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Abstract

Accurate weather analysis and forecasting rely on complete historical data. However, miss-

ing weather data often occurs due to sensor failures, data transmission issues, or limited

monitoring capabilities. Reconstructing this missing data is crucial for reliable weather anal-

ysis. The Analog Ensemble (AnEn) method leverages past weather events and information

from nearby stations to reconstruct and forecast data. However, incorporating nearby sta-

tions significantly increases computational costs, making the reconstruction process time

consuming. To address this challenge, this dissertation integrates AnEn with dimension re-

duction techniques: Principal Component Analysis (PCA) and Partial Least Squares (PLS).

Four hybrid methods—PCAnEn, PLSAnEn, PCClustAnEn, and PLSClustAnEn—are devel-

oped to enhance computational performance while maintaining or improving accuracy.

Through four studies using three datasets, this research focuses on reconstructing six

variables: wind-related variables, temperature, pressure, and humidity. The hybrid methods

improved accuracy compared to the original AnEn. Notably, PLSAnEn achieves the high-

est reconstruction accuracy, while PLSR exhibits the fastest processing times. Additionally,

PLSClustAnEn also proves to be a alternative for data reconstruction. The findings of this

research contribute to the portfolio of strategies for addressing missing weather data.

Keywords: Analog Ensemble; Principal Component Analysis; Partial Least Squares; Weather

Data Reconstruction; Hindcasting.
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Resumo

A análise e a previsão climática beneficiam de dados históricos completos. No entanto, é

comum faltarem dados meteorológicos devido a falhas nos sensores, problemas na trans-

missão de dados ou limitações nas capacidades de monitoramento. A reconstrução desses

dados ausentes é crucial para uma análise climática confiável. O método Analog Ensemble

(AnEn) utiliza eventos meteorológicos passados e informações de estações próximas para

reconstruir e prever dados. No entanto, a incorporação de estações próximas aumenta sig-

nificativamente os custos computacionais, tornando o processo de reconstrução bastante

demorado. Para enfrentar esse desafio, esta dissertação integra o AnEn com técnicas de re-

dução de dimensionalidade: Análise de Componentes Principais (PCA) e Mínimos Quadra-

dos Parciais (PLS). Quatro métodos híbridos - PCAnEn, PLSAnEn, PCClustAnEn e PLSClus-

tAnEn - são desenvolvidos para melhorar o desempenho computacional, mantendo ou au-

mentando a precisão.

Por meio de quatro estudos utilizando três conjuntos de dados, esta pesquisa concentra-

se na reconstrução de variáveis metereológicas. Os métodos híbridos aprimoraram a pre-

cisão em comparação com o AnEn original. Notavelmente, o PLSAnEn alcança a maior pre-

cisão de reconstrução, enquanto o PLSR é mais eficiente em termos computacionais. Além

disso, o PLSClustAnEn também se mostra uma alternativa eficiente para a reconstrução de

dados. Os resultados desta pesquisa contribuem para um portfólio de estratégias de recon-

strução de dados meteorológicos.

Palavras-chave: Analog Ensemble; Análise de Componentes Principais; Mínimos Quadra-

dos Parciais; Reconstrução de Dados Meteorológicos; Hindcasting.
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Chapter 1

Introduction

Filling gaps in observed time series is a critical issue in numerous areas of applied sciences

that rely on data analysis. Without addressing these gaps, making predictions of any kind be-

comes challenging or even impossible. This problem is especially prominent in fields where

the volume of stored information is rapidly growing, such as weather forecasting. In this

context, big data analytics can play a pivotal role in enhancing predictions by uncovering

patterns and correlations within the data, as well as reconstructing missing information in

areas where limited data is available.

Handling varying degrees of missing data (unrecorded observations) is essential in weather

analysis, as different levels of data incompleteness can lead to distinct consequences. For ex-

ample, when less than 1% of the total data is missing, the impact on analysis is minimal. If

the missing data rate lies between 1% and 5%, the dataset is still manageable for analysis.

However, when over 5% of the data is missing, it becomes necessary to implement appropri-

ate solutions to utilize the data effectively. Moreover, when missing data rates exceed 15%,

prediction models can be significantly and negatively impacted [1].

Even more impactful is when historical data for an area is absent for extended time pe-

riods, which can last weeks, months, or even years. This lack of data can be attributed to

various factors, such as the unavailability of sensors in the area, inadequate monitoring,

technical issues, or even natural disasters [2]. This issue is particularly prevalent in remote,

underdeveloped, or geopolitically unstable regions where data collection is often limited or
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unreliable.

Places without historical data create obstacles in estimating or analyzing their future,

making it especially difficult to identify their renewable energy potential. Without access to

this data, it is impractical to evaluate the suitability of these locations for energy generation

projects, such as solar or wind farms. As a result, there is a growing demand for methods

capable of reconstructing data from limited inputs and locations to perform simulations

targeting these areas. Developing and implementing such techniques would not only sig-

nificantly enhance the understanding of potential advancements in these regions but also

promote the establishment of clean energy solutions, contributing to global environmental

goals and the well-being of local communities.

Reconstructing missing or absent historical weather data may be addressed through tech-

niques known as hindcasting. Hindcasting enables the reconstruction of missing historical

data through the use of a generic forecast model to recreate past weather conditions. One of

the key techniques employed in meteorological data reconstruction is the Analog Ensemble

(AnEn) method [3], [4]. The AnEn method has its origins in the postprocessing of Numerical

Weather Predictions (NWP), but it has been applied in several areas, such as forecasting of

wind and solar variables [5], [6]. The method involves the identification of analogs in past

observations to generate a probability density function for the prediction of future weather

conditions.

The rapid increase in stored information, resulting from recent advancements in data

collection, creates possibilities for more accurate data reconstruction and improved weather

analysis. However, to effectively process this massive amount of data, hybrid AnEn-based

methods capable of handling Big Data are essential. This situation involves processing ex-

tensive data from multiple sources and diverse variables. In terms of weather analysis, it

entails integrating data from various weather stations, each with different variables and data

availability, to accurately predict conditions at nearby stations. To accomplish this, enhanc-

ing AnEn’s computational performance is necessary, as well as refining variable selection,

based on their correlation to the target, for greater reconstruction precision.

The AnEn method offers a promising solution for weather data reconstruction, tackling
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the issues of missing or absent data in weather forecasting. With the ever-growing volume of

data in weather forecasting, it is vital to create hybrid AnEn-based techniques to manage Big

Data. Continued research is crucial to boost the computational performance and precision

of AnEn-based methods in weather data reconstruction. Exploring the potential of statisti-

cal methods, such as Principal Components Analysis (PCA) and Partial Least Squares (PLS),

could provide valuable insights and enhancements to this field. Moreover, clustering tech-

niques can be employed to group similar data records, reducing the number of operations

required to reconstruct data [7], [8].

1.1 Objectives

This study addresses limitations in the AnEn method by proposing hybrid methods that

leverage a large number of predictor variables while also reducing dimensionality without

loss of critical information. This approach involves exploring dimension reduction through

two techniques: PCA and PLS, with the aim of improving the quality of reconstructions while

optimizing computational efficiency. Specifically, PCA reduces the dataset’s dimensions by

identifying the principal components that capture the maximum variance, while PLS, as a

supervised method, extracts latent variables that possess the greatest predictive power.

By merging PCA and PLS with the AnEn approach, our goal is to exploit their strengths

for superior data reconstruction in terms of both numerical accuracy and computational

efficiency. To better comprehend their advantages in various data scenarios, this study con-

ducts a comparative analysis evaluating the performance of these hybrid AnEn methods

against traditional Principal Components Regression (PCR) and Partial Least Squares Re-

gression (PLSR) techniques within the context of a hindcasting problem. The task entails

reconstructing missing data at a meteorological station by using information from a collec-

tion of predictor stations with diverse geographical locations.
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1.2 Contributions

This thesis contributes to the progress of reconstructing missing or absent weather data by

combining various techniques. In particular, this study utilizes PCA and PLS for dimension-

ality reduction of the predictor dataset, alongside regression and analog-based approaches.

This research represents the first exploration of applying AnEn methods with PLS dimen-

sionality reduction, giving rise to the PLS-based AnEn (PLSAnEn) method. Furthermore,

this study pioneers the integration of PCA, PLS, and AnEn with clustering techniques, intro-

ducing three new methods for data reconstruction: Cluster-based PCAnEn (PCClustAnEn),

Cluster-based PLSAnEn (PLSClustAnEn) and PCA-based AnEn (PCAnEn).

1.3 Document Structure

This thesis begins with an exploration of weather prediction and its significance in decision-

making processes (Chapter 1), followed by a discussion on the evolution of weather fore-

casting, from early methods to current technologies (Chapter 2). Furthermore, a Literature

Review is presented in Section 2.4, which delves into analog ensemble and hybrid methods

in weather forecasting, addressing the challenges posed by missing or incomplete weather

data, aiming to overcome the limitations and improve the accuracy of predictions.

The core of the thesis is a sequence of studies presented in chronological order, each

building on the findings of the previous study. Topics covered include the application of Ana-

log Ensemble and Principal Components Analysis for reconstructing meteorological vari-

ables (Chapter 3), the consolidation of PCA and AnEn in a new hybrid method called PCAnEn

(Chapter 4), the enhancement of the PCAnEn method with K-means clustering (Chapter 5),

and a comparative study that combines AnEn with PCA and Partial Least Squares for meteo-

rological data reconstruction (Chapter 6). The final section of the thesis brings together the

main findings and contributions of the research, summarizing the key advancements made

throughout the studies and addressing whether the results have tackled the challenges in

weather forecasting related to missing or absent data (Chapter 7).
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Chapter 2

Background

This chapter provides an examination of the significance of weather predictions in decision-

making across various fields. In Section 2.1, the importance of weather predictions in multi-

ple fields is outlined, along with an overview of how these predictions are used in these fields

and their influence on decision-making processes. In Section 2.2, a historical and devel-

opmental analysis of weather prediction methods and technologies is presented, including

examination of early and current methods and technologies used for forecasting.

2.1 Weather Prediction and Decision-making

Weather forecasting is a crucial tool for decision making, providing individuals and organiza-

tions with vital information on the potential impacts of weather on their activities. Thanks to

the use of sophisticated forecasting models, meteorologists are able to generate precise pre-

dictions on the future state of the atmosphere, allowing people to prepare in advance and

reduce any risks related to extreme weather events. For instance, farmers can use weather

forecasts to plan planting and harvesting times, decide when to fertilise, and even know

when to move livestock [9]. Companies may also utilise forecasts to plan routes, schedule

flights and ships, and avoid hazardous weather conditions. In addition, weather can in-

fluence consumer spending [10] and stock market volatility [11]. In the renewable energy

sector, weather predictions are used to calculate a site’s energy generation potential prior
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to investing large amounts of funding [12]. By providing accurate predictions about future

weather conditions, forecasts enable decision-makers to make more informed choices and

reduce potential risks.

Wind energy and weather forecasting have become increasingly intertwined as wind en-

ergy has grown globally. Wind energy has gained attention due to its potential to reduce

dependence on fossil fuels and mitigate greenhouse gas emissions [13]. However, the in-

herent intermittency and unpredictability of wind variables pose significant challenges in

maintaining the safe and stable functioning of power systems [14]. From this, a wind’s ac-

curate prediction is crucial for the effective integration of wind energy into power systems.

According to the Global Wind Energy Council [15], wind energy has the potential to signifi-

cantly reduce CO2 emissions, with an annual reduction of over 1.2 billion tons, equivalent to

the consumption of the entire South American continent. This is important because efficient

energy production is a key factor in determining a country’s economic and social develop-

ment [16]; thus, access to energy is a crucial task for governments and regions [17]. In light of

these considerations, the development and improvement of the prediction of wind-related

variables is important for the functioning of wind power systems, as well as for supporting

the transition to a sustainable energy future.

Weather predictions also contribute to the planning of agricultural activities. The use of

weather forecasts in agriculture is extensive, affecting many aspects of decision-making. In

sub-Saharan Africa, the use of seasonal climate forecasting improves knowledge about the

atmosphere and oceans; and provides probabilistic forecasts about future climatic condi-

tions [18], which is especially important in underdeveloped regions. In fact, efforts are being

made to improve limited access to seasonal weather forecasts in many parts of the world [19].

Furthermore, seasonal climate forecasts can help farmers reduce investment risks by adjust-

ing their agricultural management strategies. For example, forecasting the La Niña or El

Niño phases can benefit farmers by allowing them to take advantage of potential favorable

conditions [20]. The close relationship between weather and agriculture highlights the im-

portance of the ability to translate meteorological information into agricultural terms, which

can help farms around the world to be more effective.
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Weather prediction has a wide range of uses beyond just wind energy and agriculture.

The use of weather forecasts can significantly improve decision making processes across so-

ciety, as well as increase economic efficiency, as Thompson pointed out in 1973 [21]. Recent

studies have supported this statement by demonstrating the significant impact of forecasts

from Numerical Weather Prediction models on various sectors of the economy, such as the

better integration of wind energy resources into the electric grid, increased worker output

due to more accurate precipitation forecasts, and improved decisions by agricultural pro-

ducers in preparation for freezing conditions [22]. In Europe, there is a growing need for

better access to climate information across economic sectors in order to inform planning

and decision-making [23]. To provide more detail, predictions on a 10-year time scale have

potential applications in multiple sectors in Europe [23]. As a consequence, efforts to im-

prove access to this information in underdeveloped areas are ongoing and it is crucial to

continue to research and develop ways to effectively predict weather to improve decision-

making processes and increase economic efficiency.

Weather predictions indeed play a crucial role in decision-making across fields such as

agriculture, transportation, consumer spending, stock market volatility and renewable en-

ergy. The use of weather forecasts can improve the efficiency of these industries by providing

the necessary information to make informed decisions. The development and improvement

of weather predictions can also support the integration of renewable energy sources, such as

wind energy, into power systems and contribute to a sustainable energy future. Additionally,

weather predictions can help farmers in underdeveloped regions make informed decisions

and reduce investment risks. Overall, better weather prediction improves economic effi-

ciency and can bring benefits to all sorts of fields. The next section explores the evolution

of weather prediction through the advances of numerical weather prediction - which has re-

sulted from a steady accumulation of scientific knowledge and technological advances over

many years – and is considered to be one of the greatest areas of progress in physical sci-

ence [24].
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2.2 The Evolution of Weather Prediction

Human weather forecasting has a long history, with evidence of its use dating back to the

early days of civilization [25]. In particular, farmers and sailors relied on their observations

of the sky and the natural world to make decisions about planting crops and embarking on

voyages [26]. Although fishermen were likely to be the earliest practitioners of weather fore-

casting, their methods were primitive and often inaccurate [26]. Nevertheless, their work

laid the foundation for the development of modern, sophisticated weather forecasting tech-

niques.

The following sections presents an overview of the methods for weather prediction that

have been developed over time, begining by discussing NWP, a method of predicting the

weather using mathematical models without relying on subjective human observations. NWP

has a long history, with early efforts dating back to the 1920s. Next, the Analog-based meth-

ods are described, which involve comparing current weather conditions to those of the past,

with the belief that similar weather patterns will recur. These Analog-based methods were

developed first to make a NWP prediction probabilistic, and more recently to reconstruct

data of a station by means of neighboring stations. It is also presented an overview of other

available methods of weather prediction in the current state-of-the-art. The study of early

predictions’ attempts may guide future solutions in weather prediction.

2.2.1 Early Weather Forecasting

In 1922, Richardson proposed a mathematical method for forecasting the weather called

NWP (Numer i cal W eather Pr edi ct i on) [27]. Richardson used the time integration of

basic equations of fluid mechanics to simulate and predict atmospheric circulation. His

method used data from observations of the current state of the atmosphere, including tem-

perature, humidity, wind speed and direction, and other variables, to forecast future weather

conditions. Richardson’s first attempt to predict using the numerical method for prediction

did not go well, though. The results were incorrect, with a surface pressure change that was

about 100 times larger than the actual change, leading to his method being initially called
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“Richardson’s dream”.

Richardson’s idea was not successful at his time because he had neither enough meteo-

rological data for initial condition nor a high-speed computer for numerical calculation [28].

Richardson attributed the failure partly to inadequate upper wind data, but later recognised

that the inability to use observed winds disturbed the calculation of pressure changes, a prin-

ciple identified by Margules [29]. Because of its failures, NWP had no influence on practical

weather forecasting until 1950.

The success of the numerical weather prediction came later, after 1950, when the first

electronic computer was developed, NWP forecasted a 24-hour pressure change at the 500

hPa level (in the middle of the troposphere). The later success of NWP, due to both the de-

velopment of electronic computers and advances in dynamic meteorology, rapidly improved

the prediction of weather variables. Computers have continued to support the advancement

of numerical weather prediction, and today, computer simulations of the global atmospheric

circulation are used to make forecasts for the next two days, week, month, and even 50 years.

Examples of current NWP models include the Global Forecast System (GFS) [30], developed

by the National Weather Service in the United States; also the European Centre for Medium-

Range Weather Forecasts (ECMWF) [31] model, and the UK Met Office’s Unified Model [32].

Richardson’s dream of accurate numerical weather prediction has finally been realized [24].

In contrast to NWP, Analog-based methods rely on the principle that past atmospheric

states can predict future ones, as stated by Lorenz in 1969 [33]. His method, called Analog

Forecasting (AF), introduced the concept of predicting weather by finding a past weather

event similar to the current situation as a guide to forecast. But at the time, after analyzing

the results of his efforts based on this assumption, Lorenz dismissed this hypothesis, believ-

ing it was impossible to find analogous states of the atmosphere, since it would take many

years before two similar states of the atmosphere could be found.

The use of analogues for weather forecasting was largely discarded until the H. M. Van

den Dool’s study in 1989 [34]. He showed that, in a limited area, the AF model can effectively

make 12-hour forecasts at target points by searching for analogues within a 900 km radius re-

lated to the target (the predicted one). The idea is that by finding several analogs in a relative
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small area, these analogs can be used to predict accurately, since they are likely to corre-

lated with each other. As well, different historical analogues can be used at different target

points based on their proximity and reliability. Hence, Van den Dool’s study demonstrated

that Analog Forecasting is possible if the area of possible analogues is reduced.

After Analog Forecasting (AF) was proved to be effective, the development of new tech-

niques, inspired by Lorenz’s original concept, has been a significant advancement in the field

of weather prediction. These methods often aim to improve the efficiency and precision of

AF by handling large data sets [35]. Despite the computational demands of working with

large data sets, AF remains a valuable tool for weather forecasting, particularly for short-

term forecasting scenarios. It is able to extract useful information from historical data and

apply it to predictions, making it a data-driven method [36], which relies on large and re-

liable datasets. As such, many improvements made to AF were related to handling a large

amount of data.

Weather forecasting has evolved over time, from ancient humans using observations of

the sky and the natural world to make predictions. Numerical Weather Prediction was not

successful at first but with the advancements in technology and meteorology, NWP improved

and is now widely used for weather forecasting. Analog-based methods, which involve com-

paring current weather conditions to past patterns, were also developed and proved to be

effective in weather forecasting. Today, NWP and AF are widely used for weather prediction

and both have played an important role in improving weather forecasts and understanding

the atmosphere.

2.3 AnEn: Analog Ensemble

Building on the Analog methods proposed by Lorenz and Van den Dool [37], [38], Monache

introduced two analog ensemble methods in 2011: ANalog-space Kalman Filter (ANKF) and

ANalog-space (AN) [3]. These methods use similar past events to create probabilistic fore-

casts of NWP predictions and reduce systematic and random errors. ANKF combines the

Kalman Filter (KF) method with an analog approach to address the limitations of the KF
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method in cases of sudden changes in weather conditions [39]. AN, on the other hand, is

based on taking weighted averages of observations when verifying past predictions for cur-

rent forecast features. To assess the effectiveness of ANKF and AN at reducing systematic

and random errors compared to existing correction techniques such as KF or 7-day run-

ning mean corrections, both methods were tested using wind speed prediction data from

400 surface stations over the western United States for a 6-month period. The results indi-

cated that AN was consistently the best, showing significant improvements compared to the

other methods.

The Analog (AN) method proposed by Monache in his 2013 study [4] was so successful

that he introduced a new term for it, Analog Ensemble (AnEn). He demonstrated the effec-

tiveness of the AnEn method in using past observations as analogs to estimate the proba-

bility distribution of the atmosphere’s future states. The AnEn method was shown to have

equal or superior accuracy compared to other ensemble systems and also had better com-

putational performance. Another study [40] extended the prediction to six days ahead and

independently at each location on a two-dimensional grid, using only 1/6th of the compu-

tational resources of traditional methods. The AnEn method has also been used successfully

to generate probabilistic wind speed forecasts at 80 m height for large-scale projects [41],

and to provide high-quality long-term estimation of wind speed time series and frequency

distribution at target sites, as well as reliable uncertainties based on physical processes [42].

Overall, the AnEn method has been proven to be an effective and efficient approach for gen-

erating probabilistic forecasts from a deterministic forecast.

2.4 Literature Review

2.4.1 Analog Ensemble and Hybrid Methods

The Analog Ensemble (AnEn) method has become a widely used technique in weather fore-

casting to extract useful information from historical data to make predictions. Studies have

shown that AnEn is effective in predicting rare and high-risk wind situations [43], and when
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combined with other methods such as multimodel intensity consensus forecast, it can im-

prove accuracy [44]. The Hurricane Weather Research and Forecasting (HWRF) model with a

variant of AnEn called the Rapid Intensification Analog Ensemble (RI-AnEn) was found to be

more accurate than other models in predicting rapid intensification, which is a critical factor

in forecasting hurricanes [44]. Additionally, AnEn has been found to be effective in predict-

ing meteorological variables such as wind and solar power [45], [46]; also precipitation [47]

and air quality [48].

Recently, efforts have been made to improve the AnEn method by combining it with other

techniques. For example, Variational Autoencoders (VAEs) have been used in combination

with AnEn to improve performance [49]. Additionally, weighting predictor combinations

with Continuous Ranked Probability Score Minimisation (CRPS) and PCA improved perfor-

mance by up to 20% while also providing reliable estimation of forecast uncertainty [50].

Furthermore, a combination of Artificial Neural Network (ANN) and AnEn was proposed

to generate 72-hour deterministic and probabilistic forecasts of power generated by photo-

voltaic plants [51], and the results showed that the combination of AnEn and ANN yielded

the best results, indicating its potential for large-scale computation tasks. The Hybrid En-

semble approach, which combines the strengths of the AnEn and NWP ensembles, has also

been found to have potential in forecasting tasks [52]. The AnEn method has been demon-

strated to be an effective tool for weather forecasting, and its potential applications have

been demonstrated across different combinations of methods.

2.4.2 Missing Weather Data: A Challenge in Forecasting

Despite the use of advanced models, weather forecasting is still not perfect and errors can

occur [53]. Studies have found that errors in weather predictions can be significant, and

weather forecasting is a challenging task due to its unpredictable nature [54]. Weather data

are currently collected through various means, such as satellites, radar, and ground stations,

and are then analysed through statistical, machine learning, or numerical techniques to

make predictions about future weather conditions. Due to general problems, the gathered
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data is often incomplete or lacking parts, making accurate predictions even more difficult.

Researchers are continuously working to improve the accuracy of weather forecasts, but it is

still an ongoing challenge.

The missing values are inevitable in the weather databases. They are caused by the tem-

porary absence of observers, equipment failure, infrequent calibration of sensors, among

others. In fact, the estimation of missing values is the first step in climatological and envi-

ronmental studies [55]. The literature on weather forecasting has highlighted the negative

impact of missing data on forecast precision [56], [57], which is particularly concerning as

it has been shown that the estimation error increases with the number of consecutive miss-

ing values. On top of that, historical datasets may be affected by other problems such as

systematic data quality issues, further compounding the negative impact of missing data. To

mitigate the effects of missing data, solutions to reconstruct and fill gaps in data are essential

part of weather forecasting.

Weather prediction is increasingly dependent on technology to process large amounts of

data from various sources. The amount of stored information is growing four times faster

than the world economy, while the processing power of computers is growing nine times

faster [58]. In view of this, big data analytics can help improve predictions by uncovering

patterns and correlations in the data [59]. This can also help to reconstruct missing data in

areas where there is limited information. Conversely, this growth in data also means that

the amount of missing data is increasing, making accurate reconstruction a crucial task. To

handle this challenge, forecasting methods must be able to handle large amounts of data,

multiple sources of data – and a wide variety of meteorological variables. This requires ad-

vanced methodologies that can adapt to the unique characteristics of big data in weather

forecasting.

Despite the abundance of weather data available, there are still many areas without his-

torical record. These locations, which may be remote or under-developed, have the poten-

tial to be significant generators of renewable energy; but, without historical weather data,

it is difficult to accurately predict the potential for energy generation in these areas. There-

fore, there is a growing need for methods that can generate weather data from limited inputs
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and location. This is particularly important for locations without detailed historical weather

records. The ability to generate weather data from limited inputs would allow simulations

of environmentally driven systems to be run at these locations. This would greatly improve

the understanding of the potential for renewable energy generation and would facilitate the

development of sustainable energy systems in these regions [60].

Therefore, the field of weather prediction is currently facing two major challenges:

• Missing or absent weather data

• Handling large volumes of data

2.4.3 Addressing Weather Data Challenges

Having a complete and large data set is critical to making accurate weather predictions; yet,

weather data are often incomplete or missing, which presents a significant challenge for

forecasting. This section explores various methods for addressing this challenge, includ-

ing techniques such as AnEn, Multiple Imputation, and Neural Network methods, as well as

Machine Learning techniques. AnEn, in particular, has been shown to be effective in both

weather reconstruction and forecasting. Despite its effectiveness, there are still limitations in

the AnEn-based literature that need to be addressed, such as a limited focus on reconstruct-

ing more recent weather data, a scarcity of techniques that involve more than two neighbor-

ing stations, and a lack of exploration on combining different techniques such as dimension

reduction to improve computational performance. By understanding the process of recon-

structing weather data, it is possible to identify problems and solutions based on existing

methods and ideas, and ultimately improve the accuracy of weather predictions.

2.4.3.1 Reconstructing Incomplete Weather Data

The first challenge of handling missing or absent data should be addressed through weather

data reconstruction techniques. Also known as Hindcasting, Weather Data Reconstruction is
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a technique used to recreate past weather conditions by applying a forecast model on a his-

torical starting point. This approach is adopted primarily for the validation of forecast mod-

els by comparing their output with past observations. Hindcasting also serves as a means

of reconstructing missing historical data, known as non-recorded observations, through the

use of a generic forecast model. Besides rebuilding data, research in the field of hindcasting

also aims to improve various aspects of meteorology, such as downscaling and forecasting

methods. One of the key techniques employed in meteorological data reconstruction is the

AnEn method [3], [4], which was presented in Section 2.3. Although the original AnEn was

first proposed to make a NWP prediction probabilistic, other Analog-based methods have

also aimed to reconstruct data using another way to take advantage of AnEn [7], [61]–[63]. In

other words, instead of giving a probabilistic prediction, AnEn can recreate data by utilising

the analogs’ found values from neighbouring stations or a related variable from the same

station.

To gain a comprehensive understanding of the literature on Hindcasting, it was con-

ducted a search for papers on data reconstruction with a focus on AnEn-related methods.

The goal was to identify gaps and issues in current literature and find potential solutions

by examining existing approaches that have been combined (or not) to improve reconstruc-

tion. It is important to note that, in contrast to the abundance of forecasting models avail-

able, techniques that aim to reconstruct weather data are relatively scarce. Many of these

techniques focus on rebuilding historical data, particularly data from previous centuries. Al-

though understanding weather patterns of the past can be valuable for a variety of applica-

tions, such as climate change research, it may not be as useful for forecasting current weather

patterns. To ensure accuracy in forecasting, it is essential to have accurate data from the re-

cent past. Therefore, studies that focus on reconstructing weather data from more recent

periods are of particular significance.

The literature on methods for weather data reconstruction is extensive, featuring a wide

range of approaches such as neural networks, multiple imputation, data assimilation, evo-

lutionary algorithms, multiple linear regression, and more. Among these methods, AnEn

stands out due to its adaptability and potential applicability in various contexts [7]. In this
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study, AnEn was successfully adapted to accurately reconstruct pressure, temperature, wind

speed, and wind direction variables, highlighting its relevance in renewable energy manage-

ment.

In comparison, Schneider [64] showcased the effectiveness of the regularized EM algo-

rithm for estimating missing values in climate datasets, while Barrios [65] found that Neural

Network (NN), Multiple Linear Regression (MLR), and the modified inverse distance weight-

ing performed best for monthly precipitation records reconstruction. Carro-Calvo [66] uti-

lized an evolutionary algorithm for wind speed reconstruction. Chen [67] employed stochas-

tic models for reconstructing precipitation, radiation, and temperature, and Torade [68] used

data assimilation for cloud cover, air pressure, precipitation, wind speed, and humidity re-

construction. Rao [69] and Mahjoobi [70] both applied NNs for storm wave and wave and

wind variables reconstruction, respectively, while Malekmohamadi [71] combined numer-

ical wave model with artificial neural networks for the same purpose. AnEn has also been

effectively employed for weather data reconstruction in [72], with possibilities for further

refinement.

Lastly, other methodologies, including spatial regression [73], multilayer perceptron [74],

and additional techniques, may be successful in this area. However, it is worth noting that

AnEn’s adaptability and successful application in various studies underscore its potential as

a leading technique in weather data reconstruction.

2.4.3.2 Tackling Large Data Sets in Reconstruction

The second challenge is about effectively managing large data sets. One approach is to use

data reduction techniques, as discussed in [75]. Another strategy is to employ clustering

techniques, as recommended by [76]. These techniques are useful for grouping similar data

points and reducing the computational burden of data analysis. Specific methods that have

been exploited include the k-means [7] and the kd-tree algorithm [8]. These methods aim

to group data points with similar characteristics, making data processing and analysis more

efficient, such as searching for analogous events. Similarly, dimension reduction techniques

also aim to improve computational performance and enable more information to be added
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without compromising method performance. This is achieved by identifying the part of the

data that can best represent it. These methods, such as principal component analysis, are

particularly useful for data-driven techniques. In summary, there are several potential ap-

proaches to address the challenges of large data sets and computational performance.

The AnEn approach has been successfully combined with k-means clustering technique

to improve algorithm efficiency, as demonstrated in studies such as [7], [62], [63]. One study

in special [62] compared the proposed k-means metric to search for analogs with metrics

based on fuzzy C-means clustering, cosine, and normalization, and found that the k-means

clustering metric performed better in terms of prediction accuracy. The k-means approach

groups similar weather data points, reducing the need to compare entire time series and

reducing the computational burden. The studies reconstructed data using a database of

predictor stations close to the station with missing data, and also exploited the use of multi-

ple predictor stations or variables, showing that the use of two predictor stations improved

hindcasting performance, leading up to 16% lower error, depending on the correlation be-

tween the predictor stations. Nevertheless, the reconstruction with more nearby stations

was not pursued, which is a gap in the research that could be further exploited. One po-

tential explanation for this is that utilizing more time series increases the amount of data

to be processed, slowing down processing time. To address this, dimension reduction tech-

niques could be employed to improve the computational performance of AnEn as well as its

combination with the k-means clustering.

In view of the factors discussed above, it is clear that the Analogue Ensemble (AnEn) ap-

proach is a highly promising method for addressing the challenge of data reconstruction.

To provide further evidence, a number of studies have also been conducted to compare

the effectiveness of the AnEn approach with other methods, such as Convolutional Neu-

ral Networks (CNN). For example, studies such as [77] and [78] have found that the AnEn

approach can improve prediction accuracy equally or even outperform CNNs when used as

post-processing methods for a Weather Research and Forecasting model. To supplement,

the implementation of the AnEn approach is relatively straightforward compared to other

machine learning methods [79]. These findings provide a strong basis for the continued use
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of AnEn and k-means clustering in future research and weather prediction and reconstruc-

tion applications.

While AnEn-based methods have been widely researched, there are still some unexplored

areas in the literature that need to be addressed, such as:

• Using more than two neighbouring stations for reconstructing data from a single sta-

tion.

• Combining AnEn with dimension reduction techniques, to improve the computational

performance of AnEn in data reconstruction.

To sum it up, weather data reconstruction is a vital process for tackling the challenges of

missing or incomplete data in weather prediction. Various techniques such as AnEn, multi-

ple imputation, and neural networks have been shown to be successful methods for recon-

structing weather data. Notably, the AnEn technique has been found to be a highly promis-

ing method for data reconstruction, with studies demonstrating that it can either improve

equally or perform better than other methods like convolutional neural networks. However,

there are still areas of research that need further exploration in the field of AnEn methods,

such as reconstructing weather data from recent periods, utilizing techniques that involve

more than two neighboring stations, and investigating the combination of different tech-

niques to enhance the computational performance of AnEn. These research gaps highlight

potential opportunities for further studies in the field of weather data reconstruction.
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Chapter 3

Combining Principal Component Analysis

with Analog Ensemble

Addressing the research gaps identified in Section 2.4.2, this chapter presents a study that

combines a modified version of the Analog Ensemble (AnEn) method with Principal Compo-

nent Analysis (PCA) for data reconstruction and dimensionality reduction of meteorological

datasets. This approach was chosen to enable the integration of data from multiple weather

stations in close proximity while maintaining computational performance. This is particu-

larly relevant because while AnEn benefits from large training datasets, the data processing

required to identify analogues can sometimes make the computational cost prohibitive [80].

In this chapter, the hindcasting technique is applied to reconstruct five meteorological

variables at a specific station using data from the same variables recorded at neighboring

stations. By combining AnEn and PCA, the aim is to decrease the dimensionality of the me-

teorological variables and retain the most relevant information, followed by AnEn to identify

analogs in fewer dimensions and generate reconstructed values for an incomplete dataset.

The performance of this method is evaluated using a dataset of meteorological variables col-

lected at three villages in the Northern region of Portugal over a seven-year period.
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Section 3.1 presents the dataset used in the chapter. In Section 3.2 the correlations be-

tween the different meteorological variables and stations are studied. Section 3.2.1 intro-

duces the PCA technique and Section 3.2.2 describes the AnEn method. Section 3.4 is dedi-

cated to the application of AnEn method to the principal components, in the reconstruction

of meteorological variables of a single station. Some final considerations are presented in

section 3.5.

3.1 Meteorological Dataset

The data used in this chapter was obtained from meteorological stations belonging to the the

Polytechnic Institute of Bragança (IPB). The oldest records started in 1999. The stations are

located in the northeast region of Portugal, near the villages of Edroso (l at i tude : 41.912778;

long i tude : −7.152833), Soutelo (l at i tude : 41.92116; l ong i tude : −6.808528) and Valongo

(l at i tude : 41.923056; long i tude : −6.950833). Notably, these locations are near the border

with Spain (refer to Figure 3.1 for the map of the station locations).
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Figure 3.1: Geolocation of the meteorological stations.

The meteorological variables available in this dataset, measured at each station, are:
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High Relative Humidity (HRH) [%]; air temperature (ATMP) [◦C]; wind speed (WSPD) [m/s]

averaged over a 30 minutes period; peak gust speed (GST) [m/s] during the same 30 minutes

period; wind direction (WDIR) [◦] from the North in a clockwise direction.

All three stations have data available from 2000 to 2007, with a sampling frequency of 30

minutes. However, one often finds time windows where there is no record, and also different

time series intervals. To overcome these problems, an interpolation (nearest-neighbour or

linear) was performed on the data, in order to standardize the data intervals to every 30

minutes. This interpolation process is limited to 4 missing values, since larger intervals could

distort the data in an excessive manner.

Despite the interpolation process, a considerable amount of values Not Available (NA)

persisted. Table 3.1 displays the number of missing values, the minimum and maximum

values for each variable, and the percentage of data availability. The Valongo station has

most data, while Soutelo data is the sparsest.

Table 3.1: Meteorological datasets characterization.

Station Variable Min Max #NA Availability (%)

Soutelo

WSPD 0 17 63915 47.93
GST 0 30.3 49114 59.98

WDIR 0,00 337.5 66628 45.71
ATMP -10.3 33.6 63915 47.93
HRH 10.0 100 65353 46.75

Edroso

WSPD 0 113.5 27330 77.73
GST 0 114.0 27330 77.73

WDIR 0 337.5 56898 77.73
ATMP -32.10 33.2 28411 76.85
HRH 9 100 28410 76.86

Valongo

WSPD 0 10.3 18279 85.11
GST 0 19.2 18279 85.11

WDIR 0 337.5 20253 83.50
ATMP -9.60 40.1 18307 85.08
HRH -11.0 100 18307 85.08

For the reconstruction experiments, the meteorological stations of Soutelo and Edroso

are used as predictor stations, while Valongo is the predicted station. The data was sepa-

rated into two datasets. The first has data for a training period, from the beginning of 2000
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to the end of 2006. The second contains data from the year of 2007, for a prediction (recon-

struction) period.

3.2 Data Correlation

Consider the original multivariable historical dataset represented by the matrix X

X = [
x1 x2 · · · xq

] ∈ IRn×q , (3.1)

Then, the matrix X is used to obtain the correlation matrix, given by

C = 1

n
XT X (3.2)

where each (i , j )-entry of the matrix C is the correlation between the meteorological vari-

ables xi and x j .

Figure 3.2 shows the correlation between the five variables, for each station. It can be ob-

served that: WSPD and GST were the most correlated variables, HRH and ATMP showed in-

verse correlation almost equally in all stations, at Valongo station, WSPD and GST presented

a low correlation with WDIR and ATMP; also, HRH was somewhat inversely correlated with

WSPD and GST.
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Figure 3.2: Correlation between variables.

Similarly, Figure 3.3 presents the correlations between stations, for all the five variables,
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Figure 3.3: Correlation between stations.

the three stations showed high correlation in the ATMP and HRH. Between Valongo and

Soutelo, WSPD and GST showed a moderate correlation and a slightly lesser correlation from

Edroso and Valongo. It is worth noting that all the variables presented some degree of corre-

lation.

3.2.1 Principal Components Analysis

The Principal Components Analysis (PCA) technique enables to reduce the dimensionality

of a data set consisting of a large number of interrelated variables, while retaining as much

as possible of the information of variation present in the data set. This is achieved by trans-

forming to a new set of uncorrelated variables, called the principal components (PCs), which

are ordered so that the first few contain most of the variation information present in original

variables data set [81]. The application of PCA to the dimension reduction of the predictor

variables is next briefly described.

The original data set of predictor variables may be represented by the matrix

X = [
x1 x2 · · · xq

] ∈ IRn×q , (3.3)

where predictor variables are represented by the q column vectors x j , with j = 1, . . . , q , each

one with n records of the value of a given meteorological variable.

To identify the dimensions along which the data are most dispersed, i.e., the dimensions

that best differentiate the predictor data set, it is necessary to compute the principal compo-

nents (PCs) vectors. Such can be achieved by the thin singular value decomposition of the
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predictor matrix X, given by

X = UΣVT , (3.4)

where the columns of the matrix U ∈ IRn×q contains the left singular vectors, the diagonal

matrix Σ ∈ IRq×q contains the singular values σi , with σ1 ≥ σ2 ≥ . . . ≥ σq ≥ 0, and the matrix

V ∈ IRq×q contains the right singular vectors v j , with j = 1, . . . , q , that are the principal com-

ponents directions of X (for details see [82]). The matrices of the left and right singular vectors

are orthonormal, i.e., UT U = VT V = I, where I is the identity matrix.

The vectors

z j = Xv j , with j = 1, . . . , q, (3.5)

are the principal components (PCs) of the original data set and define new variables that will

be used instead of the original predictor variables. The first principal component, z1, has

the largest sample variance, equal to σ2
1/n, amongst all normalized linear combinations of

the columns of X [82]. The second principal component, given by z2 = Xv2 is the new vari-

able with the second largest variance (σ2
2/n). Likewise, the remaining principal components

define new variables with decreasing variances.

The new variables z j are linear combinations of the columns of X, i.e., the original pre-

dictor variables x1,x2, . . . ,xq , being given by

z j = v1 j x1 + v2 j x2 + . . .+ vq j xq , with j = 1, . . . , q, (3.6)

where the coefficients vi j , with i = 1,2, . . . , q , designated as loadings, are the elements of

the vector v j . The magnitude of a coefficient is related to the relative importance of the

corresponding original variable in the principal component.

The substitution criterion of the original predictor variables, x1, x2, · · · , xq , by p PCs,

z1, · · · , zp , with p < q , in the AnEn or ClustAnEn methods, must take into account the in-

fluence of the new variables in the original data set. This influence is directly proportional

to the respective variances which are given by σ2
i /n, with i = 1,2, . . . , q . It is expected that the

first few principal components, corresponding to the largest singular values, account for a
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large proportion of the total variance, being all that is needed do describe the original data

set [83]. Therefore, one of the possible criteria that can be used to choose how many PCs

should be used, is the magnitude of the respective singular values. If the original variables

are previously scaled, by dividing each variable by the respective standard deviation, each of

them will have a standard deviation equal to one. If a PC has a standard deviation greater

than one, it means that it contains more information than any of the original variables and,

as such, should be chosen to represent the original data set.

The substitution criterion of the original variables by a few of the new variables must

take into account the influence of the new variable on the variance of the original data. This

influence is directly related to singular values. Usually, the first few principal components,

corresponding to the largest singular values, account for a large proportion of the total vari-

ance, so they are all that is needed for future analyses [83].

A decomposition into principal components (PC s) of the five original meteorological

variables was performed. Tables 3.2 and 3.3 show the loadings of each PC in the case of

the stations of Soutelo and Edroso. The Valongo station did not participate in this analysis

because it was used only as the predicted station. Additionally, it is also included the pro-

portion between the variance of each PC and the sum of the variances over all the PC s.

Table 3.2: Variable loadings in each PC and variance proportion of each PC.

Station Variable PC1 PC2 PC3 PC4 PC5

Soutelo

WSPD 0.616 -0.341 0.058 -0.067 0.704
GST 0.611 -0.352 0.047 0.034 -0.706

WDIR 0.267 0.338 -0.901 -0.037 0.001
ATMP -0.278 -0.574 -0.326 0.694 0.058
HRH 0.313 0.561 0.274 0.714 0.043

Variance Proportion 0.404 0.350 0.161 0.075 0.010

Edroso

WSPD -0.668 0.221 -0.089 -0.061 -0.701
GST -0.684 0.166 -0.057 0.120 0.699

WDIR -0.137 -0.144 0.962 0.178 -0.053
ATMP -0.218 -0.670 0.002 -0.707 0.058
HRH 0.132 0.675 0.251 -0.671 0.114

Variance Proportion 0.385 0.330 0.199 0.067 0.020
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Table 3.2 presents the coefficients that multiply each variable into the principal com-

ponents. It shows that for both stations, PC1 mainly contains the effects of the variables

WSPD, GST, and accounted for 40.4% of all the variance. These are wind-related variables,

and therefore more correlated, in according with Figure 3.2. The PC2 mainly reflects the ef-

fect of the ATMP and HRH, the second highest correlation between variables. Note also that

the PC3 is essentially dominated by WDIR. Regarding the variance proportion, the PC2 and

PC3 represent 35.0% and 16.1% of the total variance, respectively.

It should be mentioned that for Soutelo, PC1, PC2 and PC3 accounted for 91.5% of all

variances and, for Edroso, the three PCs accounted for 91.4%. This shows that in addition to

presenting the same PC decomposition pattern, both stations also showed almost the same

proportion of variance in the first three components.

Table 3.3: Variable loadings in each PC and variance proportion of each PC, without WDIR
variable.

Station Variable PC1 PC2 PC3 PC4

Soutelo

WSPD 0.677 -0.201 0.060 -0.705
GST 0.674 -0.213 -0.034 0.706

ATMP -0.195 -0.681 -0.703 -0.053
HRH 0.219 0.671 -0.706 -0.042

Variance Proportion 0.496 0.400 0.092 0.012

Edroso

WSPD -0.562 0.439 -0.069 -0.698
GST -0.582 0.391 0.023 0.712

ATMP -0.401 -0.591 -0.699 0.020
HRH 0.429 0.551 -0.711 0.072

Variance Proportion 0.568 0.331 0.088 0.013

Table 3.3, similarly to Table 3.2, shows the contribution of each variable in each princi-

pal component, but without WDIR in the analysis. It can be observed that, for Edroso, the

variable loadings are more evenly distributed for PC1 and PC2. However, at both stations,

the same pattern observed with WDIR repeats in the first two components. That is, the pre-

dominance of wind-related variables in PC1 and temperature-related (ATMP and HRH) in

PC2.

As expected, since there are only 4 variables in the analysis, the first three components

represent 98.8% and 98.7% of the proportion of variance, respectively for Soutelo and Edroso.
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This shows that by decreasing the number of variables in the analysis, it is possible to keep

more information in the first principal components and, at the same time, have less infor-

mation overall.

3.2.2 Analogues Ensemble Method

Besides providing probabilistic forecasts, the AnEn method offers the additional capability of

reconstructing missing meteorological records within a time series. This data reconstruction

process relies on one or more predictor time-series that exhibit a certain degree of correla-

tion with the incomplete series to be reconstructed or predicted.

A practical application scenario consists of reconstructing data from a meteorological

station using data from neighbouring stations. In this context, several time series are used

as predictors, being represented by the column vectors

x j ∈ IRn , with j = 1,2, . . . , q, (3.7)

each one containing n records of the values of certain meteorological variables. For simplic-

ity, these vectors are often be referred to as predictor variables.

The predictor variables can be used in a dependent or independent way. In the dependent

variant, the analogs selected in different predictor variables must be concomitant (overlap-

ping) in time. In the independent version such is not mandatory.

In Figure 3.4 the dependent version of the AnEn method is illustrated with q predictor

variables. The historical data is complete in the predictor variables and incomplete in the

reconstructed/predicted one (y ∈ IRm). The period of missing records is denoted as the re-

construction period, but, often, it is also designated as prediction period. This designation

originates from the application of the AnEn method to the post-processing of meteorolog-

ical forecasts, in which the predictor series contains the history of forecasts. In this study,

the reconstruction period corresponds to the part of the time-series in which the records are

reconstructed (or, by analogy, predicted). The period for which all series contain full data is
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Figure 3.4: Reconstruction of missing meteorological records using the AnEn method with a
dependent analog search.

known as the training period. The longer the training period (compared to the prediction pe-

riod), the better the AnEn method is expected to perform (the more comparison data exists,

the more likely it will be to find meteorological conditions similar to those sought).

As depicted in Figure 3.4, firstly (step 1), a certain number of analogs are selected in the

training period of the predictor variables, due to being the past observations most similar

to the predictor record at instant t ∈ {tm , ..., tn}. All compared records are vectors of 2k + 1

elements, where each element is the value of a predictor at successive 2k +1 instants of the

same time window, and k > 0 is an integer that represents the width of each half-window

(into the past, and into the future) around the central instant of the time window. In this

work, k = 1 and the resulting time window corresponds to one hour, as the time series had a

sampling period of 30 minutes. Additionally, the training period ranges from 2000 to the end

of 2006 and the prediction period is 2007.

At the end of step 1, a predefined number of analogs was selected - an analog ensemble.

The choice of these analogs is made according to the resulting value of a metric that enables

to compare the vectors of records (see [62]). Note that comparing vectors, instead of single
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values, accounts for the evolutionary trend of the meteorological variable around the central

instant of the time window, allowing for the selection of analogs to take into consideration

weather patterns (instead of single isolated values).

In step 2, the analogs are mapped onto observations of the predicted station. This map-

ping is done only for the central time of each analog time window, i.e., for each analog vector

a single observed value is selected in the training period.

Finally, in step 3, the observed values selected are used to predict (reconstruct) the miss-

ing values in the predicted variable y, through its average (weighted or not). When this target

value is actually available as real observational data (as it happens in this study), it becomes

possible to compute the error of the reconstruction/prediction and, consequentially, to val-

idate the method.
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Step 1

Value Value Value

Data
Reconstruction
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Step 2 Step 3

Training Period Prediction Period

Vector

Independent Analog Search

Figure 3.5: Reconstruction of missing meteorological records using the AnEn method with
an independent analog search.

To provide clarity on the independent AnEn method, Figure 3.5 illustrates the indepen-

dent method of analogs definition during the back search process. The independent AnEn

method searches for analogs individually across predictors (xn). This results in an increase in
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the calculations required for searching all potential analogs, proportional to the number of

predictors n. The remaining steps in the process are consistent with those in the dependent

AnEn version.

3.3 Evaluation Metrics for Reconstruction Accuracy

Root Mean Square Error (RMSE) [84] is a widely used metric to assess the accuracy of a pre-

diction. It represents the square root of the average squared differences between the pre-

dicted and observed values. The smaller the RMSE value, the better the forecast model’s

accuracy. RMSE is given by

RMSE =
√√√√ 1

N

N∑
i=1

( fi −oi )2 (3.8)

Bias is another measure used to evaluate accuracy [84]. It quantifies the average devi-

ation between the predicted and observed values. A positive Bias value indicates that the

model overestimates the observations, while a negative Bias value signifies underestimation.

The ideal Bias value is zero, which indicates a perfectly unBiased model. Bias is expressed as

Bias = 1

N

N∑
i=1

( fi −oi ) (3.9)

Furthermore, the Standard Deviation Error (SDE) is another measure for evaluating ac-

curacy. However, SDE is derived from RMSE, and therefore, RMSE can also be described as a

function of Bias and SDE:

RMSE =
√

SDE 2 +Bi as2 (3.10)

In this dissertation, some experiments will use SDE as an evaluation metric; however,

most of the experiments will employ one or two metrics to display the accuracy: (1) RMSE

or (2) Bias in combination with RMSE. As SDE can be described as a function of RMSE and

Bias, it is unnecessary to display SDE with the others.
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3.4 Reconstruction with AnEn Method on PCs

In this section the AnEn method is applied to a hindcasting problem with the dataset pre-

sented in Section 3.1. Several experiments were conducted with the aim of evaluating the

effects of using principal components instead of the original historical variables. The Bias

error (Bias) and the root mean square error (RMSE) were used to assess the accuracy of the

results.

The tests were divided into three combinations of PCs, according to the magnitude of the

variance proportion. Additionally, the results obtained with the classical AnEn method ap-

plied to the original variables are also presented, allowing for a comparison with the results

obtained with the PCs. For each combination of PCs, one test with dependency and one

without is presented. It is important to note that when using only PC1, or using the classical

AnEn method, there cannot exist dependency, since there is only one time-series (see [85]).

Table 3.4 shows that for Soutelo predicting Valongo, in general, the use of two or three

PCs results in smaller errors in WSPD, GST and WDIR. Meanwhile, AnEn was superior in

comparison to all PC combination in the HRH and ATMP variables, with the exception of

the Bias measure in the HRH.

Table 3.4: Valongo variables predicted by Soutelo PCs and by the classical AnEn.

Soutelo predicting Valongo

Variable Depend
1 PC 2 PC 3 PC AnEn

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

WSPD
Yes -0.13 0.76 -0.05 0.65 -0.08 0.65 -0.08 0.71
No — -0.04 0.73 -0.06 0.76 —

GST
Yes -0.29 1.78 -0.09 1.50 -0.15 1.52 -0.24 1.64
No — -0.06 1.72 -0.09 1.82 —

WDIR
Yes 1.25 1.75 1.23 1.74 1.26 1.78 1.28 1.84
No — 1.23 1.73 1.23 1.73 —

ATMP
Yes -1.18 8.55 0.48 4.33 -0.96 4.22 -0.08 2.31
No — -0.42 6.17 -1.41 6.60 —

HRH
Yes -4.18 19.89 -8.76 18.70 -5.14 15.74 -5.05 13.89
No — -6.16 16.74 -4.05 16.28 —

In turn, Table 3.5 shows the results of Valongo variables predicted by Edroso PC s. It can
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Table 3.5: Valongo variables predicted by Edroso PCs and by the classical AnEn.

Edroso predicting Valongo

Variable Depend
1 PC 2 PC 3 PC AnEn

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

WSPD
Yes -0.07 0.74 -0.06 0.69 -0.06 0.69 -0.03 0.85
No — -0.05 0.76 -0.04 0.77 —

GST
Yes -0.09 1.72 -0.09 1.62 -0.07 1.62 -0.04 1.87
No — -0.05 1.82 -0.03 1.85 —

WDIR
Yes 0.63 1.76 0.64 1.77 0.63 1.75 0.64 1.78
No — 0.64 1.76 0.64 1.77 —

PRES
Yes 0.32 5.36 0.42 5.20 0.43 4.36 -0.83 2.01
No — 0.21 5.36 0.16 5.12 —

ATMP
Yes -0.49 8.619 -0.50 5.11 -0.45 3.44 -0.14 2.69
No — -0.28 6.61 -0.21 7.34 —

also be observed that, for most variables, the smallest errors are obtained with two or three

PCs. The AnEn method achieves good results in the case of the RMSE measure in the ATMP

and HRH variables.

Tables 3.6 and 3.7 concern to the same type of experiments presented in Tables 3.4 and 3.5,

but now without the wind direction (WDIR) variable. Thus, in these tests the WDIR variable

was not used to obtain the PCs.

Table 3.6: Valongo variables predicted by Soutelo PCs and by the original AnEn method with-
out the WDIR variable.

Soutelo predicting Valongo

Variable Depend
1 PC 2 PC 3 PC AnEn

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

WSPD
Yes -0.06 0.72 -0.03 0.65 -0.02 0.65 -0.08 0.71
No — -0.04 0.72 -0.04 0.76 —

GST
Yes 0.11 1.68 0.04 1.50 -0.01 1.47 -0.24 1.64
No — -0.06 1.72 -0.05 1.82 —

ATMP
Yes -1.54 8.83 -0.53 4.15 -0.17 2.10 0.08 2.31
No — -1.05 6.02 -1.14 6.19 —

HRH
Yes 3.12 19.91 -5.61 16.37 -4.95 13.97 5.02 13.89
No — -4.50 15.45 -3.59 15.24 —

In Table 3.6, relative to Valongo predicted by Soutelo, the best scores of RMSE (lowest)
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Table 3.7: Valongo variables predicted by Edroso PCs and by the original AnEn method with-
out the WDIR variable.

Edroso predicting Valongo

Variable Depend
1 PC 2 PC 3 PC AnEn

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

WSPD
Yes -0.04 0.81 -0.06 0.79 -0.08 0.81 -0.04 0.86
No — -0.04 0.83 -0.04 0.84 —

GST
Yes -0.06 2.0 -0.12 1.9 -0.16 2.0 -0.05 1.9
No — -0.07 2.0 -0.08 2.0 —

ATMP
Yes 0.06 6.1 0.43 4.0 -0.30 2.7 -0.19 2.8
No — 0.44 5.5 0.00 5.5 —

HRH
Yes -3.2 15.4 -4.3 15.8 -5.7 15.0 -8.2 16.6
No — -4.2 15.1 -4.6 15.3 —

are generally obtained with three PCs, with the exception of the HRH variable, where the

smallest RMSE is obtained with the AnEn method.

In the case of Valongo predicted by Edroso (Table 3.7), the lowest errors obtained were

more equally distributed among the different combinations of components. But PC3 still

remained superior in two (ATMP and HRH) of the four variables analyzed.

Without WDIR in the analysis, the method was able to predict the ATMP and HRH vari-

ables more successfully at both stations. For example, in comparison to the analysis with all

the 5 variables, ATMP had an RMSE decrease of 50.27% at Soutelo, which allowed the 3 PC

combination to outperform the classic method (AnEn).

The predictions of the wind-related variables were weakened by the absence of wind di-

rection at Edroso, since the WSPD and GST errors increased. This was not observed at the

Soutelo station, indicating that only at Edroso the WDIR was important towards predicting

the wind-related variables.

3.5 Conclusions and Future Directions

This first study exploited the possibility of applying the AnEn method to principal compo-

nents instead of original variables. The results showed that this technique is effective in re-

constructing wind-dependent variables, allowing to reduce the number of original variables
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to be processed in the historical dataset. Such reduction happens because the variables are

correlated with each other. Consequently, the five original variables can be replaced by only

two or three principal components.

With the WDIR in the analysis, the effectiveness of the reconstruction is not as good in the

non-wind dependent variables, such as relative humidity and temperature. The presence of

wind direction can slightly improve the prediction of wind-related variables at Edroso, but

at the cost of significantly worsening the ATMP and HRH reconstruction at both stations.

Therefore, the non-presence of WDIR promoted more balanced predictions among the vari-

ables, enabling the combination of 3 PC to have lower errors in 6 out of 8 RMSE measures.

This study was very conditioned by the dataset used, where there are many missing

records. On the other hand, most of the variables, with the exception of the wind-dependent

variables, are not correlated with each other and, therefore, it is difficult to reduce their di-

mension.

In the next chapter, the same methodology (PCA and AnEn) is applied to a better-quality

dataset. Such will also allow to better assess the virtues of this new approach when using

more predictors that are correlated.
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Chapter 4

PCAnEn: Consolidating the combination

of PCA and AnEn

The exploratory study of Chapter 3 laid the foundation for incorporating correlated and un-

correlated variables into the prediction process. It was observed that when correlated vari-

ables are included in the PCA analysis, the initial new dimensions capture a higher propor-

tion of the variance, thereby retaining more information from the original dataset. On the

contrary, the inclusion of uncorrelated variables was found to reduce prediction accuracy

due to the decreased information content in the transformed components and the increased

difficulty of compressing information into fewer components.

In light of these findings, this chapter seeks to combine PCA and AnEn once more, but

with an enhanced dataset comprising a larger number of weather stations with more avail-

able data. By applying PCA to reduce the dimensionality of the dataset, when variables are

correlated, these new dimensions cab be used in predicting variables for nearby weather sta-

tions based on the data from other stations included in the PCA. The overarching objective is

to merge PCA and AnEn methodologies to effectively reduce dataset dimensions, ultimately

resulting in the development of the PCAnEn method. This approach facilitates data recon-

struction for a specific weather station using neighboring station data, while allowing for

the incorporation of additional stations and information without compromising processing
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time.

The remainder of this chapter is structured as follows: Section 4.1 introduces the dataset

employed, along with an analysis of the correlations between meteorological variables and

stations, Section 4.2 details the process of decomposing the new dataset into principal com-

ponents using PCA, Section 4.3 focuses on the application of the innovative PCAnEn method

to the principal components for reconstructing meteorological variables at a single station,

along with the presentation of accuracy and computational efficiency test results. Lastly,

Section 4.4 offers concluding remarks and research directions used in the next chapter.

4.1 Meteorological Dataset

The National Data Buoy Center (NDBC), located in the southern Mississippi, in the United

States, operates and maintains a network of data collection buoys and coastal stations, with

collected data being publicly available [86]. The buoy network is spread worldwide, with the

largest numbers located in North America.

Figure 4.1: Geolocation of the meteorological stations.

Figure 4.1 shows weather stations maintained by NDBC in the region near Hampton and

Newsport News. In this study, the WDSV2 station is the predicted station. The predictors

stations are within a radius of approximately 30 km. For the experiments, the stations were
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ordered based on their proximity to WDSV2. The closest are SWPV2, CRYV2 and MNPV2,

and so were used first in the test setups.

Table 4.1: Meteorological dataset characterization.

Station
WSPD GST

Min Mean Max Avail(%) Min Mean Max Avail(%)
WDSV2 0.0 5.7 26.7 97.5 0.0 6.6 32.2 97.5
YKRV2 0.0 5.9 27.6 98.0 0.0 6.9 39.6 98.0
YKTV2 0.0 4.3 23.8 97.7 0.0 5.4 32.8 97.7

MNPV2 0.0 2.6 18.6 96.4 0.0 4.1 30.7 96.5
CHYV2 0.0 5.4 29.7 95.5 0.0 6.9 34.9 95.5
DOMV2 0.0 3.9 24.3 97.5 0.0 5.3 32.1 97.5
KPTV2 0.0 4.7 29.6 97.4 0.0 6.0 35.6 97.5
SWPV2 NA NA NA 0 NA NA NA 0
CRYV2 0.0 4.1 22.2 82.5 0.0 15.6 30.5 80.5

Station
PRES ATMP

Min Mean Max Avail(%) Min Mean Max Avail(%)
WDSV2 970.1 1017.4 1044.9 93.6 -12.7 16.5 44.4 87.9
YKRV2 972.6 1017.4 1043.9 98.6 -12.8 15.9 36.3 98.5
YKTV2 974.7 1017.3 1044.3 98.4 -13.5 16.0 37.8 98.2

MNPV2 968.5 1017.5 1044.1 97.9 -13.8 16.8 37.3 97.7
CHYV2 985.2 1017.0 1042.7 31.1 -12.2 16.1 36.5 97.0
DOMV2 972.8 1017.8 1044.5 98.3 -12.6 16.1 37.2 98.2
KPTV2 NA NA NA 0 NA NA NA 0
SWPV2 972.0 1017.7 1044.1 96.1 NA NA NA 0
CRYV2 970.3 1017.6 1044.3 82.8 -10.5 16.5 36.3 34.3

The meteorological variables available in this dataset, measured at each station, are: air

pressure (PRES) [bar]; air temperature (ATMP) [◦C]; wind speed (WSPD) [m/s], peak gust

speed (GST) [m/s]. WSPD and GST can vary significantly over short time intervals, and spo-

radic data gathering incompletely describes their real behavior. NDBC solved this problem

by sampling the wind speed (WSPD) every 6/8 seconds and averaging the readings across 6

minutes; also, it considers the maximum wind speed on the same interval as the peak gust

speed (GST). In turn, the collection of ATMP and PRES is straightforward: the instantaneous

value every 6 minutes is the one recorded in the NDBC database.

The characterization of these variables is shown in Table 4.1. Variables with more than
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85% data availability were selected for the analysis. However, variables have different avail-

ability at different stations. Thus, for each variable, different stations combinations were

chosen to maximize data availability.

4.1.1 Data Correlation

A correlation study between variables and stations was performed to define the test setups.

Variables and stations that are sufficiently correlated with each other can be used together in

the PCA technique, as more correlation allows more information to be kept in fewer dimen-

sions.

Figure 4.2 presents the correlations between different meteorological variables within

the same station. In stations KPTV2 and CHYV2 there are only records of two (WSPD and

GST) and three (WSPD, GST and ATMP) variables, respectively. In the other stations, there

are records of four variables: WSPD, GST, ATMP and PRES.
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Figure 4.2: Correlation between variables at each station.

In all stations there is a high correlation between WSPD and GST. A mild inverse correla-

tion is observable between ATMP and PRES. The other variable interactions showed low and

inconsistent correlation among the stations.
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Furthermore, Figure 4.3 shows the correlations for the same variable between different

stations. It can be observed that, with minor exceptions, correlations are high, with variables

PRES and ATMP showing the highest correlations between different stations.
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Figure 4.3: Correlation between stations for each variable.

4.2 Dataset Decomposition Using Principal Components

As seen in 3.2.1 the PCA technique identifies the dimensions along which the data are most

dispersed (the dimensions that best differentiate the data set under analysis, that is, its prin-

cipal components).

A decomposition into principal components (PC s) of the original meteorological vari-

ables, coming from different stations, was performed. Tables 4.2 and 4.3 show the standard

deviations of each PC for a different amount of input stations. In table 4.2, PC s were cal-

culated from the variables WSPD and GST coming from a number of neighboring stations
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between 2 and 6. In Table 4.3, PC s were calculated from the variables PRES and ATMP from

a number of neighboring stations ranging from 2 to 5. The variables from the WDSV2 station

were not included in the original variables because WDSV2 was used only as the predicted

station.

In Table 4.2 the PCA is performed from the data matrix that includes two meteorological

variables, GST and WSPD, coming from different stations. This is because GST and WSPD

are highly correlated (recall section 4.1.1) and so it is possible to use them together in the

PCA. In this table, standard deviations above 1 are highlighted. When this occurs, the cor-

responding PC has a higher variance than the original scaled variables and, consequently,

more information.

Table 4.2: Standard deviation of the PC s generated from the variables WSPD and GST com-
ing from different stations together.

Standard Deviation

Stations
WSPD and GST

PC1 PC2 PC3 PC4 PC5 PC6

2 1.771 0.881 0.234 0.169 — —
3 2.059 1.027 0.782 0.207 0.172 0.148
4 2.386 1.030 0.807 0.688 0.207 0.178
5 2.689 1.038 0.848 0.691 0.609 0.207
6 2.913 1.047 0.885 0.834 0.652 0.607

It can also be seen in Table 4.2 that, for most cases, the standard deviation is greater

than 1 for PC 1 and PC 2, meaning that these two new variables concentrate the informa-

tion contained in all the original variables (included in the data matrix H). As in [12], the

PC s with standard deviations higher than 1 were chosen to represent the original dataset. It

can be seen that for WSPD and GST, PC1 and PC2 showed values higher than 1, except for

the 2-station configuration. As expected, by increasing the amount of input stations, more

components are needed to represent the original dataset.

Table 4.3 shows the standard deviations of the PC s computed from the ATMP and PRES

variables. It is important to note that, unlike Table 4.2, these variables were analyzed sepa-

rately, because they do not correlate sufficiently with each other. The same pattern of values
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was observed for both variables, that is, PC1 was sufficient to represent the data in all con-

figurations.

Table 4.3: Standard deviation of the PC s generated from the variables PRES and ATMP com-
ing from different stations together.

Standard Deviation

Stations
PRES ATMP

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

2 1.414 0.039 — — 1.408 0.137 — —
3 1.731 0.040 0.039 — 1.721 0.154 0.126 —
4 1.998 0.063 0.039 0.028 1.987 0.154 0.129 0.102
5 2.233 0.086 0.050 0.037 2.220 0.185 0.139 0.102

4.3 Experiments with the PCAnEn Method

In this section, the PCAnEn method is applied to a hindcasting problem with the dataset

presented in Section 6.1. Several experiments were conducted in order to evaluate the effects

of using principal components instead of the original historical data. The accuracy of the

reconstructed values is assessed by comparison to the exact values recorded at the WDSV2

station during the prediction period.

The available historical data ranges from 2011 to the last hour of 2018, and the recon-

struction period is 2019. Because of the high resolution (6 minutes) and large amount of

data, it was decided to make predictions only between 10 am and 4 pm, every 6m. For the

classical AnEn experiments, the original data is used instead of the PC s.

All tests were performed in duplicate, using two different implementations of the meth-

ods, one in R [87] and another in MATLAB [88]. This provided confidence on the numeri-

cal results obtained (which were expected, and verified, to be identical) and also allowed to

compare the respective computational performance. The computer system used in the ex-

periments was a virtual machine hosted on the The Research Centre in Digitalization and In-

telligent Robotics (CeDRI) virtualization cluster, running Ubuntu 20.04.4 LTS. The resources

associated with the virtual machine were 16 virtual cores of a Intel Xeon W-2195 CPU, 64GB
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of RAM and 256GB of secondary storage (SSD-based).

The tests were divided between different amounts of predictor stations. In addition, the

results obtained with the classical AnEn method applied to the original variables are also

presented, allowing a comparison with the results obtained with the PCAnEn methodology.

Note that for AnEn, the same stations as the PCAnEn (2-station configuration) were chosen

for the prediction; the variable is predicted from the same variable located in the two closest

stations, in order to ensure the most favourable configuration of the AnEn method.

The Subsection 4.3.1 presents and discusses the accuracies obtained from the experi-

ments. The Subsection 4.3.2 shows a comparison of performance between the AnEn and

PCAnEn methods, and between R and MATLAB implementations.

4.3.1 Comparing Accuracy

Figure 4.4 allows to compare the accuracy of the AnEn and PCAnEn methods, with different

amounts of stations, for the four meteorological variables considered in this study. For each

combination, the number of PC s used is 1 or 2, as indicated in Tables 4.2 and 4.3.
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Figure 4.4: Comparison of the RMSE for different variables and number of stations.

The chart is based on the accuracies provided by the R implementation; however, they
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Table 4.4: Accuracy comparison between the PCAnEn and AnEn methods.

Method #St Errors
R MATLAB

WSPD GST ATMP PRES WSPD GST ATMP PRES

PCAnEn

2
Bias -0.09 -0.35 0.20 0.44 -0.09 -0.35 0.20 0.44

RMSE 1.67 1.97 1.02 0.51 1.68 1.97 1.02 0.51

3
Bias -0.06 -0.33 0.18 0.37 -0.06 0.33 0.18 0.37

RMSE 1.35 1.55 0.85 0.47 1.35 1.55 0.85 0.47

4
Bias -0.04 -0.29 0.14 0.36 -0.04 -0.29 0.14 0.36

RMSE 1.29 1.48 0.79 0.44 1.29 1.48 0.79 0.44

5
Bias -0.06 -0.30 0.12 0.51 -0.06 -0.30 0.12 0.51

RMSE 1.21 1.39 0.73 0.60 1.21 1.39 0.73 0.60

6
Bias -0.07 -0.31 — — -0.07 -0.31 — —

RMSE 1.26 1.44 — — 1.26 1.44 — —

AnEn 2
Bias -0.15 -0.35 0.16 0.41 -0.15 -0.35 0.16 0.41

RMSE 1.73 1.77 0.88 0.52 1.73 1.77 0.88 0.52

are very similar to those of the MATLAB implementation, as may be seen in Table 4.4; this

table provides the full accuracy results, including also the Bias in addition to the RMSE.

The smallest errors were obtained by the PCAnEn method in the configurations with 4

or 5 stations. For the variables ATMP, GST and WSPD, 5 stations showed better RMSE. In

contrast, for PRES, the 4-station configuration provided the most accurate prediction.

For instance, as shown in Table 4.4, the predictions of WSPD and GST with the PCA-

nEn method generated 30% and 21.8% lower RMSE errors compared to the classical AnEn

method, respectively. To a lesser effect, the reconstructions of the PRES and ATMP variables

showed a reduction of 13.6% and 16.7% with the PCAnEn method. Moreover, the lowest BIAS

measurements were obtained with 4 stations in all variables.

As depicted in Figure 4.4, the non-PRES variables predicted by PCAnEn consistently ex-

hibited superior prediction performance across all configurations when compared to AnEn,

except for the configuration involving 2 stations. This outcome is unsurprising since these

stations were identical to the ones utilized in the AnEn tests. Although PCA can effectively

condense data into fewer components, it inevitably results in some loss of information.

Regarding the issue of dependency, Figure 4.5 shows the values of the RMSE obtained in
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Figure 4.5: RMSE of PCAnEn method used in a dependent and independent way.

the prediction of WSPD and GST by the PCAnEn method used in a dependent and indepen-

dent way, with 3 or more stations. The results show clearly that an independent PCAnEn did

not improve the results in any configuration or station, in comparison with the dependent

version (as the results in Chapter 3). It is also observed that increasing the number of sta-

tions up to more than 5 leads to a reduction in the RMSE error, but the increase to 5 stations

no longer brings advantages, since the RMSE increases.

4.3.2 Comparing Performance

Figure 4.6 shows the processing times obtained by the MATLAB and R implementations of

the PCAnEn and AnEN methods, with different station quantities. The processing times were

measured when using 14 CPU cores (above that number, the decrease in overall execution

time was negligible – see Figure 4.7). As previously mentioned, for the AnEn method only 2

stations were used, and so Figure 4.6 only provides two execution times (one for each AnEn

implementation).

The PCAnEn method significantly reduces the total processing time compared with the

classical AnEn method, for both of the implementation used. This is evident in the 2 stations

scenario: using MATLAB, the PCAnEn method consumes 38% (30.4/79.3) of the time spent
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Figure 4.6: Processing time for different number of stations and different methods.

by the AnEn method (a speedup of 2.6x); in turn, using the R implementations, the PCAnEn

method runs in 28% (51.3/179.6) of the time needed by the AnEn method (a speedup of 3.5x).

Focusing only on the PCAnEn method, the processing times varies little with the num-

ber of stations, in both implementations (the exception is the 2 stations scenario, where the

processing time is visibly smaller than with more stations).

For any number of stations used, the MATLAB implementation was always found to be

faster than the R implementation. For instance, with 6 stations, PCAnEn in MATLAB was 2.3x

(96.6/41.5) faster than in R, though with 2 stations the speedup was only 1.7x (51.3/30.4). In

turn, also with 2 stations, AnEn in MATLAB was 2.3x (179.6/79.3) faster than its implemen-

tation in R.

Finally, the processing times in function of the number of CPU cores used was also eval-

uated. Figure 4.7 shows the processing times for the PCAnEn method with 6 stations (using

PC s generated from the variables WSPD and GST), when varying the number of CPU cores

from 1 up to 14. It can be observed that both implementations scale reasonably well, though

with diminishing returns past 8 CPU cores. Again, the MATLAB implementation offers supe-

rior performance and slightly better scalability. It should be noted, however, that MATLAB
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is known to be particularly optimized to take advantage of Intel CPUs (as the one where this

evaluation was performed), once it relies on the Intel MKL library by default.
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Figure 4.7: Processing time for different number of CPU cores used by PCAnEn.

4.4 Key Findings

This chapter presented a study on the combination of Principal Component Analysis (PCA)

and Analog Ensemble (AnEn) in the form of the novel PCAnEn method. By utilizing an ex-

panded dataset, which includes a greater number of weather stations and more reliable data,

it was successfully demonstrated the potential of PCAnEn for weather data reconstruction.

The combination of the PCA technique with the AnEn method offers a better hindcasting

accuracy than the classical AnEn method. In the present study, the data reconstruction of the

WDSV2 station by means of the 5 nearest station seems to be optimal. However, the choice

of predictor stations must take into account the proximity and correlation between them

(which needs to be assessed prior to the determination of the PC s).

In terms of computational performance, the PCAnEn method allows to reduce the pro-

cessing time considerably, compared to the classical AnEn method. It was also verified that

the implementation in MATLAB is faster (and by which magnitude) than the implementation
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in R. This information may then be considered in the choice between a proprietary non-free

platform and a an open-source free one, to solve the same kind of hindcasting problems.
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Chapter 5

PCClustAnEn: Enhancing PCAnEn with

K-means Clustering

ClustAnEn (Cluster-based AnEn) is a variant of the AnEn method, which uses K-means clus-

tering to group feasible analogues, reducing computational costs without sacrificing the ac-

curacy of the reconstructions [7], [85]. Another approach to enhance the AnEn method is

to combine it with PCA, as seen in Chapters 3 and 4. Therefore, this chapter builds upon

previous investigations of the PCAnEn method (as discussed in Section 4) and expands it

by applying the same approach of integrating the PCA technique to the ClustAnEn method,

resulting in a new variant called PCClustAnEn.

Combining PCA with ClustAnEn further reduces processing times while maintaining high

accuracy in the reconstruction of meteorological data. The aim is to develop a novel ap-

proach that outperforms existing methods in terms of accuracy and computational speed. A

comparative study of the performance of all these methods in a hindcasting problem is also

presented, corresponding to the reconstruction of missing data in a given meteorological

station by means of data coming from a set of predictor stations with different geographical

locations.

The reconstruction experiments utilize the same data source used in Chapter 4 from the
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US government’s National Data Buoy Center (NDBC)[86]. The configuration of stations re-

mains also the same, with WDSV2 serving as the predicted station and the others function-

ing as predictors. As a result, the correlations between stations and variables are identical

to those in Chapter 4. Consequently, the experiments are conducted using the same con-

figuration of combined variables: WSPD and GST are integrated for predictions, while the

remaining variables are used individually.

5.1 The ClustAnEn Method

The extension of the training period has an influence in the performance of the AnEn method.

The longer the training period, the more accurate the predictions/reconstructions are ex-

pected to be. On the other hand, longer training periods imply greater computational effort

to identify the analogs in each reconstruction. To alleviate this problem, an alternative ver-

sion of the AnEn method was developed in which all possible analogs are previously clas-

sified into a predefined number of clusters [7], [85], with the number of clusters set to the

square root of the total number of possible analogs. This heuristic is based in the empirical

results previously obtained [89].

As presented in Figure 5.1, the ClustAnEn method starts by clustering (with k-means)

the data of the predictor x1 (training period). Then, the predictor vector in the prediction

period is compared with each cluster centroid to identify the analog cluster, which contains

a certain number of vectors.

ClustAnEn significantly speedups the process of identifying the analog ensemble com-

pared to the classic AnEn method. The reason behind this acceleration is the reduced num-

ber of clusters compared to the total number of possible analogs. Consequently, the number

of comparison calculations required to find the centroid most similar to the value is greatly

reduced, enhancing computational efficiency. It is important to note that steps 2 and 3 of

the ClustAnEn method remain the same as the original AnEn method (see Section 3.4).
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Figure 5.1: Reconstruction of missing meteorological records with the ClustAnEn method.

5.2 Experimental Evaluation

As the previous chapter, the reconstruction was performed by two separate implementations

of the methods, one in R and another in MATLAB. The computing system used is also the

same as Section 4.3.

Besides testing the PCAnEn and PClustAnEn methods, the corresponding non-PCA vari-

ants (AnEn and ClustAnEn) applied to the original datasets were also tested. This way, the

specific impact of the PCA technique may also be assessed. To make the comparison fair,

AnEn and ClustAnEn were tested using as predictors the same two stations used to test the

PCAnEn and PClustAnEn with a 2-station configuration (#Stations = 2). This means that the

variable is predicted from the same variable located in the two closest stations, thus ensuring

the most favourable configuration to the AnEn and ClustAnEn methods.

Table 5.1 presents the RMSE values for all tests performed. For each test, the number

of PC s used was 1 or 2, after the values of the respective standard deviation, as explained

in Section 3.3. Between PCAnEn and PCClustAnEn, there were no noteworthy changes in

accuracy. The 5-station setup demonstrated a lower RMSE than the non-PCA approaches for

the majority of variables. The higher errors are obtained with the 2-station configurations, in

which case there’s no sensible advantage in using the PCA variants over the non-PCA ones.
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Table 5.1: RMSE of the reconstruction with different methods.

Method #St
MATLAB R

WSPD GST ATMP PRES WSPD GST ATMP PRES

PCAnEn

2 1.65 1.95 1.01 0.51 1.65 1.97 1.01 0.51
3 1.32 1.52 0.84 0.48 1.32 1.52 0.84 0.48
4 1.27 1.46 0.78 0.45 1.27 1.45 0.78 0.45
5 1.19 1.36 0.71 0.61 1.19 1.36 0.71 0.61
6 1.24 1.42 — — 1.24 1.44 — —

AnEn 2 1.68 1.77 0.86 0.59 1.67 1.76 0.86 0.59

PCClust

2 1.65 1.95 1.01 0.52 1.65 1.95 1.01 0.52
3 1.32 1.50 0.84 0.48 1.32 1.51 0.84 0.48
4 1.27 1.45 0.78 0.45 1.28 1.45 0.78 0.45
5 1.20 1.35 0.72 0.61 1.20 1.36 0.72 0.60
6 1.27 1.40 — — 1.25 1.42 — —

ClustAnEn 2 1.69 1.73 0.88 0.60 1.69 1.74 0.87 0.56

The reductions in error rates from the PCA implementations ranged from ≈18% to ≈30%, for

the best setting of each variable, compared to the non-PCA methods. These considerations

apply to both implementations (R and MATLAB).
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Figure 5.2: Reconstruction time of WSPD with 16 cores (2 to 6 stations).

Regarding the computational performance, Figure 5.2 shows the processing times of the
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MATLAB (M) and R (R) codes, with different amounts of stations, for the reconstruction of

the WSPD variable, using all the CPU cores (16) available in the test bed computational sys-

tem. The WSPD variable was chosen for the performance evaluation because a) it is available

for more stations (recall Table 4.3), and b) it requires 2 PC s to represent the original variables

when using 3 or more stations. The same is also valid for the GST variable, whose processing

times are either the same (PCA-based approaches) or similar (other approaches).

When using clustering (ClustAnEn and PCClustAnEn), the reconstruction times are the

lowest, and the variations are small for different numbers of stations, whether using PCA

or not; also, for the only scenario where it makes sense to use the non-PCA approaches (2

stations), using clustering alone (ClustAnEn) is slower than combining it with PCA (PCClus-

tAnEn).

Without clustering (AnEn and PCAnEn), the processing times are noticeably higher. When

applying PCA (PCAnEN), the highest times are obtained with 3 or more stations (using 2

PC s), and they are similar; these times roughly double the time with 2 stations (using 1 PC);

thus, without clustering, the number of PC s used has a noticeable influence (direct propor-

tionality) on the processing times. For the 2-stations scenario, not using PCA (AnEn) doubles

the processing times compared to using PCA (PCAnEn), being equivalent to using PCA with

more than 2 stations, once it is also using two time series.

Lowering the processing times is important, but it shouldn’t be at the expense of higher

reconstruction errors. Ideally, the reconstruction should be faster and also more accurate.

The smallest RMSE errors for the WSPD variable are obtained with PCA-based methods us-

ing 5 stations, whether clustering is used (PCClustAnEn) or not (PCAnEn) – recall Table 5.1.

However, clustering ensures much lower processing times, with a speedup between ⪆2.7

(MATLAB code) and ⪆7.8 (R code). Comparing the processing times of PCClustAnEn with

5 stations, with the ones of ClustAnEn with 2 stations (the best provided by not using PCA)

yields almost none speedup (46.9/45.7=1.03 and 45.3/38.4=1.18); however, the RMSE error of

PCClustAnEn with 5 stations is only 1.2/1.69≈70% of the error of ClustAnEn with 2 stations,

thus favouring the first approach.
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The impact on performance of using or not the PCA method is perceivable in the 2-

stations scenario. Here, using PCA provides speedups ranging from 2.26 to 1.08, for com-

parable methods (AnEn vs PCAnEn, and ClustAnEn vs PCClustAnEn).

Another advantage of adding PCA emerges when two variables, like WPSD and GST, are

used together in the analysis. Once they share the same time series, PCA-based methods can

predict both variables in a single run, unlike the non-PCA approaches, which would require

two runs of the reconstruction code.
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Figure 5.3: Reconstruction time of WSPD with 1 to 16 cores (6 stations).

The MATLAB code was found consistently faster than the R code. This is visible in Figure

5.2 for 16 cores, and can also be seen in Figure 5.3 for a variable number of cores. However,

under PCClustAnEn the differences were minor, meaning both implementations are equally

efficient when applying the K-means clustering. More important, PCClustAnEn required

much less processing times, in all configurations, compared to PCAnEn. Also, PCClustAnEn

mostly doesn’t benefit from the extra cores, in opposition to the PCAnEn method, where the

search for analogues is the biggest code hotspot and is easily parallelizable.

It should also be stressed that both R and MATLAB were used with default configurations,

without any extra performance tuning to optimize their behavior.
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5.3 Main Takeaways

Findings focus on the combination of the ClustAnEn method, which employs K-means clus-

tering to group feasible analogues, thereby reducing computational costs without sacrificing

reconstruction accuracy, as previously demonstrated in the literature [7], [85]. The investi-

gation built upon earlier studies of the PCAnEn method, described in Chapters 3 and 4, and

expands upon it by incorporating PCA into the ClustAnEn method, resulting in a new variant

called PCClustAnEn.

By utilizing PCA, it is possible to reduce the data from several stations into a smaller num-

ber of time series, corresponding to the Principal Components, which are then employed to

reconstruct missing data in the records of a meteorological site. As demonstrated in the

experiments, the PCA technique improves prediction assertiveness without compromising

computational performance, allowing for an increased number of stations without raising

the number of input time series. However, the efficacy of PCA is heavily influenced by the

correlation between the time series of several predictors, with higher correlation leading to

a greater proportion of information/variance in the first components.

Moreover, this chapter also exploited two different implementations of the methods, one

in MATLAB and another in R, which enable to double-check numerical results and assess

the potential performance impact of choosing either implementation. It was also investi-

gated the scalability of both codes within a medium-scale multicore system, revealing the

superiority of AnEn methods that combine PCA with clustering.
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Chapter 6

PLS AnEn-based Methods and Regression

Techniques for Meteorological Data

Reconstruction

In the previous chapter, it was shown that the combination of Principal Component Anal-

ysis (PCA) and clustering significantly improves prediction accuracy without compromis-

ing computational performance. This chapter moves further by exploiting the Partial Least

Squares (PLS) technique with the AnEn method and its clustering variant, originating the

new PLSAnEn and PLSClustAnEn methods (supervised methodologies, in constrast to PCA).

Typically, PCA and PLS are combined with multivariate linear regression, such as the Prin-

cipal Components Regression (PCR) and Partial Least Square Regression (PLSR) methods.

Then, a comparative analysis of the performance of all these methods in a hindcasting prob-

lem is also conducted.

Additionally, previous studies were conducted on datasets containing three to nine sta-

tions, with each station often having data for fewer than four variables. In this chapter, the

experiments employ a dataset with a larger volume of available data. Moreover, in these

experiments, each station serves as both a predictor and a predicted variable at different

instances. This approach enhances the robustness of the experiments by eliminating the
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possibility of a single station yielding better results with a particular method due to chance.

The remaining of the chapter is organized as follows: Section 6.1 introduces the meteo-

rological data sets used, Section 6.2 presents the various reconstruction methods employed

in this study; Sections 6.3 and 6.4 focus on the selection of principal components and la-

tent variables, respectively. In Section 6.5, the numerical results of the tests performed with

the various reconstruction methods are presented. Section 6.6 provides an analysis of the

computational performance of the same methods. Finally, Section 6.7 concludes, summa-

rizing the main findings and their implications for the solving of hindcasting and forecasting

problems with a high number of predictors.

6.1 Meteorological Data Sets

Similar to the studies in Chapters 4 and 5, this research makes use of the NDBC as the data

source for the experiments. The NDBC database covers regions across almost the entire US

coast, as well as various other locations worldwide. For this study, it was sought a region with

the highest possible station density. The selected region, centered north of the San Francisco

Bay (California, USA), features records from 16 meteorological stations in close proximity.

Figure 6.1 illustrates the chosen region and its 16 NDBC stations.
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Figure 6.1: Geolocation of the selected NDBC meteorological stations.
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Records of various meteorological variables are available for each station, with a sam-

pling period of 6 minutes. The variables used in this study are: atmospheric pressure (PRES)

[mbar], air temperature (ATMP) [◦C], wind speed (WSPD) [m/s] and peak gust speed (GST)

[m/s].

Records start in January 1st, 2016, and end in December 31st, 2021. Because of sensor

failures and maintenance operations in the stations, variables often present time series with

incomplete data. Table 6.1 presents the mean, standard deviation (SD) and availability (in

percentage), for the considered variables (WSPD, GST, ATMP and PRES), in the 16 stations.

Table 6.1: Caracterization of the Dataset. Available data (Avail.) is represented as a percent-
age.

Station
WSPD GST ATMP PRES

Mean Avail. Mean Avail. Mean Avail. Mean Avail.
AAM 2.2 93.9 3.1 93.7 12.7 98.8 1016.9 98.9
DPX 3.6 97.6 4.9 97.6 12.9 98.7 1016.1 98.7
FTP 2.5 97.8 4.2 97.8 14.3 98.9 1016.8 99
LND 2.1 92.5 3 92.5 12.8 93.6 1016.6 93.6
OBX NA NA NA NA 12.8 95.7 NA NA
OKX 2.6 81.7 3.6 81.7 NA NA NA NA
OMH 3.0 85.5 4.0 85.5 NA NA NA NA
PCO 4.3 88.5 5.6 88.5 12.3 93.3 1016.2 93.4
PPX 3.8 95.2 5.1 95.2 13.1 96.6 1016.8 96.6
PSB 3.9 95.1 5.4 95.1 13.7 96.2 1015.8 96.2
PXO 2.2 84.7 3.4 84.7 12.6 87.8 1015.6 76.1
PXS NA NA NA NA 13.2 96.9 NA NA
RCM 2.6 93.9 3.9 93.9 12.8 98 1016.4 98
RTY 1.7 96.1 2.5 95.7 12.5 97.6 1017.0 97.7
TIB 1.7 3.3 2.7 3.3 NA NA 1016.3 3.3
UPB 4.2 41.2 5.6 41.2 NA NA NA NA

To maximize the amount of training data, only variables with more than 85% of availabil-

ity (in bold in Table 6.1) were chosen for this study. The presence of NA in Table 6.1 means

that the corresponding variable is not available at the corresponding station. Consequently,

the working dataset consists of a total of 41 time series: 10 series with records of the WSPD

variable, 10 of the GST variable, 12 of the ATMP variable and 9 of the PRES variable.

Figures 6.2 to 6.5 show the correlations between the stations with more records for each
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Figure 6.2: Correlation between stations for the WSPD variable.

variable (10 stations for the WSPD, GST and ATPM variables, and 9 stations for the PRES

variable). In each figure, a heat-map is shown for each station; the polygonal format of this

map matches (approximately) a 4-side polygon that would include the 16 stations, preserv-

ing their geographical positions and distances, considering the layout of Figure 6.1. In each

heat-map, only 10 (9) points represent station correlations - the points corresponding to

their locations; the correlations for the other points were produced by interpolation.
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Figure 6.3: Correlation between stations for the GST variable.

As may be observed in Figures 6.2 and 6.3, for the WSPD and GST variables only the

closest stations present a strong correlation. Also, the GST variable presents correlations

between stations slightly higher than those observed for the WSPD variable. These observa-

tions confirm that the wind-dependent variables have a local (and not regional) variation,

depending a lot on the morphology of the terrain where the station is implemented.

Figures 6.4 and 6.5 show that the ATMP and PRES variables have a different behavior

from that of the WSPD and GST variables (Figures 6.2 to 6.3), as ATMP and PRES present a

very high correlation between stations, even among the most distant ones. This shows that
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Figure 6.4: Correlation between stations for the ATMP variable.
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Figure 6.5: Correlation between stations for the PRES variable.

the ATMP and PRES variables have a regional character, varying little or nothing locally.

6.2 Reconstruction Methods

This section introduces two additional reconstruction methods that were not previously dis-

cussed in detail: Principal Components Regression (PCR) and Partial Least Squares Regres-

sion (PLSR).

6.2.1 Principal Component Regression

As an alternative to the reduction of the size of the predictor dataset, the reconstruction of

missing data can be accomplished using multivariate linear regression. This method, unlike

the AnEn method, allows the direct use of all the original predictor variables.

The goal of the multivariate regression is to predict y from X, where X ∈ IRm×q contains

in the columns the values of all the predictor variables recorded during the training period,
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and y ∈ IRm the corresponding values of the predicted variable. This problem involves the

determination of the vector b ∈ IRq that is the approximated solution of the linear system of

equations

Xb ≈ y. (6.1)

Such is equivalent to solve the linear least squares problem

min
b

∥∥y−Xb
∥∥ , (6.2)

where ∥.∥ is the usual 2-norm (see [82] for details). If X is a full rank column matrix, then the

solution of the problem (6.2) is given by

b = (
XT X

)−1
XT y. (6.3)

The expectation is that the solution vector b can be used to predict values in the reconstruc-

tion period based on the predictor variables for that same period, that is:

ỹ = X̃b, (6.4)

where ỹ ∈ IR(n−m) represents the reconstructed/predicted variable during the reconstruc-

tion/prediction period and X̃ ∈ IR(n−m)×q contain the values of the predictor variables along

the same period.

The multivariate regression model given by Eq. (6.4) can be implemented only if the

matrix X has full column rank (its column vectors are linearly independent). The near-

collinearity of columns can occur if there are highly correlated predictor variables. In this

case, the least squares problem (6.2) becomes ill-conditioned and difficult to solve.

The principal component regression (PCR) [90] method circumvents the rank deficiency

by replacing the original predictor variables X by its principal components (PCs) in the re-

gression model. Once the principal components, Z = XV, are obtained from matrix X in the

same way as described in section 3.2.1, a few of them (p) are used in the regression model to
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estimate y.

Therefore, the PCR method consists in regressing y not on X itself but on the principal

components matrix Z ∈ IRm×p , assuming that p PCs have been previously selected. This

implies to solve by linear least squares the system

Zc ≈ y, (6.5)

whose solution is the parameter vector

c = (
ZT Z

)−1
ZT y. (6.6)

The PCR regression model on Z is then given by

ỹ = Z̃c, (6.7)

were ỹ ∈ IR(n−m) is, as before, the vector of the reconstructed/predicted values of y during the

reconstruction/prediction period, Z̃ = X̃V ∈ IR(n−m)×p contains the values of the p selected

PCs along the reconstruction/prediction period, and c ∈ IRp is the parameter vector of the

PCR.

The regression model (6.7) can be expressed in function of X̃ instead of Z̃ by replacing Z̃

by X̃V, thus originating

ỹ = X̃Vc. (6.8)

PCR is an alternative to the AnEn based methods that combines the size reduction pro-

vided by PCA with linear regression. This combination prevents collinearity problems be-

tween vectors of predictor variables. Another advantage of PCR is the reduction of the num-

ber q of original predictor variables to a lower number p of principal components, but which

contain most of the original information. Thus, the good performance of this method de-

pends strongly on the choice of the PCs.

It is expected that a few of the PCs, which have a higher variance, are enough to describe
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the evolution of the original predictor data set. However, these components were chosen to

explain the evolution of the original predictor variables, contained in the matrix X and, as

such, there is no guarantee that these PCs will be relevant for the prediction of y.

6.2.2 Partial Least Squares Regression

In contrast with the PCR method, the Partial Least Squares Regression (PLSR) method uses

the components from X that best predict y. These components, also called the latent vari-

ables (because they are not directly observed or measured), are coming from the joint de-

composition of X and y, taking into account the obligation of the components to explain the

covariance between X and y as best as possible [91], [92].

PLSR computes the latent variables that model X and y and best predict y, resulting in

the variable decompositions

X = TPT +E and y = RqT + f, (6.9)

where: T ∈ IRm×p and R ∈ IRm×p are the matrix with p latent vectors (also known as scores)

extracted from X and y, respectively; P ∈ IRq×p and q ∈ IRp represent the loadings vectors; the

matrix E ∈ IRm×q and vector f ∈ IRm represent the residuals, whose norms are minimized. Ad-

ditionally, the scores matrix T is orthogonal, that is, TT T = TTT = I. The decompositions (6.9)

can be achieved by different procedures, such as the nonlinear iterative partial least squares

(NIPALS) algorithm [93] or the SIMPLS algorithm [94].

The decompositions (6.9) are performed in order to minimize the norm of the residual

matrices, E and f, and to maximize the covariance between the latent vectors, columns of T

and R. Consequentially, there is a linear relation between T and R, expressed as

R = TD+H, (6.10)

where D ∈ IRp×p is a diagonal matrix with the regression weights and H denotes the matrix of
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the residuals. Combining (6.10) with the decomposition of y, given by (6.9), leads to

y = TDqT + (
HqT + f

)
, (6.11)

or simply

y = TcT + f∗, (6.12)

where cT = DqT ∈ IRp denotes the regression vector and f∗ = HqT + f is the residual vector, so

that y can be estimated as

ŷ = TcT . (6.13)

The regression model (6.13) enables to estimate y based on the latent variables T, but it

is useful regressing y on the original predictor variables X. To accomplish this, the matrix

W = XT U, of the PLS weights, computed such that EW = 0, is post-multiplied by the decom-

position of X in (6.9):

XW = TPT W+EW

⇔T = XW
(
PT W

)−1
. (6.14)

Replacing (6.14) on (6.13) enables to obtain the PLS regression for training data:

ŷ = XW
(
PT W

)−1
cT

= XXT R
(
TT XXT R

)−1
cT

= Xd (6.15)

where

d = XT R
(
TT XXT R

)−1
cT (6.16)
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is the parameter vector of the PLSR regression model. Since the solution of (6.12) by lin-

ear least squares, with orthogonal latent predictors T, leads to c = yT T, the parameter vec-

tor (6.16) can be written as

d = XT R
(
TT XXT R

)−1
TT y = TTT y. (6.17)

For the reconstruction/prediction period, the PLS regression model will be given by

ỹ = X̃d = T̃cT = T̃TT y, (6.18)

where X̃ ∈ IR(n−m)×q is the matrix of the predictor variables along the reconstructions/pred-

iction period and

T̃ = X̃XT R
(
TT XXT R

)−1 ∈ IR(n−m)×p (6.19)

represents the matrix of latent variables in the same period. Other formulations of the PLSR

model can be derived based on the properties and identities between the vectors resulting

from the algorithm used to obtain the decompositions (6.9) (see, for instance, [92], [95], [96]).

As Equation (6.19) enables to extend the latent variables along the prediction period

(T̃ = [
t̃1 t̃2 . . . t̃p

]
), it is possible to use them as predictors in the AnEn-based method. In this

work, it is also exploited the combination of the AnEn and ClustAnEn methods with the PLS

decomposition, in order to use the latent variables as predictors instead of the original vari-

ables. The resulting methods are denoted PLSAnEn and PLSClustAnEn, respectively.

The PLS regression method is also, by itself, an alternative method to PCR and AnEn

based methods for the reconstruction/prediction of the missing records, by estimating them

via the regression model (6.18) and, therefore, is also included in the present study.

6.3 Selecting the Principal Components

This section shows how the selection of the principal components (PCs) that are used in

the PCAnEn, PCClustAnEn and PCR methods is done. The number of PCs to be included
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in these methods is of great importance. An insufficient number of PCs translates into the

loss of information necessary for data reconstruction, whilst a high number translates into

redundant information and increased computational costs.

The identification of the dimensions with most data dispersion enables to identify the

principal components z j , with j = 1, . . . , p, that best distinguish the dataset under study. The

dataset corresponding to the multiple predictor time series, from the various meteorologi-

cal stations described in the Section 6.1, is represented by the data matrix X = [
x1 x2 . . .xq

]
,

where each column vector x j , with j = 1, . . . , q , includes the centred and scaled records of a

single variable. Then, the thin singular value decomposition of X enables to obtain the prin-

cipal components z j , j = 1, . . . , q , each one corresponding to a singular value σ j , j = 1, . . . , q ,

where σ1 ≥ σ2 ≥ . . . ≥ σq (see Section 3.2.1). The PC vector z1 has the largest sample vari-

ance (σ2
1/m), z2 has the second largest variance (σ2

2/m) and so on. On the other hand, as the

original predictor time series are previously scaled by the respective standard deviation, if a

PC has a standard deviation greater than 1 it means that this PC defines a dimension with

more dispersion, i.e., it contains more information than the original variables. This will be

the criteria used to select the PCs, as employed in [12].

Figure 6.6 shows the standard deviations of the first 10 PCs obtained from 37 predictor

variables of the data set used. These predictor variables do not include the time series from

the PPX station because these series are used only as predicted/reconstructed variables.

Based on the same figure, the principal component analysis is performed from different

predictor matrices X: in the first case (blue bars) the PCs are obtained from all predictor

variables (q = 37); in the second case (orange bars) the PCs are obtained by means of the

predictor variables WSPD and GST (q = 18); in the third case (green bars), only the ATMP

time series were used (q = 11); finally, in the fourth case (grey bars), only the PRES series

where considered as predictors (q = 8). The idea behind this analysis is to verify if there is

any advantage in using predictor variables different from the predicted ones. The variables

WSPD and GST were merged as they are highly correlated with each other, hence it makes

no sense to use them separately.
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Figure 6.6: Standard deviation of the first PCs for different predictor variables.

Table 6.2: Errors of the prediction of PPX station for different principal components.

Predicted Predictor # PCs (p)
PCR PCClustAnEn PCAnEn

BIAS RMSE SDE BIAS RMSE SDE BIAS RMSE SDE

WSPD
All 6 0.47 1.99 1.93 0.55 1.91 1.83 0.55 1.8 1.71
WSPD/GST 4 0.39 1.85 1.81 0.38 1.79 1.75 0.42 1.75 1.7

ATMP
All 6 -0.01 0.54 0.54 -0.05 1.00 1.00 -0.07 0.8 0.8
ATMP 1 -0.04 0.64 0.64 -0.03 0.66 0.66 -0.03 0.66 0.66

PRES
All 6 0.04 0.29 0.29 0.08 1.59 1.58 0.05 0.97 0.97
PRES 1 0.04 0.20 0.19 0.04 0.32 0.31 0.04 0.32 0.32

As can be seen in Figure 6.6, where the PC choice threshold is indicated by a dashed hori-

zontal line, if all variables are used as predictors then the first six PCs (p = 6) must be selected

to represent the predictor data set. In the case of wind-related predictor variables (WSPD and

GST), the first four PCs (p = 4) must be used. Finally, for a single predictor variable (ATMP or

PRES), only the first PC (p = 1) should be chosen.

Table 6.2 shows the errors for the prediction/reconstruction of the variables WSPD, ATMP

and PRES, of the PPX station, using the PCR, PCClustAnEn and PCAnEn methods, with the

number of PCs previously defined (6, 4 or 1). The reconstruction period was the year of 2021

(the last one of the data set) and the training period spanned from 2016 to 2020. Due to

computing resources constraints, the daily records were reconstructed only from 10 am to 4

pm; also, the analogs were searched only in the same period.

As may be observed in Table 6.2, with the exception of the ATMP variable, there seems to

be no advantage in using all available predictor variables and, in most cases, it is preferable
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to use as predictor the same variable to be predicted/reconstructed. Moreover, comparing

the results obtained by the three methods, they result in errors very close to each other. At

most, errors are in the order of tenths of a unit. Noteworthy, the consistent spatial correlation

of ATMP and PRES, as seen in Figures 6.4 and 6.5, gives PCR a slight advantage in their recon-

struction, which suggests that a regression model uses this correlation more effectively. In

contrast, WSPD has lower spatial correlation and more frequent temporal variations, making

PCAnEn the best method for its reconstruction. Finally, PCClusAnEn yields comparable or

nearly identical results to PCAnEn, for all the three variables.

6.4 Selecting the Latent Variables

Choosing the number of components (latent variables) is an important step in the applica-

tion of the PLSR method or variants. As a latent variable is relevant only if it improves the

prediction of y, it is firstly necessary to solve the problem of which and how many latent

variables should be kept in the PLSR model to achieve optimal predictions.

This section proposes two approaches that can be used to determine the number of la-

tent variables (p). To achieve this, the variables of the PPX station were predicted/recon-

structed by means of the variables of the neighbouring stations. Thus, there are q = 37 origi-

nal predictor variables that can be used to obtain latent variables.

The performance of a PLSR model can be evaluated with computer-based re-sampling

techniques such as cross-validation (c.f. [97]). In this technique, the data of the training

period (see Figure 3.4) are split into a learning set (used to build a PLSR model) and testing

set (used to test the model). In particular, in the Cross-validation (CV) approach, the initial

training data set is partitioned into exactly k subsets (k-Fold). In turn, each subset is then

used to test the PLSR model built by means of the data included in the k −1 learning subsets

(for details refer to [92] and [98]). The predicted observations for each testing set are stored

in the vector ŷ[p], which is used to determine the overall quality of the PLSR model using

p latent variables. The quality of the PLSR model is evaluated by measuring the similarity

between y and ŷ[p]. This similarity can be provided by the Mean-Squared Error Predicted
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Figure 6.7: Normalized RMSEP values for different latent variables on a logarithmic scale.
The same variable was used in both X and y. The normalization factor used was the differ-
ence between the maximum and minimum values [99].

(MSEP), as given by

MSEP = 1

m

∥∥∥y− ŷ[p]
∥∥∥2

, (6.20)

or by the Root-Mean-Squared Error Predicted (RMSEP), such that RMSEP =
p

MSEP.

Figure 6.7 shows the values of the normalized RMSEP in function of the number of la-

tent variables (p), originated by the predictions of the four meteorological variables (WSPD,

GST, ATMP and PRES), from the PPX stations, by means of the 10-Fold CV technique. Each

variable was predicted only by the time series corresponding to the same meteorological

variable (X and y contain data from the same meteorological variable), except for WSPD and

GST, that are used together to predict WSPD, based on the analysis in Section 6.1. It can be

observed, in the case of WSPD, that the first four components are responsible for the high-

est decrease in RMSEP. For a number of latent variables greater than four, the decrease in

the RMSEP is not significant. For the ATMP and PRES meteorological variables, the largest

reduction in RMSEP happens for the first three components.

Figure 6.8 shows the values of the RMSEP generated in the same conditions of Figure 6.7,

with the exception that each variable was predicted by all meteorological variables in the

neighbouring stations. In the case of WSPD, the first two or three latent variables are respon-

sible for the highest decrease in RMSEP. For the case of ATMP and PRES, the largest reduction

in RMSEP occurs for the first three or four components.

An alternative approach to determine the optimal number of latent variables, is based on
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Figure 6.8: Normalized RMSEP values for different latent variables on a logarithmic scale. All
variables were included in X.

the metric

Q2
p = 1− PRESSp

RESSp−1
, (6.21)

where PRESSp is the predicted residual sum of squares originated by the CV technique, with

the p latent variable, being computed through

PRESSp =
∥∥∥y− ỹ[p]

∥∥∥2
, (6.22)

and

RESSp−1 =
∥∥∥y− ŷ[p−1]

∥∥∥2
(6.23)

is the residual sum of squares originated by the PLSR model, obtained with the p −1 latent

variable and built with all data from the training period. The idea of this criteria, proposed

in [100], is that a latent variable is kept if the value of the metric (6.21) is larger than a certain

threshold (ϵ) generally set to ϵ= 0.0975, i.e.

Q2
p ≥ 0.0975. (6.24)

Figure 6.9 shows the values of Q2 in function of the number of latent variables, in the case

of predictions with the same meteorological variables. It can be observed that the number of

latent variables that verify the criterion (6.24) is two for the WSPD meteorological variable,

three for the ATMP variable, and four for the PRESS variable.
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Figure 6.9: Q2 metric for a different number of latent variables when using the same variable
as predictor and predicted.
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Figure 6.10: Q2 metric for a different number of latent variables when using all variables as
predictor.

Similarly, Figure 6.10 represents the values of Q2 in function of the number of latent vari-

ables, in the case of predictions with all the meteorological variables. It can be observed that

the number of latent variables that verify the criterion (6.24) is now three for the variable

WSPD, three or four for the ATMP variable, and six for the PRESS variable.

Table 6.3 shows the errors obtained in the prediction of the variables WSPD, ATMP and

PRES, of the PPX station, with the PLSAnEn, PLSClustAnEn and PLSR methods, for the cases

where a different number of latent variables (LVs) are used as predictors, chosen according

to the previously discussed criteria. As in Section 6.3, the prediction/reconstruction period is

the year of 2021 (restricted, everyday, to the same period - 10 am to 4 pm) and the remaining

years, from 2016 to 2020, make up the training period. For each number (p) of predictor LVs,

and each method, the smallest errors are highlighted in bold.
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Table 6.3: Errors of the prediction of the PPX station for a different number of latent variables
(LVs).

Predicted Predictor # LVs
PLSR PLSClustAnEn PLSAnEN

BIAS RMSE SDE BIAS RMSE SDE BIAS RMSE SDE

WSPD
All

2 0.41 1.91 1.86 0.46 1.95 1.89 0.39 1.90 1.85
3 0.47 1.81 1.75 0.50 1.84 1.77 0.50 1.80 1.73

WSPD/GST
2 0.44 1.86 1.81 0.43 1.85 1.80 0.35 1.84 1.81
3 0.41 1.80 1.75 0.41 1.81 1.76 0.37 1.76 1.72

ATMP
All

3 -0.02 0.60 0.60 -0.02 0.82 0.82 -0.03 0.71 0.7
4 0.02 0.58 0.58 0 0.85 0.85 -0.01 0.7 0.7

ATMP
3 -0.01 0.53 0.53 -0.04 0.57 0.57 -0.04 0.56 0.56
4 -0.01 0.53 0.53 -0.03 0.59 0.59 -0.03 0.57 0.57

PRES
All

3 0.03 0.20 0.20 -0.03 1.04 1.04 -0.01 0.75 0.75
6 0.01 0.13 0.13 -0.01 1.27 1.27 -0.02 0.85 0.85

PRES
3 0.04 0.12 0.12 0.03 0.33 0.33 0.03 0.31 0.31
4 0.01 0.12 0.12 0.03 0.31 0.31 0.02 0.31 0.31

In agreement with what was also observed in Section 6.3, the use of all variables as predic-

tors did not bring any advantages, and the errors obtained were smaller for predictor vari-

ables corresponding to the same meteorological variables being predicted. It may be also

concluded that the increase in the number of LVs does not always translate into a smaller

error in the reconstructed/predicted values; for instance, the errors obtained for ATMP were

higher with 4 LVs, rather than with 3. The PLSAnEn method showed the best results in the

reconstruction/prediction of WSPD. The PLSR method showed smallest errors in the recon-

struction/prediction of PRES and ATMP, with results not far to those produced by the PLSA-

nEn method (for WSPD and ATMP).

6.5 Results

This section examines the errors resulting from the data reconstruction using data from

neighboring stations. The results are divided into two subsections: Subsection 6.5.1, fea-

turing the prediction of the station PPX, and Subsection 6.5.2, which focuses on the recon-

struction of each station contained in the dataset. As in previous sections, the reconstruc-

tion period is the year of 2021 (only the daily period from 10 am to 4 pm) and the remaining
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years, from the begin of 2016 to the end of 2020, constitute the training period. For each me-

teorological variable all reconstruction/prediction methods where applied with the optimal

number of PCs or LVs determined in the two previous sections.

Table 6.4: Number of PCs or LVs used by each method.

Predicted WSPD ATMP PRES
Predictor WSPD/GST All/ATMP PRES

# Original
Preditors

18 37/11 8

PCR 4 6 1
PCClustAnEn 4 1 1

PCAnEn 4 1 1
PLSR 3 3 4

PLSClustAnEn 3 3 4
PLSAnEn 3 3 4

Table 6.4 resumes the number of PCs or LVs used by each method. As shown in Table 6.2,

ATMP reconstruction using the PCR method obtains better results when all meteorological

variables are used as predictors. For this reason, this is the only case where the PCs (p = 6) are

obtained from all q = 37 original predictor variables. In the remaining cases, both PCs and

LVs are obtained from predictor variables corresponding to the same meteorological variable

that is predicted, i.e., PRES is predicted from PRES and WSPD is predicted from WSPD and

GST, as shown in Table 6.4.

6.5.1 Reconstruction of Meteorological Variable in one Station

Figure 6.11 allows to compare the real/observed values with the reconstructed/predicted

ones, for the three meteorological variables, at the PPX station, in January 9, 2021, from 10

am to 4 pm. Only the values obtained by the methods with the smallest errors in Table 6.2

and Table 6.3 are presented. It can be seen that the WSPD variable varies much more in time

than ATMP , and especially in comparison to the PRES variable. Visually, WSPD shows more

variance at higher frequencies, i.e., more fluctuations between consecutive records.
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Figure 6.11: Comparison between reconstructed and observed values of the meteorological
a) WSPD, b) ATMP and c) PRES variables, from the PPX station, at January 9, 2021, from 10
am to 4pm.

For the WSPD variable, the reconstructed values are not able to reproduce specific vari-

ations. However, they reproduce the general trend of variation of the variable. It should be

stressed that this meteorological variable undergoes permanent changes over time. These

changes are greatly influenced by factors inherent to the location, such as the orientation

and topography of the site. It can also be seen that there are no major differences between

the values reconstructed by the PCAnEn and PLSAnEn methods.

For the ATMP variable, the values obtained by the PLSR method are closer to the observed

values than those produced by the PCR method. Both sets of values show some distance in

relation to the observed values. This highlights the difficulty in reconstructing, in a very exact

way, the temperatures in a certain place, from the temperatures in other places with different
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characteristics, such as sun exposure.

The values reconstructed by the PLSR and PCR methods for PRES are very close to the ob-

served values. This happens because this meteorological variable does not have oscillations

due to location, and because it often contains less high-frequency fluctuations. Its variation

is carried out on a regional scale without local influence, since the stations are all located at

the same altitude (near sea level).
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Figure 6.12: Power spectral densities of the reconstructed/observed time series from the PPX
station.

Although Figure 6.11 presents a one-day comparison of predicted and observed values,

it is insufficient to conclude that these patterns remain constant throughout the entire time

series (1 year). Thus, an analysis is necessary to verify the consistency of these patterns in

the complete dataset. To evaluate the prediction methods’ ability to capture high-frequency

patterns, the normalized Power Spectrum Densities (PSD) [101] of both reconstructed and

observed series are compared in Figure 6.12. Upon initial observation, the WSPD data dis-

play greater high-frequency density than that of ATMP and PRES. Generally, at low frequen-

cies, the methods’ densities align with the observed data across all variables. However, for

WSPD, the predictions fail to accurately capture the observed high-frequency variance. In

contrast, for ATMP and PRES, the reconstructions exhibit similar high-frequency variance to

the observed data. These results corroborate the previous one-day analysis.
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6.5.2 Reconstruction of Meteorological Variable in all Stations

Figure 6.13 shows the values of the RMSE error per each station, resulting from the recon-

struction of the WSPD meteorological variable by the different methods. For all methods, it

is observed, in general, that the lowest errors are obtained for the stations that occupy cen-

tral positions in relation to the others. In general, it is also observed that PLS-based methods

obtain lower errors than PC-based methods, although the differences are small (on the order

of a tenth or a hundredth of a unit). The PLSAnEn method presents the best results in the

reconstruction of the WSPD in all meteorological stations.
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Figure 6.13: RMSE for the reconstruction of WSPD variable across all available stations.

In Figure 6.14 it is possible to observe the values of the same error for the reconstruction

of the ATMP variable. In general, the errors obtained are smaller than in the case of WSPD.

Here, also, the highest errors are obtained in the most peripheral stations, that have less

correlation with the remaining. For this meteorological variable, the supremacy of methods

based on the PLS is also verified. The best results at all stations are obtained by the PLSR

method, followed closely by the results obtained by the PLSAnEn method.

Finally, Figure 6.15 show also the RMSE errors, this time during the reconstruction of the
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Figure 6.14: RMSE for the reconstruction of ATMP variable across all available stations.
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Figure 6.15: RMSE for the reconstruction of PRES variable across all available stations.

meteorological variable PRES. The low error values show that PRES is clearly the easiest vari-

able to reconstruct. In this case, PLS-based methods do not always get the best score, which

is achieved by the PLSR method. Following PLSR, the method that obtains the best results
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is PCR, especially in the most central stations. The PLSAnEn and PLSClustAnEn methods

obtain the same results at all stations.

6.6 Computational Performance

This section analyses the computational performance of the reconstruction methods con-

sidered in this study. The computational system used for the evaluation was the same as

described in Section 4.3.

Table 6.5 presents the mean execution times, in seconds, needed by each method in the

reconstruction of the meteorological variables for all the different stations analyzed in the

previous section (each execution time presented in the table corresponds to the average of

the times of all stations). These execution times concern the execution in a parallel regime

(by instructing the R platform to exploit, whenever possible, all the available CPU cores).

Table 6.5: Mean execution times in seconds across methods, variables, and steps.

Variable Steps PCAnEn PLSAnEn PCClustAnEn PLSClustAnEn PCR PLSR

WSPD
Loading 37.2 37.2 37.2 37.2 37.2 37.2
PCA/PLS 0.5 0.7 0.5 0.7 3.7 3.4

Prediction 341.4 289.9 13.2 11.8 0 0

ATMP
Loading 24.1 24.1 24.1 24.1 61.2 24.1
PCA/PLS 0.3 0.4 0.3 0.4 6.8 2.1

Prediction 72.1 287.1 4.2 6.0 0 0

PRES
Loading 24.6 24.6 24.6 24.6 24.6 24.6
PCA/PLS 0.3 0.3 0.3 0.3 2.0 1.7

Prediction 72.1 340.3 5.5 7.1 0 0

The execution times are broken down into three consecutive stages: Loading, Decom-

position (PCA or PLS), and Prediction/Reconstruction. The Loading stage corresponds to

the reading of the data set from CSV files and interpolation of missing values (when they

are not more than four consecutive values). In the case of the reconstruction of WSPD, the

Loading step involves the reading of both the WSPD and GST dat set files, which takes ≈ 37.2

seconds; even longer, the loading of the ATMP data set, when using the PCR method, takes

≈ 61.2 seconds because this method uses all 37 predictor variables (recall Table 6.4).
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The PCA or PLS decomposition step corresponds to the calculation of PCs or LVs, respec-

tively. This step is done by internal R functions that are already highly optimized. As such,

the execution time of this step is very fast (although, this step can include also the choice of

the number of components through the CV method, which may have some computational

costs).

The final step consists in the Reconstruction/Prediction of the missing values. In the PCR

and PLSR methods, this stages executes very fast, through linear regression with previously

determined PCs or LVs. But for the PCAnEn and PLSAnEn, this stage is very demanding

because, for each value to be reconstructed/predicted, the training period is swept in search

for analogs. In turn, for the PCClustAnEn and PLSClustAnEn methods, this step is not as

demanding, once all possible analogs are previously clustered, and the sweeps are reduced

to a single operation in which the predictor value is compared with the cluster centroid.

Overall, the slowest methods are thus the PCAnEn method (WSPD) or the PLSAnEn method

(ATMP and PRES) and the faster (for all variables) is the PLSR method.

The execution times presented in Table 6.5 were obtained using all CPU cores available.

The impact of using a varying number of CPU cores may be apprehended by inspecting Fig-

ure 6.16. This figure represents the execution time for the reconstruction of WSPD in station

PPX in function of the number of CPU cores, without including the loading time (more IO

sensitive). In these experiments PLSR and PCR cross-validation were parallelized to accel-

erate the 10-fold cross-validation process. It can be seen that the PCR and PLSR methods

perform similarly for any number of CPUs. In turn, the PLSClustAnEn and PCClustAnEn

methods benefit from increasing the number of CPU cores, especially up to 6/8; however,

as these methods depend heavily on the clustering phase of possible analogs, which is not

always performed in the same number of iterations, their performance does not always im-

prove with the increased calculation capacity.

Regarding the PCAnEn and PLSAnEn methods, it may be observed that they are more

sensitive to the increase of the CPU cores employed, with their computational efficiency

improving when using up to about ≈ 10 cores. It turns out that these methods are highly

parallelizable: many searches for analogs may be carried out simultaneously once they are
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Figure 6.16: CPU time for the reconstruction of WSPD in station PPX in function of the num-
ber of cores (excluding loading time).

inherently independent from each other. However, despite the performance gains brought

by the parallel execution, the PCAnEn and PLSAnEn methods are still considerably slower

than the others.

6.7 Final Remarks

This last study presents methods that address hindcasting and forecasting problems with

a high number of predictors. Solving these problems using the classical Analog Ensembles

methodology can be computationally inefficient without dimensionality reduction techniques,

due to the computational load involved.
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The methods presented here combine the robustness of the AnEn method (with or with-

out Clustering) and the PCA and PLS techniques for dimension reduction of the predictor

data set. Using these techniques, the predictor variables are reduced to a small number of

new variables that mostly retain (PCA) and may even enhance (PLS) the meteorological in-

formation used by the AnEn method to reconstruct or forecast the records sought.

The results produced by the PLS-based techniques were found to be slightly more ac-

curate than those obtained with the PCA-based ones, especially in the reconstruction or

forecast of meteorological variables with a lot of oscillation, such as wind speed (WSPD).

This happens because PLS builds the latent variables in such a way that they simultaneously

explain the variation of the predictor variables and the predicted variable, while the main

components, obtained by PCA, only explain the variation of the predictor variables.

The combination of the AnEn method with PLS results in a hybrid method, PLSAnEn, that

is very accurate in the reconstruction or prediction of wind speed. It is therefore a highly suit-

able forecasting method for meteorological time series with potential applications in wind-

resource assessment and wind energy. At the same time, PLSAnEn is very demanding from

the computational point of view, that benefits from a parallel implementation.

PLSClustAnEn, which combines the AnEn methods with the prior clustering of analogs,

could be an alternative to the PLSAnEn method, as it is much more computationally efficient

(also seen in Chapter 5). It is, however, a method that depends on many parameters that have

to be properly chosen in order to improve the accuracy of the results.

Simultaneously with the AnEn-based methods, regression methods were also tested on

the new variables determined by PCA or PLS. The resulting methods, PCR and PLSR, are very

fast and allow for very accurate reconstructions. In particular, the PLSR method is the most

suitable for reconstructing or forecasting highly correlated predictor variables.
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Chapter 7

Conclusion

In this dissertation, the challenges identified in Section 2.4.2 were addressed, specifically the

issues of missing or absent weather data and handling large volumes of data in the context

of weather prediction.

The integration of PCA and PLS techniques was investigated with the AnEn method, as

well as its clustered version, for reconstructing missing meteorological data. By employ-

ing three datasets and conducting comparative analyses with multivariate regression tech-

niques, such as PLSR and PCR, the findings underline the potential of these hybrid methods

for solving hindcasting and forecasting problems with a high number of predictors.

Initially, in Chapter 3, it was exploited the possibility of applying the AnEn method to

principal components instead of original variables. This approach proved effective in recon-

structing wind-dependent variables and reducing the number of variables requiring pro-

cessing. Building upon this foundation, Chapter 4 incorporated a more reliable dataset to

test the PCAnEn method, leading to improved hindcasting accuracy and reduced process-

ing time. This emphasized the importance of predictor station correlation and the potential

performance impact of using different software implementations.

Continuing the research, Chapter 5 examined the PCAnEn method in conjunction with

clustering, resulting in the development of PCClustAnEn. This new method maintained the

same numerical accuracy as previous approaches but offered significantly faster computa-

tional performance.
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Finally, in Chapter 6, it was exploited the potential of integrating dimension reduction

techniques, PCA and PLS, with the AnEn method and its clustered version for reconstructing

missing meteorological data in scenarios with a high number of predictors. Our comparative

analyses with multivariate regression techniques, such as PLSR and PCR, showcased their

efficiency and accuracy in handling large datasets. It was also observed that AnEn-based

methods performed better for wind-related variables, while regression-based methods ex-

celled in atmospheric temperature (ATMP) and pressure (PRES) variables, which are often

highly correlated and exhibit fewer high-frequency signals. These methods can be further

fine-tuned and adapted to various meteorological applications, offering more reliable and

computationally efficient solutions to address hindcasting challenges.

This dissertation has contributed to a deeper understanding of the benefits of combining

PCA and PLS techniques with AnEn methods and their clustered variants for reconstructing

missing meteorological data. These achievements may address the issue of missing or ab-

sent historical weather data, providing valuable insights for various sectors of society. This

research has demonstrated the potential of these integrations for solving hindcasting involv-

ing a large number of predictors. Future research could focus on further optimizing these

methods for more efficient computation and exploring their applications in domains be-

yond meteorology.
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Abstract. The aim of this study is the reconstruction of meteorologi-
cal data that are missing in a given station by means of the data from
neighbouring stations. To achieve this, the Analogue Ensemble (AnEn)
method was applied to the Principal Components (PCs) of the time
series dataset, computed via Principal Component Analysis. This com-
bination allows exploring the possibility of reducing the number of mete-
orological variables used in the reconstruction. The proposed technique
is greatly influenced by the choice of the number of PCs used in the
data reconstruction. The number of favorable PC varies according to the
predicted variable and weather station. This choice is directly linked to
the variables correlation. The application of AnEn using PCs leads to
improvements of 8% to 21% in the RMSE of wind speed.

Keywords: Hindcasting · Analogue ensembles · Principal Component
Analysis · Time series

1 Introduction

Classical weather hindcasting is the recreation of past weather conditions by
applying a forecast model on a past starting point (reanalysis). This is done to
validate the forecast model if comparable past observations are available. It may
also be used to derive absent past data (non-recorded past observations) from
the forecast model (reconstruction).

Hindcasting is also a field of research aiming to improve methods in other
fields of meteorology such as downscaling or forecasting. Meteorological data
reconstruction techniques are essentially based on the Analogue Ensembles
(AnEn) method [8,9]. Hindcasting with the AnEn method allows to reconstruct
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Guarda et al. (Eds.): ARTIIS 2022, CCIS 1675, pp. 488–499, 2022.
https://doi.org/10.1007/978-3-031-20319-0_36
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Abstract. The focus of this study is the reconstruction of missing mete-
orological data at a station based on data from neighboring stations. To
that end, the Principal Components Analysis (PCA) method was applied
to the Analogue Ensemble (AnEn) method to reduce the data dimen-
sionality. The proposed technique is greatly influenced by the choice of
stations according to proximity and correlation to the predicted one.
PCA associated with AnEn decreased the errors in the prediction of
some meteorological variables by 30% and, at the same time, decreased
the prediction time by 48%. It was also verified that our implementation
of this methodology in MATLAB is around two times faster than in R.

Keywords: Hindcasting · Analogue ensembles · Principal component
analysis · Time series · R · MATLAB

1 Introduction

The meteorological field is used daily for many purposes in our society and has a
great impact on many decision-making processes. For instance, renewable energy
management often requires information about weather conditions in places with-
out available historical data or weather forecasts.

Weather conditions can be recreated by applying a forecast model to a past
starting point, a process known as hindcasting. Its main function is to validate
the forecast model when comparable past observations are available. It can also
be used for reconstruction purposes, whereby it derives missing past data (past
observations not recorded) from the forecast model.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. V. Garcia and C. Gordón-Gallegos (Eds.): CSEI 2022, LNNS 678, pp. 169–183, 2023.
https://doi.org/10.1007/978-3-031-30592-4_13
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Reconstruction of Meteorological Records by Methods Based on
Dimension Reduction of the Predictor Dataset
Carlos Balsa 1,* , Murilo M. Breve 1 , Carlos V. Rodrigues 2 and José Rufino 1

1 Research Centre in Digitalization and Intelligent Robotics (CeDRI), Laboratório para a Sustentabilidade e
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Abstract: The reconstruction or prediction of meteorological records through the Analog Ensemble
(AnEn) method is very efficient when the number of predictor time series is small. Thus, in order to
take advantage of the richness and diversity of information contained in a large number of predictors,
it is necessary to reduce their dimensions. This study presents methods to accomplish such reduction,
allowing the use of a high number of predictor variables. In particular, the techniques of Principal
Component Analysis (PCA) and Partial Least Squares (PLS) are used to reduce the dimension of
the predictor dataset without loss of essential information. The combination of the AnEn and PLS
techniques results in a very efficient hybrid method (PLSAnEn) for reconstructing or forecasting
unstable meteorological variables, such as wind speed. This hybrid method is computationally
demanding but its performance can be improved via parallelization or the introduction of variants in
which all possible analogs are previously clustered. The multivariate linear regression methods used
on the new variables resulting from the PCA or PLS techniques also proved to be efficient, especially
for the prediction of meteorological variables without local oscillations, such as the pressure.

Keywords: hindcasting; forecasting; analog ensemble; principal component analysis; partial least
square; multivariate regression

1. Introduction

Filling gaps in observed time series is an important problem in many areas of applied
sciences that depend on data analysis. Without this filling, data reconstruction is difficult
or even impossible. This assumption is particularly true in weather forecasting, where the
amount of stored information is growing four times faster than the world economy [1].
In view of this, big data analytics can help to improve predictions by uncovering patterns
and correlations in the data [2] and reconstructing missing data in areas where there is
limited information. Conversely, this growth in data also means that the amount of missing
data is increasing, which makes accurate reconstruction a crucial task. To handle this
challenge, forecasting methods must be able to handle large amounts of data, multiple data
sources and a wide variety of meteorological variables. This requires advanced methodolo-
gies that can adapt to the particular characteristics of big data in weather forecasting.

Despite the general abundance of weather data available, there are still many regions
without historical data records. These locations, which may be remote or under-developed,
have the potential to be significant generators of renewable energy. However, without his-
torical weather data, it is difficult to accurately predict the potential for energy generation
in such places. Therefore, there is a growing need for methods that can generate weather
data from limited inputs and locations, with the purpose of running simulations of en-
vironmentally driven systems that target these locations. This may greatly enhance our
understanding of the potential for renewable energy generation, and may facilitate the
development of sustainable energy systems in such regions [3].

Computation 2023, 11, 98. https://doi.org/10.3390/computation11050098 https://www.mdpi.com/journal/computation
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Abstract. The Analogue Ensembles (AnEn) method has been used to
reconstruct missing data in time series with base on other correlated
time series with full data. As the AnEn method benefits from the use of
large volumes of data, there is a great interest in improving its efficiency.
In this paper, the Principal Component Analysis (PCA) technique is
combined with the classical AnEn method and a K-means cluster-based
variant, within the context of reconstructing missing meteorological data
at a particular station using information from neighboring stations. This
combination allows to reduce the dimension of the number of predictor
time series, while ensuring better accuracy and higher computational
performance than the AnEn methods: it reduces prediction errors by up
to 30% and achieves a computational speedup of up to 2x.

Keywords: Meteorological data reconstruction, Analogue ensembles,
K-means clustering, Principal component analysis, MATLAB, R

1 Introduction

Information about past weather states is crucial to many scientific domains and
practical applications. In the renewable energy field, for instance, it is vital to
know the historical weather data and meteorological patterns, in order to esti-
mate the productive potential of a given site, before making substantial financial
investments [9]. However, full meteorological data may not always be available or
may be absent altogether. In this scenario, data reconstruction techniques come
into play. These should be numerically accurate and computationally efficient.

A well-known approach for meteorological data reconstruction is the Ana-
logue Ensembles (AnEn) method. Initially, it was used as a post-processing tech-
nique, to improve the accuracy of deterministic numerical forecast models [13]:
past observations that are similar to the forecast are used to enhance the accu-
racy of the forecast. The AnEn method can also be used directly for weather
forecasting [18, 6]. More recently [5], AnEn was used to reconstruct data of a
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Campus de Santa Apolónia, 5300-253 Bragança, Portugal

{murilo.breve,rufino,balsa}@ipb.pt
2 Mountain Research Center (CIMO), Instituto Politécnico de Bragança,
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Abstract

The observation of weather states has always been a human need. Our most distant
ancestors already tried to understand and predict the weather, but did not have reliable
methods. In the 19th century, modern meteorology took its first steps: the French
government, motivated by the sinking of ships near the coast of Crimea, because of a
heavy rainstorm, created a network of 24 stations spread across Europe, which began to
observe the weather. In recent years, due to computational advances, different methods
of predicting weather states have begun to emerge, increasing the forecast extent and
its accuracy.

The Analog Ensembles method (AnEn), introduced by Luca Delle Monache in 2011
[1], is a post-processing tool that has shown good results to improve whether predictions
or perform hindcasting (reconstruction of missing meteorological data). The goal of
this study is to use the AnEn method to perform hindcasting, in order to reconstruct
past weather conditions in a specific area of the northeeast of Portugal and verify its
similarity with the actual forecast.

The AnEn method uses a two different time series: one with historical data (from
a predictor station) and another with observed data (concerning a predicted station).
The historical data is complete, while the observed data is missing or sparse in the
prediction period. In Figure 1, which illustrates the methodology, a number of analogs
are selected from the historical data set, according to their similarity to a predictor value
(see step 1). At the same time instant, but at the predicted station, the corresponding
observed data is selected and is used to produce a predicted value (step 3). This process
is performed successively until the end of the prediction period data, and thereby it is
possible to reconstruct the full predicted data from station 2. The AnEn method also
allows using more than one predictor station (or more than on variable from the same
station); in this scenario, the data from the predictor stations (or variable) can be
used either dependently or independently (i.e., with the analogs selected in different
predictor series having to overlap in time, or not).

The data for this research comes from weather stations managed by IPB and located
in the northeast region of Portugal, near the villages of Edroso (latitude : 41.912778;
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