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Abstract

Ransomware attacks have become a danger to computer systems, leading to data loss,

monetary losses, and business interruptions. We propose a machine learning-based method

for ransomware detection on Linux to identify these attacks. To detect ransomware ac-

tivity on the system, our approach combines the file system with a predictive model. To

obtain sufficient infection information we use the data from the alteration calls to the

files on the file system. This data is then fed into a machine-learning algorithm. Using

a dataset we collected from uninfected files and files infected with various types of ran-

somware and were able to achieve a high detection rate with a low false positive rate. Our

methodology can be incorporated into current security programs to improve detection and

defense against ransomware attacks in the Linux environment.

Keywords: Ransomware; Malware; Cybersecurity; Threat detection; Linux.
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Resumo

Os ataques de ransomware se tornaram um perigo para os sistemas de computador,

levando à perda de dados, perdas monetárias e interrupções nos negócios. Propomos

um método baseado em aprendizado de máquina para detecção de ransomware no Linux

para identificar esses ataques. Para detectar a atividade de ransomware no sistema, nossa

abordagem combina o sistema de arquivos com um modelo preditivo. Para obter in-

formações suficientes sobre a infecção, usamos os dados das chamadas de alteração dos

arquivos no sistema de arquivos. Esses dados são então inseridos em um algoritmo de

aprendizado de máquina. Usando um conjunto de dados que coletamos de arquivos não

infectados e arquivos infectados com vários tipos de ransomware, conseguimos atingir uma

alta taxa de detecção com uma baixa taxa de falsos positivos. Esta metodologia pode

ser incorporada nos programas de segurança atuais para melhorar a detecção e a defesa

contra ataques de ransomware no ambiente Linux.

Palavras-chave: Ransomware; Malware; Cibersegurança; Detecção de ameaças; Linux.
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Chapter 1

Introduction

This chapter is dedicated to the introduction of the work, where the scope, motivations,

and objectives that justify its execution are addressed. Initially, the context of the work

is described. Next, the justifications for the development of the work are presented, and

at the end, the structure of the document is presented.

1.1 Context

Cybersecurity is constantly threatened by harmful applications and attacks like malware

and ransomware. These can severely damage computer systems, data centers, and web

and mobile applications, affecting various industries and businesses.

Ransomware programs typically prevent victims from accessing their data and can use

complex encryption that only the attacker can decrypt. If the victim refuses to pay the

attacker’s demand, they may permanently lose their data and system. Attackers are also

using advanced technologies to create new types of ransomware that are harder to detect

and recover from, making it challenging for experts to combat these threats effectively.

This constant evolution of ransomware also makes it difficult to identify new patterns and

varieties [1].
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1.2 Justification

In just the first half of 2022, there were 236.1 million ransomware attacks worldwide.

Through 2021, there were 623.3 million ransomware attacks globally. This doesn’t mean

every attack was successful, but it does highlight the prevalence of this cyberthreat [2].

According to data uncovered by Trend Micro, the company prevented 63 billion threats

in the first half of 2022. The top three industries attacked by malware were government,

industry, and healthcare, with 52% more attacks recorded in the first half of the year

compared to the same period in 2021. During this period, there was an increase in

ransomware-as-a-service attacks. Trend Micro’s data also revealed that 67 active RaaS

and extortion groups, along with over 1,200 victim companies, were recorded in the first

half of 2022 these attacks were recorded on Linux systems by the company [3].

These numbers support the development and focus of ransomware detection systems

for Linux systems that have been a great focus of the attackers in the last year due to the

increase of the system use.

1.3 Goals

The current work has the objective of developing a detection system that can identify

possible files being encrypted on Linux systems. The objectives of the work can be

summarized as follows:

• Develop an intelligent model capable of classifying whether a file may or may not

have been encrypted.

• Creation of a scenario and methodology for creating datasets.

• Create datasets of infection to provide for future analysis.

• Test the efficiency of the model created and its limitations.
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1.4 Thesis Structure

The document has been subdivided into 6 chapters. The current chapter presents the

introduction and the intended objectives. The remainder of the document is organized as

follows:

• Chapter 2: State-of-the-Art

- Contains the literature review about the ransomware detection, the simulation in

this field, the common characteristics, and deviations between this work and those

found in literature.

• Chapter 3: Approach

- Contains an explanation of the approach that will be used to develop the work, fur-

ther explaining the division of the proposed model and how we intend to implement

it.

• Chapter 4: Implementation

- Contains an explanation of how the algorithms and intelligent models will be

implemented, it also describes the process of creating the database and the tools

used for the development of the project as a whole.

• Chapter 5: Experiments and discussion

- Contains an explanation of how the experiment was executed, how the results were

evaluated, and the final results, also pointing out the limitations encountered during

development.

• Chapter 6: Conclusions and future work

- Contains the conclusions that were obtained by developing the work, also pointing

out the points that can be better explored in a future work
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Chapter 2

State-of-the-Art

This chapter presents the main concepts that were taken into consideration during the

planning, analysis, and development stages of this work. Initially, the challenge we seek

to solve is presented, followed by the protocol for reviewing the bibliography, and finally

an analysis of the selected articles presenting a summary of the article’s approach and

what it proposes to solve.

We will also present some concepts of cryptography and entropy.

2.1 The Challenge

The proposed challenge is the development of a ransomware detection system that is

efficient and fast for platforms with Linux desktop and server systems, aiming to approach

an area that does not have a vast approach in the literature which is able to detect when

the system is suffering a cryptographic attack and can warn the user about this problem.

2.2 Review Protocol

To define the research questions we needed to define questions that would allow us to

find studies that fit our study idea, thus, we decided to determine in what scenario the

ransomware technology has been used, in addition to what security premises are applied.
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In this context, the research questions reflect that purpose as follows:

• RQ1: What are the techniques used for ransomware detection ? Rationale: Here

we seek to find current ransomware detection techniques.

• RQ2: What are the difficulties of ransomware detection? Rationale: Here we seek

to find the difficulties encountered for ransomware detection implementations

• RQ3: What types of ransomware exist? Rationale: Here we try to filter all ran-

somware families that are already addressed in order to find new ones and improve

existing ones.

To perform the search for primary studies, we need to define both the search string

and the research repositories. The search string combines keywords and their synonyms,

presented in Table 2.1, which logical operators later connect, as presented in Table 2.2.

Keyword Synonyms
Detection “Countermeasure”; “Defense” ; “Mitigation”; “Prevention”
Ransomware “Crypto-ransomware”; “Cryptoware”; “Cryptoworm”; “Cyber ran-

som”; “Locker-ransomware”

Table 2.1: Keywords and Synonyms

(“Ransomware” OR “Crypto-ransomware” OR “Cryptoware” OR “Cryptoworm”
OR “Cyber ransom” OR “Locker-ransomware”) AND (“Detection” OR “Counter-
measure” OR “Defense” OR “Mitigation” OR “Prevention”)

Table 2.2: Search String

The search was carried out in February 2022, covering digital repositories considered

as the most relevant scientific sources and, therefore, likely to contain important primary

studies. Table 2.3 lists the research repositories.

6



Research Repository URL
ACM Digital Library http://portal.acm.org
IEEE Digital Library http://ieeexplore.ieee.org
Science@Direct http://www.sciencedirect.com
Scopus http://www.scopus.com
Springer Link http://link.springer.com

Table 2.3: Selected Research Repositories

Screening aims to determine which primary studies are relevant to answer research

questions. In this stage, we evaluated all the recovered primary studies. To this end,

we applied a set of inclusion and exclusion criteria to each work. The inclusion criteria

designed and applied are:

• IC1: If there are papers presenting more than one study, each study will be evalu-

ated individually

• IC2: If there are versions of the same paper, a summary and a complete one, the

complete one must be included

• IC3: Papers that present mechanisms for ransomware detection or mitigation in

desktop operating systems

• IC4: When several papers show similar studies, only the most recent is included

Exclusion criteria are important, as they allow greater precision in eliminating studies

not relevant to the context of the mapping. For this reason, during the individual analysis

of the studies, we discarded all those that met at least one of the following exclusion

criteria:

• EC1: Non-English papers

• EC2: Papers that do not present mechanisms for ransomware detection or mitiga-

tion
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• EC3: Papers that present detection or mitigation mechanisms for other malware

than ransomware

• EC4: Papers that present mechanisms for ransomware detection or mitigation in

servers, cloud, mobile, and other than desktop operating systems

• EC5: Positions papers, posters, and talks

• EC6: Technical reports, documents that are available in the form of abstracts

or presentations and also secondary literature reviews (i.e. systematic literature

reviews and mapping)

• EC7: There is a more complete paper published by the same authors

• EC8: Papers published before 2022

By applying the search string in the digital repositories, the process returned 3005

papers. However, 518 were duplicated, resulting in 2487 unique papers. After applying

the inclusion and exclusion criteria, based on the title, abstract, and keywords of each

work, we obtained 275 candidate papers. Finally, after reading the candidate papers’

introduction and conclusion, 18 papers were selected for the study, as shown in Table 2.4.

Research Repository Total Papers
ACM Digital Library 471
IEEE Digital Library 295
Science@Direct 77
Scopus 802
Springer Link 1360
Total 3005
Duplicated 518
Rejected 2212
Candidate 275
Final Selection 18

Table 2.4: Number of papers by each digital repository and summary of the selection
process
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The 18 selected studies were published in conferences, symposiums, workshops, and

journals, with the majority of studies focusing on journals. Table 2.5 lists all the selected

studies, which will be analyzed in the following sections.

Title Year Cited By Pub.Type

A few-shot meta-learning based siamese neural network
using entropy features for ransomware classification [4]

2022 8 Journal

A novel approach for ransomware detection based on PE
header using graph embedding [5]

2022 0 Journal

A Grammar-Based Behavioral Distance Measure Between
Ransomware Variants [6]

2022 1 Journal

Behavior-based ransomware classification: A particle
swarm optimization wrapper-based approach for feature
selection [7]

2022 0 Journal

BigRC-EML: big-data based ransomware classification us-
ing ensemble machine learning [8]

2022 1 Journal

Classification of ransomware using different types of neu-
ral networks [9]

2022 0 Journal

Comparative analysis of various machine learning algo-
rithms for ransomware detection [10]

2022 0 Journal

Dual Generative Adversarial Networks Based Unknown
Encryption Ransomware Attack Detection [11]

2022 0 Journal

FeSA: Feature selection architecture for ransomware de-
tection under concept drift [12]

2022 2 Journal

Inhibiting crypto-ransomware on windows platforms
through a honeyfile-based approach with R-Locker [13]

2022 1 Journal

On Ransomware Family Attribution Using Pre-Attack
Paranoia Activities [14]

2022 3 Journal

Pre-Encryption and Identification (PEI): An Anti-crypto
Ransomware Technique [15]

2022 1 Journal

Process based volatile memory forensics for ransomware
detection [16]

2022 1 Journal

Ransomware Classification and Detection With Machine
Learning Algorithms [1]

2022 4 Journal

Ransomware Detection Using Open-source Tools [17] 2022 0 Conference
Rcryptect: Real-time detection of cryptographic function
in the user-space filesystem [18]

2022 3 Journal

Zero-day Ransomware Attack Detection using Deep Con-
tractive Autoencoder and Voting based Ensemble Classi-
fier [19]

2022 1 Journal

Detecting Ransomware Attacks Distribution Through
Phishing URLs Using Machine Learning [20]

2022 0 Conference

Table 2.5: Selected Studies
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2.3 Analysis Of The Selected Studies

Zhu, Jang-Jaccard, Singh, et al. [4] proposes a novel approach for detecting and classifying

ransomware using a few-shot meta-learning based Siamese neural network. The authors

suggest a solution to tackle the issue by employing a Siamese neural network, which

uses entropy features to classify ransomware samples. This few-shot meta-learning-based

network can classify new ransomware samples with minimal training data. The entropy

features utilized in the network are obtained from the ransomware sample’s various data

segments, measuring the complexity and randomness of the data. This information can

be used to differentiate between different ransomware types. The Siamese neural network

comprises two identical sub-networks that simultaneously process two input samples. The

output of these sub-networks is combined and passed through fully connected layers to

generate a classification result. The network is trained using a loss function that ensures

similar samples have similar embeddings, while dissimilar samples have different embed-

dings. The experimental results demonstrate that the proposed approach effectively de-

tects and classifies different types of ransomware samples, even with limited training data.

Based on this, the authors conclude that the few-shot meta-learning-based Siamese neu-

ral network using entropy features is a promising approach for detecting and classifying

ransomware.

Manavi and Hamzeh [5] proposes a new approach for detecting ransomware using

graph embedding techniques applied to Portable Executable (PE) headers. According

to the authors, current methods of detecting ransomware using signature matching or

behavior analysis are insufficient because they can be easily circumvented by malware

creators. To tackle this issue, they suggest a new approach that utilizes graph embedding

to depict the structural properties of PE headers as graphs, followed by machine learning

algorithms to classify them as either benign or malicious. To implement this method, the

PE header is transformed into a graph representation, where each node corresponds to a

particular header attribute, and edges represent the relationships between them. Graph

embedding techniques, such as node2vec or GraphSAGE, are then employed to embed
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the graph into a low-dimensional space that captures its structural information. Finally,

a machine learning algorithm is trained on the embedded graph to categorize the PE

header as ransomware or benign. The authors assessed their approach on a dataset com-

prising 10,000 PE files, encompassing both benign software and ransomware. Their results

demonstrate that the proposed technique exhibits high precision, recall, and accuracy in

identifying ransomware, surpassing traditional signature-based and behavior-based meth-

ods. Overall, the article proposes a promising strategy for identifying ransomware that

harnesses the potential of graph embedding techniques to capture the structural char-

acteristics of PE headers. This technique has the potential to enhance the efficacy of

ransomware detection and improve the security of computer systems.

Parunak [6] proposes a new method for measuring the similarity between different

variants of ransomware. A new technique for measuring the similarity between various

ransomware variants based on their behavior is proposed by the authors of the article. The

technique, called “grammar-based distance”, involves using formal grammar to represent

the behavior of each variant as a set of rules, and then calculating the number of different

rules between two variants to determine their distance. To validate their approach, the

authors tested their method on a dataset containing 48 different ransomware variants,

comparing the results to other techniques such as static and dynamic analysis. The

authors found that their grammar-based distance method could accurately distinguish

between ransomware variants, even when the variants were very similar in behavior. The

authors believe that their approach could assist in the detection and analysis of new

ransomware variants. Comparing the behavior of new variants to known variants using

this method could enable security researchers to quickly identify new threats and develop

strategies to defend against them. The technique could also aid in tracking the evolution

of ransomware over time and identifying patterns in the behavior of various variants.

Abbasi, Al-Sahaf, Mansoori, et al. [7] presents a novel approach to classifying ran-

somware based on its behavior using a particle swarm optimization (PSO) wrapper-based

feature selection method. The article proposes utilizing PSO, a swarm intelligence op-

timization technique, to select the most relevant behavioral features from a large set of
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ransomware samples. These selected features are then utilized to train a machine learn-

ing classifier for distinguishing between legitimate software and ransomware. To test

the effectiveness of this approach, the authors conducted experiments using a dataset

of 1,128 ransomware and benign samples each. The results demonstrate that the pro-

posed approach achieves high accuracy, precision, recall, and F1-score when compared

to other state-of-the-art ransomware classification methods. Moreover, this approach can

efficiently classify ransomware samples in real time with minimal computational require-

ments. In summary, the article offers a promising solution for detecting ransomware based

on behavior and validates the efficacy of swarm intelligence optimization techniques for

feature selection in machine learning.

Aurangzeb, Anwar, Naeem, et al. [8] presents a method for classifying ransomware

using ensemble machine learning algorithms. The goal of the method is to improve the

detection accuracy of ransomware by utilizing big data and advanced machine learn-

ing techniques. The authors have proposed a solution to the problem at hand, which

they refer to as BigRC-EML, or Big Ransomware Classification using Ensemble Machine

Learning. Their method involves gathering a large dataset comprising ransomware and

non-ransomware samples, which is then used to train several machine learning algorithms.

To implement their ensemble approach, the authors use five different machine learning al-

gorithms: Random Forest, Logistic Regression, Naive Bayes, Decision Tree, and Support

Vector Machine. Each of these algorithms is trained on a different subset of the dataset,

and their results are combined using a weighted voting mechanism. The performance

of the method is evaluated using a dataset of ransomware and non-ransomware samples,

which results in an accuracy of 97.5%. This is significantly higher than the accuracy of in-

dividual machine-learning algorithms. Overall, the article proposes a promising solution

to the problem of ransomware detection, leveraging the power of big data and ensem-

ble machine learning. It indicates that by combining the strengths of multiple machine

learning algorithms, it is possible to achieve high accuracy in identifying ransomware.

Madani, Ouerdi, Boumesaoud, et al. [9] discusses how neural networks can be used
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to classify different types of ransomware. The authors explain how ransomware classifi-

cation can be accomplished using neural networks that analyze features such as file size,

entropy, and opcode frequency. They compare the performance of different types of neu-

ral networks, such as MLPs, CNNs, and LSTM networks. The authors test their method

using a dataset containing more than 9,000 ransomware samples and achieve classifica-

tion accuracies of up to 98% for some neural network models. They also demonstrate

the ability of their method to detect new and previously unseen ransomware variants.

In summary, the article presents a comprehensive overview of the challenges involved in

classifying ransomware and the potential of neural networks to tackle these challenges.

It emphasizes the need for more advanced techniques to detect and prevent ransomware

attacks and suggests that neural networks could be an important tool in this endeavor.

Khammas [10] is a research paper that explores the effectiveness of different machine

learning algorithms in detecting ransomware attacks. The authors explain their approach

to comparing various machine learning algorithms’ performance. They utilized a dataset

consisting of real-world ransomware examples and trained and tested multiple algorithms,

including decision tree, k-nearest neighbors, support vector machines, and random for-

est. They assessed each algorithm’s effectiveness by analyzing metrics such as precision,

recall, accuracy, and F1 score. According to the study’s outcomes, the random forest

algorithm achieved the highest accuracy rate of 99.71% for detecting ransomware. Ad-

ditionally, the k-nearest neighbors and decision tree algorithms displayed commendable

results, with accuracies of 98.87% and 97.14%, respectively. The authors suggest that

these findings demonstrate the vast potential of machine learning algorithms in improv-

ing ransomware detection and recommend further investigation to enhance these algo-

rithms’ performance. Overall, this article presents valuable insights into the efficacy of

different machine-learning algorithms in identifying ransomware attacks. The research’s

conclusions can aid in developing more robust and efficient ransomware detection tools,

safeguarding individuals and organizations from this escalating threat.

Zhang, Wang, and Zhu [11] proposes a method for detecting ransomware attacks on
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computer systems. A new method for detecting ransomware using dual generative adver-

sarial networks (GANs) is proposed in the article. GANs are machine learning models that

can create realistic synthetic data by training two neural networks against each other. The

GANs in this case produce synthetic samples of encrypted and unencrypted files, which

are then used to train a binary classification model. The goal of the classification model

is to differentiate between encrypted and unencrypted files and to identify unknown en-

cryption algorithms, a critical task because custom encryption algorithms are often used

in ransomware attacks and are not known to security researchers. The article provides

experimental results showing that the proposed approach is highly effective. The method

achieved high accuracy in detecting both known and unknown ransomware attacks, out-

performing several baseline methods. In summary, the article introduces a novel approach

to ransomware detection utilizing dual GANs and binary classification. The method aims

to identify unknown encryption algorithms, which is a significant challenge in ransomware

detection. The experimental results demonstrate that the proposed method is effective

and has the potential to enhance the state of the art in ransomware detection.

Fernando and Komninos [12] proposes a novel approach for detecting ransomware

attacks in real-time. The proposed method for detecting ransomware attacks involves

using machine learning algorithms to analyze network traffic data. However, a key obstacle

in this approach is that the characteristics of ransomware attacks can change over time,

leading to reduced detection accuracy, known as concept drift. To tackle this problem, the

authors suggest using a feature selection architecture (FeSA) that can dynamically identify

relevant features for detecting ransomware attacks in real time. FeSA comprises a feature

selection module and a classification module, which employ a genetic algorithm and an

ensemble of machine learning classifiers, respectively. The authors evaluated FeSA using

real-world ransomware datasets and compared it to other state-of-the-art techniques. The

results indicate that FeSA can achieve high detection accuracy while maintaining low false

positives, even under concept drift. This innovative approach has practical applications

in real-world cybersecurity systems for detecting ransomware attacks. In summary, the

article presents a novel and effective method for detecting ransomware attacks that address
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the challenge of concept drift, which is crucial in developing reliable cybersecurity systems.

Gómez-Hernández, Sánchez-Fernández, and García-Teodoro [13] proposes a new ap-

proach for preventing and mitigating the impact of crypto-ransomware attacks on Win-

dows systems. The proposed strategy employs honey files, which are dummy files that

masquerade as authentic but are specifically designed to activate an alert when an unau-

thorized user or program accesses or alters them. To combat crypto-ransomware attacks,

the authors created R-Locker, a tool that utilizes honey files. R-Locker generates numer-

ous honey files throughout the system and keeps an eye on them for any changes. If a

honey file is altered or encrypted, R-Locker will instantly recognize the action and shut

down the system to avoid further harm. The tool can also issue notifications to alert

administrators of the attack and furnish information on the impacted files and the kind

of ransomware utilized. The authors tested R-Locker using various actual ransomware

samples, such as WannaCry and Petya and discovered that the tool effectively detected

and prevented all attacks. Additionally, they compared R-Locker’s performance to other

popular anti-ransomware tools and found that it outperformed them in terms of both

detection and false positive rates. Overall, the paper demonstrates the potency of honey

file-based approaches in preventing and mitigating the effects of crypto-ransomware at-

tacks on Windows systems. Honeyfiles offer a proactive defense method that can identify

and prevent attacks before they result in significant harm, and R-Locker is a practical

tool that organizations can utilize to enhance their ransomware defense capabilities.

Molina, Torabi, Sarieddine, et al. [14] proposes a new approach for attributing ran-

somware attacks to specific malware families by analyzing their pre-attack activities,

specifically the steps they take to identify and evade detection by security systems. The

authors point out that current methods for tracing ransomware generally rely on analyz-

ing the attack after it has occurred, which can make it difficult to accurately determine

the perpetrator. In contrast, their approach focuses on detecting patterns in the pre-

attack behaviors of different ransomware families, such as vulnerability scanning, network

connectivity testing, and avoiding detection. To demonstrate the effectiveness of their

method, the authors analyze three ransomware families - Locky, Cerber, and Jigsaw - and
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identify specific patterns in their pre-attack activities. These patterns are then used to

create a set of attribution rules. According to the authors, their method can be helpful

to incident responders and security professionals in quickly identifying the specific ran-

somware family behind an attack, thereby allowing them to develop effective mitigation

strategies. They also suggest that this approach could be expanded to other types of mal-

ware and used alongside other attribution techniques to enhance the accuracy of tracing

cyber-attacks.

Mantri, Singh, Kumar, et al. [15] proposes a new approach to combating ransomware

attacks. Ransomware attacks are a type of malware that encrypts a victim’s files, ren-

dering them inaccessible until a ransom is paid. The proposed technique aims to prevent

ransomware from encrypting files by encrypting them before the ransomware can. The

proposed method by the authors is called Pre-Encryption and Identification (PEI), which

entails encrypting files on a victim’s computer before any ransomware can access them. A

program operates in the background of the computer to encrypt files as they are created

or modified, storing them in a secure location that is inaccessible to ransomware. The

PEI technique also includes an identification component that detects when ransomware

tries to encrypt a file. This component compares the encrypted files stored in the secure

location with the files accessed by the ransomware. If the ransomware tries to encrypt

a file already encrypted by the PEI program, the identification component prevents the

ransomware from doing so. According to the authors, the PEI technique offers several

advantages over other ransomware protection methods. For instance, it does not rely

on signature-based detection, which enables it to detect new strains of ransomware that

have not been seen before. Moreover, since the PEI program encrypts files before any

ransomware can access them, the technique is effective even against ransomware that uses

zero-day exploits. In summary, “Pre-Encryption and Identification (PEI): An Anticrypto

Ransomware Technique” presents a novel approach to fighting ransomware by encrypting

files before they can be accessed by ransomware. Although the technique is not yet widely

adopted, it has the potential to be an efficient tool in the battle against ransomware.

Arfeen, Khan, Zafar, et al. [16] proposes a technique for detecting ransomware attacks
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using memory forensics. The proposed method by the authors detects ransomware by

examining the behavior of processes in volatile memory, which is the type of memory

that disappears when a computer shuts down. This approach can identify ransomware

activity by observing the creation of new processes, file modifications, or data encryption.

To implement this technique, the authors utilized the Volatility Framework, a memory

forensics tool that can extract process information from memory dumps and analyze run-

ning processes. The authors identified ransomware-specific behaviors, such as encryption

algorithms and file extension modifications, and successfully tested their technique on

various ransomware samples. Furthermore, the authors emphasized the potential of their

method to detect other types of malware, not only ransomware. In conclusion, the article

highlights an innovative approach to detecting ransomware using memory forensics and

provides security professionals and researchers with useful tools to combat cyber threats.

Masum, Faruk, Shahriar, et al. [1] focuses on the development of a system for the clas-

sification and detection of ransomware attacks using machine learning algorithms. The

article details a system that combines network traffic and system call features to identify

and classify ransomware attacks. The system was tested using actual ransomware attack

data and achieved a high detection rate while minimizing false positives. Additionally,

the article examines several machine learning algorithms used in the system, such as De-

cision Trees, Random Forest, Naive Bayes, and Support Vector Machines (SVMs). After

comparing their performance, the authors conclude that SVMs are the most effective in

detecting ransomware attacks. Overall, the article offers valuable insights into the cre-

ation of a machine learning-based ransomware detection and classification system, which

has the potential to enhance the security of computer networks and systems.

Lee, Shim, Lee, et al. [17] discusses the use of open-source tools for detecting ran-

somware attacks. In the article, open-source tools for detecting ransomware are discussed,

including Sysmon, YARA, Snort, and OSSEC, which were previously mentioned in re-

sponse. Each tool is described in detail, with an explanation of how it can be utilized to

detect ransomware activity. The article then introduces a proposed ransomware detec-

tion system that integrates these open-source tools. The authors provide a comprehensive
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guide on how to set up the system and describe how it operates. Lastly, the article reports

on the results of experiments conducted to assess the efficacy of the proposed ransomware

detection system. The authors demonstrate that the system successfully detected var-

ious types of ransomware attacks with a high degree of accuracy. Overall, the article

serves as a valuable resource for organizations interested in implementing an open-source

ransomware detection system. It emphasizes the importance of using multiple tools in

combination and showcases the effectiveness of such an approach in detecting ransomware

attacks.

Lee, Jho, Chung, et al. [18] present a novel method, Rcryptect (Real time + Crypto +

Detect) to detect potentially malicious cryptographic functions at run-time in the filesys-

tem. The article introduces Rcryptect, a novel tool designed to detect and monitor the

real-time usage of cryptographic functions in a user-space filesystem. The authors assert

that detecting such functions is a critical aspect of identifying and mitigating attacks on

sensitive information like financial data or passwords. Rcryptect operates as a kernel mod-

ule and utilizes a combination of heuristics and pattern-matching algorithms to pinpoint

cryptographic functions used by user-level processes. The authors evaluated Rcryptect’s

performance by testing it on various real-world applications, including password managers

and file encryption tools. The results of the evaluation indicate that Rcryptect has a high

detection rate and can accurately identify cryptographic functions in multiple applica-

tions. Additionally, the authors compared Rcryptect’s performance with other similar

tools and found that it surpasses them in terms of detection accuracy and speed. In

summary, the authors concluded that Rcryptect is a valuable tool for the real-time detec-

tion and monitoring of cryptographic functions. It can play a crucial role in safeguarding

sensitive information and identifying potential security threats.

Zahoora, Rajarajan, Pan, et al. [19] proposes a novel approach for detecting ran-

somware attacks using a combination of deep learning techniques and ensemble classifiers.

The suggested method involves using a deep contractive autoencoder (DCA) to learn a

compressed representation of input data, enabling the identification of subtle changes in

file behavior induced by ransomware. To learn the underlying structure of each file type,
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the DCA is trained on a large set of benign and malicious files. Following DCA training,

the compressed representation is inputted into an ensemble classifier, which combines the

outputs of several classifiers to produce a final prediction. The ensemble classifier uti-

lizes voting to aggregate the outputs of multiple classifiers that employ different machine

learning algorithms, thereby mitigating the risk of false positives or negatives. The pro-

posed approach was tested on a real-world dataset of ransomware attacks and achieved

high accuracy, precision, and recall rates in identifying zero-day ransomware attacks. The

authors suggest that this approach could be combined with antivirus software and other

security measures to provide an extra layer of protection against ransomware attacks. In

summary, the article presents a promising strategy for detecting zero-day ransomware at-

tacks using deep learning and ensemble classifiers, which could enhance computer system

security.

Chaithanya and Brahmananda [20] is a research paper that explores the use of ma-

chine learning algorithms to identify and prevent ransomware attacks that are distributed

through phishing URLs. The authors then introduce their proposed solution, which in-

volves using machine learning algorithms to analyze the URLs contained in phishing emails

and determine whether they are likely to lead to a ransomware attack. The algorithm is

trained using a dataset of known phishing URLs and their associated ransomware pay-

loads. The paper describes the steps involved in the machine learning process, including

feature extraction, model selection, and performance evaluation. The authors also dis-

cuss the various metrics used to evaluate the effectiveness of the model, such as precision,

recall, and F1 score. To test the effectiveness of their approach, the authors conducted

experiments using real-world phishing emails and URLs. The results showed that their

machine learning model was able to accurately identify phishing URLs that were likely

to lead to a ransomware attack, with an accuracy of over 98%.The authors conclude

that their approach shows promise in detecting and preventing ransomware attacks that

are distributed through phishing emails. They suggest that their model could be inte-

grated into existing security systems to provide an additional layer of protection against

ransomware attacks.
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2.4 Cryptography

When we talk about ransomware it is important to understand how this type of attack

works, so understanding the concept of encryption is extremely important for a better

analysis of the attacks.

Encryption is the process of converting original messages, also known as plaintext, into

an unreadable format called ciphertext by using an encryption algorithm and a key. This

makes the data incomprehensible to unauthorized parties, thereby safeguarding the confi-

dentiality and integrity of the information that is being stored or transmitted. Encryption

can be employed for different types of data, including text, images, videos, and files, and

can be implemented in diverse applications like email, secure messaging platforms, and

online transactions. Symmetric encryption, also called secret-key encryption, employs

the same key for both encryption and decryption. The sender and receiver need to have

identical keys to decrypt the message. Advanced Encryption Standard (AES) and Data

Encryption Standard (DES) are examples of symmetric encryption algorithms. Asym-

metric encryption, also known as public-key encryption, employs two distinct keys for

encryption and decryption. The public key is utilized for encryption, whereas the private

key is used for decryption. The sender encrypts the message using the receiver’s public

key, and the receiver decrypts the message using their private key. Examples of asymmet-

ric encryption algorithms are RSA and Elliptic Curve Cryptography (ECC). Encryption

is a crucial aspect of modern-day cybersecurity that aids in safeguarding sensitive data

from unauthorized access, theft, and cyber attacks. However, it is not entirely foolproof,

and attackers can still exploit vulnerabilities like weak encryption algorithms and key

management issues. Therefore, encryption should be utilized in conjunction with other

cybersecurity measures to ensure data security [21].

Cryptography is a common technique used by malware authors to protect their code

from detection and enable communication with command and control servers. There are

several cryptographic techniques used by malware, including encryption, steganography,

hashing, digital signatures, keylogging, and rootkits. Encryption involves encrypting the
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malicious code or communication data to evade detection by security software. This

encrypted data is decrypted at runtime using a decryption key. Popular encryption al-

gorithms used by malware include Advanced Encryption Standard (AES), Blowfish, and

RSA. Steganography is a technique used by malware authors to hide malicious code within

seemingly innocent files or images. The code is extracted at runtime using a decryption

key. Hashing is used by malware authors to generate unique values for the malicious

code, which can be used to verify the integrity of the code and to check for updates.

Hashing algorithms such as MD5 or SHA-1 are commonly used for this purpose. Digital

signatures are used to make malware appear legitimate and evade detection. The digital

signature is created using a private key and can be verified using a public key. Keylogging

involves capturing sensitive information such as usernames and passwords. The keylogger

records keystrokes and sends them to a remote server using encryption. Rootkits are a

type of malware that hides its presence on the system by modifying the operating system

or kernel. Rootkits can intercept system calls and modify system files to evade detection

by security software [22].

2.5 Entropy

Entropy is a measure of uncertainty or randomness in a message or data source in infor-

mation theory. Claude Shannon first introduced it in 1948 to quantify the information

content of messages and assess communication limits over noisy channels. Entropy is

computed as the average amount of information required to encode a message in bits.

The greater the uncertainty or unpredictability of the message, the higher its entropy. A

message with one possible outcome, like a coin flip, has lower entropy than a message

with many possible outcomes, like rolling a die. Entropy also measures the compression

potential of a data source. High entropy indicates the presence of redundancy or patterns

that can be exploited to compress data without losing information. Conversely, low en-

tropy means the data is already highly compressed, and further compression may lead to
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information loss. Entropy has numerous applications in information theory, computer sci-

ence, and cryptography. It is employed in lossless data compression algorithms, including

Huffman coding and arithmetic coding, and in encryption algorithms like the Advanced

Encryption Standard (AES) [23].

In the encryption process of ransomware attacks, entropy plays a critical role. The

encryption process typically involves the creation of a unique key to encrypt the victim’s

files. To enhance the security of the encryption, ransomware attackers often utilize high-

entropy keys. These keys are generated using a random number generator with a high level

of entropy, making it extremely challenging for the victim to recover their files without

paying the ransom. The key is virtually impossible to guess or brute force. In summary,

entropy plays a vital role in the effectiveness of ransomware attacks. Using high-entropy

keys can improve the security of the encryption and make it more challenging to crack,

but it can also make it more challenging for the attacker to decrypt the files [24].

2.6 Problem Statement

Ransomware attacks have become more prevalent in recent years in linux, posing a sig-

nificant threat to both individuals and organizations. This type of malicious software

encrypts files or systems and demands payment for a decryption key. Such attacks can

cause financial losses, data breaches, and operational disruptions. Unfortunately, tra-

ditional antivirus and anti-malware software are not always effective in detecting and

preventing ransomware attacks. Attackers employ sophisticated techniques to evade de-

tection. Therefore, there is an urgent need for an advanced ransomware detection system

that can identify and mitigate these threats in real time. This project aims to design and

develop a ransomware detection system that employs advanced algorithms and machine

learning techniques to detect ransomware attacks in real time. The system will be able

to monitor the file system, identify suspicious activity, and alert system administrators

of potential threats. By successfully implementing a ransomware detection system, indi-

viduals and organizations will be able to safeguard their valuable data and assets from
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malicious cyber-attacks.
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Chapter 3

Approach

This chapter will manifest the approach adopted to solve the original problem, presenting

the system architecture and explaining how it will operate.

3.1 Proposed solution

The proposed system aims to develop an efficient ransomware detection system for servers

and desktops with a Linux system, using entropy and file size to check if a file may have

suffered a malicious change. The focus of the proposal is the development of an intelligent

model that will be trained to identify these changes and will warn the user when a possible

attack is occurring. An additional focus of the work is the availability of the collected

data to provide a robust infection dataset for new researchers who wish to implement

something in the area.

3.1.1 Detection system

The proposed system will implement ransomware detection at the system level using file

entropy as a comparison. In the proposed work we will analyze the file system calls to

check which files are trying to be accessed so that we can later compare the entropy level

of the previous file with the current one and if it is a higher value than expected we will
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warn the user about a possible encryption of his data. We will look at the best approach

to work with system calls in a dedicated section, to complement the file system monitoring

model, an algorithm will be developed in python that will use models that will be trained

to check file values to determine if a file may have been encrypted or not, this model

will be trained using 8 types of ransomware and its training will be better explained in

a dedicated section. The detection system will be implemented in python while the file

system data collection system will be implemented using C.

As can be seen in Figure 3.1 the detection system is divided into two parts, one

responsible for performing the data collection from the file system of the files that are

being changed in real-time and storing the results in the database, the second part is a

detection model implemented in python that will use the data collected in real-time to

determine whether or not a file may have been encrypted and if the algorithm considers

that the file may have been encrypted an alert will be presented to the user warning this.

Figure 3.1: Flow of the ransomware detection system

3.1.2 Analysis System

After verifying that we would collect the data and save it in a database, it was important

to have a way to verify this data and be able to correlate them to create an intelligent
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detection model that would be able to verify if a file could be encrypted or not based on

some values that we will collect in the system.

The analysis system will be implemented using python language, and test models will

be created based on the available ransomware from which we collected infection data

based on a balanced model, we will check some machine learning algorithms that best fit

our data and choose the best one for the creation of the models, we will also explain the

feature selection method for training.

3.1.3 System Calls

After defining how the detection problem was going to be approached, we needed method

that could collect file access logs so that we could analyze the logs and define the best

approach to use in evaluating the entropy of the file. We then decided to analyze two

libraries better known in the Linux community which are inotify and fanotify aiming also

to get more support and more examples for our work.

3.1.4 Data set Generation

With a focus on providing data from experiments to the scientific community, we also

want to provide our datasets of data that we will collect for everyone to access, filling

in some of the gaps in obtaining test data that are always difficult to obtain and in an

acceptable quantity.

To have an initial base of files, instead of creating a new base, we took advantage

of a well-known and robust base in the scientific environment, NapierOne[25], using the

NapierOne-small base that contains several files, we used 9384 files for our tests.

3.1.5 Data set cleaning

According to Kirsten Barkved [26] dataset cleaning is a critical stage in creating depend-

able and precise AI models. The following are some reasons why dataset cleaning is

crucial:
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• Enhances model accuracy: The precision of an AI model heavily relies on the quality

of the data it learns from. By cleaning the dataset, you can eliminate inaccuracies,

errors, and noise that could negatively affect the model’s performance. This results

in a more precise and dependable model.

• Reduces bias: Data bias can result in partial AI model predictions. Dataset cleaning

aids in detecting and eliminating biased data, minimizing the possibility of biased

results.

• Saves time and resources: Cleaning the dataset can help you identify and elimi-

nate irrelevant or duplicated data, decreasing the time and computational resources

needed to train the model. This can hasten the development process and reduce

expenses.

• Improves data comprehension: Dataset cleaning frequently involves in-depth explo-

ration and analysis of the data. This can assist you in better understanding the

data, recognizing patterns, and gaining insights that can be used to develop more

efficient AI models.

In summary, dataset cleaning is a critical step in creating dependable, accurate, and

unbiased AI models. It aids in enhancing model accuracy, decreasing bias, conserving

time and resources, and improving data comprehension.

3.1.6 Creation of model

According to Goodfellow, Bengio, and Courville [27] AI-based intelligent models are devel-

oped through the training of machine learning algorithms, which enable the recognition

of patterns within data, facilitating accurate predictions and decisions. These models

are widely utilized in diverse applications, such as image and speech recognition, natural

language processing, predictive analytics, and autonomous systems. Supervised learning

and unsupervised learning are the two primary approaches employed in creating intelli-

gent models. Supervised learning entails training the algorithm with labeled data, where
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input and corresponding output data are presented to the algorithm for mapping. Un-

supervised learning involves training the algorithm with unlabeled data, where it has

to identify patterns and structures independently. Deep learning, a subset of machine

learning, is an especially powerful technique for creating intelligent models. It employs

artificial neural networks to learn from data and make predictions or decisions. These

networks are composed of numerous layers of interconnected nodes, designed to recog-

nize progressively complex features in the input data. There are numerous tools and

frameworks accessible for creating intelligent models using AI, such as TensorFlow [28],

PyTorch [29], and Keras [30]. These tools provide developers with a broad selection of

pre-built models and components that can be customized for specific applications. When

creating intelligent models, ethical considerations such as bias and privacy must be taken

into account. AI models are only as good as the data they are trained on, and if the

data is biased or incomplete, the model will reflect those biases. Additionally, AI models

may collect and process sensitive information, so it’s essential to ensure that privacy and

security measures are in place.

In this work the machine learning algorithm is used in the development of a classifi-

cation model that will be trained using collected data and will evaluate based on some

values of entropy and file size if a file may or may not have been encrypted, the algorithm

will be trained using different data sets so that there are several models to be used in the

final evaluation of the result.
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Chapter 4

Implementation

In this chapter the technologies used for the development of the ransomware detection

system are presented, also containing the details of the developed system and the processes

related to the development of the solution

4.1 Development Technologies

In this section, the technologies used to realize the implementation of the project are

discussed. It is discussed the Fanotify library used to collect logs from the file system,

the libpq library used for connections with the Postgres database, it is also discussed the

technologies used for creating the models, pandas for loading and processing the data,

sci-kit-learn for using data evaluation such as Adaboost, Random Forest and others and

Pickle for generating the models and using the generated models in the prediction of new

results

4.1.1 Fanotify

The fanotify library [31] is a Linux kernel feature enabling applications to track changes

in the filesystem. It provides notifications to applications when files or directories are

accessed, modified, or deleted. This feature is accessible from the Linux kernel version
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2.6.37 onwards. Through fanotify, applications can register for events related to a specific

set of files or directories, including file access, modification, opening, closing, and deletion.

The fanotify library allows for customized filtering of events based on criteria such as the

operation’s type or the process that is performing it. Fanotify operates using a specialized

kernel module that intercepts filesystem events and notifies registered applications. When

an event occurs, the kernel module sends a notification to the fanotify library, which then

calls a user-defined callback function in the application. One of the main advantages of

fanotify is its ability to monitor filesystem events without frequent polling. This results

in better performance and resource utilization. The fanotify feature can be utilized for

various purposes, such as intrusion detection, file system auditing, and malware detection.

It should be noted, however, that fanotify requires special permissions to access filesystem

events and can negatively affect system performance if not used prudently. Furthermore,

fanotify is specific to Linux and may not be available on other operating systems.

The fanotify library is used in our implementation to monitor and collect file changes

on the Linux file system.

4.1.2 Libpq

Libpq [32] is a C library that facilitates connection to and communication with a Post-

greSQL database. It features a user-friendly API for executing SQL queries and managing

database connections. The library is bundled with the PostgreSQL database distribution

and is compatible with multiple operating systems, including Linux, macOS, and Win-

dows. Libpq is versatile and supports both synchronous and asynchronous communication

with the PostgreSQL server. It can be employed in applications written in an array of

programming languages, such as C, C++, Python, Ruby, and Perl, among others. Note-

worthy aspects of the libpq library include SSL encryption for secure communication with

the database, prepared statements for query optimization, connection pooling for scala-

bility and reduced overhead, and batch processing of queries to enhance performance.

Additionally, libpq supports asynchronous communication for improved responsiveness
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and scalability, making it a popular choice for a variety of applications, from small-scale

command-line utilities to large web-based applications.

The libpq library is used in our implementation to connect to the Postgresql database

and with this connection, it is possible to insert the records that are collected in real-time

by the fanotify library.

4.1.3 Pandas

The popular open-source Python library called pandas [33] is frequently used for analyz-

ing and manipulating data. Its capabilities include high-performance data structures and

tools designed for working with various types of structured data such as tabular, time se-

ries, and heterogeneous data. The pandas library features several important components,

such as the DataFrame, which is a two-dimensional table that can store different types of

data in columns. DataFrames are versatile and can perform numerous operations on data.

Additionally, the Series is a one-dimensional labeled array that can store various types of

data and functions as a single column in a DataFrame. Pandas provide a wide range of

functions to manipulate data, such as merging, joining, filtering, aggregating, and trans-

forming data. It also offers robust tools for working with time series data, including the

ability to resample data, handle missing values, and perform rolling window calculations.

Finally, the pandas library offers input/output tools, including functions that allow for

reading and writing data in different formats, such as CSV, Excel, SQL databases, and

HDF5. In summary, pandas is a flexible and potent tool for structured data analysis,

widely used in data science, and machine learning, and an essential component for any

Python programmer dealing with data.

The pandas library is used in our implementation to help load the data that is used

for training and also the execution of the learning process of our model.
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4.1.4 Sci-kit-learn

Scikit-learn [34] is a Python-based open-source library for machine learning that offers

efficient and user-friendly tools for data mining and analysis. It is constructed on top of

NumPy, SciPy, and matplotlib, and is compatible with various other Python libraries.

The library provides an extensive range of both supervised and unsupervised learning

algorithms, such as logistic regression, decision trees, random forests, support vector

machines, linear regression, polynomial regression, K-means clustering, hierarchical clus-

tering, DBSCAN, principal component analysis, and manifold learning. It also has data

preprocessing utilities, including feature extraction, feature selection, and data normal-

ization. Scikit-learn’s key strength is its straightforward API, enabling users to train and

evaluate machine learning models with minimal coding. Additionally, the library offers

comprehensive documentation and examples to assist users in quickly getting started.

Overall, sci-kit-learn is a flexible and potent machine learning library widely employed in

both academia and industry.

The Scikit-learn library is used in our implementation to load the machine learning

algorithms that are used for training, in our study we use the library’s Adaboost algorithm.

4.1.5 Pickle

Pickle [35] is a Python module that enables object serialization and deserialization. It

converts a Python object hierarchy into a byte stream that can be saved, transferred,

or stored in a database. This process is called pickling, while the opposite process of

converting a pickled byte stream into a Python object hierarchy is called unpickling.

Being part of the Python standard library, Pickle comes pre-installed and doesn’t require

any additional installation or configuration. One of its primary advantages is that it can

handle complex Python objects, such as lists, tuples, dictionaries, classes, and instances,

as well as object references and object graphs. Thus, it can maintain the relationships

between objects even after pickling and unpickling. However, Pickle is not secure against

maliciously constructed data and should not be used to deserialize data from untrusted

34



sources or protocols. Furthermore, the Pickle protocol may change across different Python

versions, resulting in compatibility issues when using pickled data across various Python

versions. Overall, Pickle is a useful library for saving and transmitting complex Python

objects, but it should be used with caution and only in secure environments.

The Pickle library is used in our implementation to export the models that are trained

in our algorithm and then import them and make predictions based on these models

created.

4.2 System Implementation

After the literature review, it was observed a consensus among authors that the most

common method to identify ransomware is to survey its actions by static analysis, dynamic

analysis, or a combination of both.

By analogy, given the specificity of this study is based on the use of the file system, it

was considered important to verify the normal behavior of the system accessing files and

also its base values such as entropy, number of bytes of the file, and file magic byte, we

also evaluated the accesses of the files that were being infected by collecting their entropy,

number of bytes of the file, all this, in the end, provided us with a large database for

analysis and training of the intelligent model.

For this purpose, it was suggested by the supervisor to use file system notification in-

terfaces, in order to detect activity. In parallel, a Linux Virtual Machine (VM) was created

and some code examples of the inotify https://man7.org/linux/man-pages/man7/inotify.7.html

and fanotify https://man7.org/linux/man-pages/man7/fanotify.7.html activity detectors

were tested.

Next, an excerpt of the code was assembled that would allow us to: extract as much

information as possible about the events that occur in the filesystem and that this collected

information could be stored in a small database, and thus be able to answer part of the

problem that was intended to be solved.

During the analysis we raised some possibilities for storing the access logs to the file
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system, in the end, we opted for storing them securely in a Postgresql database.

For tests two VM were used, one with the filesystem checking algorithm and the

second VM only with the database instance so that it would be safe during the infection

experiments.

Tables 4.1, 4.2 and 4.3 show the configurations of the original machine and the VM

settings.

Processor Intel(R) Core(TM) i7-11800H @ 2.30GHz,
2400 Mhz, 8 Cores, 16 Logical Processors

RAM 32GB
Storage device 1TB SSD M2
Virtualization software VMware Workstation Pro 17.0.0

Table 4.1: Personal PC Settings

Processor 2 processores with 2 cores each
RAM 4GB
Storage device 150 GB (preallocated)
Network adapter NAT
Operating system Ubuntu 22.04.1 LTS.

Table 4.2: Client VM Settings

Processor 1 processores with 1 cores each
RAM 2GB
Storage device 30 GB (preallocated)
Network adapter NAT
Operating system Debian Server 11 LTS.

Table 4.3: Server VM Settings

Figure 4.1 represents the Virtual Machine Structure.
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Figure 4.1: Virtual Machine Structure

4.3 Database

The database has the function of registering and storing information about the processes

that occurred at the clients that will serve for future analysis and statistics.

Figure 4.2 shows the information on all the processes that occurred in the system

registered by the database that was created referring to the code used.

As can be seen in the image of Figure 4.2, the database created for the code used

contains some information about the processes that occurred, such as file descriptor (fd),

the event number (mask), the event name (maskName), the process number (pid), the

process name (pidName), the file path (file), and the identification of the hour, minutes,

seconds, and the date, day of the week, day, month, and year in which the event occurred

(time). This information refers to the processes that occur with the client part.

The following Figure 4.3 shows, for better clarification, a printout for a specific process

about how this information is registered.
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Figure 4.2: The figure represents the table responsible for storing the file system logs.

Figure 4.3: The figure represents the example of the stored data.

4.4 Client

For the data collection part of the file system, two libraries were verified the inotify and

fanotify libraries, to better understand the operation of the libraries were executed tests

and evaluated the performance and functionalities of each one, as a conclusion of these
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tests we decided to proceed with the use of the fanotify library because it had more data

that could be used and easier integration with functionalities that we wanted to develop,

the test code can be seen in (Appendix B.1) for the inotify library and in (Appendix B.2)

for the fanotify library.

After choosing the library we developed a more robust code that could capture several

events from the file system to evaluate what would be interesting to collect in our study.

This code was important so that we could understand the general functioning of the

library and also how the log system behaved during the use of the system, the code that

was developed for testing can be seen in Appendix B.3.

To be able to keep the collected data safe during the infection experiments it was

necessary to find a way to store this data, so using the PostgreSQL library for the C

language it was possible to connect to our database created in section 4.1 and store the

logs in real-time in the database during the use of the system, the example of the code

used as a basis for the connection can be checked in (Appendix B.4).

It was important for our study that it was possible to collect the entropy of the file so

that we could have a basis for comparison with the original file and the infected file so that

there would be a way to evaluate whether or not the file could have been encrypted by

ransomware, for this we chose the Shannon entropy calculation a method already known

and widely used in research in the scientific community as in [4], and you can check the

code developed for testing in (Appendix B.5).

At the end of these checks, all these codes were adapted into a final data collection

model that checks only the file change logs that we were most interested in analyzing,

this model saves the data in the database and also checks at each file change whether or

not a file may have been compromised using the intelligent model created that is called

through a C algorithm that uses a python file created just to check the data against the

models trained later in section 4.3, the final code used for testing in the experiments can

be seen in (Appendix B.6).

An activity diagram follows in Figure 4.4 showing how the client module works to

clarify the reader’s understanding, which will also be followed by a brief explanation.
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Figure 4.4: Client Activity Diagram

The flow can be summarized as follows: The process starts with trying to connect to

the database where the logs of access to the filesystem will be stored, if it succeeds it

proceeds to the initialization of the fanotify library, and if it succeeds it tries to set up

the directory that is received by a parameter in the program call if all goes well it starts
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the program and starts monitoring the changes in the filesystem.

At this point two processes will be executed, one responsible for saving the data of file

changes in the database that only captures the data and saves it using an existing library,

and the other responsible for calling the intelligent model by sending the entropy and file

size information so that the model can check whether the file may or may not have been

encrypted.

4.5 Model

In this section, we will discuss the process of building the intelligent model in general,

explain how to select the best fields and also the best algorithms, arrive at the final trained

models, and also at a new program that uses these models as a basis to tell whether a file

may or may not have been encrypted.

To have sufficient infection data and to be able to create robust models, tests were

run using 8 types of existing ransomware for Linux, the system was infected with these

viruses, and the data from infected files were collected and stored in the database for later

analysis, below is the list of ransomware used in the experiment.

• Revil(tutorialjinni) [36]

• TellYouThePass(tutorialjinni) [37]

• HelloKitty(tutorialjinni) [38]

• AvosLocker(tutorialjinni) [39]

• Conti(MALWARE bazaar) [40]

• Sodinoki(MALWARE bazaar) [41]

• Monti(MALWARE bazaar) [42]

• Hive(MALWARE bazaar) [43]

41



After the execution of the experiment and data collection, it was possible to assemble

the intelligent models Table 4.4 shows the number of files that were used to build each

model, the models were balanced to always have the same number of malicious files

and legitimate files, this was necessary due to a problem that happens in some cases of

collecting information from files.

Ransomware Files Legitimate files Total Files

AvosLocker 9376 9376 18752

Conti 9381 9381 18762

HelloKitty 9381 9381 18762

Hive 9381 9381 18762

Monti 9374 9374 18748

Revil 9376 9376 18752

Sodinoki 9381 9381 18762

TellYouThePass 9377 9377 18754

Table 4.4: Total number of files for each model

To create the intelligent model some steps were performed so that the model could be

more reliable, one of these steps was the selection of features that were relevant to the

creation of the model as described in section 3.1.5. Even with an interesting amount of

columns as seen in table 4.1, some of these data would not be very relevant because they

are frequently repeated data, For instance, the field Process Identifier (PID), associated

with a ransomware infection, remains constant throughout the entire execution. If we

use these data, the algorithm would have a negative impact because in the prediction we

would have a variable with 100% of the value and this would make the algorithm biased

and always classify a PID change as a malicious process. After a deeper analysis, we

verified that the most interesting fields for the evaluation would be the entropy, filebytes,

and magicbytes columns. However, the magicbytes field was discarded because, being a

text field, it would be difficult to create a good analysis variable with it and, consequently,
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this would have a negative impact on the algorithm since it would be difficult to have an

exact translation of that field for the machine learning algorithm.

After defining which would be the best variables we followed the procedure for creating

the model devised in section 3.1.6, two data sets were joined, the data set of the original

files and the data set of the files infected with the conti ransomware, for model training

purposes a flag called “infected” was created that would have a value of 0 for uninfected

files and a value of 1 for infected files, after this creation, the correlation tests of the

variables were run, the result can be seen in Table 4.5.

entropy filebytes infected

entropy 1.000000 -0.072705 -0.063014

filebytes -0.072705 1.000000 -0.003277

infected -0.063014 -0.003277 1.000000

Table 4.5: The table represents the result of the correlation of the variables.

To exemplify the functioning of the algorithm a pseudocode was developed to make

understanding easier, and a short explanation of the model will be made.
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Algorithm 1 Checks out the best intelligent model
Input: dataset← conti.csv

Output: dataframe← dataRest

N ← 0

y ← dataset[′infected′]

x← dataset[list(filter(lambda x : x in [′entropy′,′ filebytes′], dataset.columns))]

models← [AdaBoostClassifier]

names← [′AdaBoost′]

for N ≤ 100 do
X_train, X_test, y_train, y_test← train_test_split(x, y, test_size← 0.33)

forall name, model in names, models do
model← model()

model.fit(X_train, y_train)

frame ← DataFrame(frame[′real′] ← y_test, frame[′precict′] ←

model.predict(X_test))

tn, fp, fn, tp← confusion_matrix(frame[′real′], frame[′predict′]).ravel()

accuracy ← (tp + tn)/(tp + fp + tn + fn)

recall← tp/(tp + fn)

precision← tp/(tp + fp)

fscore← 2 ∗ ((precision ∗ recall)/(precision + recall))

dataRest[′modelo′]← name

dataRest[′accuracy′]← accuracy

dataRest[′recall′]← recall

dataRest[′precision′]← precision

dataRest[′f1− score′]← fscore

end

end

print(DataFrame(dataRest).groupby(′modelo′).mean())

As we can see in Algorithm 1 the program uses a dataset to train the models, it selects
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the predefined columns and puts the target to be calculated that in our case is the column

“infected”, then it starts running the 100 tests for the models it captures every new run

the training data and test data with a dynamic seed to provide greater randomness in

data, Subsequent to the selection process, tests were conducted for each model and the

results were stored within a matrix for later use, at the end of the program he groups all

the data obtained by model and makes an average of the values and presents this data

on the screen.

To create the model some tests were performed to verify the best algorithm that would

fit our solution using algorithm 1, for the tests we used the 8 balanced datasets presented

in the Table 4.4 for the verification of which machine learning algorithm would be the

best for our approach, for testing we developed a program in python that checked several

algorithms testing all 100 times and making an average of successes, as a result AdaBoost

had the best performance, the test result can be seen in the Tables 4.6 to 4.13.

The Accuracy A given the number of true positives TP, the false positives FP, the

false negative FN and the true negative TN can be calculated by the Equation 4.1:

A = TP + TN

TP + TN + FP + FN
(4.1)

The precision P given the number of true positives TP and the false positives FP can

be calculated by the Equation 4.2:

P = TP

TP + FP
(4.2)

The recall R given the number of true positive TP and the false negative FN can be

calculated by the Equation 4.3:

R = TP

TP + FN
(4.3)

The F1-Score F given the number of precision P and the recall R can be calculated

by the Equation 4.4:

F = 2(P ∗R)
P + R

(4.4)
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Algorithm Accuracy Recall Precision F1-Score

AdaBoost 0.838100 0.929329 0.787211 0.852387

Decision Tree 0.786395 0.774173 0.795642 0.784761

Gaussian Process 0.643238 0.984902 0.586570 0.735252

Linear SVM 0.627242 0.993897 0.574879 0.728428

Naive Bayes 0.647116 0.950530 0.593105 0.730437

Nearest Neighbors 0.825497 0.894957 0.787228 0.837643

Neural Net 0.781548 0.989721 0.700068 0.820069

QDA 0.683309 0.966270 0.618548 0.754263

RBF SVM 0.627242 0.993897 0.574879 0.728428

Random Forest 0.801745 0.813685 0.796541 0.805021

Table 4.6: Average accuracy of each algorithm for Avos after normalization

Algorithm Accuracy Recall Precision F1-Score

AdaBoost 0.833656 0.945771 0.772679 0.850508

Decision Tree 0.765504 0.758231 0.769659 0.763902

Gaussian Process 0.650840 1.000000 0.588973 0.741326

Linear SVM 0.634690 1.000000 0.577985 0.732561

Naive Bayes 0.758075 0.966430 0.682315 0.799893

Nearest Neighbors 0.819929 0.896708 0.777498 0.832859

Neural Net 0.781977 0.999354 0.696670 0.821002

QDA 0.767603 0.970303 0.690558 0.806872

RBF SVM 0.634690 1.000000 0.577985 0.732561

Random Forest 0.785691 0.806004 0.774744 0.790065

Table 4.7: Average accuracy of each algorithm for Conti after normalization
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Algorithm Accuracy Recall Precision F1-Score

AdaBoost 0.825097 0.913361 0.780369 0.841644

Decision Tree 0.754683 0.749921 0.763736 0.756765

Gaussian Process 0.659399 0.918756 0.609730 0.733004

Linear SVM 0.630329 0.989844 0.580171 0.731559

Naive Bayes 0.658430 0.988258 0.599769 0.746494

Nearest Neighbors 0.805717 0.867026 0.777019 0.819559

Neural Net 0.770672 0.975246 0.696036 0.812318

QDA 0.657946 0.986671 0.599614 0.745921

RBF SVM 0.630329 0.989844 0.580171 0.731559

Random Forest 0.773740 0.790860 0.770563 0.780579

Table 4.8: Average accuracy of each algorithm for Hello Kitty after normalization

Algorithm Accuracy Recall Precision F1-Score

AdaBoost 0.796512 0.869716 0.764983 0.813995

Decision Tree 0.723837 0.708833 0.740606 0.724371

Gaussian Process 0.626453 0.839748 0.595926 0.697132

Linear SVM 0.614018 0.967508 0.572843 0.719615

Naive Bayes 0.609496 0.951420 0.571212 0.713846

Nearest Neighbors 0.775678 0.852997 0.745520 0.795645

Neural Net 0.755168 0.961199 0.686261 0.800788

QDA 0.609981 0.939748 0.572554 0.711573

RBF SVM 0.614018 0.967508 0.572843 0.719615

Random Forest 0.732720 0.744479 0.736349 0.740392

Table 4.9: Average accuracy of each algorithm for Hive after normalization
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Algorithm Accuracy Recall Precision F1-Score

AdaBoost 0.836270 0.942202 0.777719 0.852095

Decision Tree 0.775497 0.761059 0.784098 0.772407

Gaussian Process 0.650719 1.000000 0.589007 0.741352

Linear SVM 0.633102 1.000000 0.577045 0.731805

Naive Bayes 0.758364 0.967388 0.682460 0.800321

Nearest Neighbors 0.820268 0.896351 0.778245 0.833133

Neural Net 0.800226 0.996771 0.715743 0.833198

QDA 0.769193 0.970617 0.692148 0.808065

RBF SVM 0.633102 1.000000 0.577045 0.731805

Random Forest 0.797155 0.811108 0.789441 0.800127

Table 4.10: Average accuracy of each algorithm for Monti after normalization

Algorithm Accuracy Recall Precision F1-Score

AdaBoost 0.822588 0.928058 0.763724 0.837910

Decision Tree 0.748425 0.744604 0.745824 0.745214

Gaussian Process 0.645500 0.999019 0.582348 0.735790

Linear SVM 0.613023 0.985939 0.561766 0.715727

Naive Bayes 0.624818 0.977436 0.570202 0.720241

Nearest Neighbors 0.799968 0.870831 0.759555 0.811395

Neural Net 0.769591 0.972204 0.689152 0.806565

QDA 0.627242 0.979398 0.571674 0.721948

RBF SVM 0.613023 0.985939 0.561766 0.715727

Random Forest 0.762643 0.779267 0.750079 0.764395

Table 4.11: Average accuracy of each algorithm for Revil after normalization
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Algorithm Accuracy Recall Precision F1-Score

AdaBoost 0.820252 0.909931 0.766537 0.832101

Decision Tree 0.750646 0.739030 0.748413 0.743692

Gaussian Process 0.618217 0.999340 0.561862 0.719307

Linear SVM 0.607881 0.986473 0.556072 0.711227

Naive Bayes 0.623708 0.975916 0.567210 0.717439

Nearest Neighbors 0.802487 0.881887 0.755512 0.813822

Neural Net 0.739987 0.975256 0.658205 0.785961

QDA 0.623224 0.977895 0.566730 0.717589

RBF SVM 0.607881 0.986473 0.556072 0.711227

Random Forest 0.771318 0.786539 0.756105 0.771022

Table 4.12: Average accuracy of each algorithm for Sodinoki after normalization

Algorithm Accuracy Recall Precision F1-Score

AdaBoost 0.782841 0.874429 0.736538 0.799582

Decision Tree 0.703991 0.697652 0.702694 0.700164

Gaussian Process 0.599127 0.980104 0.553917 0.707808

Linear SVM 0.608499 0.979778 0.559925 0.712608

Naive Bayes 0.629019 0.962166 0.575049 0.719863

Nearest Neighbors 0.755372 0.804305 0.729586 0.765126

Neural Net 0.719502 0.944553 0.649036 0.769394

QDA 0.629342 0.963470 0.575156 0.720312

RBF SVM 0.608499 0.979778 0.559925 0.712608

Random Forest 0.720472 0.733855 0.711125 0.722311

Table 4.13: Average accuracy of each algorithm for Tell the pass after normalization

After analyzing the best algorithm to work with the data we had, we decided to
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proceed using the Adaboost algorithm to create intelligent models that would be used

later to analyze new values.

Individual models were created for each type of ransomware tested to maintain a

balanced and efficient data set, the data was divided into 70% for training and 30% for

testing and after that 100 tests were run with dynamic seed for each model, and only

after the process was finished the model was exported.

For comparison purposes, the average accuracy of each model was collected and can

be seen in Table 4.14.

Model Accuracy Recall Precision F1-Score
AvosLocker 0.842786 0.937902 0.788904 0.856975
Conti 0.833656 0.933205 0.779506 0.849459
HelloKitty 0.829619 0.922853 0.777959 0.844234
Hive 0.799903 0.872051 0.754457 0.809003
Monti 0.833845 0.933611 0.780011 0.849927
Revil 0.821619 0.904915 0.777103 0.836153
Sodinoki 0.819121 0.904238 0.772313 0.833085
TellYouThePass 0.784779 0.87323 0.743154 0.802959

Table 4.14: Average accuracy of each model

To clarify the functioning of the algorithm a pseudo-code has been made, and a brief

explanation of its functioning will be presented.
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Algorithm 2 Checks out the best intelligent model
Input: argv1← sys.argv[1] argv2← sys.argv[2]

Output: model← dump_model

N ← 0

dataset← readcsv(argv1)

y ← dataset[′infected′]

x← dataset[list(filter(lambda x : x in [′entropy′,′ filebytes′], dataset.columns))]

models← [AdaBoostClassifier]

names← [′AdaBoost′]

for N ≤ 100 do
X_train, X_test, y_train, y_test← train_test_split(x, y, test_size← 0.33)

forall name, model in names, models do
model← model()

model.fit(X_train, y_train)

frame ← DataFrame(frame[′real′] ← y_test, frame[′precict′] ←

model.predict(X_test))
end

end

with open(argv2,′ wb′) as model_file

dump(model, model_file)

As we can see in Algorithm 2, the program receives two information parameters, one is

the dataset that should be loaded and the other is the name of the model to be exported.

After loading the dataset, the data is trained and tested during 100 runs and then

exported to the model, which is saved in a directory for later use.

In the end, the intelligent model created uses the training models as a basis to be able

to say whether or not a file may have been encrypted, this model receives parameters

that it uses for comparison, which are the entropy values and the number of bytes in the

file, with these values, the algorithm tries to verify the possibility that the file has been

encrypted and if the result is positive, it presents a message to the user of the machine.
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Figure 4.5: Model Activity Diagram

As we proceeded for the client, there follows an activity diagram in Figure 4.5 showing

how the prediction module works, intending to clarify its understanding by the reader,

which will also be followed by a brief explanation.

During the execution of the fanotify client, the intelligent model is called at each file

change and receives two parameters, which are the entropy and the file size.

After ensuring that we have the necessary parameters for testing the models are loaded

and the information is tested in each model, if any model classifies the file as suspicious
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a message will be presented to the user stating that the file may have been encrypted

and the process is terminated if no suspicion is found in any of the models the cycle ends

waiting for the next program call.

In this chapter, the structure implemented during the development of this work was

presented, contextualizing what was necessary for the creation of the log collection system

and also the intelligent model.

The tools used in the development and their relationship with the project were ad-

dressed, it also presented an explanation of how the construction of the machine learning

models was evaluated and what the results obtained during the construction.
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Chapter 5

Discussion

In this chapter, we describe the experiments and discussions conducted on a model de-

signed to address a specific research question. The model was created to capture the

fundamental features of the phenomenon being investigated and to provide insights into

its behavior. To validate the model, we carried out a series of experiments that involved

altering its parameters and observing the resulting output. These experiments allowed us

to obtain a deeper understanding of the model’s strengths and weaknesses, and to identify

areas that required further refinement. Furthermore, we engaged in extensive discussions

about the model’s results, analyzing the underlying assumptions and implications of our

findings. These discussions enabled us to identify potential avenues for future research

and to develop a more nuanced understanding of the phenomenon we were examining.

Taken together, the experiments and discussions presented in this chapter yield valuable

insights into the model’s behavior and the phenomenon it represents. They demonstrate

the effectiveness of computational modeling as a tool for exploring complex systems and

underscore the importance of meticulous experimentation and analysis in this domain.

5.1 Experiments

In this section the tests performed for each of the 3 experiments will be presented, showing

the process performed for testing and the results obtained from each of them.

55



5.1.1 File System Data Collection Algorithm

In order to conduct the tests, a program was developed to examine the virtual machine

files to assess whether the system could collect this process that was being executed,

the process was run for about 7 hours to assess the functioning of the algorithm which

proved satisfactory. The data collected was comprehensive and largely accurate, and the

algorithm was suitable to handle a large volume of data in a short time, with only few

problems encountered in high-volume cases.

One of the algorithm’s crucial strengths was its capability to identify and collect file

metadata, including creation dates, file size, and entropy. This metadata was essential

for the accurate analysis of file systems and the detection of any problems or anomalies.

The algorithm’s speed and effectiveness were also interesting, enabling it to collect

data from large file systems in a fairly short time. This point is essential for the accuracy

of the ransomware detection algorithm.

Taken together, the test results indicate that the file system data collection algorithm

is a largely effective and dependable tool. Its accurate data collection and analysis, speed

and effectiveness, and capability to handle large volumes of data make it an inestimable

asset for our study.

We used the file data collection system created to collect information from the files in

their original state, it was also used to collect the information from the files during the 8

infections executed and thus we were able to obtain the necessary data for the creation

of the datasets that were used in the training of our intelligent model.

5.1.2 Machine Learning Algorithm

After finishing the data collection process, we analyzed the data obtained and selected

the best fields for our algorithm. We performed some tests using the remaining fields and

the results were satisfactory, so we decided to proceed with the analysis.

For the data analysis, we decided to test 10 machine learning algorithms to see which

one best adapted to the data we had available, for this 8 datasets were assembled with the
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infection data we had collected, joining the information from the original files with the

infected files and training the algorithm to classify new files as malicious or not, in this

process the Adaboost algorithm was the one that we got the best results so we continued

with it for the model creation process, the process for creating the model can be found in

Section 4.5.

With the algorithm defined, the Pikle library was used to export the models that we

trained so it would be possible to reuse them in the next step where a program was created

that receives the entropy values and file size and tries to classify if the file may or may

not have been encrypted, it performs the test on all models created that total 8 checks,

but if a failure is found before finishing the complete verification it already returns the

error so that the process is more efficient.

After completing this process, an alert message was added to warn the user that the

file may have been encrypted, and then was added a call of this program to the main

program that monitors the file system, so that every time a file is changed it is checked

by the smart model to ensure that if any malicious process is identified the user can be

alerted.

5.1.3 Detection Algorithm

In this section, the steps for replication of the executed experiment will be explained, and

the data collected and how it was tested will also be presented.

Replication

For replication tests, it is important to have a Linux environment configured and divided

into server and client, after having the environment ready the following steps can be

performed.

To evaluate the behavior of a family of ransomware it is important to run the procedure

in two parts to get a sense of the real behavior of ransomware because when the program

that makes the notification of encryption is used the number of logs collected is reduced,
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so during the first run should be run the program without checking the models, In the

second run, the data should not be saved, only the data should be sent to the model, and

as soon as the encryption message is presented, the execution of the program should be

interrupted. To collect the time, the program can be run with the Linux time command.

After having this information it can be executed a query in the database that evaluates

how many executions have been performed in the space of time of the execution until

the message presentation, obtaining the number of events that were executed by the

ransomware until it was detected, this is probably not the most efficient way to do it but

due to this flaw in the logs collection and the safest way to compare data.

With this process, all experiments were finished and replicated to the remaining fam-

ilies presenting the data in a table.

Tests and Results

To verify the effectiveness of the model created in section 4.5 tests were performed using

the ransomware described in that section and also to perform a more robust test we used

two ransomware that were not used in the creation of the models to test the accuracy of

the algorithm, the new ransomware will be presented below.

• Buhti(MALWARE bazaar) [44]

• Conti - ArkbirdDevil(MALWARE bazaar) [45]

To evaluate the performance of the algorithm some data that we will collect from the

execution of each ransomware will be important to note the real effectiveness of the model,

the data that will be collected are the execution time until the presentation of the alert

about the possible encryption of data and also the number of events that occurred until

the message was presented, this is important so that we know how quickly the algorithm

can detect an anomaly.

The data from the experiments can be seen in Table 5.1 as well as an image that shows

the message that is presented to the user of the system when the algorithm detects an

anomaly that can be seen in Figure 5.1.
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Ransomware Runtime in seconds Number of events
AvosLocker 3.319 1475
Conti 4.225 1735
HelloKitty 10.015 2180
Hive 13.567 1253
Monti 4.235 1688
Revil 3.738 1570
Sodinoki 6.149 1005
TellYouThePass 10.291 2500
Buhti 7.357 2710
Conti - ArkbirdDevil 4.524 1236

Table 5.1: Result of experiments

Figure 5.1: The figure represents the message presented to the user when the algorithm
detects an anomaly.
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5.2 Limitations

Some limitations were encountered during the development of this project, which nega-

tively impacted the overall result of the algorithm, one of these limitations was finding

ransomware that could satisfactorily run on a Linux environment, this impacted the num-

ber of families analyzed during the work and also the quality of the model, another problem

was some limitations of the fanotify library to collect some important data in our study

as the number of bytes written that made it more laborious to collect this information

making it only possible in the end to have the total number of bytes of the whole file,

another limitation that impacted the model was the number of features available for anal-

ysis, with a smaller number the success of the model was somewhat compromised having

to be increased the number of training data to have a greater success of the algorithm.
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Chapter 6

Conclusions and future work

The current chapter discusses the conclusions drawn from the analysis and development

stages of the algorithm. Firstly, the conclusions are presented, followed by a description

of future work.

6.1 Conclusions

With the proliferation and diffusion of cyberattacks, it becomes imperative to promptly

identify and respond to such incidents in order to minimize the damage to the system.

Consequently, there is a requirement for tools and systems for gathering intelligence that

can detect attacks in real-time.

With the significant increase in ransomware attacks Linux systems have become a

major focus of large groups, aiming to obtain data and attack servers that were previously

considered secure.

Based on building and testing our ransomware detection model for Linux systems, it

can be concluded that this model can effectively detect ransomware attacks. The model

uses a combination of machine learning algorithms and system call analysis to detect and

classify suspicious behavior and has demonstrated satisfactory accuracy during testing.

This model provides a valuable tool for organizations and individuals looking to protect

their Linux systems from the growing threat of ransomware attacks. By monitoring
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system calls and analyzing behavior patterns, the model can detect and warn the user of

ransomware attacks. We also contribute to the comunity by sharing our datasets used for

the creation of the model [46].

Overall, this ransomware detection model demonstrates the potential of machine learn-

ing and system call analysis in developing effective cybersecurity solutions. Continued

research and development in this area can help improve the detection and prevention of

ransomware attacks and other cyber threats, ultimately improving the security of Linux

systems and the protection of sensitive data.

6.2 Future Work

There are several potential scenarios for future work arising from this project. One idea

that was not executed but could be important is the implementation of a file backup

system using a library such as FUSE. This could be useful in recovering original files in

the event of incidents involving ransomware.

Another important approach could involve a hybrid system that incorporates network

data to improve the algorithm’s performance. Additionally, it would be beneficial to

expand the range of variables analyzed to increase the algorithm’s reliability and robust-

ness, ultimately improving the quality of detections, also it would be important to have

a dataset of the normal use of the system to note the evolution of the variables during

normal use of system.

It is also planned to be implemented as an executable application to enable installation

of the detection system on any Linux-based machine via a package or other approach.
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O trabalho proposto tem como objetivo construir um modelo de algoritmo detector de
ransomwares, que possa ser aplicado de maneira nativa em sistemas Linux. Propõe-se que o
algoritmo seja executado após as chamadas de escrita do sistema de arquivos, e assim
verifique a mudança de estado de cada arquivo que é escrito, detectando padrões de
comportamento compatíveis com ataques de ransomware.



Um ransomware é um tipo de software malicioso (malware) cujo objetivo é a cifragem dos
arquivos de um usuário, para então pedir uma quantia de dinheiro em troca do “resgate”para
decifrar esses arquivos. Como ransomwares têm a característica de ação rápida e altamente
destrutiva, os softwares utilizados para detecção de anomalias de softwares maliciosos em um
sistema, como o antivírus, não conseguem identificar a invasão a tempo de conseguir impedir
a ação do ransomware. Isso ocorre porque, para conseguir detectar um ataque real, é
necessário que o antivírus ou softwares utilizados para proteção identifiquem que os arquivos
do usuário já foram efetivamente cifrados pelo malware.
Algumas soluções para esse problema começaram a ser desenvolvidas para sistemas
operacionais Windows, mas ainda existe uma grande defasagem em sistemas Linux contra
esse tipo de malware. Assim, destaca-se a importância deste trabalho, visto que, apesar de
sistemas Linux serem pouco utilizados por usuários domésticos, quando comparado com
outros sistemas operacionais, ele é largamente utilizado por muitas empresas e organizações,
as quais são alvos potenciais para esse tipo de ataque.

As seguintes atividades serão desenvolvidas ao longo deste trabalho:
1 - Revisão da literatura acerca das metologias para detecção de ransomwares em sistemas
operacionais (M1-M3);
2 - Análise crítica do estado da arte (M4-M5);
3 - Definição dos algoritmos e modelos a serem implementados (M6);
4 - Construção de um protótipo como prova de conceito (M7-M9);
5 - Testes de validação e coleta de resultados (M10-M12).
A escrita da dissertação irá decorrer ao longo de todo o período de trabalho.

Ferramentas de desenvolvimento e ambiente Linux para testes.
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Appendix B

Codes created for the client side

B.1 Inotify first code test

/*This is the sample program to notify us for the file creation and file

deletion takes place in /tmp directory

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <linux/inotify.h>

#define EVENT_SIZE ( sizeof (struct inotify_event) )

#define EVENT_BUF_LEN ( 1024 * ( EVENT_SIZE + 16 ) )

int main( )

{

int length, i = 0;

int fd;

int wd;

char buffer[EVENT_BUF_LEN];
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/*creating the INOTIFY instance*/

fd = inotify_init();

/*checking for error*/

if ( fd < 0 ) {

perror( "inotify_init" );

}

/*adding the / tmp directory into watch list. Here, the suggestion is to

validate the existence of the directory before adding into monitoring

list.*/

wd = inotify_add_watch( fd, "/home/debian-tese/Desktop/teste", IN_CREATE |

IN_DELETE );

/*read to determine the event change happens on /tmp directory. Actually

this read blocks until the change event occurs*/

length = read( fd, buffer, EVENT_BUF_LEN );

/*checking for error*/

if ( length < 0 ) {

perror( "read" );

}

/*actually read return the list of change events happens. Here, read the

change event one by one and process it accordingly.*/

while ( i < length ) { struct inotify_event *event = ( struct inotify_event

* ) &buffer[ i ]; if ( event->len ) {

if ( event->mask & IN_CREATE ) {
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if ( event->mask & IN_ISDIR ) {

printf( "New directory %s created.\n", event->name );

}

else {

printf( "New file %s created.\n", event->name );

}

}

else if ( event->mask & IN_DELETE ) {

if ( event->mask & IN_ISDIR ) {

printf( "Directory %s deleted.\n", event->name );

}

else {

printf( "File %s deleted.\n", event->name );

}

}

}

i += EVENT_SIZE + event->len;

}

/*removing the / tmp directory from the watch list.*/

inotify_rm_watch( fd, wd );

/*closing the INOTIFY instance*/

close( fd );

}

B.2 Fanotify first code test

/*
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* File: fanotify-example-access-control.c

* Date: Thu Nov 14 13:47:37 2013

* Author: Aleksander Morgado <aleksander@lanedo.com>

*

* A simple tester of fanotify in the Linux kernel.

*

* This program is released in the Public Domain.

*

* Compile with:

* $> gcc -o fanotify-example-access-control

fanotify-example-access-control.c

*

* Run as:

* $> ./fanotify-example-access-control /mount/path /another/mount/path ...

*/

/* Define _GNU_SOURCE, Otherwise we don’t get O_LARGEFILE */

#define _GNU_SOURCE

#include <stdio.h>

#include <signal.h>

#include <string.h>

#include <unistd.h>

#include <stdlib.h>

#include <poll.h>

#include <errno.h>

#include <limits.h>

#include <sys/stat.h>

#include <sys/signalfd.h>

#include <fcntl.h>
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#include <linux/fanotify.h>

/* Structure to keep track of monitored directories */

typedef struct

{

/* Path of the directory */

char *path;

} monitored_t;

/* Size of buffer to use when reading fanotify events */

#define FANOTIFY_BUFFER_SIZE 8192

/* Enumerate list of FDs to poll */

enum

{

FD_POLL_SIGNAL = 0,

FD_POLL_FANOTIFY,

FD_POLL_MAX

};

/* Setup fanotify notifications (FAN) mask. All these defined in fanotify.h. */

static uint64_t event_mask =

(FAN_OPEN_PERM); /* Open permission control */

/* Array of directories being monitored */

static monitored_t *monitors;

static int n_monitors;

static char *
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get_program_name_from_pid(int pid,

char *buffer,

size_t buffer_size)

{

int fd;

ssize_t len;

char *aux;

/* Try to get program name by PID */

sprintf(buffer, "/proc/%d/cmdline", pid);

if ((fd = open(buffer, O_RDONLY)) < 0)

return NULL;

/* Read file contents into buffer */

if ((len = read(fd, buffer, buffer_size - 1)) <= 0)

{

close(fd);

return NULL;

}

close(fd);

buffer[len] = ’\0’;

aux = strstr(buffer, "^@");

if (aux)

*aux = ’\0’;

return buffer;

}

static char *
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get_file_path_from_fd(int fd,

char *buffer,

size_t buffer_size)

{

ssize_t len;

if (fd <= 0)

return NULL;

sprintf(buffer, "/proc/self/fd/%d", fd);

if ((len = readlink(buffer, buffer, buffer_size - 1)) < 0)

return NULL;

buffer[len] = ’\0’;

return buffer;

}

static void

event_process(struct fanotify_event_metadata *event,

int fanotify_fd)

{

char file_path[PATH_MAX];

char program_path[PATH_MAX];

printf("Received event in path ’%s’",

(get_file_path_from_fd(event->fd, file_path, PATH_MAX) ? file_path :

"unknown"));

printf(" pid=%d (%s): \n",

event->pid,
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(get_program_name_from_pid(event->pid, program_path, PATH_MAX) ?

program_path : "unknown"));

if (event->mask & FAN_OPEN_PERM)

{

struct fanotify_response access;

access.fd = event->fd;

/* We all know that files and paths containing ’666’ are evil,

* so never allow them */

if (strstr(file_path, "666") != NULL)

{

printf("\tFAN_OPEN_PERM: denying\n");

access.response = FAN_DENY;

}

else

{

printf("\tFAN_OPEN_PERM: allowing\n");

access.response = FAN_ALLOW;

}

/* Write response in the fanotify fd! */

write(fanotify_fd, &access, sizeof(access));

}

fflush(stdout);

close(event->fd);

}
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static void

shutdown_fanotify(int fanotify_fd)

{

int i;

for (i = 0; i < n_monitors; ++i)

{

/* Remove the mark, using same event mask as when creating it */

fanotify_mark(fanotify_fd,

FAN_MARK_REMOVE,

event_mask,

AT_FDCWD,

monitors[i].path);

free(monitors[i].path);

}

free(monitors);

close(fanotify_fd);

}

static int

initialize_fanotify(int argc,

const char **argv)

{

int i;

int fanotify_fd;

/* Create new fanotify device */

if ((fanotify_fd = fanotify_init(FAN_CLOEXEC | FAN_CLASS_CONTENT,

O_RDONLY | O_CLOEXEC | O_LARGEFILE |

O_NOATIME)) < 0)
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{

fprintf(stderr,

"Couldn’t setup new fanotify device: %s\n",

strerror(errno));

return -1;

}

/* Allocate array of monitor setups */

n_monitors = argc - 1;

monitors = malloc(n_monitors * sizeof(monitored_t));

/* Loop all input directories, setting up marks */

for (i = 0; i < n_monitors; ++i)

{

monitors[i].path = strdup(argv[i + 1]);

/* Add new fanotify mark */

if (fanotify_mark(fanotify_fd,

FAN_MARK_ADD | FAN_MARK_MOUNT,

event_mask,

AT_FDCWD,

monitors[i].path) < 0)

{

fprintf(stderr,

"Couldn’t add monitor in mount ’%s’: ’%s’\n",

monitors[i].path,

strerror(errno));

return -1;

}

printf("Started monitoring mount ’%s’...\n",
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monitors[i].path);

}

return fanotify_fd;

}

static void

shutdown_signals(int signal_fd)

{

close(signal_fd);

}

static int

initialize_signals(void)

{

int signal_fd;

sigset_t sigmask;

/* We want to handle SIGINT and SIGTERM in the signal_fd, so we block

them. */

sigemptyset(&sigmask);

sigaddset(&sigmask, SIGINT);

sigaddset(&sigmask, SIGTERM);

if (sigprocmask(SIG_BLOCK, &sigmask, NULL) < 0)

{

fprintf(stderr,

"Couldn’t block signals: ’%s’\n",

strerror(errno));

return -1;
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}

/* Get new FD to read signals from it */

if ((signal_fd = signalfd(-1, &sigmask, 0)) < 0)

{

fprintf(stderr,

"Couldn’t setup signal FD: ’%s’\n",

strerror(errno));

return -1;

}

return signal_fd;

}

int main(int argc,

const char **argv)

{

int signal_fd;

int fanotify_fd;

struct pollfd fds[FD_POLL_MAX];

/* Input arguments... */

if (argc < 2)

{

fprintf(stderr, "Usage: %s directory1 [directory2 ...]\n", argv[0]);

exit(EXIT_FAILURE);

}

/* Initialize signals FD */

if ((signal_fd = initialize_signals()) < 0)
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{

fprintf(stderr, "Couldn’t initialize signals\n");

exit(EXIT_FAILURE);

}

/* Initialize fanotify FD and the marks */

if ((fanotify_fd = initialize_fanotify(argc, argv[0])) < 0)

{

fprintf(stderr, "Couldn’t initialize fanotify\n");

exit(EXIT_FAILURE);

}

/* Setup polling */

fds[FD_POLL_SIGNAL].fd = signal_fd;

fds[FD_POLL_SIGNAL].events = POLLIN;

fds[FD_POLL_FANOTIFY].fd = fanotify_fd;

fds[FD_POLL_FANOTIFY].events = POLLIN;

/* Now loop */

for (;;)

{

/* Block until there is something to be read */

if (poll(fds, FD_POLL_MAX, -1) < 0)

{

fprintf(stderr,

"Couldn’t poll(): ’%s’\n",

strerror(errno));

exit(EXIT_FAILURE);

}
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/* Signal received? */

if (fds[FD_POLL_SIGNAL].revents & POLLIN)

{

struct signalfd_siginfo fdsi;

if (read(fds[FD_POLL_SIGNAL].fd,

&fdsi,

sizeof(fdsi)) != sizeof(fdsi))

{

fprintf(stderr,

"Couldn’t read signal, wrong size read\n");

exit(EXIT_FAILURE);

}

/* Break loop if we got the expected signal */

if (fdsi.ssi_signo == SIGINT ||

fdsi.ssi_signo == SIGTERM)

{

break;

}

fprintf(stderr,

"Received unexpected signal\n");

}

/* fanotify event received? */

if (fds[FD_POLL_FANOTIFY].revents & POLLIN)

{

char buffer[FANOTIFY_BUFFER_SIZE];

ssize_t length;
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/* Read from the FD. It will read all events available up to

* the given buffer size. */

if ((length = read(fds[FD_POLL_FANOTIFY].fd,

buffer,

FANOTIFY_BUFFER_SIZE)) > 0)

{

struct fanotify_event_metadata *metadata;

metadata = (struct fanotify_event_metadata *)buffer;

while (FAN_EVENT_OK(metadata, length))

{

event_process(metadata, fanotify_fd);

if (metadata->fd > 0)

close(metadata->fd);

metadata = FAN_EVENT_NEXT(metadata, length);

}

}

}

}

/* Clean exit */

shutdown_fanotify(fanotify_fd);

shutdown_signals(signal_fd);

printf("Exiting fanotify example...\n");

return EXIT_SUCCESS;

}
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B.3 Adapted code for fanotify

#define _GNU_SOURCE /* Needed to get O_LARGEFILE definition */

#include <errno.h>

#include <fcntl.h>

#include <limits.h>

#include <poll.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/fanotify.h>

#include <unistd.h>

/* Read all available fanotify events from the file descriptor ’fd’ */

static void

handle_events(int fd)

{

const struct fanotify_event_metadata *metadata;

struct fanotify_event_metadata buf[200];

ssize_t len;

char path[PATH_MAX];

ssize_t path_len;

char procfd_path[PATH_MAX];

struct fanotify_response response;

char *str;

/* Loop while events can be read from fanotify file descriptor */

for (;;)

{
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/* Read some events */

len = read(fd, buf, sizeof(buf));

if (len == -1 && errno != EAGAIN)

{

perror("read");

exit(EXIT_FAILURE);

}

/* Check if end of available data reached */

if (len <= 0)

break;

/* Point to the first event in the buffer */

metadata = buf;

/* Loop over all events in the buffer */

while (FAN_EVENT_OK(metadata, len))

{

/* Check that run-time and compile-time structures match */

if (metadata->vers != FANOTIFY_METADATA_VERSION)

{

fprintf(stderr,

"Mismatch of fanotify metadata version.\n");

exit(EXIT_FAILURE);

}

B17



switch (metadata->mask)

{

case FAN_ATTRIB:

str = "ATTRIB";

break;

case FAN_CREATE:

str = "CREATE";

break;

case FAN_DELETE:

str = "DELETE";

break;

case FAN_DELETE_SELF:

str = "DELETE SELF";

break;

case FAN_MOVED_FROM:

str = "MOVED FROM";

break;

case FAN_MOVED_TO:

str = "MOVED TO";

break;

case FAN_MOVE_SELF:

str = "MOVE SELF";

break;

case FAN_MODIFY:

str = "MODIFY";

break;

default:

/* Fallback : use question mark for unrecognized bit */

str = "?";
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break;

}

printf("%s\n", str);

/* metadata->fd contains either FAN_NOFD, indicating a

queue overflow, or a file descriptor (a nonnegative

integer). Here, we simply ignore queue overflow. */

if (metadata->fd >= 0)

{

/* Handle open permission event */

if (metadata->mask & FAN_OPEN_PERM)

{

printf("FAN_OPEN_PERM: ");

/* Allow file to be opened */

response.fd = metadata->fd;

response.response = FAN_ALLOW;

write(fd, &response, sizeof(response));

}

/* Handle closing of writable file event */

if (metadata->mask & FAN_CLOSE_WRITE)

printf("FAN_CLOSE_WRITE: ");
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/* Retrieve and print pathname of the accessed file */

snprintf(procfd_path, sizeof(procfd_path),

"/proc/self/fd/%d", metadata->fd);

path_len = readlink(procfd_path, path,

sizeof(path) - 1);

if (path_len == -1)

{

perror("readlink");

exit(EXIT_FAILURE);

}

path[path_len] = ’\0’;

printf("File %s\n", path);

/* Close the file descriptor of the event */

close(metadata->fd);

}

/* Advance to next event */

metadata = FAN_EVENT_NEXT(metadata, len);

}

}

}

int main(int argc, char *argv[])

{

char buf;
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int fd, poll_num;

nfds_t nfds;

struct pollfd fds[2];

/* Check mount point is supplied */

if (argc != 2)

{

fprintf(stderr, "Usage: %s MOUNT\n", argv[0]);

exit(EXIT_FAILURE);

}

printf("Press enter key to terminate.\n");

/* Create the file descriptor for accessing the fanotify API */

fd = fanotify_init(FAN_CLASS_NOTIF | FAN_REPORT_FID, O_RDWR);

if (fd == -1)

{

perror("fanotify_init");

exit(EXIT_FAILURE);

}

/* Mark the mount for:

- permission events before opening files

- notification events after closing a write-enabled

file descriptor */

printf("%s\n", argv[1]);

if (fanotify_mark(fd, FAN_MARK_ADD,
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FAN_CREATE | FAN_DELETE | FAN_MODIFY | FAN_ATTRIB |

FAN_DELETE_SELF | FAN_MOVED_FROM | FAN_MOVED_TO |

FAN_MOVE_SELF | FAN_ONDIR | FAN_EVENT_ON_CHILD,

AT_FDCWD,

argv[1]) == -1)

{

perror("fanotify_mark");

exit(EXIT_FAILURE);

}

/* Prepare for polling */

nfds = 2;

/* Console input */

fds[0].fd = STDIN_FILENO;

fds[0].events = POLLIN;

/* Fanotify input */

fds[1].fd = fd;

fds[1].events = POLLIN;

/* This is the loop to wait for incoming events */

printf("Listening for events.\n");

while (1)
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{

poll_num = poll(fds, nfds, -1);

if (poll_num == -1)

{

if (errno == EINTR) /* Interrupted by a signal */

continue; /* Restart poll() */

perror("poll"); /* Unexpected error */

exit(EXIT_FAILURE);

}

if (poll_num > 0)

{

if (fds[0].revents & POLLIN)

{

/* Console input is available: empty stdin and quit */

while (read(STDIN_FILENO, &buf, 1) > 0 && buf != ’\n’)

continue;

break;

}

if (fds[1].revents & POLLIN)

{

/* Fanotify events are available */

handle_events(fd);

}

}
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}

printf("Listening for events stopped.\n");

exit(EXIT_SUCCESS);

}

B.4 Postgres Example Code

/*

* src/test/examples/testlibpq.c

*

*

* testlibpq.c

*

* Test the C version of libpq, the PostgreSQL frontend library.

*/

#include <stdio.h>

#include <stdlib.h>

#include <libpq-fe.h>

static void

exit_nicely(PGconn *conn)

{

PQfinish(conn);

exit(1);

}

int main(int argc, char **argv)

{
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const char *conninfo;

PGconn *conn;

PGresult *res;

int nFields;

int i,

j;

/*

* If the user supplies a parameter on the command line, use it as the

* conninfo string; otherwise default to setting dbname=postgres and using

* environment variables or defaults for all other connection parameters.

*/

if (argc > 1)

conninfo = argv[1];

else

conninfo = "host=192.168.163.129 port=5432 dbname=tesedb user=postgres

password=admin connect_timeout=10";

/* Make a connection to the database */

conn = PQconnectdb(conninfo);

/* Check to see that the backend connection was successfully made */

if (PQstatus(conn) != CONNECTION_OK)

{

fprintf(stderr, "%s", PQerrorMessage(conn));

exit_nicely(conn);

}

/* Set always-secure search path, so malicious users can’t take control. */

res = PQexec(conn,
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"SELECT pg_catalog.set_config(’search_path’, ’’, false)");

if (PQresultStatus(res) != PGRES_TUPLES_OK)

{

fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));

PQclear(res);

exit_nicely(conn);

}

/*

* Should PQclear PGresult whenever it is no longer needed to avoid memory

* leaks

*/

PQclear(res);

/*

* Our test case here involves using a cursor, for which we must be inside

* a transaction block. We could do the whole thing with a single

* PQexec() of "select * from pg_database", but that’s too trivial to make

* a good example.

*/

/* Start a transaction block */

res = PQexec(conn, "BEGIN");

if (PQresultStatus(res) != PGRES_COMMAND_OK)

{

fprintf(stderr, "BEGIN command failed: %s", PQerrorMessage(conn));

PQclear(res);

exit_nicely(conn);

}

PQclear(res);
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/*

* Fetch rows from pg_database, the system catalog of databases

*/

res = PQexec(conn, "DECLARE myportal CURSOR FOR select * from

pg_database");

if (PQresultStatus(res) != PGRES_COMMAND_OK)

{

fprintf(stderr, "DECLARE CURSOR failed: %s", PQerrorMessage(conn));

PQclear(res);

exit_nicely(conn);

}

PQclear(res);

res = PQexec(conn, "FETCH ALL in myportal");

if (PQresultStatus(res) != PGRES_TUPLES_OK)

{

fprintf(stderr, "FETCH ALL failed: %s", PQerrorMessage(conn));

PQclear(res);

exit_nicely(conn);

}

/* first, print out the attribute names */

nFields = PQnfields(res);

for (i = 0; i < nFields; i++)

printf("%-15s", PQfname(res, i));

printf("\n\n");

/* next, print out the rows */

for (i = 0; i < PQntuples(res); i++)
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{

for (j = 0; j < nFields; j++)

printf("%-15s", PQgetvalue(res, i, j));

printf("\n");

}

PQclear(res);

/* close the portal ... we don’t bother to check for errors ... */

res = PQexec(conn, "CLOSE myportal");

PQclear(res);

/* end the transaction */

res = PQexec(conn, "END");

PQclear(res);

/* close the connection to the database and cleanup */

PQfinish(conn);

return 0;

}

B.5 Shannon Entropy Code

/*

Shannon entropy calculation

$ cc -Wall shent.c -o shent -lm

$ ./shent shent.c

*/
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#include <stdio.h>

#include <stdint.h>

#include <math.h>

int main(int argc, char *argv[])

{

uint64_t map[256];

size_t i;

FILE *f;

long int flen;

double info = 0.0;

if (argc < 2)

{

fprintf(stderr, "Usage: %s file\n", argv[0]);

return 1;

}

printf("%s\n", argv[1]);

f = fopen(argv[1], "r");

if (!f)

{

fprintf(stderr, "Can’t open %s\n", argv[1]);

return 1;

}

for (i = 0; i < (sizeof(map) / sizeof(map[0])); i++)

{

map[i] = 0;

}
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while (!feof(f))

{

char buf[1024 * 8];

size_t r;

r = fread(buf, 1, sizeof(buf), f);

if (r == 0)

break;

for (i = 0; i < r; i++)

{

size_t index = buf[i];

map[index]++;

}

}

flen = ftell(f);

fclose(f);

for (i = 0; i < (sizeof(map) / sizeof(map[0])); i++)

{

double freq;

if (map[i] == 0)

continue;

freq = (double)map[i] / flen;

info += freq * log2(freq);

}

info = -info;
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printf("%f\n", info);

return 0;

}

B.6 Adapted code from fanotify with MODIFY event

#define _GNU_SOURCE

#include <errno.h>

#include <fcntl.h>

#include <limits.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/fanotify.h>

#include <sys/stat.h>

#include <unistd.h>

#include <string.h>

#include <libpq-fe.h>

#include <math.h>

#define ARRAY_SIZE(a) (sizeof(a) / sizeof(*a))

#define BUF_SIZE (1024 * 64)

typedef struct

{

int EventSize;

int Version;

int Reserved;

int MetadataSize;
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int Mask;

char MaskName[250];

long int FD;

int PID;

char NameProcess[250];

char File[1000];

float Entropy;

float FileBytes;

char MagicBytes[04];

} Dados;

static void exit_nicely(PGconn *conn)

{

PQfinish(conn);

exit(1);

}

static void storeLogData(PGconn *conn, Dados dados)

{

PGresult *res;

char buf[5000] = {};

char query_string[] = {"INSERT INTO public.logs (eventsize, version,

reserved, metadatasize, fd, mask, maskname, pid, pidname, file,

entropy, filebytes, magicbytes)

VALUES(’%d’,’%d’,’%d’,’%d’,’%li’,’%d’,’%s’,’%d’,’%s’,’%s’, ’%f’, ’%f’,

’\\x%02x’::bytea || ’\\x%02x’::bytea || ’\\x%02x’::bytea ||

’\\x%02x’::bytea)"};

sprintf(buf, query_string, dados.EventSize, dados.Version,

dados.Reserved, dados.MetadataSize, dados.FD, dados.Mask,
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dados.MaskName, dados.PID, dados.NameProcess, dados.File,

dados.Entropy, dados.FileBytes, dados.MagicBytes[0],

dados.MagicBytes[1], dados.MagicBytes[2], dados.MagicBytes[3]);

// PGRES_COMMAND_OK;

res = PQexec(conn, buf);

if (PQresultStatus(res) != PGRES_COMMAND_OK)

{

printf("INSERT command failed\n");

printf("%s\n", buf);

PQclear(res);

exit_nicely(conn);

exit(EXIT_FAILURE);

}

PQclear(res);

}

double calculate_entropy(char *buf, size_t size)

{

uint64_t map[256];

size_t i;

double info = 0.0;

for (i = 0; i < (sizeof(map) / sizeof(map[0])); i++)

{

map[i] = 0;

}
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for (int i = 0; i < size; i++)

{

size_t index = buf[i];

map[index]++;

}

for (i = 0; i < (sizeof(map) / sizeof(map[0])); i++)

{

double freq;

if (map[i] == 0)

continue;

freq = (double)map[i] / size;

info += freq * log2(freq);

}

info = -info;

return info;

}

static char *readFirstLine(const char *path)

{

FILE *fp = fopen(path, "r");

char *line = NULL;

size_t sz;

/* Real buffersizeof returned string, unused,

cannot be null */

ssize_t n;
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if (fp != NULL)

{

/* XXX : Empty file causes getline(3) return 1, errno 0,

the line is an empty string */

n = getline(&line, &sz, fp);

if (n > 0 && line[n - 1] == ’\n’)

{

line[--n] = ’\0’;

}

(void)fclose(fp);

}

return line;

}

static char *processName(pid_t pid)

{

char path[ARRAY_SIZE("/proc/4294967295/comm") + 1];

int n;

if (pid <= 0)

{

perror("read");

exit(EXIT_FAILURE);

}

n = snprintf(path, sizeof(path), "/proc/%d/comm", pid);

if (n <= 0)
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{

perror("n");

exit(EXIT_FAILURE);

}

return readFirstLine(path);

}

static inline char *fanotifyMaskStr(uint64_t mask)

{

char *str;

if (mask == 0)

{

perror("mask ");

/* Unexpected error */

exit(EXIT_FAILURE);

}

switch (mask)

{

case FAN_ATTRIB:

str = "ATTRIB";

break;

case FAN_CREATE:

str = "CREATE";

break;

case FAN_DELETE:

str = "DELETE";

break;

case FAN_DELETE_SELF:
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str = "DELETE SELf ";

break;

case FAN_MOVED_FROM:

str = "MOVED FROM";

break;

case FAN_MOVED_TO:

str = "MOVED TO";

break;

case FAN_MOVE_SELF:

str = "MOVE SELF";

break;

case FAN_MODIFY:

str = "MODIFY";

break;

case FAN_OPEN:

str = "OPEN";

break;

default:

/* Fallback : use question mark for unrecognized bit */

str = "?";

break;

}

return str;

}

int main(int argc, char **argv)

{

int fan;

char buf[4096];

char path[PATH_MAX];
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ssize_t buflen;

struct fanotify_event_metadata *metadata;

char *pName;

char *events;

const char *conninfo;

PGconn *conn;

ssize_t path_len;

char procfd_path[PATH_MAX];

char bufFile[BUF_SIZE];

char magicByte[4];

if (argc != 2)

{

fprintf(stderr, "Usage : %s /dir\n", argv[0]);

exit(EXIT_FAILURE);

}

conninfo = "host=192.168.163.129 port=5432 dbname=tesedb user=postgres

password=admin connect_timeout=10";

conn = PQconnectdb(conninfo);

/* Check to see that the backend connection was successfully made */

if (PQstatus(conn) != CONNECTION_OK)

{

fprintf(stderr, "%s", PQerrorMessage(conn));

exit_nicely(conn);

exit(EXIT_FAILURE);

}

fan = fanotify_init(FAN_CLASS_CONTENT, O_RDONLY);
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if (fan == -1)

{

perror(" fanotify_init ");

exit(EXIT_FAILURE);

}

int ret = fanotify_mark(fan,

FAN_MARK_ADD | FAN_MARK_MOUNT,

FAN_MODIFY | FAN_ONDIR | FAN_EVENT_ON_CHILD,

AT_FDCWD, argv[1]);

if (ret == -1)

{

perror("fanotify_mark ");

exit(EXIT_FAILURE);

}

while (1)

{

buflen = read(fan, buf, sizeof(buf));

metadata = (struct fanotify_event_metadata *)&buf;

for (;

FAN_EVENT_OK(metadata, buflen);

metadata = FAN_EVENT_NEXT(metadata, buflen))

{

snprintf(procfd_path, sizeof(procfd_path), "/proc/self/fd/%d",

metadata->fd);

path_len = readlink(procfd_path, path,

sizeof(path) - 1);
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if (path_len == -1)

{

perror("readlink");

exit(EXIT_FAILURE);

}

path[path_len] = ’\0’;

if (strchr(path, ’.’))

{

ssize_t size = read(metadata->fd, bufFile, BUF_SIZE);

if (size == -1)

{

perror("read");

continue;

}

else

{

events = fanotifyMaskStr(metadata->mask);

if (!(events == "?"))

{

pName = processName(metadata->pid);

double entropy = calculate_entropy(bufFile, size);

memcpy(magicByte, bufFile, 4);

Dados dados;

dados.EventSize = metadata->event_len;

dados.Version = metadata->vers;

dados.Reserved = metadata->reserved;
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dados.MetadataSize = metadata->metadata_len;

dados.FD = metadata->fd;

dados.Mask = metadata->mask;

strcpy(dados.MaskName, events);

dados.PID = metadata->pid;

strcpy(dados.NameProcess, pName);

strcpy(dados.File, path);

dados.Entropy = entropy;

dados.FileBytes = size;

strcpy(dados.MagicBytes, magicByte);

storeLogData(conn, dados);

}

}

}

close(metadata->fd);

metadata = FAN_EVENT_NEXT(metadata, buflen);

}

}

}
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