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This study successfully applied a potentiometric E-tongue with 20 cross-selectivity lipidic polymeric
membranes in the discrimination of three semi-quantitative groups, that represented the following intervals of
honey adulteration percentage with cane sugar: 0%; [0, 10]%; [10, 20]% of adulteration. We analysed five
different types of Portuguese honey; five brands of cane sugar were added to the adulterated samples; a
comparative analysis was then performed. Linear discriminant analysis coupled with a tabu search algorithm for
feature selection was applied to the ETongue’s analytical data to select the best model. A discriminant model
with 12 sensors was obtained. This model classified correctly all samples in both in internal (train data, 15
samples) and external validation (test data,10 samples). Also, multiple linear regression with tabu search was
applied to verify if ETongue’s data would allow quantifying the honey’s adulteration level. The results showed
that it was possible to obtain a quantitative model but with unsatisfactory predictive performance in the test
data group (external validation), giving, in general, values below the expected concentrations. E-tongue is a real-
time green, flexible and low-cost analytical tool that requires minimum sample preparation and no special
technical skills, being a promising tool for everyday application.

Keywords: adulterated honey, potentiometric E-tongue, tabu search, linear discriminant analysis, multiple linear
regression.

1. Introduction

Honey is a natural sweetener produced by bees (Apis
mellifera) and it can be classified in blossom honey
(nectar of plants) or honeydew honey (secretions of
living parts of plants or excretions of plant-sucking
insects on plants).[1] This food is mainly composed of
sugars (glucose and fructose), water, and other
constituents to a lesser extent, such as amino acids,
enzymes, proteins, organic acids, carotenoids, vita-
mins, minerals, and aromatic substances.[2] In addition,

it is rich in flavonoids and phenolic acids that have
several biological effects, for example, antimicrobial,
anti-inflammatory and antioxidant properties.[3]

Honey’s quality control is mandatory to allow its
commercialization and to ensure its authenticity since
it is prohibited to add or remove any ingredient.[4] Due
to its limited production and high market prices,
honey is a product susceptible to adulteration.[2,5–7]

Among the main ones, the following stand out:
incorrect information of botanical (monofloral honey
have the higher market value given the specificity of
their aromas and flavors)[5,8] and geographic origin;
the incorporation of water; the addition of sugar
syrups, by adding to the bees’ diet or after honey
production,[9] for example: fructose corn syrup, cornPart of a Special Collection on Bee Products.
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sugar syrup, inverted sugar syrup and cane sugar
syrup.[10–12]

The control of adulterants in honey is usually
carried out by physico-chemical methods, such as
hydroxymethylfurfural content, sucrose content, fruc-
tose/glucose ratio, and electrical conductivity.[10,13,14]

However, these parameters lack specificity, given the
complexity of honey’s composition which varies due
to several factors such as climate, bee species, flora
available, and bee feeding. For example, adulterating
syrups have sugar profiles similar to honey, making it
difficult to identify due to the fructose and glucose
content.[10,14,15]

New instrumental methods have been applied in
the study of adulterated honey, such as isotopic ratio
mass spectrometry,[16,17] nuclear magnetic resonance
spectroscopy,[18,19] high-performance liquid chroma-
tography with electrochemical detection[20] and diode-
array,[21] gas chromatography with ion mobility spec-
trometry detection[9] and mass spectrometry[22] and
infrared spectroscopy.[7,23,24] These techniques provide
very detailed information about the compounds
present in honey but are, in general, complex and
time-consuming methodologies, with high cost, re-
quiring controlled operational conditions and qualified
operators for analysis.[25] There are also studies using
electrochemical multi-sensor systems, such as the
electronic tongue (ETongue) and the electronic nose
(ENose), in the identification of adulterants and food
authenticity. Sousa et al.[26] presented the application
of a potentiometric ETongue to discriminate honey
according to the floral origin. Indeed, Bougrini et al.[25]

were successful in determining the honey’s country of
origin, mono/polyfloral varieties and adulteration with
glucose and sucrose syrup through a voltametric
ETongue. Gan et al.[5] used a potentiometric ETongue,
ENose, and near-infrared to recognize botanical origin
and adulteration by rice and corn syrup, having
Etongue given better results in the adulteration study.

This work aimed to evaluate the performance of a
laboratory-made potentiometric ETongue, together
with chemometric tools of discrimination and regres-
sion, to detect/quantify adulterations of natural honey
with cane sugar syrups. It was intended to select the
best predictive models, using the Tabu search meta-
heuristic algorithm.

2. Materials and Methods

2.1. Materials and Reagents

For ETongue array construction, all reagents were from
Fluka (minimum purity of 97%; Sigma Aldrich, Switzer-
land): plasticizers (2-nitrophenyl-octylether, tris(2-eth-
ylhexyl) phosphate, bis(1-butylpentyl) adipate, dibutyl
sebacate, bis(2-ethylhexyl) phthalate); additives (octa-
decylamine, oleyl alcohol, methyltrioctylammonium
chloride and oleic acid); supporting polymer (high
molecular weight polyvinyl chloride). The tetrahydro-
furan was from Sigma Aldrich (solvent produced in
USA). Type II deionized water (AST 20, Portugal;
conductivity lower than 1 μS/cm) was used in all
assays, except for pollen analysis, where distilled water
(automatic water distiller Kottermann 1033, Germany)
was applied.

2.2. Sample Collection and Analysis

In this work, five different honey samples (identified as
H1 to H5 samples) were acquired on a commercial
surface, being from different beekeepers and geo-
graphical origins (respectively: Bragança, Portugal;
Penacova, Portugal; Lousã, Portugal; Penacova, Portu-
gal; León, Spain). The samples were stored in a dark
environment at room temperature.

The melissopalynology analysis of honey was
performed in a solution prepared with 10 g of honey
dissolved in 30 mL of distilled water. After pollen
extraction, by centrifugation, and chemical treatment
according to the method reported by Louveaux
et al.,[27] the pollen grains were stained using a fuchsin
solution (Merck) mixed with glycerin (Absolve). Pollen
identification and count were carried out using an
optic microscope (Leitz Messtechnik GmbH, Wetzlar,
Germany) with 400× and 1000× objectives (the last
one was used when greater detail was required for
pollen identification). For each honey sample, a
minimum of 1000 grains of pollen was counted, and in
case of doubt, the analysis was repeated. Reference
standards obtained from Portugal honey flora (avail-
able at Instituto Politécnico de Bragança, Portugal)
were used for grain pollen identification and the
samples were classified based on their floral origin
according to their found pollen morphology. In
general, a honey sample can be classified as Lavandula
monofloral honey if its Lavandula pollen content is
higher than 15%, Castanea monofloral honey if its
pollen is higher than 90% and monofloral honey of
other pollens if its respective pollen content is higher
than 45%.[28,29]
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The honey’s color was measured in solutions of 5 g
of honey dissolved in 10 mL of water, at 635 nm (UV/
Vis spectrophotometer, Jenway, Genova model), using
a quantitative millimeter Pfund (mm Pfund) scale,[30]

according to the equation: mm Pfund= � 3870+

37,139× Absorbance. The quantitative mm Pfund scale
considers 7 levels of color for honey:[31] water white
(8< mm Pfund), extra white (8< mm Pfund �17),
white (17< mm Pfund �34), extra light amber (34<
mm Pfund �50), light amber (50 mm Pfund �85),
amber (85< mm Pfund �114) and dark amber (>
114 mm Pfund).

Also, five samples of cane sugar from different
brands and colors (identified as C1 to C5 samples)
were purchased. These colors were selected so that
when adulterating the honey samples, the original
color of the honey did not change.

2.3. Adulterated Samples

Solutions of the different cane sugars were prepared
by dissolving 16.3�0.3 g into 100.0 g of water, which
assured to obtain an average Brix% value of 13.6�
0.1%, same value as that obtained in natural honey
samples.

The honey solutions were prepared by mass
measurement of the natural honey and cane sugar
solutions, to obtain three semi-quantitative groups of
a percentage of adulteration: 0%; [0, 10]%; [10, 20]%.
Table 1 identifies the honey and cane sugar samples
used in the preparation of the solutions and shows the
values of honey’s percentage of adulteration, as well
as the respective semi-quantitative groups.

All solutions were prepared with volumes higher
than 70 mL for ETongue analysis.

The adulterated samples (honey plus sugary sol-
utions) were analysed using mid-infrared analysis, as
described by Kelly et al.[32] For analysis with ETongue,
the honey solutions were prepared by measuring
10.0 g of honey into 50.0 g of water. The Brix% of the
five natural honey solutions were measured by a
Digital Handheld Refractometer (Brix%: 0–50%; VWR
ATC) and presented an average value of 13.6�0.1%.

2.4. Potentiometric ETongue Device

The potentiometric ETongue was an all-solid multi-
sensor device that included 20 sensors prepared with
polymeric membranes obtained by mixing 32% of
polyvinyl chloride as polymeric matrix, 65% of one
plasticizer compound (A: 2-nitrophenyl-octylether; B:
tris(2-ethylhexyl) phosphate; C: bis(1-butylpentyl) adi-

pate; D: dibutyl sebacate; E: bis(2-ethylhexyl) phtha-
late) and 23% of one membrane additive (1: octade-
cylamine; 2: oleyl alcohol; 3: methyltrioctylammonium
chloride; 4: oleic acid). According to these codes, the
sensor B2 has a polymeric membrane with plasticizer B
(tris(2-ethylhexyl) phosphate) and addictive 1 (octade-
cylamine). The additive compounds have a long
carbon chain with different functional groups, being
non-specific, presenting low selectivity, and cross-
sensitivity to the different species in the samples (both
inorganic and organic, ionic, and non-ionic).[33,34]

The multi-sensor device was built in a cylindrical
piece of acrylic with an architecture already described
in previous work.[35] This device together with a
double junction Ag/AgCl reference electrode was
connected to a multiplexer Agilent Data Acquisition/
Switch Unit model 34970A, which was controlled by
the Agilent BenchLink Data Logger software, installed
in a computer, for the sensor signals acquisition.

ETongue analysis of each solution was performed
after a period of stabilization of 3 min, after which the

Table 1. Identification of honey and adulterated solutions

Solution Mix ID Adulteration% Group

1 H1 0 G1
2 H1+C1 2.2 G2
3 H1+C1 5.0 G2
4 H1+C1 10.1 G3
5 H1+C1 20.0 G3

6 H2 0 G1
7 H2+C2 6.7 G2
8 H2+C2 10.8 G3
9 H2+C2 13.6 G3
10 H2+C2 16.2 G3

11 H3 0 G1
12 H3+C3 3.8 G2
13 H3+C3 5.8 G2
14 H3+C3 8.6 G2
15 H3+C3 11.9 G3

16 H4 0 G1
17 H4+C4 4.8 G2
18 H4+C4 10.0 G2
19 H4+C4 14.8 G3
20 H4+C4 19.7 G3

21 H5 0 G1
22 H5+C5 4.5 G2
23 H5+C5 9.6 G2
24 H5+C5 14.2 G3
25 H5+C5 19.6 G3

H – honey; C – cane sugar; G1: 0% of adulteration;
G2: [0, 10]% of adulteration; G3: [10, 20]% of adulteration.
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20-signal profile was obtained. Between sample analy-
sis, the system was washed with deionized water and
cleaned with absorbent paper.

2.5. Statistical Analysis

All data were analysed using the statistics program R,
version 3.2.0 (The R Foundation for Statistical Comput-
ing, Vienna, Austria). The R statistical packages caret,[36]

ggplot2,[37] MASS,[38] MVN,[39] PerformanceAnalytics,[40]

tabuSearch[41] were used.
An independent data matrix of 25 lines (solutions)

and 20 columns (sensors) was obtained from the
ETongue analysis to the 25 prepared solutions (Ta-
ble 1). The dependent variable corresponded to the
group’s identification to which each solution be-
longed. The multivariate discrimination model was
obtained considering the 15 initial solutions as train
data (prepared with 3 honey samples), having also
allowed performing internal validation, and the re-
maining 10 solutions (prepared with 2 honey samples,
not included in the train data) as test data, to validate
the model obtained in its prediction capability. Each
sensor in train data was centered (subtract mean from
values) and scaled (divide values by standard devia-
tion) and, using the same procedure, the test data.

Linear discriminant analysis (LDA) was the selected
supervised learning technique to differentiate be-
tween natural and adulterated honey samples, consid-
ering the three semi-quantitative groups.

Tabu Search (TS), a metaheuristic feature selection
algorithm, was applied to select the best subset of
sensors to use at LDA. Feature selection allows a
reduction of the dimensionality of the study allowing
to remove redundant, irrelevant, or noisy data, improv-
ing predictability. The TS algorithm is a local search
procedure that allows the exploration of the solution
space beyond local optimality. It incorporates adaptive
memory that allows the implementation of procedures
that are capable of searching the solution space
effectively since it acts both as a local and global
search method. The information collected during the
search is used to guide the responsive exploration,[42]

by identifying a subset of moves that are feasible to
improvements and also to establish prohibitions (tabu)
to prevent the search from coming back to previously-
visited solutions.[43] Overall, this search technique
permits strong local search performance but with
dependence on the initial solution and serial iterative
search process.[44] The algorithm was applied by
defining the arguments to 50 iterations in the
preliminary search of the algorithm; 5 as a tabu list

size; 4 as the maximum number of restarts in the
intensification stage of the algorithm; and, 20 as the
number of neighbor configurations checked at each
iteration.[41]

The model’s performance was evaluated with
internal validation by applying cross-validation with k-
folds. In this work, 9 folds were used, which implies
evaluating the discriminatory performance of 9 differ-
ent models. As evaluation criteria of cross-validation,
the average value of accuracy, representing the
proportion of correctly classified observations ob-
tained from the 9 LDA models, was used.

Of all the obtained models, the best model was
selected and evaluated on their predictive power in
the train and test data, by using the global results of
accuracy, as well as those of sensitivity and specificity,
which are commonly used to measure the perform-
ance of a predictive classification model.[45]

Sensitivity (True Positive Rate, TPR) is the propor-
tion of identified positives in each group:[45] Sensitiv-
ity=True Positives/(True Positives+False Negatives).

Specificity (True Negative Rate, TNR) is the propor-
tion of identified negatives in each group:[45] Specific-
ity=True Negatives/(True Negatives+False Nega-
tives).

To verify the LDA assumptions,[46] data is tested if
have: multivariate normal distribution; same within-
group variance-covariance structure for all groups
(groups have equal dispersions); multicollinearity (re-
quires that no discriminating variable be perfectly
correlated with another variable); and presence of
outliers.

Multiple linear regression (MLR) together with TS,
for feature selection, was applied to verify if the signal
profiles allowed to obtain a prediction quantitative
model of the adulteration levels in honey solutions.
The best model was selected considering the predic-
tive ability towards the train and test data. The model’s
performance was evaluated by using 9 folds cross-
validation (gives 9 model attempts) to evaluate de
predictive ability to new data by internal validation
(train data), using the average of root mean square
error (RMSE) and determination coefficient (R2). To
visualize and evaluate the ETongue capability to
quantify the levels of adulteration of honey with cane
sugar solution, a simple linear regression model was
established between the predicted MLR-TS model and
real values for train and test data groups. The results
were considered satisfactory if the linear regression
parameters were close to the theoretical values:[47–49]

‘zero’ (0) for root square error (RSE) and intercept;
‘one’ (1) for slope and the determination coefficient.

Chem. Biodiversity 2022, 19, e202200698

www.cb.wiley.com (4 of 12) e202200698 © 2022 The Authors. Chemistry & Biodiversity published by Wiley-VHCA AG

Wiley VCH Dienstag, 15.11.2022

2211 / 269383 [S. 210/218] 1

 16121880, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cbdv.202200698 by C

ochrane Portugal, W
iley O

nline L
ibrary on [03/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

www.cb.wiley.com


3. Results and Discussion

3.1. Samples

Table 2 presents the results from pollen and color
analysis of the five honey samples. Only samples H2
and H5 have the main pollen (Echium spp and Erica
spp, respectively); with predominance above 45%,
these samples according to what is reported in the
literature are classified as monofloral honey[50] (viper
honey and heather honey, respectively). In general,
when the pollen spectrum contains more than 45%
pollen of the same species, the so-called dominant
species, the honey is classified as monofloral.[51] The
honey’s color varied between clear amber and dark
amber, being expected that the chemical composition
would also vary.

The five samples of unrefined cane sugar (identified
as C1 to C5 samples) presents the following label

descriptions: C1 - light yellow; C2 – brown; C3 –
intense brown; C4 – intense yellow; C5 – golden
yellow. As previously referred, the honey and cane
sugar pairing was defined so that when adulterating
the honey, its color was not changed.

Overall, the purpose of using different samples of
honey and cane sugar was to guarantee high varia-
bility within the solutions to be analyzed with the
ETongue.

3.2. Potentiometric ETongue Analysis

ETongue analysis was carried out in 3 min due to the
sensors’ stability, considering that in the next 5 min
the sensors had high signal stability over time, as
shown by the variation of the signals from the 20
sensors from 3 to 8 min, which presented %RSD
<0.7% (results obtained for the adulterated honey
solution number 23). Globally, the 20 sensors revealed
signal variations in the analysis of the 25 honey
solutions from 17 to 47 mV, meaning that the sensors
had a sensitivity to the variability within the analyzed
solutions.

Figure 1 depicts the potentiometric signals of all 20
sensors for the five honey samples. The sample H4
showed a different profile, which demonstrates that
the honey matrix is characterized by the global
contribution of the floral origin, which can be
evaluated by the composition of non-predominant
pollens (Table 2 shows the second most predominant
pollen to highlight the differences between honey
samples with the same predominant pollen). The

Table 2. Identification and characteristics of honey samples

Sample Two main pollens Type mm
Pfund

Color

H1 41.7% Castanea spp;
14.0% Leontondon spp

Multifloral 59.3 Clear
amber

H2 53.4% Echium spp;
12.3% Erica spp

Monofloral 88.7 Amber

H3 32.9% Morus spp;
26.3% Cistus spp

Multifloral 171.9 Dark
amber

H4 35.3% Castanea spp;
10.4% Lavandula spp

Multifloral 67.5 Clear
amber

H5 52.2% Erica spp;
27.9% Trifolium spp

Monofloral 137.7 Dark
amber

Figure 1. ETongue’s signal profile of each honey sample.
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figure also shows that although it is possible to
differentiate the remaining 4 samples, the H3 and H5
samples, as well as the H1 and H2 samples have great
similarities in the sensor profile. The variability in the
profiles of potentiometric signals between the five
honey samples was not avoided and, therefore, was
present in the division of the data in a training and
test group for the multivariate study of discrimination
between kinds of honey without and with adulteration
of cane sugar.

3.3. Linear Discrimination Analysis with Tabu Search

The 15 initial solutions described in Table 1 were used
as train data and the rest, as test data. The train data

was standardized, the sensor’s columns were centered
and scaled, being the obtained arguments also applied
to the test data.

The LDA-TS was applied to select the best LDA
model using the best subset of sensors for discriminat-
ing the honey samples that were adulterated with
cane sugars from the natural honey samples. The
search considered all sensor subsets possibilities (1 to
20 sensors) and it allowed to solve model fitting by
criteria maximization: train accuracy and test accuracy.
The TS algorithm was applied to a total number of 150
iterations, with a number of 50 iterations at each
preliminary search and 20 neighbors visited at each
iteration. Figure 2A depicts the overall sensor subsets
used to evaluate the best LDA model and Figure 2B,

Figure 2. Linear discriminant analysis: A) Subset of selected sensors in each iteration; B) Number of times each sensor was used in
the Tabu search iterative process.
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the number of times each sensor was used in the Tabu
search iterative process. These figures show how the
TS iterations were carried out, and the variables that
seemed to be included in almost every iteration (most
important). The six most used sensors in the TS
iterations, in descending order, were: B3; A1; B4; B2;
A3; and E4.

The 9 folds cross-validation obtained an average
value of accuracy of 0.3�0.4, which is representative
that some of the samples are very important in the
adjustment of the model, such as natural honey
solutions (group G1), with the presence of only 3
samples, implying that their removal from the model
adjustment would significantly change the percentage
of correct classifications. This situation may be attrib-
uted to the fact that in the G1 group there are few
samples of natural honey, compared to the represen-
tation in the remaining two groups (each with six
samples).

The selected best model had 12 sensors: A1, A3, B2,
B3, B4, C1, C2, C4, D2, E1, E2, and E4. This subset
included all the 6 sensors most used in the TS. In this
work, the polymeric membranes with the plasticizer D
were the least represented in the LDA-TS model to
discriminate between natural honey and adulterated
honey samples. The obtained LDA-TS model has two
discriminant functions that represent 100% of total
data variability, being the contribution of the first
function of 98.6%. In this model, the most relevant
sensors were E2 and D3. Figure 3 shows the LDA plot
representing the train data in the bi-dimensional space
defined by the two discriminant functions and the
grouping boundaries lines.

This model allowed us to have 100% of correct
classifications, using both the train data and test data.
Therefore, the sensitivity and specificity in each group
were 100%. These results showed the effectiveness of
ETongue to distinguish naive honey samples from
adulterated ones. It should be emphasized that the
experimental design did not facilitate the application
of LDA because, in the training data, the groups did
not present the same sample sizes; as can be seen in
Table 1, the group G1 was the least represented in
training data, with only 3 solutions. Considering the
global results obtained, it is expected that the
discriminant model may be improved if there is
greater representability of natural honey, ensuring
variability, in training data.

3.4. LDA Assumptions

The performance of a predictive LDA model depends
on the data meeting the assumptions but, evidence
that certain of these assumptions can be violated
moderately without large changes in incorrect classi-
fication results. Mainly, if it is used a larger sample size,
the more robust the analysis is to violations of these
assumptions. The homogeneity of multivariate disper-
sions was confirmed by using Bartlett (test for data
that is normally distributed; p-value=1) and Fligner-
Killeen (a non-parametric test which is very robust
against departures from normality; p-value=1) tests,
which are tests of group’s homogeneity of variances.
The multivariate normality of the independent varia-
bles (sensors) was confirmed by the Doornik-Hansen’s
test (p-value=0.80). Regarding the presence of out-
liers, their detection was done by visualizing the
extreme values (outliers) in the box plot of the
independent data (Figure 4). As can be seen, the three
extreme values (solution 4) belonging to sensors E1,
E2, and E4 are marked, which were not considered
outliers (due to not having been repeated in the other
sensors) but only specific results from these sensors
associated with the matrix of that sample.

Considering that the analysis was carried out with
an ETongue with cross-sensitivity polymeric mem-
branes, multicollinearity was also expected between

Figure 3. Honeys’ discrimination (2D plot of the first 2 discrim-
inant functions and respective class membership boundaries).
G1=0%; G2= [0, 10]%; G3= [10, 20]% of honey adulteration
degree with cane sugar.
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the sensors. In the sensor subset selected by the TS
algorithm, the correlations between the signals’
sensors for the training data varied between 0.59 and
0.992. However, it is reported that the LDA technique
is robust to a certain degree of these assumptions[52]

and that although the assumptions are important, the
model’s robustness is confirmed with its ability to
predict new samples (test data).

3.5. Multiple Linear Regression with Tabu Search

In order to assess whether the signal profiles allowed
to obtain a quantitative model to predict the honey’s
adulteration level with sugar cane solution, MLR-TS
was applied to the training data used, in the LDA-TS
section, and then verified the predictive ability of the
selected model in the test group data. The signal
profiles were also standardized (centered and scaled).
The quantitative adulteration levels (Table 1) ranged
between 0 and 20%.

The conditions applied to the TS algorithm used a
total number of 200 iterations, with a number of 50
iterations at each preliminary search and 20 neighbors
visited at each iteration. Figure 5A shows the overall
sensor subsets used to evaluate the best MLR model
and Figure 5B, the number of times each sensor was
used in the Tabu search iterative process. As referred
previously, these figures show the TS iterations
performed and the variables that seem to be included
in almost every iteration. The six most used sensors in
the MLR-TS iterations, in descending order, were: A1;
C2; B4; B2; B3; and, C1. Comparing Figure 2B and 4B, it
appears that the sensors have similar representability
in the TS iterations.

It should be referred that it was possible to obtain
several MLR-TS models having fittings with determi-
nation coefficients higher than 0.990, but without
satisfactory ability to predict the adulteration levels
present in the test group data (determination coef-
ficients equal or lower than 0.76). The selected best
model presented below highlights this situation. It has
12 sensors, including the 4 sensors most used in the
TS: A1, A3, B1, B2, B3, B4, C1, C2, D2, E2, E3, and E4.
Only the sensors B1 and E3 were not included in the
best LDA-TS model presented in a previous section,
inferring that quantitative information was used in the
discrimination of the three defined groups.

The overall results of RMSE and R2 on the cross-
validation study showed that, as also referred to in the
LDA-TS section, some of the samples are very
important in the adjustment of the model, implying
that their removal from the model adjustment signifi-
cantly changes the model’s MLR-TS quality.

The best MLR-TS model presented a RSE value of
1.41 and a R2 value of 0.992. The linear relation
between the MLR-TS model predicted and expected
adulteration values for train data showed a slope and
R2 of 0.997 (intercept equal to zero statistically since,
not significant at the level of 5%), as well as a low
residual standard error of 0.53.

For the test group data, the results for all the linear
relation between the predicted and expected values
were not satisfactory: the linear equation obtained had
no significant intercept, at the level of 5%, and was set
to zero; slope has the value of 0.69�0.13, with a
confidence interval ([0.40, 0.98] at the significance
level of 5%) that did not include the theoretical value
(unity); RSE value was equal to 4.92 and R2 value equal
to 0.76.

Figure 4. Boxplot of the potentiometric sensor’s signals (independent data, centered and scaled) used in the LDA-TS model.
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Figure 6 presents these linear comparisons between
the predicted values by the MLR analysis versus actual
values of the honey’s adulteration levels, for the train
and test groups. It shows a good fit for the train data
but not for the test data, where it was found that 5 of
the samples are quite far from the expected values,
contributing to an adjustment with slope and R2

values quite far from the theoretical value (unity).
These results showed that the quantitative information
within the signal’s profile was not enough to obtain a
robust MLR model for the quantitative prediction of
the adulteration levels of sugar cane in the honey.

The possibility to be able to quantify the honey’s
adulteration levels is not discarded if: more natural
and adulterated honey samples are included in the
study to achieve greater representability of variability
in the samples and therefore, a better quantitative
model training; other non-specific and cross-sensitive

lipid polymeric electrodes with analytical responses
that improve quantitative analytical responses. The
possibility of adjusting the sample matrices is also not
ruled out, that is, making samples similar by adding,
for instance, a total ionic strength adjustment buffer,
important for potentiometric measurements. The
objective would be to verify if it is possible to reduce
the matrix effect of the honeys in the quantification
model and, simultaneously, to increase the differences
between them.

However, with regard to the cross-sensitivity
sensors, the results showed the adaptability of the
electronic tongue to the present study, which was
expected considering that these polymeric mem-
branes have already shown good performance in
discrimination studies. For example, the identification
of goat milk adulteration with bovine milk,[33] gliadins
semi-quantitative detection in foodstuffs,[53] discrim-

Figure 5. Multiple linear regression: A) Subset of selected sensors in each iteration; B) Number of times each sensor was used in the
Tabu search iterative process.
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ination of monofloral honey samples with a broad
pollen profile,[26] and honey pollen profile
assessment.[54] There are also quantitative sugar works
with the sensors used, for example, the work of Arca
et al.[49] that carried out sugars’ quantification (glucose,
fructose, and sucrose) in standard solutions, Dias
et al.[55] that quantified, accurately, healthy and sen-
sory indexes (glycemic load, fructose intolerance index,
sweetness perception, total acid flavor, and well-
balanced flavor) in beverages and Dias et al.,[56] which
performed a semi-quantitative and quantitative analy-
sis of sugars (fructose and glucose) in soft drinks.

Also, the overall results were in accordance with
the other works[5,25] that showed the ETongues’
efficacy (voltametric and potentiometric, respectively)
in discriminating adulterated honey.

4. Conclusions

A potentiometric ETongue was applied successfully in
the study of honey samples adulterated with cane
sugar solutions. This fast multi-sensor system (non-
specific lipid polymeric membranes coupled with LDA
and TS variable selection algorithm) had a very good
predictive performance to identify adulterated honey
samples, being a powerful tool for quality control.
Although the quantitative analysis showed sample
matrix’s effects, in the future, it is expected to use a

total ionic strength adjustment buffer that could allow
solving this relevant issue, which could also increase
the range of Etongue applications.

This tool may be used as a triage prior traditional
analytical methods considering its low-cost, simple
measurement process, minimal sample pre-processing,
adaptability to a complex matrix and compatible with
green analytical chemistry.
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