derive the weights to be

used in the computation of size from historical data.

Accordingly, any organization owing suitable historical

data can build its own OLS model.

• LOESS is a more flexible method with respect to OLS in

that it builds models based on ML approaches (like near-

est neighbours), also keeping the simplicity of regression

models. Using locality principles, it may possibly yield

more accurate estimates than OLS methods.

The size of the dataset may hinder the performance of the

LOESS method. As a counterpart, in cross-dataset validation,

LOESS models showed the best performances of the whole set

of experiments. This may suggest that the generalizability of

this approach should be further analyzed in search of specific

conditions for a better performance of the algorithm.

B. Managerial Discussion

From the managerial standpoint, LOESS has some limi-

tations and potential, depending on its use and application

context.

With respect to HLFPA and SFP, the LOESS-based methods

have the disadvantange that they need to be trained on a

dataset, while the former models are fixed formulae (see

(1) and (2)) that just need measures from the project being

estimated. Therefore, an historical dataset is needed, and using

“foreign” data may not work well, as in the case of the models

trained on the ISBSG dataset and use to estimate projects

from the Chinese dataset. However, using LOESS models

yielded quite accurate estimates in several cases, therefore it

is seems that build LOESS models is worth trying, when data

are available for training. In this respect, the work needed to

build LOESS models is similar to the work needed to build

linear regression models, which is a fairly common activity.

It must also be considered that in some contexts, like public

sectors, for instance, estimates base on LOESS models may

be difficult to accept, depending on the kind of contractors.

An estimation tool like LOESS could seem not transparent

enough to yield reliable estimated to be agreed upon.

However, in general, from the organizational and managerial

perspectives, using the LOESS method could be useful for
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the early assessment of the feasibility of a project before

any elicitation phase, as in the case of agile methodologies.

Pursuing the study of functional size estimation via LOESS

may act as a proof of concept mechanism to help identify

project features; to simulate and quantify the average error

and intrinsic residuality of early estimation methods vs post-

hoc measurement; to help compare functional size models

and estimation procedures and their measurement validity and

reliability.

A further opportunity represented by this approach is that

of introducing evolutionary-wise estimation methods, whereby

different outcomes may come from the identification of the

same BFC (and whereby, in this respect, fixed weights meth-

ods would always return the same outcome). In this light,

LOESS may represent a more situated approach, evolving

through time and in line with factors characterizing and

influencing from time to time the productive system.

C. Applicability

In this section, the practical applicability of LOESS for

functional size estimation is briefly discussed.

First of all, to use LOESS, we need historical data. Besides

the usual requirements for data, we need data that represent

the entire size range in which we are interested. Specifically,

LOESS requires fairly large, densely sampled data sets in order

to produce good models. Remember that LOESS performs

local fitting, therefore fairly complete information concerning

BFC configurations have to be available.

Besides data, we just need a reasonable computer environ-

ment. A modern PC running the R environment (the loess

function is available by default).

As we reported above, LOESS works well, but does not

always provide the best estimates. Therefore, we do not

recommend replacing estimation practices based on HLFPA

or linear regression models, for instance, with LOESS right

away. Instead, it can be useful to use LOESS alongside other

estimation methods. In this way, if LOESS results agree

with other methods’ estimates you increase your confidence

in the correctness of estimates. Otherwise, i.e., if LOESS

disagrees with other methods’ estimate, you should regard all

the obtained estimates as subject to some uncertainty.

V. THREATS TO VALIDITY

A typical concern in this kind of studies is the generaliz-

ability of results outside the scope and context of the analyzed

dataset. In our case, the ISBSG dataset is deemed the standard

benchmark among the community, and it includes data from

several application domains. Therefore our results may be

valid in general. However, this dataset resulted too small for

local approaches like LOESS, which showed its effectiveness

and efficiency when applied to a larger dataset as the Chinese

one. This may also suggest a limitation of the approach related

to the specific dataset that each time is used. For this reason,

the problem of generalizability remains crucial.

The usage of MMRE is questionable, since it is has been

shown to be a biased indicator (see for instance [19]). Nonethe-

less, we used MMRE together with other indicators—like

MAR, the boxplots of residuals and R2—to provide a more

complete and balanced picture of the accuracy of our results,

and compared the precision of different models via sound

statistical tests, namely Wilcoxon sign rank test and Vargha

and Delaney’s A measure of effect size. Therefore, the role

of MMRE in the presented evaluations is marginal. Although

the comparison of precision did not always yield significant

differences, it is nonetheless a formal and robust method for

comparing the used techniques.

VI. RELATED WORK

The quest for measures that are available in the early

stages of the software lifecycle dates back to decades

ago [37] [38] [30].

The “Early & Quick Function Point” (EQFP) method [32]

uses analogy (similarities between a new and a classified piece

of software) and analysis (statistical analysis of the estimated

similarity) to get size estimates. It was reported that estimates

are within ±10% of the real size in most real cases, while the

savings in time and costs are between 50% and 90%.

“Easy Function Points,” [39], adopt probabilistic approaches

to estimate not only the size, but also the probability that the

actual size is equal to the estimate.

Lavazza et al. built estimation models for UFP based on

BFCs [40] using Least Median Squares robust regression

models. They observed that FP measures could be altogether

replaced by measured based on a smaller set of BFCs.

Several other early estimation methods were proposed:

Table XV list the most popular ones.

Lavazza and Liu [11] used 7 real-time applications and

6 non real-time applications to evaluate the accuracy of the

E&QFP [30] and HLFPA methods with respect to full-fledged

Function Point Analysis. The results showed that the Indicative

FPA method yields the greatest errors. On the contrary, the

HLFPA method yields size estimates that are close to the

actual size. Specifically, the HLFPA method proved fairly good

in estimating both Real-Time and non Real-Time applications.

Lavazza and Liu [16] used a dataset containing data from

479 projects to compare the accuracy of HLFPA method with

Ordinary Least Squares method, with both 5 predictors (LM5)

and only 2 predictors (LM2). Their conclusions were that,

although HLFPA method is sufficiently accurate for practical

usage, it tends to underestimate effort. Since underestimation

may lead to unrealistic development plans and possibly to

project failure, the authors looked for motivations of HLFPA

method underestimation behaviour, finding that it assumes that

data functions are mainly of low complexity and transaction

functions are mainly of medium complexity, while in the

considered dataset it was not so. An alternative strategy they

derived from it is to compute linear regression in order to

derive the most likely weight by analyzing the data from

projects. They found that (1) unlike HLFPA, linear regression

models do not underestimate, (2) linear regression models

yield slightly less accurate estimates, and (3) models based on

only two variables yield marginally less accurate estimates.
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TABLE XV
EARLY ESTIMATION METHODS: DEFINITIONS AND EVALUATIONS

Method name Definition Used functions Weight Evaluation

NESMA indicative [24] [25] data fixed [5] [15], [26]–[29] [11]
NESMA estimated [24] [25] all functions fixed [5] [15], [26]–[29] [11]
Early & Quick FP [30] [31] [32] all functions statistics [11] [33]
Tichenor ILF model [34] ILF fixed [11]
simplified FP (sFP) [35] all functions fixed [11]
ISBSG average weights [36] all functions statistics [11]
SiFP [6] data and trans. statistics [12] [13]

Also Machine learning (ML) techniques have proved to

provide quite good estimation models, in several different

domains and situations, and are increasingly being used in

software project management activities [41], [42]. A review

of the usage of ML for software project management [42] re-

ported that ML is used for software effort and cost estimation:

the reported accuracy spans from 91% for cost estimation with

K-NN (K-Nearest Neighbours), to 92% for effort prediction

with Decision Trees, and 99% for effort estimation with

Random Forests.

Local regression methods are extensively used for DNA

microarray normalization studies [43], as well as for studying

spatiotemporal trends, and improving image resolution and

forecasts predictions. They have also been used for hand

tracking rapid movements in Human-Computer Interaction

studies [44]. However, regarding software size estimation,

only a few study have focused on the use of LOESS (see

for example [45]), by comparing this method with other ML

approaches. In this paper, we are interested in the estimation

of functional size, which is generally the main input for effort

estimation. Approaches based on local regression have been

rarely adopted in this field. We hope to have contributed in

a constructive way to better introduce this technique for the

analysis and the modelling of software functional size.

VII. CONCLUSION

Measuring software functional size via IFPUG FPA with the

standard manual process is sometimes a long and expensive

activity, and it is simply impossible when the details of a

functional specification are not available for any reason. To

solve this problem, several early estimation methods have been

proposed. In this paper, we compare the estimates obtained

via a standard estimation methods, namely HLFPA, and a

new functional size measurement method, namely IFPUG SFP,

with the estimates obtained with traditional (namely, linear

regression) models and LOESS models.

To evaluate the accuracy of the functional size estimates pro-

vided by the considered methods, we performed both within-

dataset and cross-dataset studies. Specifically, we performed

two within-datasets analyses, one using an ISBSG dataset

containing data from 110 projects and one using a dataset

containing data from 276 software projects developed and

used by a Chinese financial enterprise. We then performed

two cross-datasets analysis: in the first one the ISBSG dataset

was used for training and the Chinese dataset was used for

testing; in the second one the Chinese dataset was used for

training and the ISBSG dataset was used for testing.

When performing within-dataset evaluation using the IS-

BSG dataset, the LOESS and linear regression models pro-

vided the best MAR. Among models using only two variables

(unclassified data and transaction functions) the LOESS and

SFP models provided the best MAR.

When performing within-dataset evaluation using the Chi-

nese dataset, HLFPA provided the best MAR, with the linear

regression and LOESS models providing very similar perfor-

mance. Among models using only two variables the LOESS

model provided the best results, even better than HLFPA’s.

When using the ISBSG dataset to train models and the Chi-

nese dataset for testing, HLFPA was definitely most accurate

than other models. However, when using the Chinese dataset

to train models and the ISBSG dataset for testing, the LOESS

model provided definitely the best results. SFP proved also

quite good.

We assessed the effect size via the non-parametric statistic

A by Vargha and Delaney; we also compared the absolute

residuals via Wilcoxon sign rank test to evaluate if the esti-

mates provided by a method are significantly better than those

provided by another method. In general, the obtained results

show that no methods appears consistently better than others,

and the differences are small or even negligible.

In conclusion, even though there is no clear winner, the

LOESS method provided generally quite good results; there-

fore, practitioners needing to estimate software functional size

in the early stages of projects are advised to try also LOESS

models.

Among future work, we envision the following activities:

• Comparing LOESS estimates with those produced by

machine learning techniques [46].

• Study LOESS estimates with confidence intervals.

• Evaluating size estimates obtained via LOESS models,

when used for effort estimation.

ACKNOWLEDGMENT

The work reported here was partly supported by Fondo per

la Ricerca di Ateneo, Università degli Studi dell’Insubria.
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