
Implementation of a Thermal-based
Food Recommendation System

Henrique Souza Marcuzzo - 52551

Dissertation presented to the School of Technology and Management of Bragança for the

attainment of the Master’s Degree in Informatics under the double degree with the

Federal University of Technology - Parana

Project developed under the orientation of

Prof. PhD Maria João Varanda

Prof. PhD Juliano Henrique Foleis

Master in Informatics

2022-2023





Implementation of a Thermal-based
Food Recommendation System

Project Report

Master in Informatics

Escola Superior de Tecnologia e Gestão

Henrique Souza Marcuzzo - 52551

2022-2023





Dedicatory

I humbly dedicate this work to the unwavering love and tireless support of my parents,

Rosângela Lopes de Souza and Aguinaldo José Marcuzzo, whose guidance and encourage-

ment have been the foundation of my academic achievements.

In addition, I would like to extend my gratitude to my family for their continued love

and support throughout my academic journey. Without their unwavering belief in me,

this achievement wouldn’t have been possible.

v



Acknowledgments

I would like to express my sincere gratitude to Prof. PhD Maria João Varanda Pereira and

Prof. PhD Juliano Henrique Foleis for their invaluable guidance and unwavering support

throughout the course of this work.

Their generous allocation of time, expertise, and resources has been instrumental in

shaping the outcome of this research. I am grateful for their mentorship, constructive

criticism, and encouragement, which have all been critical in pushing me to achieve my

best.

This work was supported by "Fundação La Caixa" and by "Fundação para a Ciência

e a Tecnologia" under the scope of the project "Aquae Vitae – Água Termal como Fonte

de Vida e Saúde" through the Promove Program ("Projetos I&D Mobilizadores") and also

by the Project UIDB/05757/2020 of the Research Centre in Digitalization and Intelligent

Robotics. My deepest gratitude goes to these institutions for their essential financial

support and belief in our research.

vi



Resumo

O modelo convencional de uma consulta de nutricionista baseia-se na análise dos dados do

paciente pelo nutricionista e na provisão de um plano nutricional com base nos objetivos

do paciente, e este ciclo é repetido a cada consulta.

Para fazer isso, o nutricionista coleta a maior quantidade de informações possíveis

durante a consulta e é com base nesse conjunto de dados que ele estabelece o plano

nutricional. Por outro lado, a definição desse plano não é uma tarefa fácil, pois existe

uma grande variedade de alimentos e o plano deve seguir muitas restrições e ao mesmo

tempo dar alguma liberdade para o paciente escolher entre um conjunto de possibilidades.

Outra questão importante é a possibilidade de monitorar a dieta do paciente, ob-

tendo mais informações para os próximos planos sem a necessidade de agendar uma nova

consulta.

Neste projeto, propomos um sistema capaz de coletar dados do usuário para que o nu-

tricionista possa analisar o paciente e fornecer planos nutricionais mais precisos, eficazes e

com uma maior variedade de refeições com base nas preferências de cada usuário, tornando

a experiência mais agradável para o usuário e auxiliando o trabalho do nutricionista.

Um sistema de recomendação também foi proposto para auxiliar o nutricionista na

geração do plano nutricional. Este sistema seria capaz de analisar as preferências do

usuário e preencher as refeições do plano nutricional seguindo as regras impostas. Além

disso, foi projetado para incluir e priorizar os alimentos termicamente baseados produzidos

no contexto do projeto Aquae Vitae.

vii



Palavras-chave: Recomendação de Alimentos, Dieta, Inteligência Artificial, Apren-

dizado de Máquina e Desenvolvimento de Backend

viii



Abstract

The conventional model of a nutritionist consultation is based on the nutritionist analyzing

the patient’s data and providing a nutritional plan based on the patient’s goals, and this

cycle is repeated at each consultation.

In order to do that the nutritionist collects the greatest amount of information that it’s

possible to get during the consultation and is based on that set of data that he establish

the nutritional plan. By other hand, the definition of that plan isn’t an easy task because

there is an huge variety of food and the plan should follow lots of restrictions and at the

same time give some freedom to the patient to choose in between a set of possibilities.

Another important issue is the possibility of monitoring the patient diet geting more

information for the next plans without the need to schedule a new consultation.

In this project we proposed a system capable of collecting data from the user so

that the nutritionist can analyze the patient and provide nutritional plans that are more

accurate, effective, and with a greater variety of meals based on each user’s preferences,

making the experience more pleasant for the user and assisting the nutritionist’s work.

A recommendation system was also proposed to aid the nutritionist in generating the

nutritional plan. This system would be capable of analyzing the user’s preferences and

filling in the meals of the nutritional plan following the imposed rules. Moreover, it has

been designed to include and prioritize the thermally-based food items produced within

the context of the Aquae Vitae project.

Keywords: Food Recommendation, Diet, Artificial Intelligence, Machine Learning and

Backend development

ix



x



Contents

1 Introduction 1

2 Problem and goals 3

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Overall Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Technological Background and State of the Art 5

3.1 Recommendation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Web Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Support System for Nutritionists . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Software Modeling 13

4.1 User stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Administrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.2 Nutritionist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.3 User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Administrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.2 Nutritionist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.3 User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xi



4.3 Entity Relationship Diagram (ERD) . . . . . . . . . . . . . . . . . . . . . 19

4.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Main Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Recommendation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Backend Development 29

5.1 Overview of Technologies Used . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Programming Language . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.3 Web Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Nutritional Management System Development . . . . . . . . . . . . . . . . 31

5.2.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.2 Module Development . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.3 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.4 Pagination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.5 Base Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.6 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.7 Generic Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Recommendation System Development . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Food Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Filling Out the Nutritional Plan . . . . . . . . . . . . . . . . . . . . 66

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Tests, Evaluation and Discussion 71

6.1 Nutritional Management System Test Development and Results . . . . . . 72

6.1.1 Collected Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Recommendation System Tests and Results . . . . . . . . . . . . . . . . . 80

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xii



7 Conclusion 87

7.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiii



List of Figures

4.1 AquaVitae System Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 AquaVitae Entity Relationship Diagram (ERD). . . . . . . . . . . . . . . . 20

4.3 General architecture of SOA-based systems. . . . . . . . . . . . . . . . . . 23

4.4 Complete project architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Flow Diagram of the Nutrition Plan Generation. . . . . . . . . . . . . . . . 24

4.6 Recommendation System process overview. . . . . . . . . . . . . . . . . . . 26

5.1 Project Organization aquavitae-app . . . . . . . . . . . . . . . . . . . . . . 33

5.2 File config.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Directory aquavitae-app/src . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 File src/main.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Directory src/modules/domain/food . . . . . . . . . . . . . . . . . . . . . . 37

5.6 Directory src/modules/domain/food/entities . . . . . . . . . . . . . . . . . 37

5.7 Part 01: File src/modules/domain/food/entities/food_entity.py . . . . . . 38

5.8 Part 02: File src/modules/domain/food/entities/food_entity.py . . . . . . 39

5.9 File src/modules/domain/food/repositories/food_repository.py . . . . . . . 39

5.10 File src/modules/domain/food/services/food_service.py . . . . . . . . . . . 40

5.11 File src/modules/domain/food/controllers/food_controller.py . . . . . . . . 41

5.12 Directory src/modules/domain/food/dto/food . . . . . . . . . . . . . . . . . 42

5.13 File src/modules/domain/food/dto/food/food_dto.py . . . . . . . . . . . . . 43

5.14 File src/modules/domain/food/dto/food/update_food_food_dto.py . . . . . 43

5.15 Example of handling errors extracted from the FastAPI documentation. . . 44

xiv



5.16 File src/core/common/dto/exception_response_dto.py . . . . . . . . . . . 45

5.17 File src/core/types/exception_types.py . . . . . . . . . . . . . . . . . . . . 45

5.18 Part 1: File src/core/types/http_exception_handler.py . . . . . . . . . . . 46

5.19 Example error message extracted from the FastAPI documentation. . . . . 47

5.20 Part 2: File src/core/handlers/http_exceptions_handler.py . . . . . . . . 48

5.21 File src/core/common/custom_error_response.py . . . . . . . . . . . . . . 49

5.22 File src/core/decorators/pagination_decorator.py . . . . . . . . . . . . . . 50

5.23 File src/modules/infrastructure/database/base_entity.py . . . . . . . . . . 53

5.24 File src/core/common/dto/base_dto.py . . . . . . . . . . . . . . . . . . . . 53

5.25 Create Food request body. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.26 Create Food response body. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.27 Variables of an endpoint with pagination. . . . . . . . . . . . . . . . . . . . 56

5.28 Get Food detailed response body with pagination. . . . . . . . . . . . . . . 57

5.29 Get Food response body with pagination in JSON format. . . . . . . . . . 58

5.30 Error response body in JSON format. . . . . . . . . . . . . . . . . . . . . . 59

5.31 File src/modules/infrastructure/database/soft_delete_filter.py . . . . . . . 60

5.32 Method __apply_options inside the file .../database/base_repository.py . . 61

5.33 File .../recommendation_system/controllers/recommendation_system_controller.py 62

5.34 File .../interfaces/find_user_food_preferences_interface.py . . . . . . . . 63

5.35 File .../interfaces/find_user_food_preferences_interface.py . . . . . . . . 64

5.36 File .../interfaces/complete_nutritional_plan_interface.py . . . . . . . . . 68

5.37 File .../interfaces/complete_nutritional_plan_interface.py . . . . . . . . . 69

6.1 File test/fixtures/food.json . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 File test/utils/database_config_test_utils.py . . . . . . . . . . . . . . . . . 74

6.3 File conftest.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 File test/test_base_e2e.py . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 File src/modules/domain/food/tests/test_food_e2e.py . . . . . . . . . . . . 77

6.6 File src/modules/domain/food/tests/test_food_e2e.py . . . . . . . . . . . . 78

xv



6.7 Test success rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.8 Code coverage report from pytest-cov . . . . . . . . . . . . . . . . . . . . . 79

6.9 Response time distribution of the system endpoints . . . . . . . . . . . . . 79

6.10 Food test response times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.11 Base Repository create method . . . . . . . . . . . . . . . . . . . . . . . . 80

6.12 Nutritional plan without any input . . . . . . . . . . . . . . . . . . . . . . 82

6.13 Nutritional plan with historical consumption data only . . . . . . . . . . . 83

6.14 Nutritional plan with user preferences only . . . . . . . . . . . . . . . . . . 83

6.15 Nutritional plan with user preferences and consumption history . . . . . . 84

xvi



Acronyms

API Application Programming Interface. 3, 4

CPS Cyber Physical Systems. 9

CRUD (Create, Read, Update, Delete). 85

DTO Data Transfer Object. 34, 38, 39, 41, 42, 52

ERD Entity Relationship Diagram. xiv, 13, 20

ORM Object-Relational Mapping. 4, 30, 35, 37

RS recommendation systems. 2, 4–10, 13, 25–27, 30, 84, 87, 88

SOA Service-Oriented Architecture. 22, 27, 31, 32

STARec Search-based Time-Aware Recommendation. 8

xvii



xviii



Chapter 1

Introduction

People seek nutritionists for a variety of reasons ranging from helping them lose weight

and/or gain muscle mass to changing their eating habits to a healthier diet that improves

their quality of life. And according to some [1] studies, a good diet has many benefits for

the patient, such as helping to prevent disease.

However, in some offices there is still a barrier between the patient and the nutritionist,

which consists of a consultation with the nutritionist from time to time, the patient

receiving a nutritional plan, and after the established time of this plan a return to the

office to observe the patient’s progress.

In this model the contact between both parties is minimal. On the nutritionist’s side,

it doesn’t allow him to have enough data to evaluate if the proposed nutritional plan was

adequate or not, if the patient is following the plan and how to calibrate it to get better

results in future sessions. Moreover the nutricionist should have an easy and efficient

way of defining the plan having the help of an intelligent system that shows him the

food options making automaticaaly the calculations and suggesting several possibilities

for each meal.

And on the patient’s side, the actual system doesn’t allow him to quickly and reliably

have control over what food was consumed during the period proposed by the nutritional

plan, control over the amount of calories ingested, and also generates the concern of what

he should eat at the next meal and if he has all the necessary items for the next meal

1



according to the nutritional plan.

Aquavitae’s project proposes, not only to include thermal-based food items but also

as an initial idea, to help both parties overcome these challenges. This allows the user to

have quick access to their nutritional plan, to mark the meals they have consumed during

the day, and to indicate which foods have restrictions or preferences so that the system

can adapt to the user’s profile. In continued consideration of the patient, the system also

aims to provide meal recommendations that respect the nutritional plan, thereby allowing

for a greater diversity of meals.

And for the nutritionist, the system will be able to generate detailed reports about the

analyzed patient, so that with this information the nutritionist will be able to generate

more accurate nutritional plans that bring more results for the patient.

Considering the recommendation systems (RS), which is anticipated to add artificial

intelligence features as a differential to the application, it should be able to identify the

restrictions either self-imposed by the user or recommended by the nutritionist, as well

as the patient’s preferences. This system aims to fill the nutritional plan accordingly,

generating varied meals to prevent the patient from becoming weary of consuming the

same items repeatedly, thus enhancing the user experience.

The RS must also ensure compliance with other rules of the nutritional plan not

previously mentioned, such as calorie limits. Moreover, the system is designed to prioritize

the inclusion of high-priority foods, particularly thermally-based food items, within the

nutritional plan.

For easier navigation, this document is organized as follows: Chapter 2 details the

motivations leading to the development of this work. Chapter 3 contains the research

conducted on different techniques and challenges related to RS. The backend modeling

and the RS are presented in Chapter 4. Important points of the development process are

discussed in Chapter 5, while Chapter 6 elaborates on the tests conducted for the project.

Lastly, the conclusion of this work is presented in Chapter 7.

2



Chapter 2

Problem and goals

2.1 Motivation

Nutritionists required an application to streamline the management of patient informa-

tion, simplify the creation of nutritional plans, and closely monitor their patients’ diets

to ensure adherence to the prescribed nutritional plans. This system would facilitate

the tracking of each patient’s progress, or lack thereof, during return visits to the con-

sulting room. Furthermore, it would collect valuable data to inform the development of

subsequent plans tailored to the patient’s profile.

It was also of interest that the system could somehow suggest other types of meals

that could match the nutritionist’s recommendations, making the nutritional plan more

enjoyable for the patient who would not be stuck to a restricted diet and could vary the

meals without compromising the nutritional plan objective.

2.2 Overall Objective

The main goal of this work is to design and implement an API capable of storing and

managing the information provided by the nutritionists and users, turning easier the

task of defining the meals making automatic calculations of the nutritional parameters,

Moreover the application should also be capable of recommending meals to the users as

3



an alternative to what is suggested by the nutritionist but maintaining the nutritional

plan, aiming to make the nutritional plan less stressful to the patient. Moreover, the food

table was enriched with the thermal-based items produced under the scope of the project

Aquae Vitae.

2.3 Specific Objectives

In addition to building the API to facilitate the work of the nutritionists and improve

the user experience with the meal RS, there is also the goal and challenge of learning the

technologies used to build the Backend, and the RS, which are:

• Backend:

– FastAPI, the framework used to build the API, the server that will handle the

requests made by the Web or Mobile application;

– PostgreSQL, for data storage;

– SQLAlchemy, a powerful Object-Relational Mapping (ORM) used by many

other Python based frameworks to make it easier to manipulate the data in

the database;

– Pydantic, to help with OpenAPI documentation and to ensure that the data

received and returned in a request is in the expected format;

– Pytest, to test the system’s endpoints and methods ensuring that changes made

to the system don’t impact the service in an unwanted way.

• Recommendation system:

– Study what strategies are used in the market today and identify the best ap-

proach to use that meets the system requirements;

– Study and enhance existing knowledge of python artificial intelligence and ma-

chine learning.

4



Chapter 3

Technological Background and State

of the Art

This chapter will discuss the state of the art for the different types of RS that have

been adopted by the industry, and then present and justify the technologies used for the

development of the backend application and also the RS, that are part of the project.

3.1 Recommendation System

In an overview there are different approaches to develop RS and the article [2] gives us

a brief summary for these different approaches, as well as advantages and disadvantages,

which contexts to use a certain algorithm and so on. To complete these categorizations

the article [3] encompasses different approaches into three major categories which are

global models, personalized models and also hybrids models that are a combination of

these two, taking advantage of the characteristics of both. A brief explanation about each

category according to the same article is:

• Global models: It requires a large amount of data from several users being trans-

mitted to the server to process and retrain the model on the server side. This type

of approach is excellent when the system doesn’t have much data from one user

5



and starts to make recommendations based on the majority preferences. This ends

up distorting the recommendations of users who are already enrolled in the system

and providing information to him for a longer period of time. They may end up

receiving recommendations based on mass and not reflecting their preferences. The

paper [4] provides us with a great example of building a framework based on this

kind of approach, and [5] has done a study of session-based recommendation systems

using this model, making comparison even with linear recommendation models, and

proposed a method that proved superior to competitors in the same segment present

in the state of the art.

• Custom models: Can be trained and used on the client side itself, so they can

be used off-line as they don’t require data to be transmitted to the server. This

approach provides recommendations based entirely on the user’s preferences, but

has the disadvantage of the risk of not having enough data for more accurate rec-

ommendations.

• Hybrid models: Tries to balance the two learning models already described, where

it seeks to transfer the knowledge of global preferences to the user’s personal prefer-

ences in order to make personalized recommendations without leaving out popular

items in the system. A good article for better understanding this model is [6] which

has done a study on this kind of approach in RS by even proposing an algorithm

that uses it.

There are also options for recommendations based on learn-to-rank algorithms ([7],

[8] and [9]), which consist of learning what the user is most likely to consume based on

past interactions, which also fit into previously defined custom models. While the article

[7], suggested a new approach for this type of learning that has proven to be superior to

other pointwise and pairwise algorithms, [8] preferred to compare known algorithms and

use the one with the best performance for the problem explored, in this case the RankSvm

algorithm was the chosen one.

6



RS based on continuous learning suffer from the catastrophic forgetting problem as

pointed out by the article [10], where the RS when updating the cycle of a training base,

ends up forgetting past interactions, so the article in question proposes an algorithm

that carefully selects which interactions will be chosen to update a new cycle. Although

the article has obtained better results than the ones analyzed, as the author himself

says, interactions of past items may be recurrent in future interactions and therefore user

preferences are preserved.

The article [11] suggests a collaborative approach for RS where it would use data

from neighbors who have similar preferences to compose the suggested items. That is

something similar to what is proposed by the article [3] in hybrid models, because as it

was also pointed out by the article, systems that are based only on the user have the same

problems pointed out in custom models.

If the dataset contains missing attributes it is possible, in some cases, to fill them with

information from other domains as detailed in the article [12] using the technique known

as cross-domain. Another interesting point highlighted by the article was the amount

of neurons used in the deep learning model that produced influences the hit rate, where

there is a global optimum of the amount of neurons in a single layer, after that, increasing

the amount of neurons will only make the system less efficient.

To better understand some aspects of deep learning and how to use it in RS as well

as techniques for validation and also cross domain as mentioned in the paragraph above

the article [13] and [14] is recommended, as it provides a good analysis of the topic.

The paper [15], developed a framework based on meta-learning that meets all the

characteristics cited in hybrid models, such as catastrophic forgetting and cold start. In

addition the framework is able to adapt quickly to the entry of new users providing new

suggestions in a short period of time. Proving its efficiency when compared to other

algorithms in the same segment of RS.

Comparing the effect that implicit and explicit data collection for the RS has on the

user experience is critically important to the success of the application and was very well

scored by [16] and [17].

7



The work done by [16] explored this topic with machine learning techniques ranging

from supervised matrix factorization, contextual bandit learning to Q learning and con-

cluded that each type of approach produces different effects. However Bandit-Two and

Bandit-Four approaches are proven superior.

While [17] explored the advantages and disadvantages of the exploration and exploita-

tion approaches, it’s crucial to understand these two concepts better. The exploration

approach pertains to exploring a diverse set of possible options without prioritizing what

is already known to work well. This method encourages diversity and novelty but can

potentially introduce more risk and uncertainty. On the other hand, the exploitation

approach focuses on using known information or solutions that have previously proven

effective, minimizing risk but potentially limiting diversity and novelty. The goal is to

balance these two approaches to generate a method that continually enriches the system’s

knowledge over time without causing undue stress to the user.

The work done by [18] points out that depending on the type of application, it becomes

interesting to observe the micro behaviors performed by the user to create the recommen-

dations that will be displayed to him in a next session. This article also developed a new

algorithm MKM-SR, which is a combination of algorithms M-SR and KM-SR, and with

the proposed algorithm got better performances than those present in the state of the art

until its publication.

The work [19] as well as the above paper observe other types of user behavior mixing

with past preferences to predict user demands over time. It was developed the Search-

based Time-Aware Recommendation (STARec) algorithm which compared to other algo-

rithms (such as LSTM ) subjected to the same tests had a better performance.

Another problem that happens frequently in RS is working with very dense databases,

that is, with many attributes and many items to be calculated, which decreases the

performance of the application, for this there are techniques known as Embedding that

reduce the dimension of the data and the article [20] give us a brief explanation about

the topic.

Another approach to build a RS is using decision tree algorithms as shown in the

8



paper [21], which compares the processing time and presents the challenges faced by this

approach. The paper also proposes an approach that has logarithmic scale complexity

and is shown to be superior to other comparative approaches present in the state of the

art.

There are rule-based RS approaches, and to better understand how these work the

articles [22] and [23] are of interest. And [23] also explains the differences in metrics for

evaluating a system and when to use them.

There are also strategies for RS based on fuzzy logic, a great study by [24] compared

algorithms of if-then rules with algorithms of decision tables and came to the conclu-

sion that systems that use if-then rules get better performance. And the work done by

[25] showed that increasing the amount of if-then rules does not always increase the ef-

fectiveness of algorithms, and there is an overall complexity optimum for the problems

studied.

The work done by [26] proposes to generate if-then rules algorithms automatically for

numerical data, and is a great case study for solving similar problems.

Fuzzy if-then rules algorithms have also been used in Cyber Physical Systems (CPS)

in the medical and hospital sector in order to reduce false alarms generated by the sensors,

increasing their efficiency and reducing costs and resources, as shown in the work done

by [27].

3.2 Web Development

Regarding technologies for web services the research conducted by [28] about the RESTful

protocol demonstrates several points and benefits of using it in the developed projects in

comparison with other development patterns. And the [29] article, although not focused

on studying the REST protocol for web development, which has been studied for decades,

provides a great comparison of this standard and comparisons with other protocols that

demonstrate the superiority of REST for web service development.

9



Along with the REST protocol, another work by [30] conducts a study on the archi-

tecture of microservices and the impacts this development pattern brings to a project.

It highlights the benefits and challenges of using it. Benefits were noted as independent

deployment, ease of scaling the applications, maintainability, and no commitment to a sin-

gle technology stack. The challenges were identified as complex distributed transactions,

testing the entire system, and dealing with service faults.

From this survey, it was possible to analyze several different techniques for developing

Recommendation Systems (RS) that use a range from Machine Learning, Learn to Rank,

Decision Trees, Global/Custom/Hybrid models to Fuzzy logic with if-then rules.

Given the current formulation of the project, we believe that the fuzzy logic technique

is the most appropriate for the project since there are a number of pre-defined rules for

the recommendation of a food or meal to the user. More explanations will be given in the

modeling chapter.

We also concluded that using the RESTful protocol for communication and a microservices-

based architecture would be most appropriate for the project because of the benefits it

brings to the work to be developed, as seen in the articles related to this work.

3.3 Support System for Nutritionists

When it comes to support systems for nutritionists the [31] proved to be interesting

because it has a certain similarity to the results we seek to achieve even though the

technique used is different.

The work [31] mentioned above was done in Chile, where there was a high rate of

deaths from cancer and studies showed that 40% of the types of cancer are linked to

obesity, another problem that was present in at least 35% of the still young population of

the country. So the work focused on consulting several nutritionists in order to generate

automatic plans for patients based on the problem that the patient should face and built

a software for this based on the rules defined by the nutritionists consulted.

Another interesting work was done by [32] who built an app for patients to stay healthy

10



in times of pandemic with nutrition plans from nutritionists and with goals to be met that

could be tracked frequently by the mobile app they developed, and the researchers found

that this kept the patients motivated to continue and complete the nutrition plan.

Therefore, it’s possible to observe that technological solutions are emerging for Web

(eHealth) and Mobile (mHealth) services, and tend to become more frequent in the daily

lives of patients and health professionals. And they also bring benefits that encourage

patients to follow the proposed nutritional plans more vigorously.

3.4 Conclusion

In light of the comprehensive literature review and assessment of available technologies, we

have initiated the back-end modeling phase. This approach was informed by our knowl-

edge of the web technologies to be used and the most appropriate artificial intelligence

techniques for implementing the recommendation system. This thorough grounding in

relevant literature and technological capabilities forms the foundation for the next steps

of our project. As we move forward, we expect to continuously refine and optimize our

approach in order to deliver a highly effective and user-friendly solution.

11



12



Chapter 4

Software Modeling

In this chapter we will cover the key points of the backend modeling of the software

developed which includes all the requirements such as user stories, use cases and also the

ERD of the database and the architecture used for development. We will also detail how

we modeled the RS and the steps it will follow.

4.1 User stories

For a better understanding of the user stories we will separate them by the actors that

are present in the system, which are Administrator, Nutritionist and User.

4.1.1 Administrator

The administrator is able to manage all the system’s internal data in order to facilitate

the work that will be done by the nutritionist, which are:

1. The administrator is able to manage the role that each user has within the system

in order to limit their access within the system for security purposes;

2. The administrator is able to manage all the internal data in the system that will

support the nutritionist in his role;

13



(a) As the administrator, I want to manage the goals that an appointment can

have;

(b) As the administrator, I want to manage the types of pathology that a user can

be diagnosed with;

(c) As the administrator, I want to manage the activity levels a user can have;

(d) As the administrator, I want to manage the types of specificity;

(e) As the administrator, I want to manage the food categories;

(f) As the administrator, I want to manage the food table;

(g) As the administrator, I want to manage the meal types;

(h) As the administrator, I want to manage which foods can be consumed in a

certain type of meal.

4.1.2 Nutritionist

The nutritionist is able to perform a set of actions that will allow to define easily and

better the nutritional plan. The most important actions are:

1. As the nutritionist, I want to register users in the system;

2. As the nutritionist, I want to have access to the user’s personal data;

3. As the nutritionist, I want to schedule appointments for the users;

(a) As the nutritionist, I want to specify what the goals are for a particular sched-

uled appointment.

4. As the nutritionist, I want to manage the anthropometric data of the users;

5. As the nutritionist, I want to manage the biochemical data of the users;

6. As the nutritionist, I want to manage the diagnoses of each user;

14



7. As the nutritionist, I wish to manage the pathologies of each user;

8. As the nutritionist, I wish to add foods that a user cannot eat under any circum-

stances;

9. As the nutritionist, I want to create nutritional plans for the users;

10. As the nutritionist, I want to specify the limit of calories, lipids, proteins and car-

bohydrates for each nutritional plan;

11. As the nutritionist, I wish to specify that the limits imposed in the nutritional plan

will be daily, weekly, or per meal;

12. As the nutritionist, I want to manage forbidden foods for a specific nutritional plan;

13. As the nutritionist, I want to manage the amount of meals that a nutritional plan

will have;

(a) Specifying the timing of each meal in a nutritional plan;

(b) Specifying the types of each meal in a nutritional plan.

14. As the nutritionist, I want to have the option to add multiple food options to a single

meal so that the user has options to choose to avoid getting tired of the nutritional

plan;

15. As the nutritionist, I wish to be unable to add foods or meals to the user’s nutritional

plan that have items previously defined as prohibited;

16. As the nutritionist, I want to receive alerts when tries to add foods to the nutritional

plan that exceed the previously defined limits to be consumed in order to decide

whether or not to keep the food in question;

17. As the nutritionist, I want, after filling out an entire day of the user’s nutrition plan,

to be able to ask the system to fill out the rest following the rules defined earlier;

15



18. As the nutritionist, I wish to validate and change if necessary the meals automati-

cally filled in by the system before finishing the user’s nutritional plan;

19. As the nutritionist, I wish to create meal options with various foods;

(a) Specifying the amount to be consumed of each food for each meal created.

20. As the nutritionist, I want to have access to the user’s diary in order to observe how

the user’s consumption pattern has been;

21. As a nutritionist, I want to see the nutritional plan of the patients from time to

time to take as a basis for schematizing new nutritional plans.

4.1.3 User

The user is able to perform actions to keep his data updated and inform the system which

foods he has been consuming, which will help the nutritionist in the next appointments.

The most important actions are:

1. As the user, I want to have access to my nutritional plan in order to visualize what

I should consume during the time determined by the nutritionist;

2. As the user, I want to be able to select which foods I have consumed in a particular

meal;

3. As the user, I want to be able to report foods that I have consumed that weren’t in

the nutritional plan;

4. As the user, I wish to have access to my food diary in order to have control over my

consumption pattern;

5. As the user, I want to have statistics on how the nutritional plan is going, in order

to see if the proposed goals are being achieved or not;

6. As the user, I want to be able to manage foods that I have a preference for;

16



7. As the user, I want to be able to manage foods for which I have no preference;

8. As the user, I want to be able to manage my personal data in order to always keep

it up to date;

9. As the user, I want to visualize my appointments;

10. As the user, I wish to receive notifications of upcoming appointments;

11. As the user, I want to view my diagnostics;

12. As the user, I want to visualize my pathologies.

4.2 Use cases

In this section we will explore how the three actors mentioned above will interact with

the system through the use case diagram that provides a better understanding of how the

system will work as a whole, as can be seen in the Figure 4.1.

As can be seen in the Figure 4.1 above, some of the use cases are representing more

than one user story in a single element.

To better explain this we will point out which user stories are being represented by

each use case, for this we will separate again by system actors.

4.2.1 Administrator

• Manage internal system data: User Stories 2, including 2a to 2h;

• Manage user role: User story 1.

4.2.2 Nutritionist

• Register user : User Story 1;

• Manage appointments: User Stories 3 and 3a;

17



Application

User

calculate values for

nutritional plans

block prohibited foods

notify appointments

recommend

alternative meals

manage personal

data

record meal

consumption

view nutrition plan

validate automatic completion

data

manage user data

view user diary

<Extend>

manage nutritional

plan

register user

Nutritionist

Administrator

manage internal

system data

manage user roles

register dietary

restrictions

manage

favorite/undesirable

foods

manage 

appointments

manage meals
<Extend>

nutritional plan

statistics

<Extend>

Figure 4.1: AquaVitae System Use Cases

• Manage nutritional plan: User Stories 9, 13, 13a and 13b;

– Register dietary restrictions: User Stories 10 and 11;

– Manage meals User Stories 14, 15, 19 and 19a:

∗ Block prohibited foods: User Story 12;

∗ Recommend alternative meals: User Story 17;

∗ Calculate values for nutritional plans: User Story 16;

18



– Validate automatic completion data: User Story 18;

• Manage user data: User Stories 2, 4 to 8;

• View user diary: User Story 20;

• View nutrition plan: User Story 21.

4.2.3 User

• Nutritional plan statistics: User Story 5

• Manage favorite/undesirable foods: User Stories 6 and 7

• View nutrition plan: User Story 1

• View user diary: User Story 4

• Manage personal data: User Stories 8, 11 and 12

• Record meal consumption: User Stories 2 and 3

• Notify appointments User Stories 9 and 10

4.3 Entity Relationship Diagram (ERD)

After gathering all the requirements we moved on to the bank modeling phase so that it

could represent and support all the user stories in a structured and organized way without

duplicating data and maintaining the data coherence. You can see the diagram through

the Figure 4.2 below.

Some points that are of importance to understand some decisions made are:

• The table antecedent represents the pathologies of the users;

19



u
s
e

r

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

e
m

a
i: S

trin
g

p
a

s
s
w

o
rd

: S
trin

g

ro
le

: E
n

u
m

p
ro

file
_

p
h

o
to

: U
R

L
T

y
p

e

la
s
t_

a
c
c
e

s
s
: D

a
te

T
im

e

p
e

rs
o

n
a

l_
d

a
ta

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

firs
t_

n
a

m
e

: S
trin

g

la
s
t_

n
a

m
e

: S
trin

g

b
irth

d
a

y
: D

a
te

o
c
c
u

p
a

tio
n

: S
trin

g

fo
o

d
_

h
is

to
ry

: S
trin

g

b
e

d
tim

e
: T

im
e

w
a

k
e

_
u

p
: T

im
e

u
s
e

r_
id

: U
U

ID

a
c
tiv

ity
_

le
v
e

l_
id

: U
U

ID

a
c
tiv

ity
_

le
v
e

l

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

d
e

s
c
rip

tio
n

: S
trin

g

fa
c
to

r: in
t

a
n

te
c
e

d
e

n
t_

ty
p

e

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

d
e

s
c
rip

tio
n

: S
trin

g

a
n

te
c
e

d
e

n
t

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

d
e

s
c
rip

tio
n

: S
trin

g

a
n

te
c
e

d
e

n
t_

ty
p

e
_

id
: U

U
ID

u
s
e

r_
id

: U
U

ID

a
p

p
o

in
tm

e
n

t_
g

o
a

l

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

d
e

s
c
rip

tio
n

: S
trin

g

a
p

p
o

in
tm

e
n

t

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

d
a

te
: D

a
te

T
im

e

s
ta

tu
s
: E

n
u

m

u
s
e

r_
id

: U
U

ID

n
u

tritio
n

is
t_

id
: U

U
ID

a
p

p
o

in
tm

e
n

t_
h

a
s
_

a
p

p
o

in
tm

e
n

t_
g

o
a

l

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

a
p

p
o

in
tm

e
n

t_
id

: U
U

ID

a
p

p
o

in
tm

e
n

t_
g

o
a

l_
id

: U
U

ID

b
io

c
h

e
m

ic
a

l_
d

a
ta

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

to
ta

l_
p

ro
te

in
s
: F

lo
a

t

a
lb

u
m

in
: F

lo
a

t

u
re

a
: F

lo
a

t

u
ric

_
a

c
id

: F
lo

a
t

c
re

a
tin

e
: F

lo
a

t

to
ta

l_
c
h

o
le

s
te

ro
l: F

lo
a

t

h
d

l: F
lo

a
t

ld
l: flo

a
t

g
ly

c
e

m
ia

: F
lo

a
t

h
d

a
1

c
: F

lo
a

t

fa
s
tin

g
_

g
ly

c
e

m
ia

: F
lo

a
t

p
o

s
t_

p
ra

n
d

ia
l_

g
ly

c
e

m
ia

: F
lo

a
t

to
ta

l_
b

iliru
b

in
: F

lo
a

t

b
iliru

b
in

_
d

ire
c
t: F

lo
a

t

a
lk

a
lin

e
_

p
h

o
s
p

h
a

ta
s
e

: F
lo

a
t

a
s
t_

tg
o

: F
lo

a
t

a
lt_

tg
p

: F
lo

a
t

y
g

t: F
lo

a
t

a
p

p
o

in
tm

e
n

t_
id

: U
U

ID

d
ia

g
n

o
s
is

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

m
a

in
: S

trin
g

s
e

c
o

n
d

a
ry

: S
trin

g

b
o

w
e

l_
fu

n
c
tio

n
: S

trin
g

s
e

n
d

_
b

y
_

d
o

c
to

r: b
o

o
l

u
s
e

r_
id

: U
U

ID

a
n

th
ro

p
o

m
e

tric
_

d
a

ta

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

w
e

ig
h

t: F
lo

a
t

h
e

ig
h

t: in
t

w
a

is
t_

c
irc

u
m

fe
re

n
c
e

: in

fa
t_

m
a

s
s
: F

lo
a

t

m
u

s
c
le

_
m

a
s
s
: F

lo
a

t

b
o

n
e

_
m

a
s
s
: F

lo
a

t

b
o

d
y
_

w
a

te
r: F

lo
a

t

b
a

s
a

l_
m

e
ta

b
o

lis
m

: in
t

v
is

c
e

ra
l_

fa
t: in

t

d
a

te
: D

a
te

b
o

d
y
_

p
h

o
to

: U
R

L
T

y
p

e

u
s
e

r_
id

: U
U

ID

s
p

e
c
ific

ity

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

s
p

e
c
ific

ity
_

ty
p

e
_

id
: U

U
ID

fo
o

d
_

id
: U

U
ID

u
s
e

r_
id

: U
U

ID

fo
o

d
_

c
a

te
g

o
ry

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

d
e

s
c
rip

tio
n

: S
trin

g

le
v
e

l: in
t

fo
o

d
_

c
a

te
g

o
ry

_
id

: U
U

ID

s
p

e
c
ific

ity
_

ty
p

e

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

d
e

s
c
rip

tio
n

: S
trin

g

fo
o

d

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

d
e

s
c
rip

tio
n

: S
trin

g

p
ro

te
in

s
: F

lo
a

t

lip
id

s
: F

lo
a

t

c
a

rb
o

h
y
d

ra
te

s
: F

lo
a

t

e
n

e
rg

y
_

v
a

lu
e

: F
lo

a
t

p
o

ta
s
s
iu

m
: F

lo
a

t

p
h

o
s
p

h
o

ru
s
: F

lo
a

t

s
o

d
iu

m
: F

lo
a

t

fo
o

d
_

c
a

te
g

o
ry

_
id

: U
U

ID

d
ia

ry

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

ite
m

_
id

: U
U

ID

n
u

tritio
n

a
l_

p
la

n
_

h
a

s
_

m
e

a
l_

id
: U

U
ID

ite
m

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

d
e

s
c
rip

tio
n

: S
trin

g

ite
m

_
h

a
s
_

fo
o

d

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

a
m

o
u

n
t_

g
ra

m
s
: flo

a
t

ite
m

_
id

: U
U

ID

fo
o

d
_

id
: U

U
ID

n
u

tritio
n

a
l_

p
la

n
_

h
a

s
_

m
e

a
l

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

m
e

a
l_

d
a

te
: D

a
te

n
u

tritio
n

a
l_

p
la

n
_

id
: U

U
ID

m
e

a
ls

_
o

f_
p

la
n

_
id

: U
U

ID

ty
p

e
_

o
f_

m
e

a
l

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

d
e

s
c
rip

tio
n

: S
trin

g

c
a

lo
rie

s
_

p
e

rc
e

n
ta

g
e

: F
lo

a
t

lip
id

s
_

p
e

rc
e

n
ta

g
e

: F
lo

a
t

p
ro

te
in

s
_

p
e

rc
e

n
ta

g
e

: F
lo

a
t

c
a

rb
o

h
y
d

ra
te

s
_

p
e

rc
e

n
ta

g
e

: F
lo

a

ite
m

_
c
a

n
_

e
a

t_
a

t

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

ty
p

e
_

o
f_

m
e

a
l_

id
: U

U
ID

ite
m

_
id

: U
U

ID

m
e

a
ls

_
o

p
tio

n
s

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

a
m

o
u

n
t: flo

a
t

s
u

g
g

e
s
te

d
_

b
y
_

s
y
s
te

m
: b

o
o

l

ite
m

_
id

: U
U

ID

n
u

tritio
n

a
l_

p
la

n
_

h
a

s
_

m
e

a
l_

id
: U

U
ID

fo
rb

id
d

e
n

_
fo

o
d

s

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

fo
o

d
_

id
: U

U
ID

n
u

tritio
n

a
l_

p
la

n
_

id
: U

U
ID

m
e

a
ls

_
o

f_
p

la
n

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

d
e

s
c
rip

tio
n

: S
trin

g

s
ta

rt_
tim

e
: T

im
e

e
n

d
_

tim
e

: T
im

e

ty
p

e
_

o
f_

m
e

a
l_

id
: U

U
ID

n
u

tritio
n

a
l_

p
la

n

id
: U

U
ID

c
re

a
te

d
_

a
t: D

a
te

T
im

e

u
p

d
a

te
d

_
a

t: D
a

te
T

im
e

d
e

le
te

d
_

a
t: D

a
te

T
im

e

v
a

lid
a

te
_

d
a

te
: D

a
te

c
a

lo
rie

s
_

lim
it: in

t

lip
id

s
_

lim
it: in

t

p
ro

te
in

s
_

lim
it: in

t

c
a

rb
o

h
y
d

ra
te

s
_

lim
it: in

t

p
e

rio
d

_
lim

it: E
n

u
m

a
c
tiv

e
: b

o
o

l

u
s
e

r_
id

: U
U

ID

Figure
4.2:

A
quaV

itae
ER

D
.

20



• The specificity table has the function of storing the foods that the user has prefer-

ences or not, or even foods for which the user has some type of allergy. The type that

each food in the table represents is defined by the secondary table specificity_type;

• The table food has its base values fixed in a quantity of 100 grams, so there was the

need to create the table item where each element of food would have at least one

element in item to be able to specify the quantity in grams;

– With the explanation of the item above there would be no need for the table

item_has_food, however the table item has a second function that is to com-

pose meals with more than 1 food with different quantities to be consumed

and that is the reason why there was the need for the separation giving rise to

the table item_has_food.

• According to the requirements of the nutritionist, 13, 13a and 13b there should be

specific types of meals where the amount of nutrients to be consumed would be pre-

defined, however the time that each user would make this meal would be variable

according to the routine of each one and therefore specific to each nutritional plan,

giving then origin to the tables type_of_meal and meals_of_meal respectively;

– By establishing fixed meal types system-wide via the type_of_meal table, the

system can determine which foods are permissible or ideally consumed during a

particular meal type. This led to the creation of the intermediary food_can_eat

table.

• Since a meal can have several food options to be consumed there was a need for the

meals_options table, however, since the user can report consuming items that were

not in the nutritional plan for that meal it was necessary to create the diary table

for this.

21



4.4 Architecture

It was decided to use a Service-Oriented Architecture (SOA) for the development of this

API, with structures similar to the NestJS [33] framework. The development team had

prior experience with this technology, which would make the transition and adaptation

of the technologies used for this project easier.

Before demonstrating how the project was structured, it’s important to define what

SOA is. According to IBM [34], "SOA, defines a way to make software components reusable

and interoperable via service interfaces. Services use common interface standards and

an architectural pattern so they can be rapidly incorporated into new applications. This

removes tasks from the application developer who previously redeveloped or duplicated ex-

isting functionality or had to know how to connect or provide interoperability with existing

functions.".

It’s worth noting that while SOA shares some similarities with microservices architec-

ture, there are important differences between the two. While microservices are a specific

implementation of SOA, they are more focused on breaking down large monolithic appli-

cations into smaller, independent services. In contrast, SOA is a more abstract concept

that encompasses a broader range of approaches to building distributed systems.

With this definition it is possible to see in the Figure 4.3 below how the project was

structured and what path each request will take until it gets a response.

It is important to note that this structure is applied to each module individually and

does not represent the system as a whole that could be represented as in the Figure 4.4

where each module has its Controller, Service and Repository layer and works indepen-

dently of the entire system.

4.5 Main Flow

Finally, a brief explanation about the central activity of the system to be developed, which

is the generation of nutritional plans for the patients as well as the user registering what

22



Client

Application

APIs


Controller


Application logic,
Request mapping

Service


Bussiness logic

Repository


DB interactions

Model




DAO

DB

Figure 4.3: General architecture of SOA-based systems.

Client

Application

Controller Service Repository Model

DB

Controller Service Repository Model

Controller Service Repository Model

Figure 4.4: Complete project architecture.

23



is being consumed.

It is possible to observe this flow by the Figure 4.5. Where we can observe in the

following order:

1. The nutritionist generates the nutritional plan rules based on the user’s personal

data;

2. With the specified rules it is possible to filter the foods, leaving available to include

in the nutritional plan only those that the patient can consume;

3. The Nutritionist validates that the foods he includes are in accordance with the

plan’s proposal and meet all the requirements;

4. After approval the data is stored in the bank and passed to the user;

5. The user starts the nutritional plan and informs the system which foods are being

consumed.

Food

Nutritional
Plan

Diary

FilterNutritionist Plan Rules

Nutritional Plan

User

User data

Validation

of the plan

Figure 4.5: Flow Diagram of the Nutrition Plan Generation.

24



4.6 Recommendation System

The recommendation system’s purpose is to fill out the analyzed patient’s nutritional

plan in a way that generates meal varieties without breaking the rules imposed by the

responsible nutritionist. Making this task less repetitive for the nutritionist and more

enjoyable for the patient.

At the beginning of the project it was imagined that this recommendation system

should use some kind of artificial intelligence technique to infer a nutritional plan adapted

to the patient profile. During the development of the system it was decided to use a rule-

based approach that will allow to generate suggestions and send alerts to the nutritionist

taking into account the limits and preferences established.

The steps of the RS below will all be performed internally by the system from the

moment the nutritionist asks the system to fill in the rest of the nutritional plan, without

interference at any point in the process. The steps are:

1. Apply filter to remove dishes containing food that the patient cannot consume;

2. Apply filter to remove dishes that have foods that the current nutritional plan

prohibits from consuming;

3. Generate a patient consumption history list;

4. Analyze the foods on the consumption list and specified preferences, if any, to

generate a table of possible patient preferences;

5. Apply the filter to remove foods that cannot be consumed in the preference table

resulting in a preference table with only available foods;

6. Collect how many meals the nutritional plan has per day and the types defined for

each meal;

7. Filter the dishes that are suitable for each type of meal;

25



Filling 

out the

nutritional
plan

forbidden by the 

nutritional 


plan

Food

can't
consume

user preferences

Nutritional
Plan

meal
categories

Item

meals 

available

food preference
ranking

complete

nutritional plan

ranking of available
food preferences

Diary

nutritional calorie 

limits

meal calorie
limit

user consumption list

Figure 4.6: Recommendation System process overview.

8. Fill in the remaining meals of the nutritional plan, based on the table of preferences,

in a varied way and meeting the imposed nutritional limits, which are the limits of

calories, lipids, proteins, and the others mentioned earlier in this article.

In order to make the visualization of the process of the RS clearer and more objective,

you can see the diagram in the Figure 4.6, which brings together all the steps mentioned

above.

It is important to note that the steps 1 and 2 are simple filters in querying the meals

in the database.

Step 3 will fetch only the foods consumed in the database table Diary.

The step 4 is to analyze the patient’s food preferences and also the frequency that

these appear in the diary to try to make a prediction of the meals that the patient is most

likely to consume.

26



Step 5 will generate a food preference table with only the foods available for consump-

tion, which means removing all forbidden foods from the preference table resulting from

step 4.

The step 6 requires that the nutritionist has completed at least one day of the patient’s

nutritional plan, so it’s a determining requirement for the RS to be able to be executed.

Step 7 is a filter on the meals available after steps 1 and 2 for each result from step 6.

And finally the step 8 is just filling the database taking into account the results of the

steps 7 and 5, plus the calorie limits of the nutritional plan and the meal type, which are

obtained in step 6.

4.7 Conclusion

This chapter provided a detailed explanation of the software modeling for the AquaVitae

application. The User Stories and Use Cases, which play an essential role in the Require-

ments Engineering phase, were thoroughly presented and demonstrated the wide range

of functionalities of the system. These encompass managing food information, designing

personalized nutritional plans, and many other facets. Despite having identified all neces-

sary features that the system must cover to be completed in this first stage of the project,

it wasn’t possible to fully implement all of them. This was due to technical issues that

the frontend team faced, which caused a delay in the overall project.

The Entity Relationship Diagram (ERD) gave a deep understanding of the intricate

interconnections between various tables and data points, highlighting the complexity and

meticulous nature of the system.

In the Architecture section, the application of the SOA model to the project was

emphasized, showcasing its advantages in developing reusable and interoperable software

components.

The Main Flow section outlined a high-level operation of the system, illustrating how

the nutritionist, the nutritional rules, and the user interact within the nutritional plan

generation process.

27



Finally, the Recommendation System (RS) was detailed. This component is critical

in enhancing the patient’s experience by offering varied and personalized food recommen-

dations.

All these elements combined contribute to the development of a robust, effective, and

user-friendly system. The goal is to deliver maximum satisfaction to nutritionists and

patients while prioritizing the personalization and adaptability of nutritional plans.

In conclusion, this chapter underscored the significance of software modeling in the

successful development of the AquaVitae application. It also shed light on the importance

of each component in improving user engagement and satisfaction, which is crucial for the

app’s adoption and success in real-world settings. The unforeseen challenges that arose

during this stage of the project have provided valuable insights for future development,

reaffirming the importance of adaptive and resilient project management.

28



Chapter 5

Backend Development

In this chapter the implementation of he backend is described, highlighting the most

relevant points of the implementation. In order to have a clear understanding of the

project development process, we will divide the chapter into three main sections that are

Overview of Technologies Used (5.1), Nutritional Management System Development (5.2)

and finally Development of the Recommendation System (5.3). The front-end develop-

ment of the nutritional management system was developed at the same time by other

master student. This allowed to do team work and develop some skills in collaborative

programming.

Although there is a concern to make as clear as possible all the points that will

be covered here, it is important to point out that reading this chapter requires a more

advanced level of knowledge about programming.

5.1 Overview of Technologies Used

To understand some aspects of the following sections it’s important to highlight which

technologies were used and the reason for these choices, because they directly impact the

way the software and the recommendation system is developed.

29



5.1.1 Programming Language

As a programming language it was decided to use Python [35] because of the previous

knowledge that the person responsible for the backend development has about the lan-

guage, and also because it is a great language for developing artificial intelligence and RS,

which is also one of the goals of this project.

To facilitate the development environment either individually or with an eventual

increase of developers working on the project the Pipenv [36] was chosen for versioning

control of libraries for the construction of the application, because as they themselves

describe the tool "Pipenv is primarily meant to provide users and developers of applications

with an easy method to setup a working environment".

5.1.2 Database

In order to support this project, we decided to implement a relational database. The

nature and volume of the data involved allows for establishing relationships between

various data points, a feature that proved beneficial during the system’s development.

For our database management needs, we chose PostgreSQL. Not only is it an open-source

tool and widely adopted within the industry, with notable users like Uber, Netflix, and

Instagram (according to [37], a renowned site that tracks the technologies companies

employ), it also allows the project team to explore and master this technology, thus

expanding our professional competencies. This choice ensures reliable data management

while bolstering the skills of the developer team.

With the decision to use PostgreSQL [38] as the project’s database, it was necessary to

look for some ORM to facilitate the development. For this was chosen to use SQLAlchemy

[39] for also being open source and be the first choice of many developers when it comes

to ORM in Python, and a great document that corroborated this choice was the paper

refered in [40].

Together with SQLAlchemy [39] for migration control and database versioning it was

30



decided to use Alembic [41] taking into consideration the following self description: "Alem-

bic is a lightweight database migration tool for usage with the SQLAlchemy Database

Toolkit for Python".

5.1.3 Web Framework

The web framework for the construction of the backend that was suggested by the original

proposal of the project, which can be seen in the Appendix ??, was the FastAPI [42] and

it was decided to use it because it is a recent technology with great potential, according

to some online articles such as the ones presented in [43] and [44], and also by a survey

in [45]. Which, according to these articles, performs better than the already established

Flask and Django in the Python development world.

With this defined, we also used all the other tools/libraries suggested by the framework

such as Pydantic [46] and others, because this is how the technology was designed and

projected to be used.

5.2 Nutritional Management System Development

In chapter 3 it was possible to observe some benefits of the REST protocol and SOA

for the development of web systems through articles [28], [29] and [30]. These references

support the decision to use them in the development of the application.

Therefore this section will discuss and demonstrate points that are important for

understanding how the system was developed, so some parts can be left out of this report,

but it is possible and recommended to see the complete code of the Aquavitae project

in the GitHub repository [47] in the aquavitae-thesis branch that represents the project

described in this dissertation and will remain unchanged.

Before starting to explain the code developed, it is important to point out that al-

though most of the code produced in this project was authored by the developer, in some

parts there was inspiration from code available in the documentation and GitHub of the

31



technologies used, which have already been mentioned above, such as FastAPI [42], Py-

dantic [46], SQLAlchemy [39] and so on, and also forums, being Stack Overflow [48] the

main one used in this project.

Note also that the naming pattern used for directories, files and even in the code, was

thought to make the code easier to read and understand for the developer and was based

on the book [49].

5.2.1 Organization

A good project organization is fundamental for a fast application development because it

enables the developer to have the notion of where each part of the system can be located

and here the SOA has an important role and a big contribution.

In the Figure 5.1 you can see the following directories and files:

• Directory alembic: This is a standard database versioning directory that already

explained in the 5.1.2 sub-section and contains all necessary configuration files as

well as all project database migrations;

• Directory src: This is the directory that contains all the development files of the

system and will be the focus of detail in this section;

• Directory test: In this directory you will find some parts of the frameworks for the

development of the automated tests of the system, but this will be explained in

more detail in chapter 6;

• File config.py: This file will consume the settings from the .conf file (which are in

plain text) and will format and convert them to the correct format that should be

readable for the entire system. It is possible to see the content of the file in the

Figure 5.2.

Inside the src directory, as you can see in the 5.3 image, you can find the following

items:

32



Figure 5.1: Project Organization
aquavitae-app

Figure 5.2: File config.py

• Directory core: In this directory is found a series of other directories that contain

code fundamental to the operation of the entire system, such as constants, middle-

wares, types and others, some of which will be discussed in more detail below.

• Directory modules: In the modules directory you will find all the modules/services

of the system, divided into:

– Module app: Here is the central module of the application, where all the end-

points that must be available and all the entities that must exist are grouped

together;

– Module domain: This directory contains all the modules that are part of the

system but that are not necessary for the system to exist. In other words, the

system can be run without some of these modules being present, however, for

33



all of the system’s functionality to be present, the modules belonging to this

directory must be fully functional;

– Module infrastructure: In this directory you will find the modules that are

necessary for the system to exist, which so far are auth for authentication,

database where you will find everything related to the database, which will

have a special section for it below, and finally the user module.

• Directory static: So far its function is only to store images, such as the user’s profile

picture and body photos, which is part of a business rule in the system.

• File main.py: This file is where we run the entire application, however due to the

layered organization that was used in this project, which will become clearer as we

progress in this chapter, it allows it to be a small file as can be seen in the Figure

5.4. And we can observe:

– Line 14 defines the application;

– Line 17 adds middleware for CORS ;

– Line 25 adds middleware to limit the allowed size of a request;

– Line 28 and 38 to set standard error messages for the system, which will be

more detailed in the System Errors section below;

– Line 35 makes all routes from the application available to the system;

– Line 41 onwards runs the application through the uvicorn.

And finally inside a module the organization, as can be seen in the Figure 5.5, is as

follows:

• Directory controllers: The directory concentrates all the endpoints that are respec-

tive to the module;

• Directory dto: Data Transfer Object (DTO) is responsible for hosting all the data

that is expected to be received or sent to the client according to the standards

defined by pydantic and FastAPI ;

34



Figure 5.3: Directory aquavitae-app/src

• Directory entities: All module entities must be defined here using the ORM used

by the project;

• Directory repositories: All queries to the database must pass through this layer as

an intermediary to access the database;

• Directory services: All endpoint business rules are developed at this layer;

• Directory tests: This directory contains all the tests of the module in question;

• File __init__.py: This file is where the module is defined, and where the endpoints

that will be available and the entities that are to be created are defined and grouped.

5.2.2 Module Development

In this stage the development process of a single module will be described, from the

beginning to the end, since all the others will follow the same logic. For this example we

will use the food module.

The first step is to create the entity that will be developed, so the first layer to be

developed is entities. You can see the contents of this directory in the food module through

the Figure 5.6, notice that there are two files *_entity.py. This means that for this module

to exist these tables must be present in the system.

Now looking at the content inside the file food_entity.py through the images 5.7 and

5.8, it is possible to observe the following points:

35



Figure 5.4: File src/main.py

• Line 11: The table is declared, which inherits the BaseEntity of which will be

detailed further in the sub-section 5.2.5;

• Line 12-19: The specific fields of the food table are declared. Note that they are

typed, although Python doesn’t require it, we have adopted this as standard and

it will be present throughout the work, as it speeds up development and serves as

36



Figure 5.5: Directory src/modules/domain/food

Figure 5.6: Directory src/modules/domain/food/entities

documentation for the project as well;

• Line 21-24: An example of how to declare the one-to-many relationship that the

table has;

• Line 26-37: An example of how to declare which tables relate to the food table, so

that ORM can do the mapping. In this example it is all many to one;

• Line 39-62: Declaring how the class is created.

With the entity defined, the next step is to create the repository layer which we can

see from the Figure 5.9, and it is important to note the following points:

• The repository layer is for all queries from the module to the database to be defined

here, however simple queries are well served by the BaseRepository created for this

project and which will be detailed in the sub-section 5.2.7;

• Line 05: The Food module’s repository class that inherits the BaseRepository is

defined;

37



Figure 5.7: Part 01: File src/modules/domain/food/entities/food_entity.py

• Line 07: The class that was inherited is started.

At this point in the module development the services, controllers and the DTO lay-

ers should be worked on together, however for explanatory purposes this order will be

followed.

In the services there will be a lot of variation because it will depend on the business

rule of each module, however some points remain the same, which we will use the Figure

5.10 to demonstrate:

• Line 20: The repository of the module to be used in the service layer must be

started;

• Line 23 and 30: Define the types of data it expects to receive from the controller

layer. In this case the DTO it wants to receive;

38



Figure 5.8: Part 02: File src/modules/domain/food/entities/food_entity.py

Figure 5.9: File src/modules/domain/food/repositories/food_repository.py

• Line 23 and 31: Define the type of data it expects to return to the controller if

there is no error. In this case the DTO will be returned.

• Line 27 and 34-39 : Return the correct data to the controller.

In the controller layer there is not much variation as the previous layer, being only

necessary to declare the endpoint following some patterns and send to the service the

data as expected. For example, we will use the Figure 5.11 and highlight the following

points:

• By definition of FastAPI the controller layer cannot be inside a class, as the class

39



Figure 5.10: File src/modules/domain/food/services/food_service.py

wouldn’t be initialized;

• Line 25: The route to the food endpoints is defined;

– It was defined that the default for prefixing the endpoints of a table would be

the same as the table name in lowercase;

– If the table name were compound, there would be hyphen ("-") separation.

• Line 31 and 43: Declaration of the endpoint path. No pattern has been set for the

path name, however it should be something descriptive so that the code is able to

self document;

• Line 33 and 44: Define what the endpoint will return if the request succeeds. With

this type set correctly the endpoint documentation made by the framework is done

correctly, more details will be given in the sub-section 5.2.6;

• Line 34 and 46: Define the authentication required to access the endpoint;

– If there isn’t any Auth, the endpoint is open for everyone;

– If there is only Auth this endpoint is accessible to everyone connected to the

system;

40



– If there is one or more user roles in Auth only users who have that role can

access the endpoint;

– It was decided not to use hierarchical user roles, meaning that the endpoints

available for lower positions would be available for higher positions, as this

wouldn’t allow this flexibility.

• Line 37 and 49-52: Defining the data needed for each endpoint. Here it is extremely

important to type the data, because together with Pydantic it is possible to block

requests that have missing or unexpected data;

• Line 45: Remove data from the response model that wasn’t filled in, in order to

reduce the size of the response.

Figure 5.11: File src/modules/domain/food/controllers/food_controller.py

Last but not least are the DTOs. As each module can have numerous DTO it is

divided into files where each file has DTO for specific functions in the system as you can

see in the Figure 5.12.

41



Figure 5.12: Directory src/modules/domain/food/dto/food

For example, the files food_dto.py and update_food_dto.py will be used to demon-

strate how to define them correctly in order to be useful for both endpoint typing and

documentation, and also as an extra layer of security for the system.

The file food_dto.py can be viewed through the Figure 5.13 and the following points

can be highlighted:

• Line 10: The class is declared by inheriting BaseDto which is a DTO with default

data that all entities that inherit attributes from BaseEntity have;

• Line 11-19: Declaring the attributes of glsDTO according to the Pydantic standards;

• Line 22-23: The preference for filling the food_category field is the FoodCatego-

ryDTO object, however if not present this field is filled by the UUID present in

food_category_id.

And in the file update_food_dto.py in the Figure 5.14, you notice a few other different

points, which are:

• Line 7: The class now inherits the BaseModel from Pydantic;

• Line 8-16: The data that will be accepted by this DTO is just that. Their presence

in the request is all optional as you can see, but if they are present they must only

have the data type that has been declared, anything else will be blocked;

• Line 19: Attributes that are not declared in this class will be blocked if this DTO

is being used.

42



Figure 5.13: File src/modules/domain/food/dto/food/food_dto.py

Figure 5.14: File src/modules/domain/food/dto/food/update_food_food_dto.py

5.2.3 Error Handling

During the development of the system it was noticed that the only way provided by the

framework to generate error messages would be manually through the HTTPException

as can be seen in the Figure 5.15 extracted from the documentation of the FastAPI.

43



Figure 5.15: Example of handling errors extracted from the FastAPI documentation.

This wasn’t desirable for the system since it would require the developer to memorize

the HTTP error codes, besides not defining a standard for the data that would be returned

in the errors generated by the system. Therefore a standardization was developed that

involved some steps, which are:

1. Define which data should be present in all error messages. The data that was

considered important is in the Figure 5.16;

2. Define the different error types that the system will use, observable by the Figure

5.17;

• Note, in the image referenced above, that the only field required to generate

these errors is a message (variable msg);

• It is no longer necessary to memorize the HTTP error codes, only the name of

each error;

• The data that each error has is now standardized.

3. Declare a Handler so that when such an error is triggered, it is treated as an error

and not just any message. Observable by the Figure 5.18.

By default the FastAPI error messages generated by the framework have the format

present in the Figure 5.19.

44



Figure 5.16: File src/core/common/dto/exception_response_dto.py

Figure 5.17: File src/core/types/exception_types.py

45



Figure 5.18: Part 1: File src/core/types/http_exception_handler.py

Care was taken in the creation of the customizable errors to follow the pattern of these

errors generated by the framework, however as can be seen in the Figure 5.16 the data

status_code, timestamp, path and method were added to the body of the response.

Therefore it was desirable that the framework’s error messages follow the same pattern

as the customizable messages, as it would make it easier for the front-end to handle these

responses if they were all the same. To make this possible two steps were necessary, which

are:

46



Figure 5.19: Example error message extracted from the FastAPI documentation.

1. It was necessary to define Handlers for the possible error types that the framework

throws which are StarletteHTTPException and RequestValidationError, observable

by the Figure 5.20;

2. For documentation purposes it was necessary to change the format of the body of

the error responses on all the application endpoints. The code can be seen in the

Figure 5.21.

• With this standardization of error messages it isn’t necessary to put in the

documentation all the possible errors and their respective answers for an end-

point, since whatever the error is, the format is always the same, with only the

content changing.

• This code is invoked on line 38 of the file main.py from the Figure 5.4

5.2.4 Pagination

It was necessary to develop a pagination for the GET endpoints in order to avoid over-

loading the API when some table with a lot of data was consulted.

So that this effort wouldn’t be repeated for all the endpoints of the system, a generic

solution that could handle if not all, at least most of these endpoints was desirable.

47



Figure 5.20: Part 2: File src/core/handlers/http_exceptions_handler.py

It’s possible to see how to add pagination to an endpoint in the Line 50 of the Figure

5.11 already mentioned in previous sections. But we can take a closer look at this method

in the Figure 5.22 and highlight the following points:

• Line 17: The Entity that the pagination is working with is used to generate the

order by, where of the Query along with the columns and relationships that will be

brought with it;

• Line 18: These are the columns and relationships that are allowed to be queried by

this endpoint, any other column that tries to be queried will be blocked;

• Line 19-20: These are the columns that can be present in the where and order by of

the Query respectively, and as mentioned in the previous item they also block any

other columns that try to be queried or if they don’t have the specified data format;

• From Line 29 to 38 of the __call__ method are all the variables that can be

present in the endpoint’s Query:

48



Figure 5.21: File src/core/common/custom_error_response.py

– Line 29: The parameter skip is the number of pages that the request wants to

skip;

– Line 30: The parameter take is the number of items that the request will return

and is used in conjunction with the previous parameter;

– Line 31: The search parameter is where the "where" of the Query will be

applied, and it is possible to specify the column ("field") and the value ("value");

– Line 34: The sort parameter is where the "order by" of the Query will be

applied, and it is possible to specify the column ("field") and the order ("by");

– Line 37: With the parameter columns it is possible to specify which columns

and relationships to bring in with the search;

49



∗ Columns that are mandatory are not required to be specified;

– Line 38: With the parameter search_all the value (value) sent will be applied

also to the "where" of the Query, similar to the parameter ( "search"), however

the search will be in all columns of the table.

Figure 5.22: File src/core/decorators/pagination_decorator.py

The rest of the code is the formatting of the data to be sent to the endpoint of the

50



request and won’t be detailed in this document.

But with this brief explanation it is already possible to observe and conclude that this

Pagination not only covers most of the application endpoints, but also provides a security

layer allowing only the data input that the developer wants.

The encapsulation of this solution also brings some benefits for the development of

the project since, if a correction in the code is needed, all endpoints would receive the

update, making the maintenance of the project easier and more pleasant.

5.2.5 Base Entity

In the Figure 4.2 in the database modeling section 4.3 of the modeling chapter 4 you can

see that all the tables have four attributes in common, which are:

1. id: Primary key of the row;

2. created_at: Date of creation of the row;

3. updated_at: Last updated date of the row;

4. deleted_at: Date the row was "deleted".

* The column deleted_at exists because the software will support soft delete, that is,

the data can remain in the database and only be marked as unusable. This strategy

allows for data recovery if a deletion was done by mistake, and it helps maintain a

historical record of operations. However, it can affect the scalability of the database

over time, as data continues to accumulate even after deletion. Nonetheless, we

opted to implement soft delete in this project due to its advantages in facilitating

error correction and data auditing. It’s a widely discussed feature with known

pros and cons, but a detailed analysis of its suitability is outside the scope of this

document.

Knowing that this data would be repeated throughout the system, as in the previous

subsection, it was also desirable to have a generic solution for all the entities in the system,

51



in order to make the code cleaner and easier to maintain. Therefore, the Base Entity,

observable in the Figure 5.23, was created and some functionalities implemented, which

are:

• Line 17: The primary key is defined and on its creation if no value is defined a new

one of type uuid4 is generated;

• Line 21: The deleted_at column is marked as the column that defines the deleted

via the info parameter;

• Line 28-30: To standardize the name of the tables in the database and avoid hav-

ing to define the __tablename__ in all entities, the functionality to generate the

automatic name following the pattern of the whole name being in lower case and in

case of compound names having a separation by "_";

• Line 33-38: Define an event to be executed every time a new item proceeding from

BaseEntity is inserted into the database;

• Line 41-46: Define an event to be executed every time an item proceeding from

BaseEntity is updated in the database.

As this data could possibly be present in all responses to requests made to the system,

a BaseDto was also made, observable by the Figure 5.24, to achieve the same goals as the

BaseEntity already mentioned above.

5.2.6 Documentation

Backend documentation is important for developers because it makes it easy to see the

endpoints, which data is accepted, which is required, and what possible answers the

endpoint can return.

In this work there was care that all the endpoints of the system were well documented

through all the DTO that was detailed in the previous subsections, and now it is possible

to observe the final result through the images below.

52



Figure 5.23: File src/modules/infrastructure/database/base_entity.py

Figure 5.24: File src/core/common/dto/base_dto.py

In the Figure 5.25, in item 1 it’s possible to see how the request body should be

composed to send to the endpoint /food/create, with the data that is required and its

respective types. In item 2 it’s possible to see an example of what this body would look

like in JSON format.

In the Figure 5.26, in item 1 it’ s possible to see the successful request response with

all the attributes that must be in the response and the optional ones along with their

respective types. In item 2 it’ s possible to see an example of what this body looks like

in JSON format.

In the Figure 5.27, it’s possible to see the possible variables available in the Query of

the request to query the table with paging.

53



Figure 5.25: Create Food request body.

In the Figure 5.28 it’s possible to see the successful request response to an endpoint

that has pagination with all the attributes that must be in the response and the optional

ones along with their respective types.

In the Figure 5.29 it’s possible to see an example of what a successful response from

an endpoint that has pagination in JSON format looks like.

And finally in the Figure 5.30 it is possible to observe the error response format for the

whole system regardless of the endpoint or the error code and as in the previous images

in item 1 the detailed response is observed and in item 2 in the format JSON.

The images above were taken only from two endpoints of the Food module, but it is

enough to understand how the documentation was applied throughout the system and to

conclude that this visual information of the endpoints facilitates the development of the

front-end and even the backend.

54



Figure 5.26: Create Food response body.

5.2.7 Generic Repository

Finally, the feature that took the most time in the development of the system was un-

doubtedly the construction of a generic repository in order to serve all tables in the system

for the most common CRUD actions of a Web system, and therefore avoid repetition of

code and effort throughout the system.

The details of the development of this feature won’t be detailed here but it was ex-

pected that this generic repository would meet some requirements:

1. Insert new data in the table;

2. Save the changes to the database;

3. Search for a specific row;

4. Fetch multiple rows;

55



Figure 5.27: Variables of an endpoint with pagination.

5. Update data;

6. Permanently delete data in the database;

7. Logically delete (soft delete) the data in the database;

8. Be able to construct queries with different parameters dynamically for all methods

available in the generic repository.

The items 1 and 2 are relatively simple methods because it’s just a matter of inserting

data in the table that is being worked on and saving changes in the database respectively.

The item 2 was made into a separate method because this way it’s possible to perform

and control transactions that must be made atomic to the database.

The item 3 required two methods to be completely satisfied, one method would try to

find the data requested by the service layer and if found would return it, but if not found

56



Figure 5.28: Get Food detailed response body with pagination.

it wouldn’t return anything and the service layer would decide what to do. The second

method is similar to the first but if it didn’t find the requested data it would issue an

error and stop execution. This is useful because, in some cases, this would be the default

behavior and, to avoid repeating code issuing errors that might not be standardized, this

was relayed in the repository layer.

In the item 4 two methods were also necessary, both of them search the database with

the query that was assigned and may bring an empty list or with several rows of the table

57



Figure 5.29: Get Food response body with pagination in JSON format.

worked, however, one method also performs the count how many elements the query has

without the interference of offset and limit, coming from the parameters skip and take

from pagination respectively, if present in the query.

On 5 and 6 there is not much to say, they are simple methods that perform permanent

updating and deletion of data in the database respectively.

The item 7 required the most effort because in order soft delete to support it was

necessary to overcome some challenges:

1. Cascading deletion will no longer work;

58



Figure 5.30: Error response body in JSON format.

• A method was developed to apply soft delete to all relationships that depended

on the entity that soft delete was being applied to.

2. Indexes wouldn’t work anymore since there might be data in the table that was

deleted and a new one with the same value couldn’t be inserted;

• As the PostgreSQL database was used, to solve this problem it was necessary

to create compound indexes, that is, the value to be unique would also depend

on the deleted_at column, one of the factors that corroborated for the column

to be of type Date time, because if it were Boolean the index wouldn’t work

correctly either.

3. All queries should contain a filter so as not to bring deleted rows;

• It wasn’t desirable that the programmer, when constructing the parameters for

59



the formation of the Query, included the filter manually, because this would

be exhausting and easily forgotten and would lead to undesirable data leakage

that would be easily noticed by the user or someone testing the system;

• To solve this problem, as you can see in the Figure 5.31, an event was created to

insert, in all queries launched by the system, a filter to remove deleted lines from

the query if the column that represented deleted lines wasn’t already included

in the where clauses, otherwise the developer would have already dealt with

this column and the filter wouldn’t interfere;

• The filter for not bringing deleted rows couldn’t be applied to the entity rela-

tions that would be searched, which forced a manual check and adjustment in

code, generating overhead in the consult queries;

• To create or update an entity it was necessary to add a check in the relationships

in order to verify whether the data was valid or represented a deleted row.

Figure 5.31: File src/modules/infrastructure/database/soft_delete_filter.py

To satisfy the item 8 it was necessary to build a method that would build the Query

to be executed according to the parameters received by the upper layers, as can be seen

in the Figure 5.32.

Therefore it can be observed and concluded that the generic repository layer is capable

of serving a wide range of queries making development easier.

Implementing the soft delete functionality was indeed a substantial endeavor, though

it successfully fulfilled the outlined objective and offered transparency for developers to

60



Figure 5.32: Method __apply_options inside the file .../database/base_repository.py

facilitate their work. However, it’s crucial to acknowledge the trade-off involved: the

additional overhead introduced by this feature can impact database performance. The

overhead is primarily due to the extra resources required to manage the flagged ’deleted’

records, which remain in the database. This can lead to increased storage use and potential

slowdowns during query execution, particularly for large databases.

5.3 Recommendation System Development

In this section, we will provide a detailed description of the development of the recom-

mendation system for the software, and how each step of the modeling process outlined

in Section 4.6 of Chapter 4 was constructed to achieve the proposed goals.

We first divided the model into two major steps:

1. Ranking the foods based on each user’s preferences and consumption history;

2. Properly filling the meals of the nutritional plan with the items containing the

ranked foods from the previous step.

* Note: The restrictions set by the nutritionist will be considered only after all foods

61



have been scored. This means that restricted foods are not immediately excluded.

The reason for this approach is that it’s essential to collect data related to the

specified foods in order to assign a score. Excluding them prior to this step could

potentially lead to data loss, which is avoided by incorporating this sequence in our

process.

With this division, we were able to collect only the necessary data for each step, as

the output of step 1 is one of the required inputs for executing step 2. This also allowed

us to create two endpoints, as shown in the image below (5.33).

Figure 5.33: File .../recommendation_system/controllers/recommendation_system_controller.py

5.3.1 Food Ranking

To begin with, we will detail how the ranking process of all foods in the system was carried

out, which variables were analyzed, and the procedure followed to obtain the response of

62



the user_food_preferences endpoint on line 45 of the Figure 5.33.

To rank foods based on preferences, we analyzed the foods that the user had specified

as preferred/liked and those that were specified as not preferred/disliked.

The process is carried out for all foods that belong to the same deepest category as the

food specified by the user, and the score of each food in the table is modified according

to its degree of similarity to the specified food, as shown in Figure 5.34.

Figure 5.34: File .../interfaces/find_user_food_preferences_interface.py

The scores assigned to each food, as shown in Figure 5.34 above, follow the following

criteria:

• The highest score, in this case 50, on line 166, is assigned to the specified food

• Foods that belong to the same category as the specified food receive the second-

highest score, in this case 25 on line 168, as they are closer to the specified food;

• Foods that are one level of distance away from the specified food receive an inter-

mediate score, in this case 12 on line 170, as they aren’t too far from the specified

food but already show some degree of difference;

63



• Lastly, all other foods receive the lowest score, in this case 7 on line 172, as although

they have some degree of similarity with the specified food, they present significant

differences.

It is important to note that if the preference we are analyzing is of the type that the

user does not like, the score assigned to that food will be negative, and therefore lines

174-175 exist.

Finally, we delve into notes related to the user’s consumption pattern, analyzing all

the foods consumed within specific time periods. The code for ranking these foods can be

observed in the Figure 5.35 below, along with a detailed explanation of the logic developed.

Figure 5.35: File .../interfaces/find_user_food_preferences_interface.py

For a more detailed explanation, we will explain the step-by-step of the code developed

in the following topics:

64



1. In lines 182-184, all foods that the user is already fatigued from consuming are

extracted. For this, a time period to be analyzed is defined by the variable PE-

RIOD_TO_FATIGUE, and the quantity that must be consumed of the same food

within this period is defined by the variable AMOUNT_TO_FATIGUE ;

2. In lines 185-187, all foods that the user consumed within a specific period, defined

by the variable PERIOD_TO_ANALYZE, and that are not already fatigued foods,

collected in item 1, are collected;

3. In lines 189-191, foods that were considered fatigued due to the quantity that the

user consumed, collected in item 1, are penalized with -100 points;

4. Finally, in lines 192-209, scores are assigned to the foods collected in item 2, and

the score assigned to them varies based on three criteria, which are:

• A percentage considered near fatigue is defined by the variable PERCENT-

AGE_NEAR_FATIGUE. Therefore, if the analyzed food has been consumed

enough to be considered close to fatigue, the score assigned is lower, only 10

points, in order to avoid recommending this food too frequently.

• A minimum percentage of food consumption is defined for the system to un-

derstand that the user identifies with this food, defined by the variable PER-

CENTAGE_FOR_IDENTIFICATION. If the analyzed food has been con-

sumed enough to satisfy this condition and less than the amount to be consid-

ered close to fatigue, 30 points are assigned.

• Finally, if the analyzed food did not meet any of the previous requirements,

only 20 points are assigned to it, to try to recommend it more often, as the

user has already consumed it, but it is not known yet whether they like it or

not.

And thus, all the foods in the system are ranked. However, there is one last crucial

step before the final response is delivered, which involves eliminating certain foods, if

65



required. This exclusion pertains to foods that have been previously marked as off-limits,

either due to the user’s allergies or because they are not allowed as per the user’s current

nutritional plan. It’s important to understand that these restrictions are set by the

nutritionist during the initial consultation and must be adhered to for all subsequent plan

generations. Therefore, honoring these restrictions is an essential part of our algorithm

before providing the final ranked list of foods.

After that, the ranked list of foods is returned, either for the next step which is the

actual filling of the nutritional plan or for the endpoint that requested it.

It was decided to provide an endpoint for this step to assist the nutritionist in manually

filling out the patient’s nutritional plan if they prefer.

5.3.2 Filling Out the Nutritional Plan

Before completing the nutritional plan, in addition to the previous step, it is necessary to

collect a few other pieces of information:

• Collect the types of meals included in the nutritional plan. Therefore, at least one

day of the nutritional plan needs to be manually filled out by the nutritionist.

• With the output from the previous step, we have the permitted foods that can be

consumed and ranked. However, meal recommendations are based on items that

may consist of one or more foods. Therefore, only items that contain permitted

foods are collected.

– After collecting all permitted items for consumption, a score is assigned to each

item by summing up the score of the individual foods that compose it.

After collecting this data, it is necessary to normalize it. Two normalizations are

performed, which can be observed in the Figure 5.36 below:

• On line 162, a mitigation is performed on the percentage of permitted calories for

consumption in meals if the sum exceeds 100% due to the number of meals in the

nutritional plan.

66



• On line 163, the permissible amount of daily caloric intake is calculated based on

the data provided in the nutritional plan. This calculation is crucial as it forms the

basis for determining the quantities of various foods in the plan. It’s worth noting

that if there’s a surplus in calorie count, the system will adjust the quantities of

the foods accordingly. This automated adjustment ensures that the nutritional

plan remains balanced and within the specified calorie range, thereby aiding in the

effective management of the user’s dietary requirements.

After collecting and normalizing the remaining data, the system is ready to make rec-

ommendations as necessary for days on the nutritional plan with no previously registered

foods.

The food recommendations themselves take place in lines 183-185 of the Figure 5.36

above, which invokes the __suggest_meals method that we can observe in the Figure

5.37 below.

The logic implemented in the __suggest_meals method, shown in Figure 5.37, for

recommending meals is as follows:

• In line 238, the meal items to be recommended are sorted in descending order of

their score.

• In lines 241-245, the items are divided into three groups based on the quantity size

defined in line 239. These groups are:

1. The first group includes the top 10% items with the highest scores, which are

the ones with the highest likelihood of being consumed by the user.

2. The second group comprises items that fall between the top 10% and 30%

highest scores. These items may not be the user’s preferred choices, but still

have a considerable chance of being selected.

3. The third and last group includes items with scores between 30% and 60%.

These items have the lowest likelihood of being selected by the user.

67



Figure 5.36: File .../interfaces/complete_nutritional_plan_interface.py

• In line 247, a loop is executed for each of the three groups formed in the previous

step, and the following task is performed:

– In lines 251-252, a meal item is randomly selected to be recommended;

– In lines 253-255, an ideal quantity of the selected item is determined based on

68



the nutritional limits established for the analyzed patient;

– Finally, in lines 256-258, the recommended item is inserted into the database.

Figure 5.37: File .../interfaces/complete_nutritional_plan_interface.py

5.4 Conclusion

In this chapter, we delved into the crucial elements of backend development for the soft-

ware, focusing particularly on error handling, implementation of soft delete, and the

development of the recommendation system.

Error handling was tactically addressed to provide a smooth and seamless user experi-

ence. Even when issues arise, the mechanisms in place ensure the user’s interaction with

the software is as undisturbed as possible.

The introduction of soft delete and the development of BaseRepository were pivotal

elements for data maintenance and management. Soft delete allows for data preservation

69



even after deletion, which is vital for maintaining data integrity and providing ongoing

insights into user behavior. The BaseRepository, on the other hand, serves as a common

resource for handling database operations, making the code more efficient and easier to

manage.

The development of the recommendation system was also a significant part of this

chapter. A two-step process was outlined to rank foods based on the user’s preferences

and consumption history, and then fill the nutritional plan meals with items containing

the ranked foods. Notably, constraints set by the nutritionist are considered only after all

foods have been scored, thus avoiding any potential data loss.

This chapter underscored the complexity of backend development and the importance

of detailed consideration of user needs and preferences when creating efficient functional-

ities. With the implementation of soft delete, BaseRepository, and the recommendation

system, the backend provides a solid and flexible foundation for the software.

70



Chapter 6

Tests, Evaluation and Discussion

This chapter presents the tests performed as well as the building of the testing structure

for the nutritional plan management and the recommendation system along with their

respective results.

This chapter will also discuss the strengths of this work that we believe exceeded the

initial project proposal, as well as the goals that couldn’t be completed.

The most used frameworks for testing software development in Python are unittest

and pytest, and the latter was chosen for this project, because it produces less test code

which facilitates the development and maintenance among other benefits. This decision

was anchored by the article [50] which makes a comparison between the two frameworks

and why large projects are migrating from unittest to Pytest.

Still on pytest, the framework brings together some interesting features such as its

flexibility and its differentiation from fixtures, the online article [51] provides a succinct

explanation of these features being a great starting point to understand this tool.

71



6.1 Nutritional Management System Test Develop-

ment and Results

For the software tests it was chosen, in the first stage, to perform only API tests in order

to validate multiple scenarios and ensure that the content of the return Json is correct.

To make this possible it was necessary to create a database for testing and to ensure

that changing the data in tests of other modules wouldn’t impact the tests of another

service, so it was necessary to somehow define the data and reload it to the database at

every contextual change.

For this purpose, a service was developed that loads data from a json to the database

in the way it was defined, see Figure 6.1, being able to load all tables of the system at

once or only tables specified by the developer, passed by the parameter entities_input in

the method reload_fixture, as it is possible to see the code in Figure 6.2.

After that we configured the pytest and specified that the default scope to be executed

would be the module and therefore the loading of the fixtures would be executed at each

change of module as can be seen in the method __run_around_tests of the Figure 6.3.

We took the opportunity to define some fixtures that would be used throughout the

system that are the login credentials of users with different roles in the system, one of

them can be observed in the method user_common also present in the Figure 6.3.

Before developing the tests, a class containing generic tests was developed that, if not

all, most of the system services would have to execute and expect the same output, being

possible to observe in the Figure 6.4 some of the methods developed.

Finally we develop the API tests, look at some examples through the Figure 6.5 and

6.6. Two points are important to note, which are:

• Each class only runs tests of a single service (endpoint) of that module, so a test

class is needed for each service in the module;

• For each service in the module, tests are made in success and failure scenarios,

because it’s necessary to ensure that not only is the system working as expected,

72



Figure 6.1: File test/fixtures/food.json

but it must also be able to block and stop unexpected behavior and prevent data

leakage.

6.1.1 Collected Results

In the Figure 6.7 you can see that 220 tests have run successfully, that is 100% of the

system tests have run successfully.

With this result it’s possible to infer that in the scenarios in which the tests were

developed the system is working as it should.

However to go further, using the pytest-cov plugin, which when running the tests

produces code coverage reports, it was possible to analyze in the report that 96% system

coverage was achieved, as noted by the Figure 6.8.

73



Figure 6.2: File test/utils/database_config_test_utils.py

This report also shows in detail the code coverage for each file in the system, and

by analyzing the files that have the lowest coverage rate the following points can be

highlighted:

• The entities codes that are not covered are from modules that don’t have any services

yet and therefore it isn’t possible to reach these lines of code;

• The rest of the code that does not have full coverage is code that is either difficult

to access in order to create an API test or is not achievable with this type of test

and requires unit test;

• With the code coverage report it’s possible to analyze the code that isn’t being

covered and develop better code to test it, but it’s also possible to analyze code

74



Figure 6.3: File conftest.py

that is no longer used and can be removed from the system.

Another test performed was to measure the response time of each endpoint of the

system in order to measure the average response time, but also to analyze which codes

is already performing well and which need improvements, and to analyze if there is any

connection between them. The result can be seen by the graph in the Figure 6.9.

To provide a more detailed visualization of the response times of the endpoints,

treemaps graphs have been generated. The one generated for the Food module can be

seen in Figure 6.10.

Through the Figure 6.10 notice that the test case that took the longest time to execute

was the Create New Food and observing the only piece of code that this endpoint executes,

see Figure 6.11, we notice that there is a check of the relationships that are being inserted

if they are valid. This is an overhead generated by the soft delete, and taking into account

75



Figure 6.4: File test/test_base_e2e.py

that the entity Food is one of those that has the largest number of relationships in the

system it’s possible to justify therefore that this would be the cause for the high response

time.

Also, something that must be taken into consideration is that the tests are being run in

a development environment and therefore the amount of data in the database is minimal,

and that in a production environment with a fully populated database it’s expected that

the most time demanding endpoints will be of the type "GET ".

So with the tests that have been performed on the system and their respective results,

76



Figure 6.5: File src/modules/domain/food/tests/test_food_e2e.py

it is possible to infer that the system is working correctly in the scenario in which it was

imagined and any changes can be easily detected.

Up until this point, the API tests developed have managed to cover a significant

portion of the system. This provides assurance that the tests’ efficiency is at an acceptable

level for this stage of the project.

While it would be desirable to incorporate other forms of testing, such as unit tests, to

increase software security and enable continuous integration (CI) and continuous delivery

(CD), these are not strictly necessary for the project’s initial phase.

With the performance tests it was possible to observe which endpoints have satisfactory

response times and which need optimization, and to verify that although the median is

77



Figure 6.6: File src/modules/domain/food/tests/test_food_e2e.py

Figure 6.7: Test success rate

less than 20 ms, the overheads generated by the soft delete impact the system as a whole,

generating outliers of up to 100 ms, which represents an increase of 500% compared to

78



Figure 6.8: Code coverage report from pytest-cov

Figure 6.9: Response time distribution of the system endpoints

79



Figure 6.10: Food test response times

Figure 6.11: Base Repository create method

the median.

6.2 Recommendation System Tests and Results

In order to ensure that the recommendation system methods developed behave as ex-

pected, endpoint tests were performed. These tests for this stage followed the same

structure as the tests previously described in the previous section for the system as a

whole, and the coverage and performance results from the previous section include the

recommendation system tests.

The endpoint tests were designed to evaluate the functionality of the recommendation

system, including its ability to suggest meals based on user preferences and nutritional

needs. The tests were performed using a variety of input data and scenarios to ensure that

the system was able to handle different situations and provide accurate recommendations.

In order to assess the accuracy of the food recommendations provided by the system

80



and determine if they met the user’s nutritional needs and preferences, as well as offered

diverse meal options, four nutritional plans were developed with varying amounts of data

available for the system to analyze the user’s profile. These included:

1. A nutritional plan in which only the daily caloric intake data was provided;

2. A nutritional plan with the caloric intake data and a few entries from the user’s

consumption history;

3. A nutritional plan with the caloric intake data and a few entries regarding the user’s

preferences;

4. A nutritional plan with the caloric intake data, a few entries of the user’s preferences,

and consumption history.

Before requesting the system to generate nutritional plans with the aim of analyzing

its behavior, it was crucial to input meal information, as this data did not previously

exist and needed to be created. To assist in this task, we used ChatGPT [52] to provide

complete meals, including all the necessary ingredients. The prompts used to generate

these meals can be observed below:

• For heavy meals: Act like a nutritionist and generate 5 healthy recipes for heavy

meals, which must necessarily have a protein source, a carbohydrate source, a salad

or vegetables, and finally a soup and a healthy drink to accompany them.

• For light meals: Act like a nutritionist and generate 5 healthy recipes for light

meals, such as breakfast, mid-morning, afternoon snack and supper. These meals

can contain fruit, cheese and/or dairy products among others...

• For meals that can be consumed in light and heavy meals: Act like a

nutritionist and generate 5 healthy recipes that can be consumed in light meals that

are breakfast, mid-morning, afternoon snack and supper. These meals can contain

fruit, cheese and/or dairy products among others, but can also be consumed in

81



heavy meals that need to have a source of carbohydrates, a source of protein and

some nutrient from a vegetable or salad.

• Meals after waking up: Act like a nutritionist and generate 10 healthy recipes

that can be consumed in meals to be taken as soon as you wake up that constitute

a minimum amount of liquids to be consumed

After the meals were generated and collected, manual processing was conducted, due

to the small sample size, to translate the food items in each meal to those that belonged

to the system’s initial database. However, not all meals contained all the food items or

similar ones registered in the database, and thus, some were not imported.

Following this, the system was requested to populate a nutritional plan for each of the

scenarios described earlier in this section in sequence. A preview of the results, showcasing

just one day from each scenario, can be observed through the images 6.12, 6.13, 6.14, 6.15.

It is important to note that each row represents a different option aiming to achieve the

caloric intake for that particular meal. To accomplish this, the portion size of the dish is

varied, as represented by the amount column.

Figure 6.12: Nutritional plan without any input

82



Figure 6.13: Nutritional plan with historical consumption data only

Figure 6.14: Nutritional plan with user preferences only

83



Figure 6.15: Nutritional plan with user preferences and consumption history

It has been observed that even with limited data input and a small number of registered

meals, the system is able to generate a wide variety of meal options to cater to diverse

tastes. Furthermore, it is evident that the more user data is available in the system, the

better it can adapt and improve the suggested meals. Consequently, it can be concluded

that although the proposed recommendation system requires further refinement, it is

already suitable for initial use.

6.3 Conclusion

In this work we seek to achieve the initial proposal of the project and we model the system

and the RS in order to achieve this objective.

During the building of the structure for the system development, we developed several

mechanisms to facilitate the implementation of the business rules of each service, which

are:

• Easy organization of each module and a fast module development process;

• System-wide standard error throwing mechanism;

84



• Generic pagination system for all endpoints that allows a wide range of queries to

the database;

• Code encapsulation that allows the creation of several steps of a module with a few

lines, including the creation of new tables with soft delete enabled;

• Standardization of how request bodies should arrive at the server and responses to

these requests to form good documentation that helps and speeds up front- and

backend development;

• Insertion of security layers to block unexpected behavior to prevent data leakage

and system misuse;

• Creation of a generic repository capable of supporting a wide range of database

queries and with the implementation of the fully functional soft delete in all methods.

Although with all this structure in place that allowed us to create an entire module

with a complete simple (Create, Read, Update, Delete) (CRUD) in less than 1 hour

of development, it wasn’t possible to finish all the services of the system because these

required specific business rules that although they were detailed would depend on the

backend and front-end working together.

So that the code developed on the backend was tested and validated by the front-end

in order to avoid refactoring, unnecessary code development, and that the code produced

could serve the front-end in the best possible way.

The recommendation system achieved favorable results in the testing environment,

demonstrating its promise and readiness for use in a production setting. As more data

is generated and becomes suitable for analysis, the system can be further refined and

improved.

85



86



Chapter 7

Conclusion

The work described consisted in developing a system that would help nutritionists with

their daily tasks, including filling out the nutritional plan with meal recommendations

based on the patient’s profile in conjunction with the nutritional plan, but also in increas-

ing the efficiency of the nutritionist’s work with detailed patient analysis.

The work was also aimed at enhancing the patient’s experience by quickly and con-

veniently providing all the meals in the plan and their status. Furthermore, the backend

was designed to enable the front-end to generate personalized performance reports. These

reports, based on the feedback provided by patients throughout their journey of following

the nutritional plan, are intended to motivate and encourage them to adhere to the plan.

During the research stage, we deepened our knowledge in several areas, especially

regarding the techniques used in recommendation systems, such as the works [22], [23],

[24], [25] and [26].

A mention goes to the works [31] and [32] that have provided some guidelines of

elements that a nutritional assistant system should contain or be covered by.

With the modeling of the system and the details of how the development was done, it’s

possible to conclude that the system and the RS is well on its way not only to reaching

the proposed goals but also to exceeding them with a good structure that allows the

easy addition of new functionalities but also guarantees an excellent performance of those

already contemplated by the system as a whole.

87



Lastly, the tests conducted in the development environment ensure that the develop-

ment is progressing smoothly, with excellent results in terms of behavior, coverage, and

response time of the endpoints. The outcomes obtained from the recommendation system

have proven to be promising for this initial version, although further refinement is still

needed.

7.1 Future Works

At this point, the process of integrating the front-end with the backend is underway, and

the complete system is being deployed on a virtual machine at CeDRI. This will enable

users, both nutritionists and patients, to conduct usability testing.

Considering the backend, for the next steps of the process it is necessary to continue

developing the functionalities that were not possible to deliver in this first phase, but it

is also necessary to add new functionalities as needed by the nutritionist.

It’s necessary to collect and analyze the response times of the endpoints in the pro-

duction environment to see if they correspond to those of the tests in the development

environment or if there are any processing bottlenecks that can be improved.

Also, it’s desirable to continue improving the Base Repository that was built in this

work, in order to add support for new features and improve the performance of the existing

ones, especially those related to the soft delete.

In conclusion, regarding the RS, our future goals include automating the creation

and importation of new meals into the system’s database. Additionally, as more data is

generated within the system, we aim to apply machine learning and artificial intelligence

algorithms to improve the metrics used in assigning scores to food items and meals. This

will not only preserve the variety but also make the recommendations more accurate and

better suited to the needs of both the patient and the nutritionist.

88



Bibliography

[1] W. C. Willett and M. J. Stampfer, “Current evidence on healthy eating”, Annual

review of public health, vol. 34, pp. 77–95, 2013.

[2] L. Tian, B. Yang, X. Yin, and Y. Su, “A survey of personalized recommendation

based on machine learning algorithms”, in Proceedings of the 2020 4th Interna-

tional Conference on Electronic Information Technology and Computer Engineer-

ing, ser. EITCE 2020, Xiamen, China: Association for Computing Machinery, 2020,

pp. 602–610, isbn: 9781450387811. doi: 10 . 1145 / 3443467 . 3444711. [Online].

Available: https : / / doi - org . ez48 . periodicos . capes . gov . br / 10 . 1145 /

3443467.3444711.

[3] Y. Ning, Y. Shi, L. Hong, H. Rangwala, and N. Ramakrishnan, “A gradient-based

adaptive learning framework for efficient personal recommendation”, in Proceedings

of the Eleventh ACM Conference on Recommender Systems, ser. RecSys ’17, Como,

Italy: Association for Computing Machinery, 2017, pp. 23–31, isbn: 9781450346528.

doi: 10.1145/3109859.3109909. [Online]. Available: https://doi-org.ez48.

periodicos.capes.gov.br/10.1145/3109859.3109909.

[4] S. P. Mudur, S. A. Mokhov, and Y. Mao, “A framework for enhancing deep learn-

ing based recommender systems with knowledge graphs”, in 25th International

Database Engineering &amp; Applications Symposium, New York, NY, USA: As-

sociation for Computing Machinery, 2021, pp. 11–20, isbn: 9781450389914. doi:

10 . 1145 / 3472163 . 3472183. [Online]. Available: https : / / doi - org . ez48 .

periodicos.capes.gov.br/10.1145/3472163.3472183.

89

https://doi.org/10.1145/3443467.3444711
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3443467.3444711
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3443467.3444711
https://doi.org/10.1145/3109859.3109909
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3109859.3109909
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3109859.3109909
https://doi.org/10.1145/3472163.3472183
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3472163.3472183
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3472163.3472183


[5] Q. Han, C. Zhang, R. Chen, R. Lai, H. Song, and L. Li, “Multi-faceted global item

relation learning for session-based recommendation”, in Proceedings of the 45th In-

ternational ACM SIGIR Conference on Research and Development in Information

Retrieval, ser. SIGIR ’22, Madrid, Spain: Association for Computing Machinery,

2022, pp. 1705–1715, isbn: 9781450387323. doi: 10.1145/3477495.3532024. [On-

line]. Available: https://doi-org.ez48.periodicos.capes.gov.br/10.1145/

3477495.3532024.

[6] J. Guo, “Research on hybrid recommendation algorithm based on personalized

learning resource recommendation model”, in 2021 3rd International Conference

on Artificial Intelligence and Advanced Manufacture, ser. AIAM2021, Manchester,

United Kingdom: Association for Computing Machinery, 2021, pp. 727–732, isbn:

9781450385046. doi: 10.1145/3495018.3495148. [Online]. Available: https://

doi-org.ez48.periodicos.capes.gov.br/10.1145/3495018.3495148.

[7] Y. G. Cinar and J.-M. Renders, “Adaptive pointwise-pairwise learning-to-rank for

content-based personalized recommendation”, ser. RecSys ’20, Virtual Event, Brazil:

Association for Computing Machinery, 2020, pp. 414–419, isbn: 9781450375832.

doi: 10.1145/3383313.3412229. [Online]. Available: https://doi-org.ez48.

periodicos.capes.gov.br/10.1145/3383313.3412229.

[8] Y. Liu and J. Yang, “A novel learning-to-rank based hybrid method for book rec-

ommendation”, in Proceedings of the International Conference on Web Intelligence,

ser. WI ’17, Leipzig, Germany: Association for Computing Machinery, 2017, pp. 837–

842, isbn: 9781450349512. doi: 10.1145/3106426.3106547. [Online]. Available:

https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3106426.3106547.

[9] S. T. Jishan and Y. Wang, “Audience activity recommendation using stacked-lstm

based sequence learning”, ser. ICMLC 2017, Singapore, Singapore: Association for

Computing Machinery, 2017, pp. 98–106, isbn: 9781450348171. doi: 10 . 1145 /

3055635.3056606. [Online]. Available: https://doi- org.ez48.periodicos.

capes.gov.br/10.1145/3055635.3056606.

90

https://doi.org/10.1145/3477495.3532024
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3477495.3532024
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3477495.3532024
https://doi.org/10.1145/3495018.3495148
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3495018.3495148
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3495018.3495148
https://doi.org/10.1145/3383313.3412229
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3383313.3412229
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3383313.3412229
https://doi.org/10.1145/3106426.3106547
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3106426.3106547
https://doi.org/10.1145/3055635.3056606
https://doi.org/10.1145/3055635.3056606
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3055635.3056606
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3055635.3056606


[10] F. Mi, X. Lin, and B. Faltings, “Ader: Adaptively distilled exemplar replay to-

wards continual learning for session-based recommendation”, ser. RecSys ’20, Vir-

tual Event, Brazil: Association for Computing Machinery, 2020, pp. 408–413, isbn:

9781450375832. doi: 10.1145/3383313.3412218. [Online]. Available: https://

doi-org.ez48.periodicos.capes.gov.br/10.1145/3383313.3412218.

[11] Z. Pan, F. Cai, Y. Ling, and M. de Rijke, “An intent-guided collaborative ma-

chine for session-based recommendation”, ser. SIGIR ’20, Virtual Event, China:

Association for Computing Machinery, 2020, pp. 1833–1836, isbn: 9781450380164.

doi: 10.1145/3397271.3401273. [Online]. Available: https://doi-org.ez48.

periodicos.capes.gov.br/10.1145/3397271.3401273.

[12] C. Su, Z. Hu, and X. Xie, “Cross-domain recommendation based on heterogeneous

information network with adversarial learning”, ser. ISMSI 2021, Victoria, Sey-

chelles: Association for Computing Machinery, 2021, pp. 65–70, isbn: 9781450389679.

doi: 10.1145/3461598.3461609. [Online]. Available: https://doi-org.ez48.

periodicos.capes.gov.br/10.1145/3461598.3461609.

[13] K. Ong, S.-C. Haw, and K.-W. Ng, “Deep learning based-recommendation system:

An overview on models, datasets, evaluation metrics, and future trends”, ser. CIIS

2019, Bangkok, Thailand: Association for Computing Machinery, 2019, pp. 6–11,

isbn: 9781450372596. doi: 10.1145/3372422.3372444. [Online]. Available: https:

//doi-org.ez48.periodicos.capes.gov.br/10.1145/3372422.3372444.

[14] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender system:

A survey and new perspectives”, ACM Comput. Surv., vol. 52, no. 1, Feb. 2019,

issn: 0360-0300. doi: 10.1145/3285029. [Online]. Available: https://doi-org.

ez48.periodicos.capes.gov.br/10.1145/3285029.

[15] R. Guan, H. Pang, F. Giunchiglia, X. Li, X. Yang, and X. Feng, “Deployable and

continuable meta-learning-based recommender system with fast user-incremental

updates”, ser. SIGIR ’22, Madrid, Spain: Association for Computing Machinery,

91

https://doi.org/10.1145/3383313.3412218
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3383313.3412218
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3383313.3412218
https://doi.org/10.1145/3397271.3401273
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3397271.3401273
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3397271.3401273
https://doi.org/10.1145/3461598.3461609
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3461598.3461609
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3461598.3461609
https://doi.org/10.1145/3372422.3372444
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3372422.3372444
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3372422.3372444
https://doi.org/10.1145/3285029
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3285029
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3285029


2022, pp. 1423–1433, isbn: 9781450387323. doi: 10.1145/3477495.3531964. [On-

line]. Available: https://doi-org.ez48.periodicos.capes.gov.br/10.1145/

3477495.3531964.

[16] Q. Zhao, F. M. Harper, G. Adomavicius, and J. A. Konstan, “Explicit or im-

plicit feedback? engagement or satisfaction? a field experiment on machine-learning-

based recommender systems”, ser. SAC ’18, Pau, France: Association for Comput-

ing Machinery, 2018, pp. 1331–1340, isbn: 9781450351911. doi: 10.1145/3167132.

3167275. [Online]. Available: https://doi-org.ez48.periodicos.capes.gov.

br/10.1145/3167132.3167275.

[17] T. Silva, N. Silva, H. Werneck, A. C. M. Pereira, and L. Rocha, “The impact of first

recommendations based on exploration or exploitation approaches in recommender

systems’ learning”, in Proceedings of the Brazilian Symposium on Multimedia and

the Web, ser. WebMedia ’20, São Luıs, Brazil: Association for Computing Machinery,

2020, pp. 173–180, isbn: 9781450381963. doi: 10.1145/3428658.3430971. [Online].

Available: https : / / doi - org . ez48 . periodicos . capes . gov . br / 10 . 1145 /

3428658.3430971.

[18] W. Meng, D. Yang, and Y. Xiao, “Incorporating user micro-behaviors and item

knowledge into multi-task learning for session-based recommendation”, ser. SIGIR

’20, Virtual Event, China: Association for Computing Machinery, 2020, pp. 1091–

1100, isbn: 9781450380164. doi: 10.1145/3397271.3401098. [Online]. Available:

https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3397271.3401098.

[19] J. Jin, X. Chen, W. Zhang, J. Huang, Z. Feng, and Y. Yu, “Learn over past, evolve for

future: Search-based time-aware recommendation with sequential behavior data”,

in Proceedings of the ACM Web Conference 2022, ser. WWW ’22, Virtual Event,

Lyon, France: Association for Computing Machinery, 2022, pp. 2451–2461, isbn:

9781450390965. doi: 10.1145/3485447.3512117. [Online]. Available: https://

doi-org.ez48.periodicos.capes.gov.br/10.1145/3485447.3512117.

92

https://doi.org/10.1145/3477495.3531964
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3477495.3531964
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3477495.3531964
https://doi.org/10.1145/3167132.3167275
https://doi.org/10.1145/3167132.3167275
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3167132.3167275
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3167132.3167275
https://doi.org/10.1145/3428658.3430971
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3428658.3430971
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3428658.3430971
https://doi.org/10.1145/3397271.3401098
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3397271.3401098
https://doi.org/10.1145/3485447.3512117
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3485447.3512117
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3485447.3512117


[20] Y. Li, W. Chen, and H. Yan, “Learning graph-based embedding for time-aware

product recommendation”, in Proceedings of the 2017 ACM on Conference on In-

formation and Knowledge Management, ser. CIKM ’17, Singapore, Singapore: As-

sociation for Computing Machinery, 2017, pp. 2163–2166, isbn: 9781450349185.

doi: 10.1145/3132847.3133060. [Online]. Available: https://doi-org.ez48.

periodicos.capes.gov.br/10.1145/3132847.3133060.

[21] H. Zhu, X. Li, P. Zhang, G. Li, J. He, H. Li, and K. Gai, “Learning tree-based deep

model for recommender systems”, in Proceedings of the 24th ACM SIGKDD Inter-

national Conference on Knowledge Discovery &amp; Data Mining, ser. KDD ’18,

London, United Kingdom: Association for Computing Machinery, 2018, pp. 1079–

1088, isbn: 9781450355520. doi: 10.1145/3219819.3219826. [Online]. Available:

https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3219819.3219826.

[22] A. A. Kardan and M. Ebrahimi, “A novel approach to hybrid recommendation sys-

tems based on association rules mining for content recommendation in asynchronous

discussion groups”, Information Sciences, vol. 219, pp. 93–110, 2013.

[23] H. Song, H. Zhang, and Z. Xing, “Research on personalized recommendation system

based on association rules”, in Journal of Physics: Conference Series, IOP Publish-

ing, vol. 1961, 2021, p. 012 027.

[24] R. Halverson, “An empirical investigation comparing if-then rules and decision

tables for programming rule-based expert systems”, in [1993] Proceedings of the

Twenty-sixth Hawaii International Conference on System Sciences, vol. iii, 1993,

316–323 vol.3. doi: 10.1109/HICSS.1993.284327.

[25] H. Ishibuchi, T. Sotani, and T. Murata, “Tradeoff between the performance of

fuzzy rule-based classification systems and the number of fuzzy if-then rules”, in

18th International Conference of the North American Fuzzy Information Processing

Society - NAFIPS (Cat. No.99TH8397), 1999, pp. 125–129. doi: 10.1109/NAFIPS.

1999.781667.

93

https://doi.org/10.1145/3132847.3133060
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3132847.3133060
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3132847.3133060
https://doi.org/10.1145/3219819.3219826
https://doi-org.ez48.periodicos.capes.gov.br/10.1145/3219819.3219826
https://doi.org/10.1109/HICSS.1993.284327
https://doi.org/10.1109/NAFIPS.1999.781667
https://doi.org/10.1109/NAFIPS.1999.781667


[26] H. Ishibuchi, T. Nakashima, and T. Murata, “A fuzzy classifier system that gener-

ates fuzzy if-then rules for pattern classification problems”, in Proceedings of 1995

IEEE International Conference on Evolutionary Computation, vol. 2, 1995, 759–764

vol.2. doi: 10.1109/ICEC.1995.487481.

[27] W. Li, W. Meng, C. Su, and L. F. Kwok, “Towards false alarm reduction using fuzzy

if-then rules for medical cyber physical systems”, IEEE Access, vol. 6, pp. 6530–

6539, 2018. doi: 10.1109/ACCESS.2018.2794685.

[28] F. Belqasmi, R. Glitho, and C. Fu, “Restful web services for service provisioning

in next-generation networks: A survey”, IEEE Communications Magazine, vol. 49,

no. 12, pp. 66–73, 2011.

[29] H. Chong and F. L. Gaol, “Ula lab: Ubiquitous open contents web-based language

laboratory using rest protocol web service”, International Journal of Multimedia

and Ubiquitous Engineering, vol. 8, no. 4, pp. 199–206, 2013.

[30] M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and E. Figueiredo, “Microservices

in practice: A survey study”, arXiv preprint arXiv:1808.04836, 2018.

[31] D. Rubilar and A. Aguilera, “Automated menu recommendation system focused on

clinical nutrition”, in 2019 IEEE CHILEAN Conference on Electrical, Electronics

Engineering, Information and Communication Technologies (CHILECON), 2019,

pp. 1–7. doi: 10.1109/CHILECON47746.2019.8988061.

[32] A. G. F. Mazuelos, N. R. Y. Pelaez, and E. A. Cerna, “Technological solution for the

development and validation of a healthy diet in times of pandemic”, in 2021 IEEE

1st International Conference on Advanced Learning Technologies on Education &

Research (ICALTER), 2021, pp. 1–4. doi: 10.1109/ICALTER54105.2021.9675087.

[33] Nestjs, Last accessed 02 November 2022, 2022. [Online]. Available: https://nestjs.

com/.

[34] What is service-oriented architecture (soa)?, Last accessed 07 April 2023, 2023.

[Online]. Available: https://www.ibm.com/topics/soa.

94

https://doi.org/10.1109/ICEC.1995.487481
https://doi.org/10.1109/ACCESS.2018.2794685
https://doi.org/10.1109/CHILECON47746.2019.8988061
https://doi.org/10.1109/ICALTER54105.2021.9675087
https://nestjs.com/
https://nestjs.com/
https://www.ibm.com/topics/soa


[35] Python, Last accessed 11 November 2022, 2022. [Online]. Available: https://www.

python.org/.

[36] Pipenv: Python dev workflow for humans, Last accessed 11 November 2022, 2022.

[Online]. Available: https://pipenv.pypa.io/en/latest/.

[37] Postgresql, Last accessed 15 November 2022, 2022. [Online]. Available: https://

stackshare.io/postgresql.

[38] Postgresql: The world’s most advanced open source relational database, Last accessed

15 November 2022, 2022. [Online]. Available: https://www.postgresql.org/.

[39] Sqlalchemy, Last accessed 15 November 2022, 2022. [Online]. Available: https :

//www.sqlalchemy.org/.

[40] M. Makai, Sqlalchemy, Last accessed 15 November 2022, 2022. [Online]. Available:

https://www.fullstackpython.com/sqlalchemy.html.

[41] Welcome to alembic’s documentation!, Last accessed 16 November 2022, 2022. [On-

line]. Available: https://alembic.sqlalchemy.org/en/latest/.

[42] Fastapi, Last accessed 16 November 2022, 2022. [Online]. Available: https : / /

fastapi.tiangolo.com/.

[43] Django vs flask vs fastapi – a comparative guide to python web frameworks, Last ac-

cessed 16 November 2022, 2021. [Online]. Available: https://analyticsindiamag.

com/django-vs-flask-vs-fastapi-a-comparative-guide-to-python-web-

frameworks/.

[44] Django vs flask vs fastapi for software founders, Last accessed 16 November 2022,

2022. [Online]. Available: https://dev.to/kateryna_pakhomova/django-vs-

flask-vs-fastapi-for-software-founders-45k4.

[45] P. Bansal and A. Ouda, “Study on integration of fastapi and machine learning for

continuous authentication of behavioral biometrics”, 2022. doi: 10.1109/ISNCC55209.

2022.9851790.

95

https://www.python.org/
https://www.python.org/
https://pipenv.pypa.io/en/latest/
https://stackshare.io/postgresql
https://stackshare.io/postgresql
https://www.postgresql.org/
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://www.fullstackpython.com/sqlalchemy.html
https://alembic.sqlalchemy.org/en/latest/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://analyticsindiamag.com/django-vs-flask-vs-fastapi-a-comparative-guide-to-python-web-frameworks/
https://analyticsindiamag.com/django-vs-flask-vs-fastapi-a-comparative-guide-to-python-web-frameworks/
https://analyticsindiamag.com/django-vs-flask-vs-fastapi-a-comparative-guide-to-python-web-frameworks/
https://dev.to/kateryna_pakhomova/django-vs-flask-vs-fastapi-for-software-founders-45k4
https://dev.to/kateryna_pakhomova/django-vs-flask-vs-fastapi-for-software-founders-45k4
https://doi.org/10.1109/ISNCC55209.2022.9851790
https://doi.org/10.1109/ISNCC55209.2022.9851790


[46] Pydantic, Last accessed 16 November 2022, 2022. [Online]. Available: https://

pydantic-docs.helpmanual.io/.

[47] Aquavitae app, Last accessed 16 November 2022, 2022. [Online]. Available: https:

//github.com/hmarcuzzo/aquavitae-app/tree/main.

[48] Stack overflow, Last accessed 16 November 2022, 2022. [Online]. Available: https:

//stackoverflow.com/.

[49] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, 1st ed.

USA: Prentice Hall PTR, 2008, isbn: 0132350882.

[50] L. Barbosa and A. Hora, “How and why developers migrate python tests”, in 2022

IEEE International Conference on Software Analysis, Evolution and Reengineering

(SANER), 2022, pp. 538–548. doi: 10.1109/SANER53432.2022.00071.

[51] Why pytest for writing functional api tests, Last accessed 28 December 2022, 2014.

[Online]. Available: https://skimlinks.com/blog/why-pytest-for-writing-

functional-api-tests/#:~:text=Why%5C%20use%5C%20Pytest%5C%3F%5C&

text=Pytest%5C%20fixtures%5C%20makes%5C%20it%5C%20really,module%5C%

20or%5C%20method%5C%20we%5C%20add..

[52] Chatgpt, Last accessed 04 April 2023, 2023. [Online]. Available: https://openai.

com/blog/chatgpt.

96

https://pydantic-docs.helpmanual.io/
https://pydantic-docs.helpmanual.io/
https://github.com/hmarcuzzo/aquavitae-app/tree/main
https://github.com/hmarcuzzo/aquavitae-app/tree/main
https://stackoverflow.com/
https://stackoverflow.com/
https://doi.org/10.1109/SANER53432.2022.00071
https://skimlinks.com/blog/why-pytest-for-writing-functional-api-tests/#:~:text=Why%5C%20use%5C%20Pytest%5C%3F%5C&text=Pytest%5C%20fixtures%5C%20makes%5C%20it%5C%20really,module%5C%20or%5C%20method%5C%20we%5C%20add.
https://skimlinks.com/blog/why-pytest-for-writing-functional-api-tests/#:~:text=Why%5C%20use%5C%20Pytest%5C%3F%5C&text=Pytest%5C%20fixtures%5C%20makes%5C%20it%5C%20really,module%5C%20or%5C%20method%5C%20we%5C%20add.
https://skimlinks.com/blog/why-pytest-for-writing-functional-api-tests/#:~:text=Why%5C%20use%5C%20Pytest%5C%3F%5C&text=Pytest%5C%20fixtures%5C%20makes%5C%20it%5C%20really,module%5C%20or%5C%20method%5C%20we%5C%20add.
https://skimlinks.com/blog/why-pytest-for-writing-functional-api-tests/#:~:text=Why%5C%20use%5C%20Pytest%5C%3F%5C&text=Pytest%5C%20fixtures%5C%20makes%5C%20it%5C%20really,module%5C%20or%5C%20method%5C%20we%5C%20add.
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

	Introduction
	Problem and goals
	Motivation
	Overall Objective
	Specific Objectives

	Technological Background and State of the Art
	Recommendation System
	Web Development
	Support System for Nutritionists
	Conclusion

	Software Modeling
	User stories
	Administrator
	Nutritionist
	User

	Use cases
	Administrator
	Nutritionist
	User

	Entity Relationship Diagram (ERD)
	Architecture
	Main Flow
	Recommendation System
	Conclusion

	Backend Development
	Overview of Technologies Used
	Programming Language
	Database
	Web Framework

	Nutritional Management System Development
	Organization
	Module Development
	Error Handling
	Pagination
	Base Entity
	Documentation
	Generic Repository

	Recommendation System Development
	Food Ranking
	Filling Out the Nutritional Plan

	Conclusion

	Tests, Evaluation and Discussion
	Nutritional Management System Test Development and Results
	Collected Results

	Recommendation System Tests and Results
	Conclusion

	Conclusion
	Future Works


